Cake: afifth generation version ofrrake

Zoltan Somogyi
Department of Computer Science
University of Melbourne
Parkville, 3052 Victoria, Australia

UUCP: {uunet,mcvax,ukc}!munnari.oz!zs

ARPA: zs%munnari.oz@uunet.uu.net

CSNET zs%munnari.oz@australia
Abstract

Make is a standard Unixutility for maintaining computer program€ake

is a rewrite ofmake from the ground up.The main difference is one of
attitude: cake is considerably more general and flexible, and can be
extended and customized to a much greater exterg.applicable to a wide
range of domains, not just program development.

1. Introduction

The Unix utility make [Feld79] was written to automate the compilation and recompilation of C
programs. Peoplbave foundnake so successful in this domain that they do not wish to be
without its services even when they are working in other dom&meenmake was not designed
with these domains in mind (some of which, e.g. VLSI design, did not even exishwkerwas
written), this causes problems and complairtevertheless, implied in these complaints is an
enormous compliment to the designersnake; one does not hear many grumbles about
programs with only a few users.

The version ofrrake described in [Feld79] is the standard utilitkT&T modified it in
several respects for distribution with System V under the reangerent ed nmake [Augm84].
We know of two complete rewritegnhanced nake [Hirg83] andf ourth generati on

make [Fowl85]. All these versions remain oriented towards program maintenance

Here at Melbourne we wanted something we could use for text proce¥gmbad access
only to standardrake and spent a lot of time wrestling withakef i | es that kept on getting
bigger and biggerFor a while we thought about modifying theke source, but then decided to
write something completely newThe basic problem was the inflexibility afake’ s search
algorithm, and this algorithm is too embedded inrthke source to be changed easily.

The namecake is a historical accidentCake follows two other programs whose names
were also puns omake. One washake, a variant ofrrake with built-in rules for VLSI designs
instead of C programs [Gedy84]. The other was David Malghell scriptf ake. Written at a
time when disc space on our machine was extremely scarce, and full file systems frequently
caused write failures, it copied the contents of a directaty tp and invokedrake there.

1 Unix is a trademark of AT&T Bell Laboratories.
2 Since this paper was written, two other rewrites have come atér{iiume87] anchmake.

The structure of the paper is as followSection 2 shows howake solves the main
problems withmake, while section 3 describes the most important new featurealoé. The
topics of section 4 are portability and efficiency.

The paper assumes that you have some knowledgeke.

2. Theproblems with make
Make has three principal problems. These are:
(1) Itsupports only suffix-based rules.
(2) Itssearch algorithm is not flexible enough.
(3) Ithas no provisions for the sharing of neake rules.

These problems are built deep imteke. To snlve them we had to start again from scratch.
We had to abandon backward compatibility becausenthke syntax is not rich enough to
represent the complex relationships among the components of large systems. Nevertheless, the
cake user interface is deliberately basedn@ke’ s; this helps users to transfer their skills from
make to cake. The functionalitiesof the two systems are sufficiently féifent that the risk of

confusion is minimal

Probably the biggest single difference betwesmke and cake lies in their general
attitudes. Make is focused on one domain: the maintenance of compiled progitaiess a lot of
code specific to this domain (especially the later versiofsyl it crams all its functionality into
some tight syntax that treats all sorts of special things.(8Idg-FI XES) as if they were files.

Cake, on the other hand, uses different syntax fofedént things, and keeps the number of
its mechanisms to the minimum consistent with generality and flexibilitys attitude throws a
lot of the functionality ofrmake over the fence into the provinces of other prograrfer
example, whererake has its own macro processorake uses the C preprocessor; and where
make has special code to handle archiveslke has a general mechanism thest happenso be
able to do substantially the same job.

2.1. Onlysuffix-based rules

All entries in amakefil e have the same syntax. They do not, howebarve the same
semantics. Thenain division is between entries which describe simple dependencies (how to
make filea from file b), and those which describe rules (how to make files witlixsuk from

files with sufix . y)*. Make distinguishes the two cases by treating as a rule any dependency
whose target is a concatenation of two suffixes.

