
Computer-Aided Software Engineering
in a Distributed Workstation Environment

David B. Leblan9
Robert P. Chase, Jr.

npollo Computer
15 Elizabeth Drive

ChelnsFord, Na. 81824

ABSTRACT

Computer-Aided Software Engineering environments
a r e becoming essential for complex software
projects, Just as CAD systems have become
essential for complex hardware projects. DSEE,
the DOMAIN Software Engineering Environment, is a
distributed, production quality, software
development environment that runs on Apollo
workstations. DSEE provides source code control,
configuration management, release control, advice
management, task management, and user-deflned
dependency tracking with automatic notification.

DSEE incorporates some of the best ideas from
existing systems. This paper describes DSEE,
contrasts it other systems, and discusses some of
the technical issues involved in the construction
of a highly-tellable, safe, efficient, and
distributed development environment.

Background

The phrase "programming environment", while used
in many contexts, generally refers to an operating
system environment and a collection of tools or
subroutines. Because each programming environment
h a s different goals, this makes direct comparisons
of functionality difficult. The intent of this
paper is to describe DSEE and contrast it with
other systems in terms of g�Alg and
functionality. Though there are many programming
environments [San78, Hab82, Ost83, SDE81], this
paper wlll focus comparisons on a few well known
systems:

UNIX/FdB[Ivi77] includes the SCCS[BTL81]
source code control system and the MAKE[FelT9]
configuration tool. RCS[Tic82] is a more
powerful source control system that also runs

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-131-8/84/0400/0104500.75

on UNIX systems. CMS and MMS [DEC82] are the
VAX/VMS equivalent to SCCS and MAKE. CMS
provides a richer set of source control
capabilities than does SCCS or RCS; MMS is
virtually the same as MAKE. SCCS/MAKE, RCS.
and CMS/MMS work wlth the standard compilers,
editors, and debuggers found on the host
system.

ALS[Tha83], the Ada Language System, was
developed by Softech to meet Stoneman[Sto80]
requirements for an Ada programming support
environment. ALS includes an Ads compiler,
debugger, binder, and execution environment.
In addition, the ALS has a source code control
system that keeps successive generations and
variants of packages. The ALS does not have a
single configuration management tool, but it
provides the primitives needed to build one.
The ALS Ada compiler/linker detects the need
to recompile (as required by the Ada
standard).

Cedar[Lam83,Tei83] is built on the Xerox PARC
Computer Science Laboratory system. Although
the Cedar system does not provide for source
code control, it does allow several copies of
a module to exist, each stamped with a
date/time. The Cedar "System Modeller" is a
configuration management tool that notices
when a new version of a module comes into
existence (via coordination with the editor),
and can build a complete program from an
arbitrary set of module versions. Cedar
requires that only the Cedar editor and
compiler be used.

I n t r o d u c t i o n t o DSEE

DSEE is implemented as one program, with instances
running at various nodes in the network. DSEE is
designed to manage large-scale development efforts
involving engineers, technical writers, managers,
and field support. Since these organizations,
their data, are typically spread among many
locations, DSEE must recognize and support,
distributed development environments. The
underlying Apollo DOMAIN architecture helps by
providing network-wide virtual address space,
transparent remote file access, and remote paging
[Lea83]. DSEE uses a distributed database
management system (D3M) to store historical

iC~4

information; reliable, immutable, files to store

deltas and tasks; server processes that watch for
asynchronous events; and a store and forward
inter-process communication mechanism (used in
case the network becomes temporarily
partitioned). The DOMAIN system supports multiple
windows, each of which may run a eeperate
process. Some windows provide general system
commands through a standard shell; others run
dedicated applications llke mall and calendar.
DSEE runs as a dedicated window that provides
commands for activities directly related to
software development,

A DSEE product goal requires that it work with any
language or text processor; in addition, users may
pick any editor. In order to work its "magic",
without changing existing tools, parts of DSEE had
to be implemented directly in the operating
system. Thus, without changes to any existing
tools, the compilers, editors, print spoolers,
etc. are all able to understand DSEE file formats
and obey DSEE Configuration Manager version
constraints. This powerful capability
distinguishes DSEE from all of the systems
described above.

DSEE consists of several "managers":
o The~i~J~P/.y~.R~M~ controls source code and

provides complete version histories.
o The configuration manager builds systems from

their components and detects the need to
rebuild.

o The task manager relates source code changes
made thoughout the network to particular
high-level activities.

o The ~ watches user-deflned
dependencies and alerts users when such
dependencies are triggered.

o The ~ holds general project
related information and provides templates for
re-dolng common tasks.

