
Software Configuration Management
Software Configuration
Management Overview

Walter Tichy

Software Configuration
Management

Software configuration management (SCM) is the discipline of controlling

the evolution of complex software systems. This chapter surveys tools that

support or automate aspects of SCM. It proposes a standard terminology,

describes the areas that are amenable to automation, discusses a representa-

tive set of existing SCM tools, and identifies directions for future research

and development. A glossary of terms is included.

1 Introduction

Configuration management (CM) is the discipline of controlling the evolu-

tion of complex systems; software configuration management (SCM) is its

specialization for computer programs and associated documents. General

CM is beneficial for any large system that. Due to its complexity, cannot be

made perfect for all the uses to which it will be put. Such a system will be

subject to numerous, sometimes conflicting changes during its lifetime, giv-

ing rise not to a single system, but to a set of related systems, called a system
family. A system family consists of a number of components that can be con-

figured to form individual family members. A substantial number of the

components must be shared among members to make the family economi-

cally viable. Maintaining order in large and expanding system families is

the goal of CM.

SCM differs from general CM in the following two ways. First, software is

easier to change than hardware, and it therefore changes faster. Even rela-

tively small software systems, developed by a single team, can experience a

significant rate of change, and in large systems, such as telecommunications

systems, the update activities can totally overwhelm manual configuration

management procedures. Second, SCM is potentially more automatable.

Because all components of a software system are easily stored on-line. CM

for physical systems is hampered by having to handle objects that are not

within reach of programmable controls. As CAD/CAM and robotics bring

manufacturing processes more and more under computer control physical

configuration management will undoubtedly adopt some of the approaches

used for software. VLSI already does: Circuit design and circuit processing

can be managed like software design and compilation.

Effective software configuration management coordinates programmers

working in teams. It improves productivity by reducing or eliminating
1

Software Configuration Management
some of the confusion caused by interaction among team members. The co-

ordinating functions of configuration management are introduced below,

and illustrated with questions or statements familiar to anyone who has

worked in software development.

Identification
Identifying the individual components and configurations is a prerequisite

for controlling their evolution. Reliable identification helps avoid the fol-

lowing problems:

■ "This program worked yesterday. What happened?"

■ "I can’t reproduce the error in this configuration."

■ "I fixed this problem long ago. Why did it reappear?"

■ "The online documentation doesn’t match the program."

■ "Do we have the latest version?"

Change Tracking
Change tracking keeps a record of what was done to which component for

what reason, at what time, and by whom. It helps answer the following

questions:

■ "Has this problem been fixed?’’

■ "Which bug fixes went into this copy?"

■ "This seems like an obvious change. Was it tried before?"

■ "Who is responsible for this modification?"

■ "Were these independent changes merged?"

Version Selection and Baselining
Selecting the right versions of components and configurations for testing

and baselining can be difficult. Machine support for version selection helps

with composing consistent configurations and with answering the follow-

ing questions:

■ "How do I configure a test system that contains my temporary fixes to

the last baseline, and the released fixes of all other components?"

■ "Given a list of fixes and enhancements, how do I configure a system

that incorporates them?"

■ "This enhancement won’t be ready until the next release. How do I con-

figure it out of the current baseline?"

■ "How exactly does this version differ from the Baseline?"

Software Manufacture
Putting together a configuration requires numerous steps such as pre- and

postprocessing, compiling, linking, formatting, and regression testing. SCM

systems must automate that process and at the same time should be open

for adding new processing programs. To reduce redundant work, they

must manage a cache of recently generated components. Automation

avoids the following problems:

■ "I just fixed that. Was something not recompiled?"

■ "How much recompilation will this change cost?"
2

Software Configuration Management
■ "Did we deliver an up-to-date binary version to the customer?

■ "I wonder whether we applied the processing steps in the right order."

■ "How exactly was this configuration produced?"

■ "Were all regression tests performted on this version?

Managing Simultaneous Update
Simultaneous update of the same component by several programmers can-

not always be prevented. The configuration management system must note

such situations and supply tools for merging competing changes later. In so

doing it helps prevent problems like the following:

■ "Why did my change to this module disappear?"

■ "What happened to my unfinished modules while I was out of town?"

■ "How do I merge these changes into my version?"

■ "Do our changes conflict?"

