
TECHNICAL CORRESPONDENCE

Smarter Recompilation

ROBERT W. SCHWANKE
Siemens Research and Technology Laboratories
and
GAIL E. KAISER
Columbia University

Tichy’s Smart Recompilation method can be made smarter by permitting benign type inconsistencies
between separately compiled modules. This enhanced method helps the programmer to make far-
reaching changes in small, manageable steps.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-
modules and interfaces, software libraries; D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.7 [Software Engineering]: Distribution and Maintenance-uersion control; D.3.4 [Pro-
gramming Languages]: Processors-compilers

General Terms: Algorithms, Languages, Performance

Additional Key Works and Phrases: Intelligent software tools, overloading, separate compilation,
type checking

1. INTRODUCTION

Tichy has described a “smart recompilation” algorithm that minimizes the
number of recompilation steps necessary to restore consistency after a change to
a source file [3,5]. His algorithm recompiles a module only if its own implemen-
tation has changed or if it references a symbol defined elsewhere whose definition
has changed. Tichy’s implementation is very efficient, producing a net savings
in processing time if at least one unnecessary recompilation is avoided.

However, we believe that Tichy’s definition of consistency is too strict. There
are many real-life situations in which a programmer would be willing to sacrifice
compilation consistency to reduce turn-around time, if he could do so without
introducing interface errors. We therefore propose a more relaxed definition
of consistency, which reduces the need for recompilation even further. Our

Authors’ addresses: R. W. Schwanke, Siemens Research and Technology Laboratories, 105 College
Road East, Princeton, NJ 08540; G. E. Kaiser, Department of Computer Science, Columbia Univer-
sity, New York, NY 10027.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0164-0925/88/1000-0627 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988, Pages 627-632.

628 l FL W. Schwanke and G. E. Kaiser

MessageQueue.spec:
type Message = string
procedure Send (M:Message)
procedure Empty returns boolean

MessageQueue.body:
procedure Send is . . .
procedure Empty is . . .

Sender.body:
with MessageQueue
procedure Submit is

var M : Message
call Send(M)

Filerbody
with MessageQueue
var messages : array of Message
procedure Status is

if Empty then . . .

Fig. 1. Part of a message system.

algorithm based on this definition can be implemented by extending Tichy’s
strategies, leading to comparable time savings. Perhaps more importantly, our
relaxed definition helps a programmer to introduce a far-reaching change in
manageable steps, thus improving productivity.

2. CONSISTENCY

Tichy’s method defines consistency in system-wide, source code terms. The
current source code modules provide exactly one definition for each source code
symbol. Every compiled module must be consistent with those definitions. This
implies that if a single, widely-used type definition is changed, then every module
that uses the type must be recompiled.

We define consistency less strongly, by noticing that widely used symbols are
often used independently in different parts of a system. Consider a generic hash
table package written in Ada@. It might be used in one part of a compiler to store
identifiers and in another part to detect common subexpressions. Conceptually,
we partition the system according to these independent uses, and require con-
sistency only within a partition.

More precisely, two separately compiled modules have a link-time interface
consisting of the identifiers defined in one object module and referenced in the
other. Each module contains object code that defines or uses these identifiers.
That object code is derived from a set of source code symbols. The two modules
are consistent with each other if they agree upon the definitions of these symbols.
Consider the three modules given in Figure 1: MessageQueue, Sender, and Filer.
MessageQueue defines a type Message and a procedure Send(M: Message), which
is called from the Sender module. The Filer module contains an array of Messages,
and also calls the Empty procedure of the MessageQueue module. The link-time
interface between MessageQueue and Sender contains the identifier Send, which
is defined by the source code symbols Send and Message. The link-time interface
between Filer and MessageQueue contains the identifier Empty, defined by the
corresponding source code symbol.

A system is pairwise consistent if every pair of modules has been compiled
using equivalent definitions of the source code symbols that affect the link-time
interface between them. If a system is pairwise consistent, then every procedure

@ Ada is a registered trademark of the United States Government (Ada Joint Program Office)

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Smarter Recompilation l 629

call and every variable reference between separately compiled modules is type-
safe. This degree of consistency is sufficient to permit most kinds of debugging;
a simple exception is when two modules communicate through an ASCII stream
file interface.

