
PRELIMINARY EXPERIENCE WITH A CONFIGURATION CONTROL SYSTEM

FOR MODULAR PROGRAMS

-0-0-0-0-

J.Estublier, S.Ghoul, S.Krakowiak
Laboratoire de G@nie Informstique

IMAG, Grenoble, France

1. INTRODUCTION

This paper describes some preliminary
experience gathered during the implementation and
early use of a program composition and version
control system. This system has been designed and
implemented as a part of the Adele research
project, s programming environment for the
production of modular programs (Estublier 83).
This project has four main components: a) a
program editor, interpreter and debugger; b) s
parameterized code generator; c) a user interface;
d) a program base, the subject of this paper. The
current version of this environment has been
developped on a Multics system.

The program base, including the system
composition and version control mechanisms, has
been used for six months, notably for its own
development and maintenance.

This part of the effort in the Adele project
has been directed towards the problems of the
development and evolution of large experimental
systems. Its main objectives are:

i) to provide a data base for the long-term
storage of the components of a software system,

2) to provide a language for the
description of system composition, including a
provision for the description of multiple
versions and of user-specified constraints,

3) to automate such operations as changing
of versions and propagating the effects of a
local modification, in a safe and efficient
way.

The f o l l o w i n g g u i d e l i n e s have been adopted f o r
the d e s i g n :

- the design is independent of the
programming language, as long as the notions of
separately defined interfaces and
implementations are provided,

- the dependency on the underlying
operating system is confined to a low-level
layer which implements a set of file-handling
primitives,

Experience in this area is still limited;
related work is described in (Cristofor 80, Kaiser
82, Lampson 83, Schmidt 82, Tichy 82a,b).

The paper is organized as follows:

- Section 2 presents the overall design end
implementation principles of system composition
and version control: definition of the
components and relations, naming scheme,
expression of consistency constraints, data
structures.

- Section 3 is a description of the two
main algorithms used in the current operation
of the version control system: the composition
of a system, and the effect of a modification
on a part of a compound system.

Section 4 contains an account of the
early experience gained in the use of the
version control system, and some indications
for improvements in its functions and internal
Structure.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-131-8/84/0400/0149500.75

2. DESIGN OF THE VERSION CONTROL SYSTEM

2.1 System components and relations

Let us first briefly recall the principles of
modular program composition; these principles are
common to the current languages which offer the
module construct, such as Mesa, Modulo-2 or Ada.

149

A system is defined as the association of an
interface, which is a description of the resources
provided by the system, and an implementation,
which a c t u a l l y p r o v i d e s t h e s e r e s o u r c e s . An
implementation may consist of a single
"self-contained" module body, which provides by
itself all the resources. However, a module body
u s u a l l y r e l i e s on e x t e r n a l r e s o u r c e s . These a r e
in turn described in other interfaces and provided
by other implementations. Thus the implementation
of the original system consists of a set of module
bodies, whieh we call a coqfiquratioq. The user
of a system only relies on the interface
specifications; whether the interface is
implemented by s single module body or by a
configuration is irrelevant for the importer of
the interface, as long as the specifications are
m e t .

In summary, the modular decomposition defines
two c l a s s e s of objects: interfaces and
configurations (with "self-contained" module body
as s special case of a configuration). Between
these objects, two relations are defined:

- a configuration implements an interface
if it provides all resources described in that
interface,

- a module body requires an interface if it
uses a resource described in that interface;
the interfaces of the component module bodies
of a configuration are said to be internal to
the configuration; any other interface required
by one of the component bodies is said to be
required by the configuration.

Let us assume, for the time being, that the
module body which implements an interface is
uniquely defined. The relation "requires" defines
a directed acyclic graph; all the module bodies
which make up a configuration may be obtained,
starting from the interface, by constructing the
transitive closure of the "requires" relation.

We now introduce multiple versions for
interfaces and configurations. For module bodies,
we define the usual 2-level (version-revision)
scheme (Cristofor 80, Kaiser 82). In addition, we
allow a third level of evolution for interfaces
(the notion of an interface family).

The following notions are defined:

a) a family is a set of related interfaces.
Usually, a family consists of different subsets of
a given set of facilities. Thus the resources
provided by a file system may be described by a
family; the different interfaces would describe
subsets of this family (e.g. read only, or (open,
close, read, write), or (create, delete)).

b) a version defines a specific instance of a
module body.

c) any version may undergo a sequence of
revisions. These revisions are numbered by
successive integers.