This chapter discusses software tools for automating the functions intro-

duced above. The basis of all tools is representation, so we develop a model

for representing multi-version/ multiconfiguration systems. Section 2 es-

tablishes basic terminology, while Sections 3 and 4 introduces versions. Lat-

er sections on version selection, software manufacture and modification

requests can be read in any order. Background material and manual CM

procedures can be found in References [3, 5, 7].

2 Basic SCM Concepts

This section defines the basic elements of a data base for software configu-

ration management. The data base stores all software objects produced dur-

ing the life-cycle of a project.

A software object is any kind of identifiable, machine-readable document

generated during the course of a project. The document must be stored on-

line to be fully controllable by an SCM system. Examples of software objects

are requirements documents, design documents, specifications, interface

descriptions, program code, test programs, test data, test output, binary

code, user manuals, or VLSI designs.

Every software object has a unique identifier and a body containing the ac-

tual information. A set of attributes associated with software objects and a

facility for linking objects via various relations are also needed. For exam-

ple, attributes record time of creation and last read access, and relations link

objects to their revisions and variants. The set of attributes and relations

must be extensible; later sections will introduce a basic set. We also need a

facility to describe subclasses or subtypes of the general software object. For

instance, the subclass may fix the language in which the body is written, or

the structure editor used to compose the body, or whether the object repre-

sents an interface or an implementation. The subclass also defines the set of

operations available on objects of that class, such as compiling, configuring,

printing, etc.
3

Software Configuration Management
The body of a software object is immutable, that is, once the body has been

completed, it can only be read. Any "change" of a body actually creates a

new software object with the changed body. Immutability is important for

configuration management, because it prevents misidentification: an object

identifier is associated with one and only one constant body, and not with

several different versions. Most other attributes and relations of software

objects remain changeable, however, so new information can be added.

 Software objects have two orthogonal refinements, one according to how

they were created, the other according to the structure of their body. For cre-

ation, we distinguish source and derived objects. For internal structure, we

distinguish atomic objects and configurations.

2.1 Creation of Software Objects

A source object is a software object that is composed manually, for instance

with an interactive editor. Creating a source object requires human action; it

cannot be produced automatically.

A derived object is generated fully automatically by a program, usually from

other software objects. A program that produces derived objects is called a

deriver. Examples of derivers are compilers, linkers, document formatters,

pretty printers, cross referencers, and call graph generators. Normally, de-

rived objects need not be stored, since they can be regenerated, provided

both the deriver and the input are available or can be rederived. To reduce

the delay caused by regeneration, a smart configuration management sys-

tem maintains a cache of derived objects that are likely to be reused.

Unlike derived objects, which can be deleted to make room, source objects

are "sacred", because deleting them may cause irreparable damage or at

least significant delay until they are reconstructed. However, derived ob-

jects may also become "sacred", i.e., they must not be deleted merely to

make room, if it is impossible or time consuming to reproduce them. For in-

stance, derived objects that are imported from other sites, especially vendor

supplied programs, must not be deleted, even though they are derived in

most cases. Another example are derived objects for which the original de-

rivers have stopped working (if they have not been ported to new hard-

ware, say), or if the corresponding input objects have been lost.

A special case are derived objects that are modified manually. Examples are

automatically generated program skeletons and templates that are fleshed

out by hand, or object code that is patched manually. In principle, these

manual modifications produce new source objects.1 However, the SCM sys-

tem should store a traceability link that records the dependency between the

two objects. This link can be used for generating a reminder to update the

source object if the derived object changes. Traceability links should also be

recorded among dependent source objects, for example between a specifica-

tion and its implementation, or a program and its documentation. In fact,

most source objects in an SCM system depend on one or more other objects,

1. However, a patch that is implanted fully automatically by a program produces a derived object. In
that case, the patching program or the input to a general patching program are the corresponding
source objects.
4

Software Configuration Management
except perhaps the initial requirements specification. Traceability informa-

tion is extremely valuable for automatically producing update reminders,

for reviewing completeness of changes, and for informing maintainers

what information they need to consider when preparing a change.

2.2 Structure of Software Objects

The body of a software object is either atomic or structured. An atomic object,
or atom, has a body that is not decomposable for SCM; its body is an opaque

data structure with a set of generic operations such as copying, deletion, re-

naming, and editing. An atomic object may consist of a program written in

some language, a syntax tree produced by a structure editor, a data struc-

ture generated by a WYSIWYG word processor, or an object code module

produced by a compiler.