3. A SMARTER RECOMPILATION ALGORITHM

Tichy’s algorithm uses conventional symbol table information collected during
compilation to determine whether symbols defined in one file are referenced in
another file. This information is saved between compilations. When a modified
file is recompiled, his algorithm notes for each symbol definition whether it has
been added, modified, or deleted. Other files are recompiled only if they depend
on the added, modified, or deleted symbols.

Our extension to Tichy’s algorithm requires only pairwise consistency. We
assume that a programmer selects a set of files that must be recompiled, based
on his testing strategy or other factors. We call this the “test set.” Our algorithm
compiles these files, then invokes Tichy’s algorithm to identify other modules
that are candidates for recompilation. For each candidate, it analyzes the link-
time interface between the candidate and the test set. If that interface is affected
by any symbol that has changed, the candidate is recompiled and added to the
test set. When no more candidates need to be recompiled, the new object fries
from the test set can be safely linked with the old object files from the other
modules to form a functional system.

3.1 Link-Time Interface Specifications

An interface error exists when two distinct versions of a symbol affect the link-
time interface between two object code files. The interface between two object
files involves the procedures defined by one object and called by the other, the
variables declared by one object and used by the other, the types of the arguments
and results of these procedures and the types of these variables. Types are often
composed of other types, so all types whose definitions contribute to the interface
must be considered.

To detect the pairwise inconsistencies that imply interface errors, we extend
the symbol tables required by Tichy’s algorithm. We add a derived symbol record
for each symbol definition or symbol reference that must be resolved by the
linker. A derived symbol definition represents a procedure or a variable declared
inside the file and accessible from other, separately compiled files. A derived
symbol reference represents a procedure or a variable that the file needs to access;
this symbol must therefore be provided by some other object file.

For each derived symbol definition, our extended symbol table records all the
source code symbols that contribute, transitively, to its interface specification.
This information is produced by the compiler. For example, Figure 2 indicates
that the definition of derived symbol Send comes from source code symbols Send
and Message. For derived symbol references, such as to Send in Sender and to
Empty in Filer, only the symbol name is stored; an improvement on our algorithm
stores additional information (see Section 3.4).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

630 l R. W. Schwanke and G. E. Kaiser

MessageQueue.body:
definition.

Sender.body:
reference.

Filer.body:
reference.

Send
Empty

Send

Empty

depends on: procedure Send, type Message
depends on: procedure Empty

Fig. 2. Derived symbols.

3.2 Deciding What to Recompile

When source files change, our algorithm follows these steps.

(1) Recompile every changed file and produce its new symbol table, including
derived symbols.

(2) Use Tichy’s algorithm to generate the set of changed symbol definitions and
to determine candidates for recompilation. Present this list of files to the
programmer.

(3) The programmer selects the test set. Recompile this set and generate their
new symbol tables.

(4) For each member of the test set, compare its symbol table pairwise with
related files that are not yet in the test set, to detect pairwise inconsistencies.
(Explained further below.)

(5) If an interface error is detected, recompile the related file and add it to the
test set, to be checked under Step 4 above.

The only difficult part is the pairwise comparison. Here our algorithm takes
advantage of both our derived symbols and the changed set produced by Tichy’s
algorithm. It detects cases where the same symbol appears as a derived symbol
definition in one table and as a derived symbol reference in the other. In each
such case it intersects the set of source symbols on which the derived symbol
definition depends with the set of changed source symbol definitions. If the
intersection is nonempty, then there is an interface error and recompilation is
necessary. (If the recompilation detects errors, it may also be necessary to further
modify the source code to remove the inconsistency.)