The distinction between version and revision is
somewhat arbitrary. In principle, versions
correspond to significant changes (e.g. different
operating environment, or different time-space
tradeoff, etc), whereas revisions result from
error corrections, enhancements, etc. We make
this distinction more formal by specifying that
all revisions of a version have the same required
facilities. Any revision that involves a change
in the resources required by a version implies the
creation of a new, different version.

The naming scheme for objects within a system
is a hierarchical one; it is derived from the
graph of the relation "requires" (also called
dependency graph), as explained in the following
example. At each level of naming, a default is
specified. Thus frequently used options have
short names and they are efficiently retrieved.

Example. The notions presented in this section
are illustrated by an example, which we shall use
throughout the paper. The system described on
figure 1 is a very simplified version of the
program base manager.

program_base

struct "config

Figure 1. The structure of a simple system

The system is composed of 5 modules; its
dependency graph is shown in full lines. The
identifiers (program base, struct, etc) are family
n a m e s .

Let us make the following assumptions:

- each family contains a single interface,
except for manual_mgr, which has two interface
versions intl (the default) and int2.

- each interface is implemented by a single
module body in a unique version, except for
struct and for manual mgr-intl, each of which
may be implemented by two versions vl and v2.
In both cases, version vl is defined as the
default.

In this example, the naming scheme may be
described as follows:

l) A spanning tree is defined for the
dependency graph; it is shown in dotted lines
on figure 1. The choice of this tree is left
to the user.

2) Eaeh family is denoted by a full name
derived from the tree (e.g.
program base>struct>manual_mgr.

3) Interface end body names are defined by
the following syntax

50

<interface name>::=
<family name>- <interface identifier>

<body name> ::= <interface name>-
<version identifier>.<revision number>

The star convention may be used in names
with its usual meaning (a star matches any
identifier).

4) If any of the optional elements is
missing, the default is assumed.

5) In addition, any node of the tree may be
chosen as the root of a working environment,
similar to a working directory in a file
system. Family names are interpreted in the
working environment.

For instance, if struct is the current working
environment:

-v2 denotes the last revision of version v2 of
the body which implements the (unique) interface
of family struct

manual mgr-- denotes the last revision of version
vl of the body which implements interface intl of
manual mgr (recall that intl and vl were defined
as the default)

The analogy with a file system is extended to
include two notions:

- Visibility: the naming tree also defines
a pattern for visibility. Visibility along the
arcs of the dependency graph which are not
spanned by the tree must be explicitly
specified. This provides some protection
against uncontrolled evolution,

Access rights: access lists are attached
to each object and checked at each access
against user rights.

In a configuration which contains multi-version
bodies, the relations "implements" and "requires"
do not uniquely define a configuration any longer.
The choice of the right component at each level of
the hierarchy must be directed by some
specification. This problem is the subject of the
next section.

2.2 Overall Eroqram.Atructure and consistency
constraints

2.2.1 Principles

A well-known source of errors in multi-version
systems is the internal inconsistency due to the
coexistence of "incompatible" versions of some
modules. We therefore need a means to define what
a "consistent" system is. In order to assist the
designer in the expression of consistency
constraints, we define a set of attributes for
each object. An attribute is usually a name-value
pair. Some of the attributes are user-defined;

others are automatically derived by the program
base.

The constraints on a program component express
restrictions on the objects that this component
may (transitively) require. These constraints
take the form of logical expressions involving
conditions on attribute values. Thus one may
express implications (e.g. version x of module A
requires, or excludes, version y of module B).
Default conditions are also attached to each
object; they are in effect if no other constraint
is specified.

A more detailed description of attributes and
constraints, with examples, is given at the end of
this section.

The following principles have been adopted for
the representation of the attributes and
constraints:

- uniformity: the structure of the
representation is uniform for all classes of
objects (interfaces, module bodies,
configurations),

- locality: all the information relevant
to the use of an object is attached to that
object,

- implicit or automatic derivation: the
system makes use of whatever information that
can be automatically collected in or derived
from the data base; the information provided by
the user is restricted to its minimum.