A configuration has a body that consists of sub-objects, which may them-

selves have subobjects, and so on. Configurations have two subclasses:

composites and sequences. A composite object, or simply composite, is a

record structure comprised of fields. Each field consists of a field identifier

and s field value. A field value is either an object identifier or a version

group identifier. An example of a composite object is a software package

consisting of a program, a users manual, and an installation procedure. An-

other example is a regression test object, consisting of a test program, input

data, expected output data, and a comparator for comparing expected and

actual output. Thus, fields may contain data as well as operations.

A sequence is a list of object and version group identifiers. Sequences repre-

sent ordered multisets of objects. They are used for combining sub-objects

that are of the same class, or when the number of sub-objects is indetermi-

nate. In contrast to composites, the individual elements of a sequence fulfill

identical roles and are treated in the same way for SCM purposes, such as

the list of object code modules constituting a library.

Note that the above definitions permit version group identifiers in compos-

ites and sequences. A version group is a set of related source or derived ob-

jects that can replace each other under certain assumptions (see Sections 3

and 4 for details). The purpose of version groups here is to permit compact

representations of multiple software objects with the same structure. By us-

ing a version group identifier instead of an object identifier, configurations

need not be updated if new versions are added to the groups. On the other

hand, a version selection process must decide which versions to choose

when processing such configurations.

Because of the need to distinguish between "precise" and "loose" configura-

tions, we introduce the following terms. A generic composite is a composite

with at least one field value that is either a version group identifier or a ge-

neric configuration (i.e., a generic composite or a generic sequence). The op-

posite of a generic composite is a baseline composite, which is a composite

whose field values are atomic objects, baseline composites, or baseline se-

quences. The subclasses generic sequences and baseline sequence are defined

analogously. Finally, a generic configuration, also called a system model, is a

generic composite or a generic sequence. A baseline configuration, or simply

baseline, is a baseline composite or baseline sequence.1
5

Software Configuration Management
We follow Clemm [9] in stipulating that derivers which produce several

outputs must package them into a single, derived configuration. For exam-

ple, a compiler which produces object code, a list of warnings, and a symbol

table would store all three of these derived objects into one composite. This

convention simplifies the bookkeeping involved in managing derived ob-

jects.

In both composites and sequences, source and derived objects may be freely

intermixed. However, including derived objects presents a problem: Since

the derived objects may not yet exist, there may be no known identifiers for

them. Instead, we must represent a derived object with a descriptor that

will cause the object to be generated when it is needed. This descriptor

must specify not only the derivers, but all parameter settings for the deriv-

ers as well. If some of the parameter settings are under-specified, then the

version selection process must choose and record them (see Section 5).

For clarity, we should point out some uses of the above definitions. Suppose

a software house delivers a single, binary program to a customer. This pro-

gram is a single, derived object. It most cases, this object was generated

from a baseline configuration recorded at the software house. The purpose

of the baseline is to guarantee that the derived object can be reproduced

when needed. The software house may also deliver a configuration, per-

haps a composite that consists of one or more binaries and a manual. The

delivered configuration may also contain source programs, because the pro-

grams will be interpreted, or because the customer wishes to compile

source locally. The customer may also need to adapt the source code to local

needs. Thus, depending on how much the customer expects to do, a more

or less complete SCM system must be available at the customer site to take

over portions of the software house’s SCM functions.

3 Source Versions

SCM systems have to cope with constant change. Corrective, adaptive, and

perfective maintenance activities produce a steady stream of updates. Since

most changes are incremental, they are best viewed as producing related

versions of objects rather than separate, unrelated objects. This section deals

with versions of source objects; versions produced by derivers will be treat-

ed in Section 4.

3.1 Source Version Groups

An important concept for dealing with multiple versions is the source ver-
sion group. A source version group is a set of source objects that are connect-

ed via the relations revision-of, variant-of, and their subtypes. These relations

are defined below. Note, however, that source version groups may contain

atoms, composites, sequences, and even mixtures of those.

■ y revision-of x: This relation holds if and only if x and y are source ob-

jects and y was produced by changing a copy of x. Thus, revision-of
records the development history of source objects. The subtypes of this

1. The term "parametric" is sometimes used as synonym for "generic".
6

Software Configuration Management
relation, correction-of, adaptation-of, and enhancement-of, capture the na-

ture of the change. It is possible for several of these subtypes to hold si-

multaneously between a pair of objects.

The relation revision-of and its subtypes are transitive, antisymmetric, and

irreflexive. Objects of a version group that are transitively related by revi-
sion-of etc. are simply called revisions.