For this scheme to workyake must assume three things. The first is that all interesting
files have suixes; the second is that suffixes always begin with a period; the third is that prefixes
are not important. All three assumptions are violated in fairly common situati®tasidard
make cannot express the relationship betwden e andfil e. ¢ (executable and source)
because of assumption 1, betwden e andfi |l e, v (working file and RCS file) because of
assumption 2, and betwedénle.o and../src/file.c (object and source) because of
assumption 3.Enhanced nmake andfourth generati on make have special forms for
some of these cases, but these cannot be considered solutions because special forms will always

% This problem, called cognitive dissonance, is discussed in Weisletigihtful book [Wein71].
4 For the moment we ignore entries whose targets are special entities like .IGNORE .PRECIOUS etc.

lag behind demand for them (they are embedded indlke source, and are therefore harder to
change than even the built-in rules).

Cake’ s solution is to do away withmake-style rules altogether and instead to allow
ordinary dependencies to function as rules by permitting them to contain variables. For example,
a possible rule for compiling C programs is

% 0: % C
cc -c %c

where the%is the variable symbol. This rule is actualljeamplatefor an infinite number of
dependencies, each of which is obtained by consistently substituting a string for the ¥ariable

The way this works is as follows. First, @ake seeks to update a file, it matches the name
of that file against all the targets in the description file. This matching process gives values to the

variables in the tget. Thesevalues are then substituted in the rest of the’rif€he matching
operation is a form afnification the process at the heart of logic programming; this is the reason
for thefifth generatiorbit in the title.)

Cake actually supports ILvariables:%and%® to ¥®. A majority of rules in practice have
only one variable (canonically callé, and most of the other rules have two (canonically called
% and%2). Thesevariables are local to their rules. Named variables are therefore not needed,
though it would be easy to modify tle@ke source to allow themlf cake wanted to update
pr og. o, it would matchpr og. o against% o, substitutepr og for %throughout the entryand
then proceed as if tteakef i | e contained the entry

prog. o: prog.c
cc -c prog.c

This arrangement has a number of advantages. One can write

% 0 RCS/ % c, v
COo -U %c
cc -c %c

without worrying about the fact that one of the files in the rule was inferetit directory and

that its suffix started with a nonstandard charactemother advantage is that rules are not
restricted to having one source and one target file. This is useful in VLSI, where one frequently
needs rules like

% out : %in %circuit
simulator %circuit < %in > % out

and it can also be useful to describe the full consequences of ryating

S After this the rule should have no unexpanded variables in it. If it d@dss reports an errs t has
no way of finding out what the values of those variables should be.

%c % h: %y
yacc -d %y
m/ y.tab.c %c
m/ y.tab.h %h

2.2. Inflexible search algorithm

In trying to write amakefil e for a domain other than program development, the biggest
problem one faces is usualypke’ s search algorithmThe basis of this algorithm is a special
list of sufixes. Wherlooking for ways to update a tgtf i | e. x, make searches along this list
from left to right. It uses the first sfik . y for which it has a ruley. x and for whichfi |l e. y
exists.

The problem with this algorithm manifests itself when a problem divides naturally into a
number of stages. Suppose that you have two tuted and. b. a, thatfil e. ¢ exists and
you want to issue the commamdke fil e. a. Make will tell you that it doesrt’know how to
makef i | e. a. The problem is that for the dixf. b nake has a rule but no file, while forc it
has a file but no ruleMake needs dransitive rule. c. ato go direct fronfil e.ctofil e. a.

The number of transitive rules increases as the square of the number of processindt stages.
therefore becomes significant for program development only when one adds processing stages on
either side of compilers. Under Unix, these stages are typically the link editand program
generators likggacc andl ex. Half of standardrake’ s builtin rules are transitive ones, there
to take care of these three programs. Even so, the builtin rules do not form a closure: some rare
combinations of stiikes are missing (e.g. there is no rule for going frpatc source to
assembler).