H i s t o r y Management

The History Manager (HM) provides source code
control within the DSEE environment. The HM is a
reserve/replace and incremental change (delta)
oriented system. Related source elements are
grouped into DSEE librarle~. Source elements are
stored in a special, hlghly-compressed, format
(see HM technical notes below). Users reserve an
element for modification and edit a local copy.
When they have finished changing and testing the
element copy, users replace the element, creating
a new version. The HM inquires about the reasons
behind a change, then records that information,
along with the date/time, node id, and person's
name in the history database associated with the
library. At a later time, the history of an
element can be reviewed, specific changes viewed
llne by line, and any past version ot the element
retrieved. If a user attempts to "reserve" an
element that is already reserved, DSEE warns the
user of the conflict by stating why the element
was reserved and by whom. Parallel development is
allowed, but only on distinct branches (see
"variant branches" below).

In a distributed workstation environment it is

usually other~l~/_~Ip~ of DSEE managers that need
to be informed when a new version is created. For
this reason, the DSEE process creating the new
version sends Inter-process communication messages
to other nodes. The sections on the Task and
Monitor Managers in this paper discuss this
feature in more detail.

Another aspect of a distributed environment is
that "partial" failures can occur. DSEE provides
rellable recovery for partial failures. The
distributed DBMS used by the I~4 uses Journal files
and semaphores to implement transactions. The FR
updates delta files within the transactions by
creating unnamed temporary files, force writing
them to disk, and then making them named permanant
files. The mechanisms described are somewhat
expensive in terms of compute cycles, but since
the time between reserves and replaces is measured
in tens of minutes to hours, the overhead of
several cpu seconds is worth it, considering the
added reliability.

An element normally evolves along a linear line of
descent. However DSEE supports three types of
yarlant evolution. The first type of variant
evolutlon answers the problem of what to do when a
bug is discovered in a previous release of an
element. The maintainer wants to modify the old
version of the element without affecting, or being
affected by, current development activities. The
DSEE HM provides a mechanism for creating a new,
independent, llne of descent for the element that
branches off an existing version (as does RCS. and
SCCS). On a large project, some members may work
exclusively on branches, while others continue to
develop the main llne of descent. Just prior to a
new release, the branch may be~/.E_~[into the
main llne, thus incorporating bug fixes into the
main development work. DSEE provides a
multl-wlndow interactive merge command that
automates much of the merging process. The user
can override an automatic merge decision or make
edits to the resulting file as the merge
proceeds.

DSEE. llke ALS, is a HOST/TARGET oriented system;
that Is, it assumes that the code being developed
is intended to execute on a variety of target
machines, not Just the machine which hosts the
software development environment. The second
type of "variant" allows for alternate, radically
different implementations of the same module -- a
requirement of some projects. (For example, an I/O
control module may have one implementation in
68000 assembler, and another in PDP-II
assembler). The ALS provides "variation sets" to
deal with exactly this problem. DSEE relies on
the Configuration Manager and Monitor Manager
(discussed below) to solve this problem. DSEE
users can create two distinct elements and let the
Configuration Manager pick the right element based
on the current configuration description. The
Monitor Manager ensures that when one
implementation is changed, the user is notified
that the other implementation requires changes
tOO.

The third type of variant arises when the
alternate implementations are subtly different,
and may be implemented in a single element with

105

embedded conditional compilation statements.

Again, the Configuration Manager is relied upon to
pass the appropriate flags to the compiler based
on the current configuration description. With
this approach, most of the element is shared and
so changes made in the common sections affect all
target variants.

Technical Notes on H i s t o r y Management

The ALS and Cedar store full copies of old
versions of elements. Because DSEE is designed to
support large systems over a long period of time,
and on moderately sized disks, it stores only the
incremental difference (delta) between successive
generations. RCS and SCCS are also delta based.

The use of deltas saves an enormous amount of
space. Statistics on typical Pascal modules
managed by the HM showed that each new version
makes the delta file about I%-2% larger. In other
words, 50-100 versions of a module can be stored
in the same amount o f spaQe a s 2 c o p i e s o f that
module. These space savings answer those who say
that source code control systems use too much disk
space and that users should Just keep each module
and its backup (i.e., module.BAK).

In addition to deltas, DSEE saves space by
compressing leading blanks in source files to a
space count byte. Again the savings are
enormous. Statistics on Pascal modules held by
the HM showed that 20% of each module consists of
leading blanks. The combination of deltas and
space compression leads to an interesting
phenomenon: an HM element, with 5-10 versions, is
often smaller than a single clear text copy of
that element.