■ y variant-of x: This relation holds if and only if x and y are source objects

that are indistinguishable under a given abstraction. An abstraction de-

fines relevant properties while ignoring (irrelevant) details. It permits

variation by not prescribing certain properties o behaviors. The intent is

to define abstractions in such a way that variants can replace each other

in a software systems without requiring changes in their client pro-

grams.

Variant-of is actually a ternary relation, since it must identify a common

abstraction. Few programming environments permit the specification of

such an abstraction. One approach is to introduce subsets of interfaces,

called views. Another, more promising approach is to represent abstrac-

tions explicitly as superclasses in object-oriented programming languag-

es

A commonly used abstraction is the functional specification. The func-

tional specification ignores space and time efficiencies, so two variants

under this abstraction may differ in internal algorithms and data struc-

tures. Similarly, one may decide to ignore the choice of programming

language, target machine, target operating system, or target user group.

As long as the functional specifications of variants are identical, client

programs depending of only the functional specification do not have to

be rewritten if a different variant is chosen. Thus, software systems can

be reconfigured by merely replacing individual objects. The interested

reader is referred to Parnas’ work [30, 31] for criteria on how to design

software systems in such a way that likely changes can be hidden behind

invariant interfaces.

For some abstractions, it is possible that details even in the functional

specification are irrelevant. For example, sorting programs can be classi-

fied as stable or unstable. A stable sort guarantees to leave elements with

the same sorting key in the original order. Under some abstraction, sta-

bleness of sorting procedures may be irrelevant. Thus, the common

property of two variants can be a subset of their functional specifica-

tions. A common manifestation of this aspect is that only a subset of the

interface made available by a program is used by clients.

For a given abstraction, the relation variant-of is an equivalence relation

because it is transitive, symmetric, and reflexive. Objects in a version

group that are transitively related by variant-of are simply called variants.
Subclasses of variant-of describe the abstraction under which the variants

are indistinguishable. Characterizing variants under system-defined and

user-defined abstractions is a topic of current research in SCM.
7

Software Configuration Management
The relation variant-of may or may not parallel revision-of, depending on

whether the variant was produced by changing an existing object. Vari-

ants must usually be maintained in parallel, and in practice their num-

ber should be kept small.

The relations revision-of, variant-of and their subtypes apply to configura-

tions. This is in contrast to SCM systems like SCCS [34], RCS [39], CMS [1],

and DSEE [25], where versions of configurations appear to be an after-

thought. For example, with RCS, one would have to collect descriptions of

all configurations and subconfigurations into a single, atomic object called a

Makefile, and allow versions of the entire set only. Versioning of configura-

tions at this level is on too coarse a grain for effective SCM. The Gandalf

project [16, 41] was among the first to experiment with versions of configu-

rations (called compositions) as well as variants (called implementations or re-
alizations).

3.2 Structure of Source Version Groups

As defined previously, a source version group is a set of source objects that

are related via revision-of and variant-of For simplicity, we assume that ver-

sion groups are closed with respect to these relations. In other words, no re-
vision-of and variant-of link may cross version group boundaries1.

FIGURE 1

Figure 1. A source version group with revisions and variants

Revision-of forms a directed, acyclic graph reflecting the development histo-

ry, whereas variant-of identifies the starting points of parallel lines of devel-

1. Closure is not strictly necessary. Sometimes it is convenient to make some revision in a group the ini-
tial revision in another.

1.2 1.3 2.1 2.2 3.1

fix.1

par.1 par.2 par.3

con.1

1.1

con.1
par.1
fix.1

parallel version 1
bugfix 1

conflict at a change

revision-of

variant-of
8

Software Configuration Management
opment. For a young source version group without variants, the graph

structure is simple: It consists of a single list linked via revision-of that be-

gins with the most recent object and ends with the oldest. At least initially,

this list represents the main line of development and is often called the

main branch or trunk. As the version group ages, side branches may form.

Some of these side branches may wither, others may later be merged with

the main branch. Side branches are needed for accommodating parallel de-

velopment, conflicting updates, and temporary fixes.

Consider FIGURE 1 as an example of a source version group illustrating

various types of branches. The revisions numbered 1.1,1.2,...,3.1 represent

the main branch. The revisions par.l, par.2, and par.3 constitute a parallel line

of development. Note that par.l is both a variant and a revision of 1.3. A spe-

cial case of parallel development is distributed development, in which cus-

tomers modify released software themselves. The modifications can be

relayed back to the development organization for merging into the next re-

lease, or must be merged into future releases by the customers locally. See

Reference [39] for an example of how to set up version groups for distribut-

ed development.

