
Cake: a fifth generation version ofmake

Zoltan Somogyi
Department of Computer Science

University of Melbourne
Parkville, 3052 Victoria, Australia

UUCP: {uunet,mcvax,ukc}!munnari.oz!zs
ARPA: zs%munnari.oz@uunet.uu.net
CSNET: zs%munnari.oz@australia

Abstract

Make is a standard Unix1 utility for maintaining computer programs.Cake
is a rewrite ofmake from the ground up.The main difference is one of
attitude: cake is considerably more general and flexible, and can be
extended and customized to a much greater extent.It is applicable to a wide
range of domains, not just program development.

1. Intr oduction
The Unix utility make [Feld79] was written to automate the compilation and recompilation of C
programs. Peoplehave foundmake so successful in this domain that they do not wish to be
without its services even when they are working in other domains.Sincemake was not designed
with these domains in mind (some of which, e.g. VLSI design, did not even exist whenmake was
written), this causes problems and complaints.Nevertheless, implied in these complaints is an
enormous compliment to the designers ofmake; one does not hear many grumbles about
programs with only a few users.

The version ofmake described in [Feld79] is the standard utility. AT&T modified it in
several respects for distribution with System V under the nameaugmented make [Augm84].
We know of two complete rewrites:enhanced make [Hirg83] andfourth generation

make [Fowl85]. All these versions remain oriented towards program maintenance2.

Here at Melbourne we wanted something we could use for text processing.We had access
only to standardmake and spent a lot of time wrestling withmakefiles that kept on getting
bigger and bigger. For a while we thought about modifying themake source, but then decided to
write something completely new. The basic problem was the inflexibility ofmake’s search
algorithm, and this algorithm is too embedded in themake source to be changed easily.

The namecake is a historical accident.Cake follows two other programs whose names
were also puns onmake. One wasbake, a variant ofmake with built-in rules for VLSI designs
instead of C programs [Gedy84]. The other was David Morley’s shell scriptfake. Written at a
time when disc space on our machine was extremely scarce, and full file systems frequently
caused write failures, it copied the contents of a directory to/tmp and invokedmake there.

1 Unix is a trademark of AT&T Bell Laboratories.
2 Since this paper was written, two other rewrites have come along:mk [Hume87] andnmake.



The structure of the paper is as follows.Section 2 shows howcake solves the main
problems withmake, while section 3 describes the most important new features ofcake. The
topics of section 4 are portability and efficiency.

The paper assumes that you have some knowledge ofmake.

2. Theproblems with make
Make has three principal problems. These are:

(1) It supports only suffix-based rules.

(2) Itssearch algorithm is not flexible enough.

(3) It has no provisions for the sharing of newmake rules.

These problems are built deep intomake. To solve them we had to start again from scratch.
We had to abandon backward compatibility because themake syntax is not rich enough to
represent the complex relationships among the components of large systems. Nevertheless, the
cake user interface is deliberately based onmake’s; this helps users to transfer their skills from
make to cake. The functionalitiesof the two systems are sufficiently different that the risk of

confusion is minimal3.

Probably the biggest single difference betweenmake and cake lies in their general
attitudes.Make is focused on one domain: the maintenance of compiled programs.It has a lot of
code specific to this domain (especially the later versions).And it crams all its functionality into
some tight syntax that treats all sorts of special things (e.g..SUFFIXES) as if they were files.

Cake, on the other hand, uses different syntax for different things, and keeps the number of
its mechanisms to the minimum consistent with generality and flexibility. This attitude throws a
lot of the functionality ofmake over the fence into the provinces of other programs.For
example, wheremake has its own macro processor, cake uses the C preprocessor; and where
make has special code to handle archives,cake has a general mechanism thatjust happensto be
able to do substantially the same job.

2.1. Onlysuffix-based rules
All entries in amakefile have the same syntax. They do not, however, have the same
semantics. Themain division is between entries which describe simple dependencies (how to
make filea from file b), and those which describe rules (how to make files with suffix .x from

files with suffix .y)4. Make distinguishes the two cases by treating as a rule any dependency
whose target is a concatenation of two suffixes.