The uniform structure for an object consists of
two segments: a text and a manual. For a module
body or an interface, the text segment contains
the source text of the body or interface; for a
configuration, the text contains a conf!qqration
specification and a composition list. This list
contains the names of all the bodies that compose
the configuration; it is constructed by the system
when the configuration is created, using the
configuration specification provided by the user.
This specification may be explicit (all components
are specified by their full name) or implicit
(some components are specified by relations on
their attributes). The specification may even be
empty, in which case all default options are
chosen. Configuration specifications are
described in section 3.1.

The manual of an ob jec t conta ins two par ts :
use r - spec i f i ed a t t r i b u t e s and cons t ra in t s (as
def ined above), and system-der ived in fo rmat ions .
This l a t t e r pa r t conta ins the dependency l i s t o f
the ob jec t , which g ives the names of the
i n t e r f a c e s requ i red by t h i s ob jec t . The contents
of the manual is uniform for all classes of
objects.

2.2.2 A t t r i b u t e s and cons t ra in t s

We now g ive a more prec ise desc r i p t i on o f the
form and meaning or the a t t r i b u t e s and
cons t ra i n t s , as they appear in a manual.

151

I) Attributes. The attributes of a module
body may be classified as follows:

Descriptive attributes may specify any
property defined by the designer; in
addition, a small number of attributes (e.g.
date, status) are automatically maintained
by the system. Descriptive attributes are
prefixed by the keyword attribute. They
have the form (attribute name : value).

- Visibility attributes are prefixed by
the keyword visible. They specify the list
of environments (i.e. family names) from
which the specified component is visible.
They may be used for security reasons.

2) Constraints, A constraint is the
expression of the presence or absence of
specified program components in the dependency
list of the constrained object. The components
are specified either explicitly (by their
name), or implicitly (by a condition on their
attributes). Three types of constraints may be
specified.

- Imperative constraints: the specified
program components must be part of the
dependency list of the object.

Exclusive constraints: the specified
program component must not be part of the
dependency list of the object.

Conditional constraints: these only
apply to program components specified by
conditions on their attributes. A
conditional constraint only applies if these
attributes exist; if not, the constraint has
no effect.

3) In addition, default conditions may be
defined; they are used only if they do not
conflict with a constraint.

Example. We shall describe a typical contents
for a manual, using the example system introduced
in section 2.1. The manuals of some of the module
bodies of this system are displayed on figure 2.

Most of the information on figure 2 is
self-explanatory. The constraints on module body
struct--vl specify that any program component
transitively required by this body must have the
attributes concur end version, with values "true"
and "83", respectively. Attribute allot is not
required; but if it is present, it must have the
value "dynamic" The module bodies which implement
interfaces of the family manual mgr do not have
any constraints since their dependency list is
empty; they have a visibility attribute, which
specifies that they are visible from any family in
the program base environment. All revisions of a
version have the same manual, except for two
attributes, status and date, which are specific to
a revision. The meaning and use of the status
attribute is discussed in section 3.2.

3. ALGORITHMS FOR SYSTEM COMPOSITION AND
CONSISTENCY ENFORCEMENT

In this section, we give an outline of the main
algorithms used in the program base. A detailed
description is given in (Ghoul 83).

3.1 Conf~qqration specification

A configuration specification has the same form
as the constraints part in a manual. Thus the
program components which make up a configuration
may be specified either explicitly, by name, or
implicitly, by imperative, exclusive, conditional
or default selections. Configuration
specifications are illustrated with the example of
section 2.1.

confiq program base--exl
imperative
* (version = 83)
struct>manual mgr-intl-vl.02
conditional
* (concur = true)

end

confiq program_base--ex2
imperative
*((date > 6.20.83)

or (status = approved))
exclusive
(status = incoherent)

end

The specification of program base--exl
constrains all components of this configuration to
have the attribute version, with value 83; the
module manual mgr must be used with interface intl
and body vl.02; in addition, if any component has
the attribute concur, its value must be true.

The specification of program base--ex2
constrains all components to have either a date
later than 6.20.83 or to have the status
"approved"; it excludes any component with status
"incoherent".

3.2 System composition

The following algorithm constructs a
configuration which implements a given interface,
starting from a configuration specification. The
system attempts to cons t ruc t the t r a n s i t i v e
closure of the dependency relation by a
breadth-first search. For each interface, it must
select a single implementation. This is done as
follows:

I) Process the consistency constraints that
apply to the interface (these constraints are
found either in the specification of the
configuration being built or in the manual of
already selected implementations). This
processing is done in three steps.