DSEE/HM and SCCS use "interleaved" deltas (ie.
there is only one flle containing all of the
versions of the element). Intermixed control
records allow the source code control system to
extract £1kyversion of the element in a single
pass over the file. NCS uses "seperate" deltas;
i.e., a whole, plain text, copy of the most recent
version is kept along with deltas describing how
to go "backwards, from the current version to old
versions. RCS can provide the most recent version
very quickly, but has more trouble implementing
variant branches. This is described in Tichy's
paper [Tic82], which also gives an excellent
discussion on the various styles of deltas. DSEE
uses a variant of the delta algorithm described in
[Hec78]. This choice was made for functionality
reasons, not for performance. The ability to
construct any version in a single pass over the
interleaved delta file is critical to the
implementation of DSEEgXj~/~_£~/~£~. Extended
streams offer ordinary, unmodified programs
transparent access to any version of a DSEE
element.

DSEE's element history files, llke all file system
objects in the Apollo DOMAIN system, are stamped
with an obdeot tvne unioue identifier (a 64-blt
type UID). There are several predefined object
type UIDs, including ascii_file, object_file,
bitmap, mailbox, and dsee_history_managerfile.
For each object type there exists a corresponding

implementing standard stream
operations on objects of that type (eg. open,
close, get record, put_record, seek, etc).

When the Apollo DOMAIN I/O subsystem is asked to
open a "stream" on a system object, it allocates
and initializes a file-descriptor and then
dispatches, based on the obJect's type UID, to the
appropriate stream manager to complete the
"open". The dseehistory_managerfile stream
manager determines and records the desired version
number in the file-descriptor. The default is the
most recent version in the main llne of descent.
However, the per-window global ~ can
indicate that some alternate version is desired.
As subsequent calls are made to obtain the next
record from the file, the DSEE stream manager is
invoked to implement DSEE-speciflc behavior, which
includes applying deltas and determining the next
record in the desired version. The version maps,
set-up by the DSEE Configuration Manager, are
described below.

Configuration Management Bankground

MAKE looks at each item in the makefile and find
its date-time modified (DTM). If the DTM of an
object pre-dates the DTM of any of the objects it
depends on, the object is rebuilt. This DTM based
approach is fine when you are trying to build a
system from all most recent sources, but it fails
to deal with more complicated cases involving old
versions, variant branches, or multiple targets.
Moreoever, MAKE is very "binary" oriented; the
user must describe the system in terms of the
object modules that go into it, rather than in
terms of the source modules. MAKE supports a
dynamic style of development, in which each user
sees other users' changes as soon as the become
available.

The Cedar "system model" [Lam83a] allows users to
name specific versions of files (basically by
giving the desired creation date). This allows
Cedar to rebuild old systems, and to let
individual users build their own versions. Cedar
is source oriented; that is, the model is given in
terms of source modules and the Cedar builder goes
off and searches for the binary (if any) that
corresponds to the requested version of the
source. If no binary is found, Cedar will re-build
it from the source. Cedar supports a cautious
style of development in which each user is
isolated from other users' changes until an
explicit request to incorporate someone else's
changes is made.

DSEE Configuration Management

The DSEE Configuration Manager support both
cautious and dynamic styles of development. The
DSEE CM separates the concept of the "system
model", which it treats as the blueprint for the
construction of a system, from that of "version
specification".

A DSEE ~ is a description o{ the
components that comprise an application, the
"build" dependencies inherent in each component,

i06

and the build rules that must be applied to a

component in order to rederlve an object module
from source. The CM considers a component's
"bulld dependencies" to be the set of objects that
are relevant to the rederivatlon of the component
(e.g., "include files"). The system model does
not state which versions to use in a build; it
simply defines the static properties of the
application. The system model may reference
elements in several DSEE HM libraries as well as
non-DSEE objects. The DSEE system model is source
oriented; binaries are not mentioned in the
model. Instead, binaries are referred to as the
result of translating the corresponding sources
(eg. "%result (foo. pas)"). The system model
language supports multi-step derivations and
translators that have multiple outputs.

CONFIGURATION THREADS

Common Conf igurat ion Threads

"Dynamic Developer"
What I have RESERVED

+ Most Recent on maln lines of descent

"Cautious Developer"
What I have RESERVED

+ What I REPLACED
+ Last Base Level

"Dynamic Maintainer"
What I have RESERVED

+ Most Recent on BUGFIX lines of descent
+ Last Release

"Cautious Maintainer"
What I h a v e RESERVED

+ What I REPLACED
+ Last Release

~ "ALPHA"

-]
CONFIGURATION / ~7 ""~1 I
THREADS, USERS ~ , ~ ~ I '~, I
CAN DEFINE ~'J I ~L{ (I'~'1
CONFIGURATIONS ~ I "~';x'Jo'~l I [--'~x
COMPOSED OF ~ I ~ou~.. ~ I ~ (~)
THE VERSIONS ~ |~ ~ - -
THEY SPECIFY