For this scheme to work,make must assume three things. The first is that all interesting
files have suffixes; the second is that suffixes always begin with a period; the third is that prefixes
are not important. All three assumptions are violated in fairly common situations.Standard
make cannot express the relationship betweenfile and file.c (executable and source)
because of assumption 1, betweenfile andfile,v (working file and RCS file) because of
assumption 2, and betweenfile.o and ../src/file.c (object and source) because of
assumption 3.Enhanced make andfourth generation make have special forms for
some of these cases, but these cannot be considered solutions because special forms will always

3 This problem, called cognitive dissonance, is discussed in Weinberg’s delightful book [Wein71].
4 For the moment we ignore entries whose targets are special entities like .IGNORE .PRECIOUS etc.

- 2 -



lag behind demand for them (they are embedded in themake source, and are therefore harder to
change than even the built-in rules).

Cake’s solution is to do away withmake-style rules altogether and instead to allow
ordinary dependencies to function as rules by permitting them to contain variables. For example,
a possible rule for compiling C programs is

%.o: %.c
cc -c %.c

where the% is the variable symbol. This rule is actually atemplatefor an infinite number of
dependencies, each of which is obtained by consistently substituting a string for the variable%.

The way this works is as follows. First, ascake seeks to update a file, it matches the name
of that file against all the targets in the description file. This matching process gives values to the

variables in the target. Thesevalues are then substituted in the rest of the rule5. (The matching
operation is a form ofunification, the process at the heart of logic programming; this is the reason
for thefifth generationbit in the title.)

Cake actually supports 11 variables:% and%0 to %9. A majority of rules in practice have
only one variable (canonically called%), and most of the other rules have two (canonically called
%1 and%2). Thesevariables are local to their rules. Named variables are therefore not needed,
though it would be easy to modify thecake source to allow them.If cake wanted to update
prog.o, it would matchprog.o against%.o, substituteprog for % throughout the entry, and
then proceed as if thecakefile contained the entry

prog.o: prog.c
cc -c prog.c

This arrangement has a number of advantages. One can write

%.o: RCS/%.c,v
co -u %.c
cc -c %.c

without worrying about the fact that one of the files in the rule was in a different directory and
that its suffix started with a nonstandard character. Another advantage is that rules are not
restricted to having one source and one target file. This is useful in VLSI, where one frequently
needs rules like

%.out: %.in %.circuit
simulator %.circuit < %.in > %.out

and it can also be useful to describe the full consequences of runningyacc

5 After this the rule should have no unexpanded variables in it. If it does,cake reports an error, as it has
no way of finding out what the values of those variables should be.

- 3 -



%.c %.h: %.y
yacc -d %.y
mv y.tab.c %.c
mv y.tab.h %.h

2.2. Inflexiblesearch algorithm
In trying to write amakefile for a domain other than program development, the biggest
problem one faces is usuallymake’s search algorithm.The basis of this algorithm is a special
list of suffixes. Whenlooking for ways to update a targetfile.x, make searches along this list
from left to right. It uses the first suffix .y for which it has a rule.y.x and for whichfile.y
exists.

The problem with this algorithm manifests itself when a problem divides naturally into a
number of stages. Suppose that you have two rules.c.b and.b.a, that file.c exists and
you want to issue the commandmake file.a. Make will tell you that it doesn’t know how to
makefile.a. The problem is that for the suffix .b make has a rule but no file, while for.c it
has a file but no rule.Make needs atransitive rule.c.a to go direct fromfile.c to file.a.

The number of transitive rules increases as the square of the number of processing stages.It
therefore becomes significant for program development only when one adds processing stages on
either side of compilers. Under Unix, these stages are typically the link editorld and program
generators likeyacc andlex. Half of standardmake’s builtin rules are transitive ones, there
to take care of these three programs. Even so, the builtin rules do not form a closure: some rare
combinations of suffixes are missing (e.g. there is no rule for going fromyacc source to
assembler).