For builtin rules a slop factor of two may be acceptable. For rules supplied by the user it is
not. Ageneral-purposeakefi | e for text processing under Unix needs at least six processing
stages to handlar of f/ tr of f and their preprocessotsl , bi b, pi c, tbl, and egn, to
mention only the ones in common use at Melbourne University.

Cake’ s solution is simple: if i | e1 can be made frorhi | e2 butfi | e2 does not exist,
cake will try to createfi | e2. Perhapdi | e2 can be made frorhi | €3, which can be made
fromfil e4, and so on, until we come to a file which does ex@&ke will give up only when
there isabsolutely no wajor it to generate a feasible update path.

Both the standard and later versionsrake consider missing files to be out of date. So if
filel depends orii | e2 which depends ohi | €3, andfi |l e2 is missing, themake will
remake firsti | e2 and therf i | el, eveniffi | el is more recent thahi | e3.

When usingyacc, we frequently remove generated sources to prevent duplicate matches
when we ruregrep ... *.[chyl]. If cake adoptedrake’ s approach to missing files, it
would do a lot of unnecessary work, runningcc andcc to generate the same parser object
again and agafn

Cake solves this problem by associating dates even with missing filke.theoretical
update timeof an existing file is its modify time (as given by stat(2)); the theoretical update time

% 1n this caserake is rescued from this unnecessary work by its built-in transitive rules, but as shown
above this should not be considerageaeralsolution.

of a missing file is the theoretical update time of its youngest anc&sgpose thggacc source
par ser .y is older than the parser objguar ser . o, and par ser . ¢ is missing. Cake will
figure that if it recreateghar ser. c it would get apar ser. ¢ which theoreticallywas last
modified at the same time gsarser.y was, and sinceparser. o is younger than
par ser .y, theoretically it is younger thgmar ser . ¢ as well, and therefore up-to-date.

2.3. Noprovisions for sharing rules

Imagine that you have just written a program that would normally be invoked frakerule,

such as a compiler for a new languayf®u want to make both the program and treke rule

widely available. With standardrake, you have two choicesYou can hand out copies of the

rules and get users to include it in their individoakef i | es; or you can modify therake

source, specificallythe file containing the built-in rules. The first way is eqposne and quite
inconvenient (all those rules cluttering up yomkef i | e when you should never need to even

look at them).The second way can be impractical; in the development stage because the rules
can change frequently and after that because you want to distribute your program to sites that may
lack thermak e source. Andf course two such modifications may conflict with one another.

Logically, your rules belong in a place that is less permanent thamatke source but not
as transitory as individuatakefi | es. A library file is such a place. The obvious way to
access the contents of library files is withncl ude, so cake filters everycakef i | e through
the C preprocessor.

Cake relies on this mechanism to the extent of not hawngbuilt-in rules at all. The
standardcake rules live in files in a library directory (usuallyusr/ | i b/ cake). Eachof
these files contains rules about one tool or group of tools. Mostcas&f i | es #defi ne
some macros and then include some of these fil#gen that the source for progrgon og is
distributed amongpr og. ¢, auxl. c, aux2.c, and parser.y, dal of which depend on
def . h, the following would be a suitabteakefi | e:

#defi ne MAI N pr og
#defi ne FI LES prog auxl aux2 parser
#def i ne HDR def

#i ncl ude <Yacc>
#i ncl ude <C
#i ncl ude <Mai n>

The standaraakefil es Yacc andC, as night be expected, contain rules that invglacc

and cc respectively They also provide some definitions for the standzatefi| e Mai n.

This file contains rules about programs in general, and is adaptable to all compiled languages (e.g.
it can handle NU-Prolog programs). One entnyVii n links the object files togetheanother

prints out all the sources, a third creatésags file if the language has a command equivalent to

ct ags, and so on.

Make needs a specialized macro processor; without one it cannot substitute the proper
filenames in rule bodied-ourt h gener ati on nake has not solved this problem but it still
wants the extra functionality of the C preprocessorit ginds itsmakef i | es through both
macro processors Cake solves the problem in another wasnd can thus rely on the C
preprocessor exclusively.