Revisions 3.1 and con.l illustrate conflicting updates. This situation arises

when two programmers wish to update the same revision (here: 2.2) simul-

taneously, and neither can wait for the other to finish. This situation is un-

desirable, yet cannot always be prevented in practice. SCM should warn

programmers in this case, but allow work to proceed by forming a tempo-

rary side branch for later merging. Note that such conflicts can only occur at

branch tips. Reference [39] discusses a range of strategies for dealing with

these conflicts.

Revision fix.1 illustrates the handling of temporary fixes. Suppose the need

to correct revision 1.3 arises after 2.1 and 2.2 have been completed. To reflect

the actual development history, SCM places the correction on a side branch

starting at revision 1.3. The correction is later merged with 2.2, resulting in

3.1.

3.3 Operations on Source Version Groups

Virtually all SCM systems in use today use some form of a check-out/edit/

check-in cycle for adding revisions to source version groups. The check-out
operation creates a copy of the revision to be modified and reserves it for

the user. Check-out also links the new copy to its original with the revision-
of relation. The user can then update the copy with an arbitrary editor. As

long as the copy remains checked out, it remains inaccessible to others. Any

subsequent check-out of the same original revision causes a branch to form,

with a warning stating that a merge operation will be necessary later. The

check-in operation signals the completion of the changes. This operation

makes the (modified) copy visible to other users. Before a revision is

checked in, it should satisfy some quality control criterion, such as a suc-

cessful test, to make sure it is usable by other team members.

In the period between check-out and check-in, a revision may actually go

through several successive edit cycles, until the change is acceptable.

Whenever the editor writes out an object, a new revision is created. All of
9

Software Configuration Management
these revisions, except for the latest one, are called minor revisions. Minor re-

visions are deleted upon check-in of the latest revision. They are needed for

short-term backup purposes, in case of machine crashes or inadvertent, di-

sastrous deletes during editing. Most programming environments limit the

number of minor revisions to one or two. For instance, EMACS [36] saves

one minor revision and periodically writes a checkpoint as another.

Three-way revision merging is important for combining parallel lines of

development. A three way merge first identifies the commonalities among

a base version and two of its parallel revisions, and then integrates the

changes. The merge process also detects conflicting changes. These must be

resolved manually. In practice, the merging process works well, provided

changed segments are well separated from each other by unchanged ones.

Examples of three-way text mergers are diff3 and rcsmerge [39]. These pro-

grams are based on the algorithms that compute deltas, i.e., the differences

among revisions (see Section 3.4). Recently, Reps et al [33] have made some

progress towards improved merge conflict resolution using data flow infor-

mation.

A consistent revision numbering scheme is important for version selection.

Most SCM systems use a Dewey decimal notation, with revisions on the

main branch numbered by a pair of the form (release-number, level number).
Some systems extend this notation to branches in such a way that the struc-

ture of the revision graph is reflected by the numbering. Unfortunately, this

notation becomes clumsy as the number of branches increases. A better ap-

proach is to simply select a unique, symbolic identifier for each branch and

to number revisions on each branch with a single number or a pair. The re-

lation revision-of can be consulted to determine the lineage of a revision.

While revision numbers together with attributes such as check-in date, au-

thor, and state are sufficient for selecting revisions, additional, descriptive

attributes are needed for differentiating and selecting variants. An adequate

approach is to let variant attributes take on subsets of values from enumer-

ated types. For instance, one may wish to provide an attribute that indicates

the target operating systems on which a certain variant can run. This at-

tribute would have as value a subset of an enumerated type listing all rele-

vant operating systems. All revisions of a variant would have the same

variant attributes; changing them creates a new variant. Clearly, the at-

tributes and types for describing variants must be user-definable.

To support change tracking, every object in a source version group carries a

state attribute and a log entry. The state attribute indicates the status of a re-

vision. For example, check-out and check-in set the attribute to ’in-prepara-

tion’ and ’experimental’, respectively. A revision can later be promoted to a

higher state, for example ’stable’ or ’released’. The set of states should be

extensible. To allow for effective tracing, the attribute should not just show

the current value, but actually log all state changes with date and person re-

sponsible for the change.