(process conditional constraints): if
a module body has an attribute name
specified in a conditional constraint, this

~2

manual struct--v l manual struet--v2

<user-defined>

attr ibute
~ p l B ~ = tree)
(concur = true)
(version : 83)

imperative
*(concur = t rue)
* (ve rs ion : 83)

conditional
* (a l loe = dynamic)

<user-defined>

attr ibute
('implem = l inear)
(concur : false)
(vers ion : 84)

default
*~eoncur : false)
* (ve rs ion : 84)

<system-derived>
(d e p l i s t = manual_mgr--intl)
(ineludingLconf =)

<revisions>
Ol : (date = 6.20.83)

(status = approved)

<system-derived>
(d e p l i s t = manual_mgr-int2)
(includingLconf =)
° . , ,

<ray isions>
Ol : (date : 12,8.83)

(status : experimental)

e qd end

manual manual mgr- int l -v l

<user-defined>

attr ibute
~alloc = static)
(concur = false)
(version = 83)

visible
progLbase>*

<system-derived>
(dep_list =)
(including conf =)

<revisions>
Ol : (date = 08,03.83

(status = experimental)

02 : (date = 09.05,83)
(status = approved)

manual manual_mgr-intl-v2

<user-defined>

attr ibute
~alloc : dynamic)
(concur = t rue)
(version : 83)

y.!sihle
prog_base>*

<system-derived>
(dep_list =)
(including conf =)

<revisions>
Ol : (date = II,02.83)

(status = experimental)

02 : (date = 12,01.83)
(status = approved)

manual manual_mgr- int2-vl

<user-defined>

attr ibute
(alloc= dynamic)
(concur = t rue)
(vers ion = 84)

visible
progbase>*

<system-derived>
(dep l i s t =)
(including conf =)

<revis ions>
O1 : (date = 11.30.83)

(s ta tus = approved)

en__d end end

Figure 2, Examples of manuals for module bodies

153

constraint is added to the list of
imperative constraints,

- (process i m p e r a t i v e c o n s t r a i n t s) :
cons t ruc t the l i s t o f a l l components (i . e .
module body revisions) that match the
imperatives constraints (any module body
matches an empty list of constraints),

- (process exclusive constraints):
delete from the above list all components
that match the exclusive constraints.

In this process, any conflicting (i.e.
incompatible) constraints are detected and
marked.

2) Scan the component l i s t eonstructed in
step I .

- if s conflict was detected, the
configuration is marked as "inconsistent"; s
warning is issued to the user.

- if the list contains a single
component, select it; if several choices are
possible, use the default rules (e.g. most
recent revision or user defined default
rule),

if the list is empty, the
configuration is marked as "incomplete"; a
warning is issued to the user,

During this process, the composition list and
the system-defined part of the configuration
manual are constructed. If the algorithm
succeeds, the configuration is attached to its
interface; it can now in turn be selected
(according to the contents of its manual) if the
interface is used in the construction of an
enclosing configuration.

3.) Propagat ion of changes

We now spec i f y the e f f e c t of a mod i f i ca t i on of
a par t of a configuration.

l) Modification of a module body: the effect
is to create s new revision for this body.

2) Modification of a manual: the modification
may affect the consistency of the configuration in
two ways (upwards or downwards in the dependency
graph).

3) Modification of an interface: in this case,
nothing can be done automatically except
inconsistency detection.

A reconstruction algorithm proceeds in two
steps. In the first step, the components which
are involved by the modification (e.g. because
they depend on a modified object) are marked. In
the second step, the marked components are
processed in bottom-up order (wi th respect to the

dependency graph). Typical reconstruction
algorithms (e.g. (Feldman 79)) use timestemps to
detect the modified objects.

We have chosen to introduce a more elaborate
status information, and to maintain this status up
to date, including the automatic propagation of
changes; however, the reconstruction itself, which
is a fairly expensive operation, is only carried
out on user request. After a modification has
been prepared, but before its execution, its
effect on the status of the system is displayed to
the user, who may then decide either to cancel the
modification or to have it carried out. The user
may now request the reconstruction of the system.