Standard make’s macro facilities are quite rudimentanas amitted by [Feld79].
Unfortunately the C preprocessor is not without flaws eith&€he most annoying is that the

-5-

bodies of macro definitions may begin with blanks, and will if the body is separated from the
macro name and any parameters by more than one blank (whether space @akab)is
distributed with a fix to this problem in the form of a one-line change to the preprocessor source,
but this change probably will not work on all versions of Unix and definitely will not work for
binary-only sites.

3. Thenew features ofcake

The above solutions twake’ s problems are useful, but they do not by themselves enalile
to handle new domains. For thcake employs two important new mechanisms: dynamic
dependencies and conditional rules.

3.1. Dynamicdependencies

In some situations it is not convenient to list in advance the names of the filgstal&oends on.
For example, an object file depends not only on the corresponding source file but also on the
header files referenced in the source.

Standardrake requires all these dependencies to be declared explicitly imetkef i | e.
Since there can be rather a lot of these, most people either declare that all objects depend on all
headers, which is wasteful, or declare a subset of the true dependencies, whickpi®eeroA
third alternative is to use a program (probabhaak script) to derive the dependencies and edit
them into themakef i | e. [Wald84] describes one program that does both these things; there are
others. Thesesystems are usually callegikedepend or some variation of this name.

The problems with this approach are that it is easy to alter the automatically-derived
dependencies by mistake, and that if a new header dependency is added the programmer must
remember to rumakedepend again. TheC preprocessor solves the first problem; the second,
however is the more important one. Its solution must involve scanning though the source file,
checking if the programmer omitted to declare a header dependsmeyhy not use this scan to
findthe header dependencies in the first place ?

Cake attacks this point directly by allowing parts of rules to be specified at run-#ime.

command enclosed in double square braéketsy appear in a rule anywhere a filename or a list
of filenames may appeaFor the example of the C header files, the rule would be

% o: %c [[ccincl %c]]
cc -c %c

signifying thatx. o depends on the files whose names are listed in the output of the command
ccincl x. c8 asvell as onx. ¢c. The matching process would convert this rule to

" Single square brackets (like most special characters) are meaningéh:tthey denote character class-

es. Howeverwe ae not aware of any legitimate contexts where two square brankstappear together

The order of members in such classes is irrelevant, so if a bracket must be a member of such a class it can
be positioned away from thefehding boundary (unless the class is a singleton, in which case there is no
need for the class in the first place).

8 Cci ncl prints out the names of the files that #irexcl uded in the file named by its gument. Since
cci ncl does not evaluate any of the C preprocéssontrol lines, it may report a superset of the files ac-
tually included.

X. 0: X.c [[ccincl x.c]]
CC -C X.C

which in turn would beommand expanded

X. O: X.c hdr.h
CC -C X.C

if hdr . h were the only header includedxnc.

Command patterns provide replacementsffourt h generati on make’ s directory
searches and special macr¢q.fi nd <dirs> -nane <fil enane> -print]] does as
good a job as the special-purposek e code in looking up source files scattered among a number
of directories.[[basenane <fil enane> <suffi x>]] can do an even better jolvake
cannot extract the base from the name of an RCS file.

A number of tools intended to be used in just such contexts are distributed together with
cake. Cci ncl is one. Sub is another: its purpose is to perform substitutiolts.aguments
are two patterns and some strings: it matches each string against the first pattern, giving values to
its variables; then it applies those values to the second pattern and prints out the result of this
substitution. Foexample, in the example of section 2.3 ¢lakef i | e Mai n would invoke the

command[[sub X X.o FILES]]® the value of FI LES being prog auxl aux2
par ser, to find that the object files it must link together to create the execytallg are
prog. o auxl.o aux2.o0 parser.o.

Cake allows commands to be nested inside one anotkRer example, the command
[[sub X.h X [[ccincl file.c]]]] would strip the sdix . h from the names of the

header files included ihi | e. ¢1°.

3.2. Conditionalrules

Sometimes it is natural to say tHatl el depends offii | e2 if some condition holds. None of
the make variants provide for this, but it was not too hard to incorporate conditional rules into
cake.