Building Frograls wi th the D3EE CM

The CMmalntalns a derived object pool which holds

several version of each object that was produced
as the result of building a component named In the
system model (e.g., binaries). Each derived
object in the pool is associated wlth the ECT used
t o b u i l d i t . When asked t o b u i l d , t he CM
d e t e r m i n e s a " d e s i r e d " BCT by b i n d i n g t h e s y s t e m
model t o t he v e r s i o n s r e q u e s t e d by t h e u s e r ' s
c u r r e n t CT. The CM t h e n l o o k s i n t he d e r i v e d
o b j e c t pool t o see I f t h e r e l s a BCT t h a t e x a c t l y
matches the one desired. If a match is found, the
derived object associated with that BCT is used.
Otherwise, the component is rebuilt In accordance
wlth the desired BCT, and the new derived object
and BCT are written to the pool. In all cases,
the user is given exactly what he asked for.

A DSEE configuration thread (CT) states which
version of each component named in the system
model should be used for a build. The CT is very
flexible. That is, it may state version
information very explicitly (le. "for foo. pas use
version 22"), or in more dynamic terms (ie. "for
foe. pea use MOST RECENT version"). Wildcard
patterns are allowed, as are variant branch
specifications. At build time, the CT is
evaluated and used to "bind" the components in the
system model to particular versions. The fully
bound object is similar to a CT, in that the
versions are given explicitly and the default
translator rules are filled in. This bound
confi~uratlon thread (BCT) is used to perform the
build. The BCT used in a build is a valuable
record of that build, since it lists the actual
versions of all constituent components and include
files for all of the components in the system
model. The BCT also lists the translator command
lines used. and additional, user-defined,

information. A BCT may refer to another BCT. This
happens when a component is built from the results
of translating other components; e.g., the BCT for
a program refers to the BCT of each of the modules
that comprise it.

Releasing Sof tware

In addition to a number of binaries and BCTs, each
full system build results In an entry in the j~ll~[
io~. Thls log keeps track of exactly what was
built, when and why, and by whom. Given a build
log entry, DSEE can find the BCT in the pool that
corresponds to that build. A release consists of
the system that was built, its BCT, and keywords
(such as "revS") that describe the system. These
objects are stored in a safe, stable database.
DSEE can perform various checks by analyzing the
BCT; for example, it can warn when more than I
verson of the same element Is used. Later, when a
bug is reported in a released version of the
system, the maintainers can use keywords to
locate the version in the database and flnd the
BCT - which will describe the exact versions used
in the system. Since the History Manager has all
of the old sources, users can base their CCT on the
BCT of the release, thereby re-establlshlng the
environment that existed when the release was

made. By making minor edits to an explicit CT,
users can flx bugs without disturbing most
modules.

DSEE can create a shell in which all programs
executed in that shell window transparently read
the exact version of an element requested in the

107

user's configuration thread. The History Manager,

Configuration Manager, and extensible streams
mechanism (described above) work together in this
way to provide a "time machine" that can place a
user back in a environment that corresponds to a
previous release. In this environment, users can
print the version of a file used for a prior
release, and can display a readonly copy of it.
In addition, the compilers can use the "include"
files as they were, and the source llne debugger
can use old binaries and old sources during debug
sessions. All of this is done without making
copies of any of the elements.

Teohnloa l Notes on C o n f i g u r a t i o n Management

Because maintenance and development proceed in
parallel on a large project, the derived object
pool will contain binaries that correspond to a
previous release as well as binaries used for
current development. Over time, a large number of
binaries can accumulate. However, the derived
object pool may contain binaries that no one
requests anymore because they are too old, or
binaries that have been superseded by new
development. Since the DSEE history manager holds
the sources needed to reconstruct any binary, a
binary may be safely deleted from the pool. A
pool "garbage collection" algorithm runs
occasionally to discard binaries that haven't been
used in a long time.

The X~/.~lg/i...~, mentioned earlier, provides the
DSEE stream manager with per-element version
information. When a component must be rebuilt,
the DSEE CM sets the version map to reflect the
version of each subcomponent listed in the desired
BCT, then the CM executes the build command
declared for the component in the system model.
When subcomponents are opened by the DSEE stream
manager, it consults the version map to determine
which version of the subcomponent should be read.

Users need the configuration manager to ensure the
consistency of their systems, and they expect to
pay for the added safety by sacrificing some
performance. However, they do expect the CM's
performance to be acceptable. The DSEE CM
maintains several caches to improve rebuild
performance. For example, a "latest version"
cache is used to speed the resolution of CT
references to "most recent" versions. Other
performance improvements are gained by usiag hash
values to cut down on the number of pool objects
that must be examined when the CM is trying to
match a desired BCT against the BCTs in the pool.