The status information of a component is
described in a status attribute, which is attached
to each object. It may take the following values:

- incoherent, if the object is subject to
eonflieting constraints, or if its text is
syntactically incorrect,

- incomplete (for configurations only) if the
composition algorithm was unable to select a
revision for the implementation of some family,

- mod int, if an interface required by the
object has been modified,

- obsolete (for configurations only), if none
of the above applies, and if, in addition, the
reconstruction of the configuration would change
its composition list.

- experimental, if none of the above
conditions apply.

In addition, the user may modify the value of
the status attribute. These modifications preempt
those made by the system. At user request, the
system may list, for each objet, the modifieations
which changed its status.

The status information may be used to
characterize a consistent system. We define two
forms of consistency:

- a system is otronql~ consistent if all
its components have the "experimental" status,

- a system is weakly consistent if all its
components have either the "experimental" or
the "obsolete" status.

A weakly consistent system may not conform to
the latest changes in the constraints, but it
still may be used for testing or debugging,
without having to carry out a reconstruction.

3.4 The user ' s view

In order to i l l u s t r a t e the func t ions o f the
program bose, we descr ibe a t y p i c a l user session
for the construction of the simple system
described as an example in section 2.1. The
source text of the interfaces and module bodies is
assumed to be initially stored in a set of files.
System prompts ore preceded by --; texts betweeA
<> are comments or abstracts of o sequence of
actions.

154

i) (Define tree) Define a spanning tree far the
dependency graph; the tree defined by the user was
shown in dotted lines on fig. i. It is
essentially used for naming the modules.

2) (Initialize) For each component (interface
or body), execute the command:

create <object name> <file name>

This creates program base objects far the system;
the dependency lists in the manuals ere
automatically constructed from the import
declarations.

3) (Create con f i gu ra t i ans)

createconf <conf.name> (<file name>)

The file specified by the optional <file name>
contains the configuration specification expressed
by a set of constraints.

createconf program base--exl exl.conf

--unable to find a body in manual_mgr-intl:
--constraints: -intl.vl.02 concur = true
--program base--exl will be incomplete.
--De you confirm (y/n)? y

4) (Execute)

exec program base--exl "initiate"

--program_base--exl is incomplete:
--a body for manual_mgr is missing.
--Do you confirm (y/n)? y

5) (Modify module)

reserve config-- <lacks the module>
<modification sequence under editor>

release and store <unlock and store>

--this operation will make obsolete:
--program base--exl.
--De you confirm (y/n)? y

6) (Modify manual)

r e s e r v e struc--vl.man
<modification sequence under editor>

release and store

--your operation will make obsolete:
--progrem base--exl progrem base--ex2
--Do yau confirm (y/n)? y

4. EXPERIENCE AND CONCLUSIONS

4.1 C antex t o [the . experience

The program base has been used for six months,
mostly by the members of its development group.
The main program supported by the base has been
its own program, which consists of about 20 000
lines of source code, divided in 45 modules. The
depth of the composition tree is I0. Three
versions of this system are currently supported;

some of the modules have revisian numbers as high
as 20. Two other programs are also currently
developped; each of them consists of about 15
modules and 5000 lines of source code. A total af
ii00 segments is maintained by the program base.

In the current version (january 1984), the
management of documentatian and the facility for
concurrent use have nat yet been implemented.

4.2 Evaluation of the System

The early experience with the system can be
summarized under two headings

i) Methodological impacts

It was noted that the availability of the
configuration management tools had a definite
influence on the process af system design and
construction. Since it was possible ta rebuild
rapidly and efficiently a system after a
component was changed, experiments with
alternate versians of modules were made easy;
this in turn had a positive influence on the
design process, as the designers were
encouraged to draw module boundaries so as to
allow such variations, and thus to isolate
significant design decisions.

Another discovery was the general
applicability of the tools, lhe configuration
and version control system was initially
designed for languages with separately defined
interfaces and implementations. The language
used in the Adeie programming environment is a
modular extension of Pascai. However, the
program base has alsa been used far PL/I
programs (about i0% of the tatal code); in that
case, the interface descriptian must be
expIicitly provided. The program base, which
was initially olasely integrated in the AdeIe
programming environment, is currently being
redesigned as an autonomous system with a wider
applicability.