A cake entry may have a condition associated with it. This condition, which is introduced
by the reserved worif , is a lolean expression built up with the operatangl, or andnot
from primitive conditions.

The most important primitive is a command enclosed in double curly br&¢kenever
cake considers applying this rule, it will execute this command after matching, substitution and
command expansionThe condition will return true if the commasdit status is zero.This
runs counter to the intuition of C programmers, but it conforms to the Unix convention of
commands returning zero status when no abnormal conditions arise. For example,
{{grep xyzzy file}} returns zero (i.e. true) if xyzzy occursfinl e and nonzero (false)
otherwise.

9 Sub usesX as the character denoting variables. It canno®fiss @l %s in the command will have been
substituted for bgake by the timesub is invoked.

10 As the outputs of commands are substituted for the commands themsakegakes care not to scan
the new text, lest it find new double square brackets and go into an infinite loop.

Conceptuallythis one primitive is all one needblowever it has considerable overhead, so
cake includes other primitives to handle some special cases. These test whether a filename
occurs in a list of filenames, whether a pattern matches anatidewhether a file with a given
name exists.Three others forms test the intercalke status of tagets. Thisstatus ik if the
file was up-to-date whemake was invokedcando if it wasn't but cake knows how to update
it, andnoway if cake does not know how to update it.

As an example, consider the rule for RCS.

% RCS/ % v if exist RCS/ %v
co -u %

Without the condition the rule would apply to all files, even ones which were not controlled by
RCS, and even the RCS files themselves: there would be no way to stop the infinite re#ursion (
depends oRRCS/ % v which depends oRCS/ RCS/ % v, v ...).

Note that conditions are command expanded just like other parts of entries, so it is possible
to write

% archi ve if %in [[ar t archive]]
ar x archive %

4. Theimplementation

4.1. Portability

Cake was developed on a Pyramid 90x under 4.2#dMelbourne University it now runs on a
VA X under 4.3bsd, various Suns3inder SunOS 3.4, an Encore Multimax under Umax 4.2, a
Perkin-Elmer 3240 and an ELXSI 6400 under 4.2bsd, and on the same ELXSI under Syktem V
has not been tested on either System Il or version 7.

Cake is written in standard C, with (hopefully) all machine dependencies isolated in the
makefile and a header file. In a number of places it #iséslef to choose between pieces of
code appropriate to theTAT and Berkeley variants of Unix (e.g. to choose betweiene()
andget ti meof day()). Infact, the biggest hassle we have encountered in partikg was
caused by the standard header fil8&ame files had different locations on different machines
(fusr/include vs./usr/includel/sys), and the some versions included other header
files (typicallyt ypes. h) while others did not.

As distributedcake is set up to work witltsh, but it is a simple matter to specify another
shell at installation time(In any case, users may substitute their preferred shell by specifying a
few options.) Some of the auxiliary commands are implementexs hsscripts, but these are
small and it should be trivial to convert them to another shell if necessary.

4.2. Efficiency

Fourth generati on nake has a very déctive optimization system. First, it forks and
execs only oncelt creates one shell, and theregfiepipes commands to be executed to this
shell and gets back status information via another pipe. Second, it compitekéifsi | es into
internal form, avoiding parsing except when the compiled version is out of date with respect to
the master.

The first of these optimizations is an absolute win@&ke does not have it for the simple
reason that it requires a shell which can transmit status information back to its parent process, and

-8-

we dont have access to one (this feature is provided by neither of the standard shelisj
csh).

Cake could possibly make use of the second optimizatibrvould involve keeping track
of the files the C preprocessor includes, so that#tieef i | e can be recompiled if one of them
changes; this must be done by fourth generation make as well though [Fowl85] does not mention
it. However the idea is not as big a win foeke as it is formake. The reason is as follows.

The basic motivations for usirgpke rather thanrake is that it allows one to express more
complex dependencies. This implies a bigger system, with more and slower commands than the
onesmake usually deals with. The times taken bgke and the preprocessor are insignificant
when compared to the time taken by the programs it most often invokes at Melbdhese
programsdi tr of f andnc (the NU-Prolog compiler that is itself written in NU-Prolog), are
notorious CPU hogs.