Task Management

The DSEE History Manager provides a convenient way
to record descriptions of the modifications to an

element when a new version is created. In large
systems, however, there are few modifications
which affect only a single element; most
significant enhancements and many bug fixes
require changes to several elements. It is
desirable to have a mechanism for remembering all
of the modifications which were performed as part

of one higher-level task.

Most of the steps taken to accomplish a task
modify elements, but not only program module
elements. For instance, adding an enhancement to
a system may also require updating the system's
design specification, user manual, and on-line
help files. Some steps may involve offline
activities such as giving a talk about the
enhancement, constructing floppies for the
enhanced system, and telephoning customers. In
short, the software development process involves
much more than Just programming. Therefore, a
p r a c t i c a l s o f t w a r e deve lopment env ironment shou ld
support more than Just programmming.

To effectively manage a large task, a software
development environment needs a convenient way to
record ALL related sub-tasks perfomed by any
number of persons on any of the nodes in the
workstation network.

DSEE provides tasks and tasklists for this
purpose. A DSEE task is a structure used to plan
and record the low-level steps involved in a
high-level activity. A task consists of a title,
which describes the high-level activity, and a
list of textual items, which are the sub-tasks
that must be performed. Tasks are displayed
graphically as haviag ~ awaiting
action, and e e e . The list of
completed items is referred to as the AranscrIDt.
A user has a current task as part of his •
per-wlndow context. The current task is orthogonal
to the current library, so the user can switch
from a code library to a design or documentation
library as part of the same current task.

The History Manager interacts directly with the
Task Manager by "tagging" each newly created
version of an element with the current task.
Later, a user looking at a single element
modification can easily find and examine all the
related modifications which were part of a given
task. When the HM records a user's modification
comments for a new version, it sends a copy of the
comment (alone with the library name, element
name, username and time) to the transcript of the
current task. This provides for more useful "audit
trails", organized by task, as compared to the
History Manager's typical audit trails, which list
all modifications to one library. Tasks reside
in libraries, and normally are NOT deleted upon
completion, since the task transcript contains
information that may prove useful long after the
task is completed.

Besides the element modification information,
other items in the task may describe ANY ACTIVITY
which was part of the task (e.g. "Call customer
x", or "run the new system through Q/A"). A
graphic task editor is provided, which allows a
user to add a new active item (or delete an item
which is determined to be unnecessary), and to

"check off" an active item that has been
completed. (This moves the item from the task's
"active llst" to the transcript.)

DSEE ~asklists contain references to tasks. A
tasklist serves as a list of high-level
activities that need to be done. Each user has a

108

personal taskllst, and each library contains two

taskllsts -- one for active tasks, and one used
mainly for completed tasks. For flexibility in
project organization, an arbitrary number of
additional taskllsts may be created. A task may
be referenced by several taskllsts if' several
people need to take part in its completion. In
thls case, each user sees items completed by
other users immediately, since taskllsts contain
references to tasks, rather than tasks. Users may
add task references to other users' taskllsts,
subject to access control considerations.

knowing what steps were part of the task. A

complete task can serve as a guide for future,
similar, tasks; for instance, a completed task
entltied "Add the 'foe' command to the user
interface" could provide a useful outline for a
new programmer who was instructed to "add the
'bar' command to the user interface". This last
concept is called advice, and is discussed in more
detail below.

Sourcellb

/

Mr. done: Mr. Smith Mr. Dickens

Any number of u s e r s may reference a task.
When one of the users rood f ee an element,..

Docllb

• replace Chap2"

Title: Add The '£oo' cot, Band to the use" |nteeface.
Created: ll-Feb-1984 5:2F
Creator: Jo~athen Jones at //CO~OS (.ymes.none.r d.~S)

Active I t s

~ N o d l t g Pass1 to interpret ' foo ' con,and.

Completed I t em

%/Replaced dPiver.pas[3] ta litx,aPg "llluckg/sourcelib"
Added 'Foo' coronal to dispatch table.
¢onp leted: 1+-Feb- t584 t'l: 2t
¢onp letor: Sucen ~ t th at //LUCKY (s, l th. none. P d. 012)

Sourcellb Docllb

Mr. Jones Me. ~nHth Mr. O|¢l~eflYl

I ...the event Is recorded in the talk tl.ensulpl.

Title: ~ Uw 'Foe' coemand to the user. IntePFace.
Created: l l -Feb- l~4 5:27
Creator: Jonathan Joqes at //COSMOS (Jones.none.r..~.RRg)

~ t i v e Itess

[.~'Nodlfy Passl to interpret ' foe' cmmnd.