For builtin rules a slop factor of two may be acceptable. For rules supplied by the user it is
not. A general-purposemakefile for text processing under Unix needs at least six processing
stages to handlenroff/troff and their preprocessorslbl, bib, pic, tbl, and eqn, to
mention only the ones in common use at Melbourne University.

Cake’s solution is simple: iffile1 can be made fromfile2 butfile2 does not exist,
cake will try to createfile2. Perhapsfile2 can be made fromfile3, which can be made
from file4, and so on, until we come to a file which does exist.Cake will give up only when
there isabsolutely no wayfor it to generate a feasible update path.

Both the standard and later versions ofmake consider missing files to be out of date. So if
file1 depends onfile2 which depends onfile3, and file2 is missing, thenmake will
remake firstfile2 and thenfile1, even iffile1 is more recent thanfile3.

When usingyacc, we frequently remove generated sources to prevent duplicate matches
when we runegrep ... *.[chyl]. If cake adoptedmake’s approach to missing files, it
would do a lot of unnecessary work, runningyacc andcc to generate the same parser object

again and again6.

Cake solves this problem by associating dates even with missing files.The theoretical
update timeof an existing file is its modify time (as given by stat(2)); the theoretical update time

6 In this casemake is rescued from this unnecessary work by its built-in transitive rules, but as shown
above this should not be considered ageneralsolution.

- 4 -



of a missing file is the theoretical update time of its youngest ancestor. Suppose theyacc source
parser.y is older than the parser objectparser.o, and parser.c is missing. Cake will
figure that if it recreatedparser.c it would get aparser.c which theoretically was last
modified at the same time asparser.y was, and sinceparser.o is younger than
parser.y, theoretically it is younger thanparser.c as well, and therefore up-to-date.

2.3. Noprovisions for sharing rules
Imagine that you have just written a program that would normally be invoked from amake rule,
such as a compiler for a new language.You want to make both the program and themake rule
widely available. With standardmake, you have two choices.You can hand out copies of the
rules and get users to include it in their individualmakefiles; or you can modify themake
source, specifically, the file containing the built-in rules. The first way is error-prone and quite
inconvenient (all those rules cluttering up yourmakefile when you should never need to even
look at them).The second way can be impractical; in the development stage because the rules
can change frequently and after that because you want to distribute your program to sites that may
lack themake source. Andof course two such modifications may conflict with one another.

Logically, your rules belong in a place that is less permanent than themake source but not
as transitory as individualmakefiles. A library file is such a place. The obvious way to
access the contents of library files is with#include, so cake filters everycakefile through
the C preprocessor.

Cake relies on this mechanism to the extent of not havingany built-in rules at all. The
standardcake rules live in files in a library directory (usually/usr/lib/cake). Eachof
these files contains rules about one tool or group of tools. Most usercakefiles #define
some macros and then include some of these files.Given that the source for programprog is
distributed amongprog.c, aux1.c, aux2.c, and parser.y, all of which depend on
def.h, the following would be a suitablecakefile:

#define MAIN prog
#define FILES prog aux1 aux2 parser
#define HDR def

#include <Yacc>
#include <C>
#include <Main>

The standardcakefiles Yacc andC, as might be expected, contain rules that invokeyacc
and cc respectively. They also provide some definitions for the standardcakefile Main.
This file contains rules about programs in general, and is adaptable to all compiled languages (e.g.
it can handle NU-Prolog programs). One entry inMain links the object files together, another
prints out all the sources, a third creates atags file if the language has a command equivalent to
ctags, and so on.

Make needs a specialized macro processor; without one it cannot substitute the proper
filenames in rule bodies.Fourth generation make has not solved this problem but it still
wants the extra functionality of the C preprocessor, so it grinds itsmakefiles through both
macro processors !Cake solves the problem in another way, and can thus rely on the C
preprocessor exclusively.