The log entry is extremely important for change tracking. It stores a com-

mentary requested during check-in, describing the changes completed.

Browsing the log messages helps determine what happened to a software
10

Software Configuration Management
object over time, and sometimes prevents attempting changes that had ear-

lier been abandoned as unsuccessful. Because of the usefulness of the log

entry, the Crystal SCM system [2] actually requests a log message during

check-out. For recording the programmer’s intentions. A check-out log

helps determine what changes are in preparation. Check-in returns this

message to the user, who can then edit it into the final, permanent log entry.

3.4 Implementation of Source Version Groups

Source version Groups and the objects in them must be represented as per-

sistent objects in an object base. The object base has traditionally been im-

plemented with hierarchical file systems, by either placing the objects and

relations in separate files in a special directory, or by encoding this informa-

tion in a single file. These implementations provide sufficient reliability, but

recovery, consistency control, access synchronization, and authorization are

realized in an ad hoc manner.

Building the object base on top of a full-fledged data base management sys-

tem seems to be an attractive alternative, because a DBMS would provide

high reliability and systematic mechanisms for handling recovery, consis-

tency control, access synchronization, and authorization. However, com-

mercial DBMSs are optimized towards business applications, i.e., for

processing of large quantities of rather sml records. SGM presents exactly

the opposite requirement, namely moderate quantities of large objects with

complex internal structure. Using a business-oriented DBMS for SCM there-

fore results in an "impedance mismatch", characterized by awkward data

modeling and poor performance [27]. Current developments in engineering

databases, such as DAMOKLES [11] or object-oriented data bases, should

lead to more appropriate data models and adequate efficiency.

In both file and data base implementations, accessing a particular source

object usually requires a special regeneration process that reconstitutes the

object from deltas. Deltas are used to conserve space (see below). First gen-

eration SCM systems such as SCCS, CMS, and RCS provided separate oper-

ations to rebuild a desired version in a temporary file, which could then be

opened for reading or writing. Second generation systems such as DSEE in-

tegrate the management of source version groups into the file system.

Opening a source object of version group for reading regenerates it from

delta storage; opening for writing does the same but includes the semantics

of the check-out operation. Besides being easier to program, integrating

versioning into the file system or DBMS has the effect of better protection:

Users are prevented from destroying the data structures of a version group

by accidentally or intentionally tampering with them using inappropriate

tools such as text editors.

Delta storage is important for conserving space. A delta is a script of edit

commands that generates one object from another. The space saving achiev-

able with delta storage for atomic objects are significant. A simple, line-

based delta consumes between 9 and 16 per cent of its cleartext representa-

tion [34, 39]. Leblang reports that delta storage combined with blank com-

pression reduces that space to 1-2 per cent of clear-text [25].1 Clearly, delta

storage makes the luxury of saving multiple versions of atomic objects af-
11

Software Configuration Management
fordable. It could also be applied to configurations, but may not produce

dramatic savings because of the small size of those objects.

There are several important design parameters affecting the speed with

which an object can be regenerated from deltas, and how deltas are com-

puted. First, deltas can be stored in forward or reverse direction. The re-

verse direction is preferred, since this method keeps the youngest, most

recent revision on s branch in clear-text, while the others have to be regener-

ated since younger revisions are more likely to be needed than older ones,

reverse deltas save overall regeneration time.

Second, deltas can either be interleaved or separate. In interleaved deltas,

the lines of all versions are sorted into a linear data structure, such that a

single pass over that data structure can collect all lines for a desired version

in the correct order. This data structure ha the property that regeneration

slows down as the number of versions increases. For this reason, reverse

deltas are best stored separately. For a thorough discussion of delta storage

techniques see Reference [39].

Finally, computing the deltas themselves is an important problem. Deltas

can be generated by a special program that compares pairs of objects, or

they can be produced incrementally by the editors in the programming en-

vironment. Relying exclusively on editors to produce the deltas is risky, be-

cause that decision would require that every editor in a programming

environment keep track of differences. There exist only a few of those edi-

tors, and they are often functionally limited. Examples are Kruskal’s P-edit

[24] and Fraser’s EH [15], which are both line-oriented. Another drawback

of relying on delta editors is that all other programs that modify source ob-

jects, such as pretty printers, would have to record their changes, too. Up-

dates received from the field presents another problem: The updates might

not have been produced with delta editors, or, worse yet, the deltas might

be relative to old or inaccessible versions. Thus, a separate program that

computes deltas in batch mode is necessary. The right time for this process

is during check-in, when changes are complete and the user has reached a

point of closure when a short wait is tolerable.