Cmlpleted I t w

re'Replaced dPivor, ims[3] in l lb 'af~ "//luckp/souPcel lb"
Added "£oo' coormnd to dispatch table.
¢olp leted: 14-Feb-1984 14:21
C~let~,:Susan ~ i t h at //LUCKY (s~lth.none.r d.012)

v/Replaced cha;)2[4] In libearIj " / /ceci l ta/docl tb"
Rdded description oP ' foe' co~maexI to user's guide,
6olq~ I ete4:2 l-Feb- |984 10:12'9
£oepletor:C. J. Dickens at //LCECILIR (char, l es. none. t, d,261)

When a user has finished with his part of the

task, he removes the task reference from his
taskllst. When no taskllsts reference the task and
all of the active items have been completed and

"checked off", the task is completed. The task is
probably not deleted, however, since it contains a
record of ALL of the sub-tasks that were performed
for the task, which is potentially useful
information. For example, the project leader may
wish to examine the completed task to verify that
it was correctly performed. Bug fixes may require

T e e h n i o a l N ote s on Task Management

Because DSEE is used in a distributed environment,
special attention was given to the implementation
of task and taskllst operations which may involve
mope than one node in the workstation network.
For example, if a user creates a new verslon of an
element, the event is recorded in the task
transcrlpt of hls current task. However, the
library where the new verslon is created may be

i J3

on a different node than the library where the

task is stored. This could present a problem if
the network is partitioned when the new version
is created: specifically, how will the task
transcript be updated? DSEE would not be a very
supportive environment if it disallowed the
creation of the new version when the network was
partitioned. Therefore, a reliable (store and
forward) message passing utility is used to
guarantee that the update will occur. There will
be a delay between the creation of the new
version and updating the task transcript if the
network is partitioned, otherwise, the update
occurs immediately. The store and forward
mechanism is used similarly in other operations
which access objects on different nodes in the
network.

Besides providing reliable delivery of messages to
other nodes on the network, the store and forward
utility provides the capability for sending
messages across inter-network gateways.
Therefore, the DSEE architecture allows for a
task to be referenced by users on more than one
Apollo local network.

Advice Nanasament

Often, a user needs to perform a task which is
quite similar to a task that someone has performed
before. The example of adding a new command to a
user interface was mentioned above. Many of the
same modules in the system will need to be
changed, the same chapters in the design document
and user manual will need to be updated, and the
same customer might need to be celled on the
telephone. Examination of the earlier task
transcript can be helpful in determining the steps
necessary to complete the new task.

The DSEE~x~__~ helps to manage common
tasks. The main component of a "piece of advice"
is the / ~ _ ~ . A task template is similar
to a task, but contains no completed items, only
model active items. Hence, task templates are

from which tasks are built. New tasks may
be instantlated from task templates. When a new
task is instantlated, it inherits all of the model
active items from the task template. As work
proceeds, items in the tasks are completed and
moved to the transcript, as usual.

The simplest type of advice is the form, which is
a named task template. Forms may be created from
scratch, or may be copied from tasks. When they
are copied from tasks, all transcript items in
the task become active items in the form. A
command is provided to instantiate a new task
from a form. To see this, consider the example
used above. Let's assume that when the task
entitled "Add 'foo' command to the user interface"
was completed, the project leader created a form
from the task, and stored it in the file
"addnew_command" in a project advice directory.
The form may be edited to ~eneralize it from how
to add the 'foo' command to how to add any new
command. Later, when the 'bar' command is to be
added to the user interface, a new task entitled
"Add 'bar' command" could be Instantiated from the
"add_newcommand" form. The new task could then

be edited to make it specific to the particular

task at hand.

Forms are a simple type of advice that make it
easy to manage tasks that are similar to other
tasks. A more intricate type of advice is
presented in the next section.

Moni to r ing Dependency R e l a t i o n s h i p s

Many software development environments have some
mechanism for tracking "build" dependencies;
i.e., there is some way to detect when a module
needs to be rebuilt because one or more of its
constituents has been modified. MAKE[Fei79]
~[DEC82] and Cedar[LamB3] all provide automatic
building functionality, as does the DSEE
Configuration Manager (discussed earlier in this
paper). There is another type of dependency
tracking which is not addressed by these other
systems, and which is more people-oriented than
build-orlented. Users should be able to define
dependencies on elements such that other users
will be informed of those dependecies before
modifying the elements, and such that the user
defining the dependency will be informed when the
elements ARE modified.