Standard make’s macro facilities are quite rudimentary, as admitted by [Feld79].
Unfortunately, the C preprocessor is not without flaws either. The most annoying is that the

- 5 -



bodies of macro definitions may begin with blanks, and will if the body is separated from the
macro name and any parameters by more than one blank (whether space or tab).Cake is
distributed with a fix to this problem in the form of a one-line change to the preprocessor source,
but this change probably will not work on all versions of Unix and definitely will not work for
binary-only sites.

3. Thenew features ofcake
The above solutions tomake’s problems are useful, but they do not by themselves enablecake
to handle new domains. For thiscake employs two important new mechanisms: dynamic
dependencies and conditional rules.

3.1. Dynamicdependencies
In some situations it is not convenient to list in advance the names of the files a target depends on.
For example, an object file depends not only on the corresponding source file but also on the
header files referenced in the source.

Standardmake requires all these dependencies to be declared explicitly in themakefile.
Since there can be rather a lot of these, most people either declare that all objects depend on all
headers, which is wasteful, or declare a subset of the true dependencies, which is error-prone. A
third alternative is to use a program (probably anawk script) to derive the dependencies and edit
them into themakefile. [Wald84] describes one program that does both these things; there are
others. Thesesystems are usually calledmakedepend or some variation of this name.

The problems with this approach are that it is easy to alter the automatically-derived
dependencies by mistake, and that if a new header dependency is added the programmer must
remember to runmakedepend again. TheC preprocessor solves the first problem; the second,
however, is the more important one. Its solution must involve scanning though the source file,
checking if the programmer omitted to declare a header dependency. So why not use this scan to
find the header dependencies in the first place ?

Cake attacks this point directly by allowing parts of rules to be specified at run-time.A

command enclosed in double square brackets7 may appear in a rule anywhere a filename or a list
of filenames may appear. For the example of the C header files, the rule would be

%.o: %.c [[ccincl %.c]]
cc -c %.c

signifying thatx.o depends on the files whose names are listed in the output of the command

ccincl x.c8, as well as onx.c. The matching process would convert this rule to

7 Single square brackets (like most special characters) are meaningful tocsh: they denote character class-
es. However, we are not aware of any legitimate contexts where two square bracketsmustappear together.
The order of members in such classes is irrelevant, so if a bracket must be a member of such a class it can
be positioned away from the offending boundary (unless the class is a singleton, in which case there is no
need for the class in the first place).
8 Ccincl prints out the names of the files that are#included in the file named by its argument. Since
ccincl does not evaluate any of the C preprocessor’s control lines, it may report a superset of the files ac-
tually included.

- 6 -



x.o: x.c [[ccincl x.c]]
cc -c x.c

which in turn would becommand expandedto

x.o: x.c hdr.h
cc -c x.c

if hdr.h were the only header included inx.c.

Command patterns provide replacements forfourth generation make’s directory
searches and special macros.[[find <dirs> -name <filename> -print]] does as
good a job as the special-purposemake code in looking up source files scattered among a number
of directories.[[basename <filename> <suffix>]] can do an even better job:make
cannot extract the base from the name of an RCS file.

A number of tools intended to be used in just such contexts are distributed together with
cake. Ccincl is one. Sub is another: its purpose is to perform substitutions.Its arguments
are two patterns and some strings: it matches each string against the first pattern, giving values to
its variables; then it applies those values to the second pattern and prints out the result of this
substitution. Forexample, in the example of section 2.3 thecakefile Main would invoke the

command [[sub X X.o FILES]]9, the value of FILES being prog aux1 aux2
parser, to find that the object files it must link together to create the executableprog are
prog.o aux1.o aux2.o parser.o.

Cake allows commands to be nested inside one another. For example, the command
[[sub X.h X [[ccincl file.c]]]] would strip the suffix .h from the names of the

header files included infile.c10.

3.2. Conditional rules
Sometimes it is natural to say thatfile1 depends onfile2 if some condition holds. None of
themake variants provide for this, but it was not too hard to incorporate conditional rules into
cake.

A cake entry may have a condition associated with it. This condition, which is introduced
by the reserved wordif, is a boolean expression built up with the operatorsand, or andnot
from primitive conditions.