2) Expression and enfarcement
consistency constraints.

of

Configuration consistency is a key concept
in a multi-version programming enviranment.
However, due to lack af experience, this
concept is not yet stabiiized. In our
approach, consistency is defined as conformity
to two sets of constraints: user-defined
specifications, such as attribute selection,
and structural constraints, such as conformity
of exported and imported resources. As a
configuration evolves by a succession af
modifications, its consistency must be
preserved. Our experience has Ied us to define
two forms of consistency. I) "stronq"
consistency: at any time t, the configuration,
as resuits from its evolution, is exactly in
the same state as if it were reconstructed from
its camponents, at time t, by the algorithm
described in 3.2. 2) "weak" consistency: the
configuration conforms ta structural
constraints, but some of its components are
obsolete, in the sense that some user-defined

155

constraints may not be satisfied any longer
after modifications. The notion of weak
consistency allows us to limit the "ripple
effect" of modifications during the debugging
and integration phase.

Another concept whose usefulness was
discovered by experience is that of a downwards
inheritance mechanism for constraints. A
constraint defined as "heritable" would
propagate down the dependency graph. This
would both simplify the modification algorithms
and help prevent conflicts between constraints.
The inclusion of this mechanism is currently
contemplated.

4.3 Conclusion

Our approach may be compared to other efforts
in the same direction. The philosophy of the
Unix-based tools (Feldman 79) has provided the
general inspiration for the automatic
reconstruction; the notion of composition list is
from (Cristofor 80). Another, more ambitious,
system based on similar ideas is the Cedar
Modeller (Lsmpson 83, Sohmidt 82); multi-version
systems are also supported by Gandalf (Kaiser 82).
The main original points in our approach lie in
the expression of multi-version system composition
by constraints on attributes rather than by
component names (the attributes being locally
attached to any component or configuration), and
in the extended notion of status. We believe that
such an implicit definition if often a more
natural specification means for the designer than
the explicit naming of components (which is still
possible in our system). The price of this
increased generality is paid in the complexity of
the reconstruction algorithms. Our approach may
also be regarded as an extension to that described
in (Tichy 82b), where the expression of
constraints is restricted to and/or conditions on
the nodes of the dependency graph. Our
preliminary experience is leading us to take a
step backwards in the generality of constraint
expression, while preserving our main design. We
hope that the current experimentation shall mark
some progress in the search of a suitable means of
expression for "programming in the large".

Acknowledqments. The work described in this paper
has been supported by the Centre National d'Etudes
des T41~communications (projet Concerto). The
initial phase of the Adele project has been partly
supported by Agence de l'Informatique.

REFERENCES

(Cristofor 80)
Cristofor E., Wendt T.A., Wonsiewicz B.C.,
Source control + Tools : Stable systems,
Prec. Compsac 80 (IEEE Computer Sac. Press)
(oct. 1980)

(Estublier 85)
Estublier J., Krakowiak S., Mossi~re J.,
Rouzaud Y., Design principles of the Addle
programming environment, Proe. International
Computing Symposium on Application Systems
Development (ACM), Nuremberg (march 1983)

(Feldman 79)
Feldman S.I., Make - a program for
maintaining computer programs, Software
Practice and Experience, vol.9, 3 (march
1979), pp.255-265

(Ghoul 83)
Ghoul S., Base de donn4es et gestion de
configurations dana un atelier de g@nie
logiciel, (in French), Th~se de
Docteur-lng4nieur, Institut National
Polytechnique de Grenoble (dEc. 1985)

(Kaiser 82)
Kaiser G.E., Habermann A.N., A description of
the correct version control supported by the
Gandalf environment, in The 2-nd Compendium
of Gandslf Documentation, Carnegie-Mellon
Univ. (1982)

(Lsmpson 83)
tampson B.W., Schmidt E.E., Organizing
software in a distributed environment, in
Proc. SIGPLAN '83 Symposium on programming
language issues in software systems, vol.18,
6 (1985) pp. l -13

(Schmidt 82)
Schmidt E.E., Cont ro l l ing large software
development in a d i s t r i bu ted environment
(Ph.D. thesis, Univ. of California,
Berkeley), CSL 82-7, Xerox PARC (dec. 1982)

(Tiehy 82a)
Tichy W.F., Design, implementation and
evaluation of a revision control system,
Proc. 6th International Conf. on Software
Engineering (ACM-IEEE), Tokyo (sept. 1982)

(Tichy 82b)
Tichy W.F., A data model for programming
support environments and its application,
Proe. IFIP W.G. 8.1 Workshop on Automated
tools for information system design and
development, New-Orleans (jan. 1982),
North-Holland

156