Here are some statistics to back up thiguarent. Theovehead ratiois given by the
formula

cake process system timehildren user time- children system time
cake pocess user time

This is justifiable given that theake implementor has direct control only over the denominator;
the kernel and the useicommands impose a lower limit on the numerator.

We have collected statistics on evargke run on two machines at Melbourne, mulga and

munmurral. These statistics show that the overhead ration on muldavidile on munmurra it

is 86. This suggests that the best way to lower total CPU time is not tc akmeitself but to

reduce the number of child process&a this end,cake caches the status returned by all
condition command${ cormand}} and the output of all command pattefisconmand]] .

The first cache has hit ratios of 42 and 54 percent on munmurra and mulga respectively
corresponding roughly to the typical practice in which a condition and its negation select one out
of a pair of rules.The second cache has a hit ratio of about 80 percent on both machines; these
hits are usually the second and later occurrences of macros whose values contain commands.

Cake also uses a second optimizatiorhis one is borrowed from standardke: when an
action contains no constructs requiring a stedlke itself will parse the action and invoke it
through exec.We have no statistics to show what percentage of actions benefit from this, but a
guick examination of the standazdkef i | es leads us to believe that it is over 50 percent.

Overall,cake can do a lot more thamake, but on things whicttanbe handled byrake,
cake is slightly slower than standamhke and a lot slower than fourth generation ma&ace
the main goal ofcake is generality not efficiency, this is understandablelf efficiency is
important,make or one of its other successors is always available as a fallback.

4.3. Availability

The cake distribution contains theake source, some auxiliary programs and shell scripts
(many useful in their own right), diffs for theex driver and the C preprocesstibrary cakefiles,
manual entries, and an earlier version of this paper [Somo87]. It was posted to the Usenet
newsgroup comp.sources.unix in October of 1987.

11 On mulga (a Perkin-Elmer 3240), the main applications are text processing and the maintenance of a big
bibliography (over 58000 references). On munmurra (an EXLSI 6400), the main application is NU-Prolog
compilation.

5. Acknowledgements

John Shepherd, Paul Maisano, David Morley antiSigfultz helped me to locate bugs by being
brave enough to use early versionscake. | would like to thank John for his comments on
drafts of this paper.

This research was supported by a Commonwealth Postgraduate Research Award, the Australian
Computer Research Board, and Pyramid Australia.

6. References

[Augm84] ‘Augmentedversion of make’, irUnix System V -elease 2.0 support tools gujde
AT&T, April 1984.

[Feld79] Stuartl. Feldman, ‘Make - a program for maintaining computer programs’,
Softwae - Practice and Experiengeol. 9, pages 255-265, (April 1979).

[FowlI85] Fowler G. S, ‘A fourth generation make’Proceedings of the USENIX 1985
Summer ConferencBortland, Oregon, pages 159-174, (June 1985).

[Gedy84] GedyeD., Cooking with CAD at UNSWint Microelectronics Research Center
University of New South Wales, Sydnéyustralia, 1984.

[Hirg83] Hirgelt, E., ‘Enhancing make or re-inventing a rounder wheeticeedings of the
USENIX 1983 Summer Cordace Toronto, Ontario, Canada, pages 45-58, (July
1983).

[Hume87] HumeA., ‘Mk: a successor to makeProceedings of the USENIX 1987 Summer
ConferencePhoenix, Arizona, pages 445-457, (June 1987).

[Somo87] ZoltanSomogyi, ‘Cake: a fifth generation version of mak&ystralian Unix
system User Group Newsletteol. 7, pages 22-31, (April 1987).

[Wald84] Kim Walden, ‘Automatic generation of make dependencigsftwae - Practice
and Experiencevol. 14, pages 575-585, (June 1984).

[Wein71] Weinbeg, G.,The psychology of computerogramming page 288, Van Nostrand
Reinhold, New York, 1971.

-10 -