The types of dependencies that require automatic
notification involve semantic dependencies, which
cannot be detected by builders or other software
tools, but can only be detected by people.
Communication between developers is necessary to
properly track such dependencies. Unfortunately,
most software development organizations have
imperfect communication paths, a problem which is
particularly acute in large scale software
development efforts, where many persons work on
the different phases of product development (e.g.
design, implementation, quality assurance,
documentation, release coordination, etc.). The
problem is best demonstrated by a few examples:
o Technical documents' dependence on

When the programs that implement the user
interface for a system are modified, the
system's help files and user documentation
may need to be changed. Therefore, the
technical writers for the product need to be
notified.

o Inter-module semantic deoendencies:
Programmers sometimes design code that depends
on functionality in a module that is not
reflected in the procedural interface. For
instance, some modules might depend on the
fact that a certain command llne parser always
converts the command llne to uppercase.
Before modifying the parser, it would be
helpful to know that certain modifications
would cause problems for other modules that
depend on the parser. Incompatible changes
could be avoided by consulting with the user
who declared the dependency before making any

changes. With or without consultation, the
Implementcr of the dependent module needs to
be notified when a semantic dependency may
have been violated. Note that an automatic
b u i l d e r w o u l d n ' t g i v e advanced warn ing , or
even detect the problem described.
Furthermore, the problem isn't simply one of

if0

rebuilding; the modules which used the parser

routine would have to be modified to no
longer exploit their dependency on uppercase
command lines.
~he "Common Module" Problem:
Suppose the programs for two products share a
common module, but the products are maintained
by separate implementation groups (e.g. common
back-end for a family of compilers). There is
a "build" dependency involved here, but note
the difference between this problem and the
problem addressed by automatic builders. When
one group changes the common module, then the
automatic builder correctly rebuilds that
group's system. The other group's system will
be correctly rebuilt the next time they invoke
the automatic builder, but they may be working
on another project, and not even know that
their system needs to be rebuilt. They need
to be notified, so they can invoke the
automatic builder to rebuild their system. For
complete automation of this type of dependency
tracking, it might even be desirable for the
automatic builder to be automatlcallv invoked
for both systems whenever the common module
was changed.

Certainly, other examples can be found. A flexible
solution is needed to address the general problem
of dependency tracking with automatic
notification.

DSEE provides for setting ~ on elements,
and the DSEE Monitor Manager tracks the
dependencies defined by the monitors that users
create. A monitor may contain a piece of~xlg_~
(i.e. a task template) and a llst of taskllsts to
receive that advice. It may also contain a llst
of activation commands, executable by the shell.
When a user creates a monitor, he enters comments
describing the dependency involved. A monitor is
s~ on one or more elements in a DSEE library
(referred to as the ~ of the
monitor). When some user RESERVEs a monitored
element, he is informed by DSEE that the element
is monitored and is shown the description of the
dependency and the name of the user who declared
the monitor. This way, the element won't be
modified without first considering the
dependency.

A monitor is activated when a new version is
created for any of the target elements. When a
monitor is activated, a new task is instantlated
from the task template and a reference to the new
task is added to each taskllst named by the
monitor. The users who had the dependency are
therefore advised that they should check the new
version to see if their dependency is still met.
The new task instantlated from the monitor's task
template advises them about what to do.

If the monitor contained executable commands, they
are automatically executed when the monitor is

activated. For the "common module" example above,
activation commands could be used to automatically
invoke the automatic builder to rebuild the
systems which use the common module.

The automatic notification basically adds a new
task reference to a user's tasklist. Of course,

the user must look at his taskllst in order to

notice that the monitor was activated. For users
who examine their tasklists infrequently, DSEE
provides a tasklist alarm server, which "watches"
taskllsts specified by the user. When some user
activates a monitor by modifying an element and
other users are notified by a task new reference
on their taskllsts, the alarm server notices and
pops up small windows on their screens, informing
them that they have a new task. (The title is also
displayed).

Technical Notes on Monitor Management

We have temporarily restricted the use of
executable activation commands in monitors for
security reasons. The securty problem is this: if
a user creates a monitor with executable commands,
and another user activates the monitor, the
commands are executed in the activator's
protection domain. This creates a "trojan horse"
security loophole (see [Ame83] for a discussion of
the "trojan horse" problem). Eventually, a server
process acting on behalf of the monitor's creator
will execute the commands, and the restriction
will be removed.

As with certain task operations in DSEE, monitor
activation may involve accessing objects on
different nodes in the network, and network
partitioning may cause some of the nodes to be
temporarily inaccessible. The store and forward
message passing utility (as described in the
section on tasks) handles this complication
gracefully, and allows monitor activation to work
across inter-network gateways.

S e c u r i t y and P r o t e c t i o n

DSEE is designed to be usable by projects in large
software development environments, where many
autonomous, but not necessarily trustworthy, users
share the same network. Some mechanism for
controlling access to files is needed in such an
environment. The DOMAIN environment provides a
normal access control llst (ACL) mechanism to
protect users' files, and DSEE provides a
protection mechanism based on ACLa, to ensure that
DSEE objects can be protected to the same degree
as other files in DOMAIN. Special care is taken by
DSEE not to introduce any security loopholes into
the environment (see the Technical Notes on
Monitor Management for a description of "trojan
horse monitors").