3.3 Example

Consider again the four files in Figure 1. Say the programmer modifies
MessageQueue.spec to change type Message from “string” to “array of integer.”
Tichy’s algorithm would recompile all three body tiles, because each uses type
Message. In contrast, our algorithm tells the programmer that all three bodies
reference type Message and asks which of them it should recompile. Say the
programmer requests only MessageQueue.body. Our algorithm considers whether
or not it is necessary to also recompile Sender.body and Filer.body. It recompiles
Sender.body because the derived symbol Send, referenced in Sender.body, is
defined in part by the changed type Message. Our algorithm does not recompile
Filer.body because the derived symbol Empty, referenced in Filer.body, does not
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Smarter Recompilation l 631

depend on the changed type. The old object module for Filer.body can be safely
linked with the new object modules for Sender and MessageQueue, because the
old and new modules never exchange values of type Message.

3.4 Improvements

Our algorithm assumes a baseline that is globally consistent, so interface errors
can be introduced only through changed symbol definitions. This assumption is
not always correct; an improvement to our algorithm solves this problem. We
give each distinct version of a source file a unique version identifier. In the
symbol table we mark each source symbol with the version identifier of the source
file from which it came. For each derived symbol reference, we record the source
symbols (with their version identifiers) used to validate the reference. Then,
during pairwise comparison, we ignore the changed sets and instead compare the
actual source symbol versions affecting the definition and reference. This extends
nicely to handle overloaded symbols, where the version identifier for each
overloaded symbol encodes both the version of the source file and the specific
overloaded symbol definition within the file.

Our improved algorithm also applies to nonsequential versions of files, such as
maintained by RCS [4]. Consider the case where certain source or object files in
a configuration are replaced by other versions [l]. If derived symbol tables are
available, our algorithm can detect whether the replacements introduce interface
errors.

4. MANAGING FAR-REACHING CHANGES

When a programmer must modify a symbol definition that is used in many places
in a system, he may be reluctant to edit all of the places where the symbol is
used until he is sure that the new definition works for at least a few test cases.
Using our algorithm, the programmer could start with only the defining module
in his test set, and the algorithm would determine the minimum set of dependent
modules that must be edited to test the change. Assuming that the change passes
the test, the programmer could then select additional -dependent modules to
change and apply our algorithm again to discover other modules that must be
changed at the same time. In this fashion our algorithm helps a programmer
develop and install a widespread change in manageable steps.

5. IMPLEMENTATION

Our algorithm has been implemented as part of Harris Morgenstern’s M.S. thesis
project-Inconsistency Management System (IMS) [2]-at Columbia University.
IMS is targeted for C, and supports smarter recompilation for almost all of C,
including macros, unions, anonymous structure fields, and other difficult aspects
of the language. Conditional compilation is not supported becuase it is funda-
mentally inconsistent with smarter recompilation (and smart recompilation as
well). The primary limitation of IMS is that makefiles must follow a strict format,
although the usual macro substitution facilities may be used. The system consists
of six programs, smartee, ccom, cpp, cdiff, cppcdiff, and smartmake, which were
written by modifying the corresponding Berkeley UNIX 4.2 utilities.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

632 l R. W. Schwanke and G. E. Kaiser

REFERENCES

1. LEBLANG, D. B., AND MCLEAN, G. D., JR. Configuration management for large-scale software
development efforts. In Proceedings of the Workshop on Software Engineering Environments for
Programming-in-the-Large (June 1985), GTE Laboratories, Inc., Waltham, Mass., 1985, pp. 122-
127.

2. MORGENSTERN, H. M. An inconsistency management system. Master’s thesis, Tech. Rep.
CUCS-284-87, Dept. of Computer Science, Columbia Univ., March 1987.

3. TICHY, W. F., AND BAKER, M. C. Smart recompilation. In Conference Record of the Twelfth
Annul ACM Symposium on Principles of Programming Languages (POPL), (Jan. 1985), ACM,
New York, 1985, pp. 236-244.

4. TICHY, W. F. RCS-A system for version control. Softw. Pratt. &per. 15, 7 (July 1985),
637-654.

5. TICHY, W. F. Smart recompilation. ACM Trans. Program. Lang. Syst. 8, 3 (July 1986),
273-291.

Received October 1986; accepted May 1987

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