The most important primitive is a command enclosed in double curly braces.Whenever
cake considers applying this rule, it will execute this command after matching, substitution and
command expansion.The condition will return true if the command’s exit status is zero.This
runs counter to the intuition of C programmers, but it conforms to the Unix convention of
commands returning zero status when no abnormal conditions arise. For example,
{{grep xyzzy file}} returns zero (i.e. true) if xyzzy occurs infile and nonzero (false)
otherwise.

9 Sub usesX as the character denoting variables. It cannot use%, as all %’s in the command will have been
substituted for bycake by the timesub is invoked.
10 As the outputs of commands are substituted for the commands themselves,cake takes care not to scan
the new text, lest it find new double square brackets and go into an infinite loop.

- 7 -



Conceptually, this one primitive is all one needs.However, it has considerable overhead, so
cake includes other primitives to handle some special cases. These test whether a filename
occurs in a list of filenames, whether a pattern matches another, and whether a file with a given
name exists.Three others forms test the internalcake status of targets. Thisstatus isok if the
file was up-to-date whencake was invoked,cando if it wasn’t but cake knows how to update
it, andnoway if cake does not know how to update it.

As an example, consider the rule for RCS.

%: RCS/%,v if exist RCS/%,v
co -u %

Without the condition the rule would apply to all files, even ones which were not controlled by
RCS, and even the RCS files themselves: there would be no way to stop the infinite recursion (%
depends onRCS/%,v which depends onRCS/RCS/%,v,v ...).

Note that conditions are command expanded just like other parts of entries, so it is possible
to write

%: archive if % in [[ar t archive]]
ar x archive %

4. Theimplementation

4.1. Portability
Cake was developed on a Pyramid 90x under 4.2bsd.At Melbourne University it now runs on a
VAX under 4.3bsd, various Sun-3’s under SunOS 3.4, an Encore Multimax under Umax 4.2, a
Perkin-Elmer 3240 and an ELXSI 6400 under 4.2bsd, and on the same ELXSI under System V. It
has not been tested on either System III or version 7.

Cake is written in standard C, with (hopefully) all machine dependencies isolated in the
makefile and a header file. In a number of places it uses#ifdef to choose between pieces of
code appropriate to the AT&T and Berkeley variants of Unix (e.g. to choose betweentime()
andgettimeofday()). In fact, the biggest hassle we have encountered in portingcake was
caused by the standard header files.Some files had different locations on different machines
(/usr/include vs. /usr/include/sys), and the some versions included other header
files (typicallytypes.h) while others did not.

As distributedcake is set up to work withcsh, but it is a simple matter to specify another
shell at installation time.(In any case, users may substitute their preferred shell by specifying a
few options.) Some of the auxiliary commands are implemented ascsh scripts, but these are
small and it should be trivial to convert them to another shell if necessary.

4.2. Efficiency
Fourth generation make has a very effective optimization system. First, it forks and
execs only once.It creates one shell, and thereafter, it pipes commands to be executed to this
shell and gets back status information via another pipe. Second, it compiles itsmakefiles into
internal form, avoiding parsing except when the compiled version is out of date with respect to
the master.

The first of these optimizations is an absolute winner. Cake does not have it for the simple
reason that it requires a shell which can transmit status information back to its parent process, and

- 8 -



we don’t have access to one (this feature is provided by neither of the standard shells,sh and
csh).

Cake could possibly make use of the second optimization.It would involve keeping track
of the files the C preprocessor includes, so that themakefile can be recompiled if one of them
changes; this must be done by fourth generation make as well though [Fowl85] does not mention
it. However, the idea is not as big a win forcake as it is formake. The reason is as follows.

The basic motivations for usingcake rather thanmake is that it allows one to express more
complex dependencies. This implies a bigger system, with more and slower commands than the
onesmake usually deals with. The times taken bycake and the preprocessor are insignificant
when compared to the time taken by the programs it most often invokes at Melbourne.These
programs,ditroff andnc (the NU-Prolog compiler that is itself written in NU-Prolog), are
notorious CPU hogs.