Support for HOST/TARGgT Development

A practleal software development environment
should support the develo~nent of systems which
will run on multiple target machines. In addition
to providing support for branches and variations
in elements and extensive support for different
configurations of a system, DSEE is general enough
to exploit other software in the DOMAIN

ill

environment. For instance, since DSEE does not
require the use of a particular programming
language or compiler, users may choose from a
variety of 3rd party cross-compilers to develop
systems to run on different target machines.
Network gateways are available for communication
with other vendors' networks, and the store and
forward message passing utility can be used in
conjunction with gateways to support Inter-network
tasks and monitors. These capabilities simplify
the process of transporting a system from the host
machine to the target.

Current Status and Futures

At the time of this writing, DSEE is in
preliminary field test. It is also being used
extensively by very diverse in-house groups
developing mlcrocode, graphics software,
languages, documentation, and end-user
applications. More than a million lines of code,
in several thousand modules, are currently being
managed. Initial results have been excellent.

In addition to enhancing the current system,
future plans for DSEE will involve language
dlreoted tools such as structure editors [Leb82,
Tel81], interpretive debuggers [HLD83], and
graphical program representations. The Advice
Manager will be extended to provided some sort of
indexed keyword advice and more finely honed
monitors. We will try to incorporate more third
party tools for cross-machlne developement, formal
software design (llke PSL/PSA), and program
verification.

Acknowledgement s

In addition to the authors, DSEE project members
Gordon McLean, Howard Spilke, John Yates, and Pat
Bergeron contributed to this paper.

References

[11e83] S. Ames, M. Gasser, R. Schell
"Security Kernel Design and Implementation"
IEEEIComputer, Jul 1983.

[BTL81]
Source Code Control System User's Guide
UNIX System III Programmer's Manual,Oct 1981.

[DE~2]
CH.S/HHS: Code/Module Management System Manual.
Digital Equip. Corp., 1982.

[Fe179] S.I. Feldman
"Make - A Program for

Maintaining Computer Programs"
Software Practice and Experience, Apr 1979.

[Hab82] N. Habermann, et al.
The Second Compendium of Gandalf Doe.
CMU Comp Sci Dept, May 1982

[Eeo78] P. Heckel
"A Technique for Isolating

Differences Between Files"
CACM, Apr 197 8.

[HLD83] Several Papers
Software Eng. Sym. on High-Level Debugging
ACMISIGSOFT/SIGPLAN, Aug 1983.

[Ivi77] E.L. Ivie
"The Programmer' s Workbench"
CACM, Oct 1977.

[Laa83] P. Leach, P. Levlne, B. Dorous,
J. Hamilton, D. Nelson, B. Stumpf

"Architecture of an Integrated Local Network"
IEEE Jrnl on Selected Areas in Comm, Nov 1983.

[Leh82] D.B. Leblang
"Abstract Syntax

Based Programming Environments",
ACM/AdaTEC Conf. on Ada, Wash. D.C., Oct 1982.

[LamB3] B. Lampson, E. Schmidt
"Organizing Software in a Dist. Environment"
SIGPLAN Jun 1983.

[Lam83a] B. Lampson, E. Schmidt
"Practical Use of

a Polymorphie Applicative Language"
10th POPL Conf., Jan 1983.

lOst83] L.J. Osterweil, W.R. Cowe11
"The TOOLPACK/IST Programming Environment"
IEEE/SOFTFAIR. Jul 1983.

[San78] E. Sandewall
"Programming in an Interactive Environment:
The "LISP" Experience"

Computing Surveys, Yol I0, No. 1, Mar 1978.
[SDE81] Collected papers

Tutorlal: Software Development Environments
IEEE/COMPSAC-81, Nov 1981.

[StoaO]
"STONEMAN: Requirements for
Aria Programming Support Environments"
U.S. Department of Defense, Feb 1980.

[The83] R. Thall
"Large-Scale Software Development with
the Ada Language System"

Prec. of ACM Computer Science Conf., Feb 1983.
[Tie82] W.F. Tichy

"Design, Implementatlon, and Evaluation of
a Revision Control System"

6th Int'l Conf on Software Eng., Sap 1982.
[Tei81] T. Teitelbaum

"The Why and Wherefore of the
Cornell Program Synthesizer"

SIGPLAN. Jun 1981
[Tei81a] W. Teltelman, L. Maslnter

"The Interlisp programming environment"
Cnmputer, Apr 1981.

[Tel83] W. Teltelman
"Cedar: An interactive programming
environment for a Compiler-Orlented Language"

LANL/LLNL Conference on Work Stations
in Support of Large Scale Computing, Mar 1983.

112