Here are some statistics to back up this argument. Theoverhead ratio is given by the
formula

cake process system time+ children user time+ children system time

cake process user time

This is justifiable given that thecake implementor has direct control only over the denominator;
the kernel and the user’s commands impose a lower limit on the numerator.

We have collected statistics on everycake run on two machines at Melbourne, mulga and

munmurra11. These statistics show that the overhead ration on mulga is 11 while on munmurra it
is 86. This suggests that the best way to lower total CPU time is not to tunecake itself but to
reduce the number of child processes.To this end,cake caches the status returned by all
condition commands{{command}} and the output of all command patterns[[command]].
The first cache has hit ratios of 42 and 54 percent on munmurra and mulga respectively,
corresponding roughly to the typical practice in which a condition and its negation select one out
of a pair of rules.The second cache has a hit ratio of about 80 percent on both machines; these
hits are usually the second and later occurrences of macros whose values contain commands.

Cake also uses a second optimization.This one is borrowed from standardmake: when an
action contains no constructs requiring a shell,cake itself will parse the action and invoke it
through exec.We have no statistics to show what percentage of actions benefit from this, but a
quick examination of the standardcakefiles leads us to believe that it is over 50 percent.

Overall,cake can do a lot more thanmake, but on things whichcanbe handled bymake,
cake is slightly slower than standardmake and a lot slower than fourth generation make.Since
the main goal ofcake is generality, not efficiency, this is understandable.If efficiency is
important,make or one of its other successors is always available as a fallback.

4.3. Availability
The cake distribution contains thecake source, some auxiliary programs and shell scripts
(many useful in their own right), diffs for thelex driver and the C preprocessor, library cakefiles,
manual entries, and an earlier version of this paper [Somo87]. It was posted to the Usenet
newsgroup comp.sources.unix in October of 1987.

11 On mulga (a Perkin-Elmer 3240), the main applications are text processing and the maintenance of a big
bibliography (over 58000 references). On munmurra (an EXLSI 6400), the main application is NU-Prolog
compilation.

- 9 -



5. Acknowledgements
John Shepherd, Paul Maisano, David Morley and Jeff Schultz helped me to locate bugs by being
brave enough to use early versions ofcake. I would like to thank John for his comments on
drafts of this paper.

This research was supported by a Commonwealth Postgraduate Research Award, the Australian
Computer Research Board, and Pyramid Australia.

6. References
[Augm84] ‘Augmentedversion of make’, inUnix System V - release 2.0 support tools guide,

AT&T, April 1984.

[Feld79] StuartI. Feldman, ‘Make - a program for maintaining computer programs’,
Software - Practice and Experience, vol. 9, pages 255-265, (April 1979).

[Fowl85] Fowler, G. S., ‘A fourth generation make’,Proceedings of the USENIX 1985
Summer Conference, Portland, Oregon, pages 159-174, (June 1985).

[Gedy84] Gedye,D., Cooking with CAD at UNSW, Joint Microelectronics Research Center,
University of New South Wales, Sydney, Australia, 1984.

[Hirg83] Hirgelt, E., ‘Enhancing make or re-inventing a rounder wheel’,Proceedings of the
USENIX 1983 Summer Conference, Toronto, Ontario, Canada, pages 45-58, (July
1983).

[Hume87] Hume,A., ‘Mk: a successor to make’,Proceedings of the USENIX 1987 Summer
Conference, Phoenix, Arizona, pages 445-457, (June 1987).

[Somo87] ZoltanSomogyi, ‘Cake: a fifth generation version of make’,Australian Unix
system User Group Newsletter, vol. 7, pages 22-31, (April 1987).

[Wald84] Kim Walden, ‘Automatic generation of make dependencies’,Software - Practice
and Experience, vol. 14, pages 575-585, (June 1984).

[Wein71] Weinberg, G.,The psychology of computer programming, page 288, Van Nostrand
Reinhold, New York, 1971.

- 10 -