There are two efficient algorithms for computing deltas in batch mode. One

is based on isolating a longest common subsequence [18], the other one on

identifying block moves [42]. A delta based on a longest common substring

is not necessarily minirnal, because it cannot detect crossing block moves.

Crossing block moves arise if two or more segments (e.g., procedures) ap-

pear in a different order in two revisions. An edit script derived from a

longest common substring first deletes the shorter of the two segments, and

then reinserts it. Tichy’s block move algorithm [42] detects such permuta-

tions and is guaranteed to produce a minimal delta.

Most deltas used in practice are line-based, i.e., the unit for comparison is

the line. Two lines are considered different if they differ by a single charac-

ter. Clearly, a byte- or word-based delta would be smaller, but computing it

would require many more comparisons and therefore much more time.

1. Blank compression saves space if a significant fraction of an object’s size is due to indentation.
12

Software Configuration Management
Obst [29] reports that with special heuristics, a character-based block-move

algorithm runs in the same time as a line-based one, and produces deltas

that are on average 30 per cent smaller. The heuristic is specifically oriented

towards block moves and does not seem applicable to longest common sub-

strings.

For objects that consist of a representation other than text, the existing delta

algorithms are easily adapted by choosing an appropriate unit for compari-

son and converting the representation into a linear sequence. For example,

the difference between two syntax trees can be computed by comparing

prefix representations of the trees at the level of individual nodes.

4 Derived Versions

Handling derived versions is much simpler than handling source versions,

since they are computed fully automatically and no human actions need be

observed or supported. A derived version group is a set of derived objects that

were generated from the same set of software objects by varying derivation

parameters or derivers. For example, a compiler may be able to produce

code for different target machines, optimized code, non-optimized code,

code with runtime checks, code with debugging hooks, etc. There may also

be several compiler versions available. Conditional compilation falls in this

class also. The term derived variants is used for those objects in a derived

version group that offer identical functional specifications to their client

programs.

Derivers may also be able to produce information quite different from inter-

mediate or binary code. There exist derivers to generate call graphs, pretty-

printed listings, cross reference tables, or indexes. These transformations

are not called variants, because they do not preserve the semantic content

as compilers do. However, both these transformations and the derived vari-

ants are collected into a derived version group, as long as they were gener-

ated from the same input.

The relations revision-of, variant-of and their subtypes are defined on source

objects, but extend naturally to derived objects. For example, if two source

objects are revisions of each other, then so are their derived objects, provid-

ed the derived objects were produced with the same deriver and parame-

ters. By definition, these two derived objects would be in different derived

version groups. A minor difficulty here is that derived objects are often gen-

erated from several source objects. When stating that two derived objects

are variants or revisions of each other, it is therefore useful to qualify this

statement with respect to the source object(s) involved.

Section 6 discusses the details of how to generate and keep track of derived

objects.
13

Software Configuration Management
FIGURE 2

Figure 2. An AND/OR graph representing a system family

5 Version Selection and Baselining

Generic configurations may represent a large number of baselines. For ex-

ample, a medium-sized software system could easily consist of 100 source

version groups. Assuming each version group has merely two versions, a

generic configuration containing all 100 groups represents 2100 ≈ 1030 sepa-

rate baselines — an impossibly large number. In practice, few of those base-

lines will actually work. The selection problem of software configuration

management is finding viable configurations without exhaustive search.

A simple, structural model that clarifies the selection problem is the AND/

OR graph model introduced in Reference [38]. This model represents atom-

ic objects as leaf nodes, configurations as AND-nodes, and source or de-

rived version groups as OR-nodes. The successors of an OR-node are the

objects in the version group. (We ignore the relations revision-of and variant-
of in case of a source version group for now.) An OA-node implies a choice

among its successors, while an AND-node implies an integration. The mod-

el permits not just a tree, but a general, acyclic graph, because objects may

be shared among several configurations. The selection problem in this mod-

el is formulated as searching the graph from a given start node, and making

choices at each OR-node such that the nodes selected form a viable configu-

ration.

1.11.2 1.31.1

2.01.0

R

A

S

1.2 1.3 1.1 1.31.2 1.4

CB

2.01.0
14

Software Configuration Management
An example of an AND/OR graph appears in FIGURE 2. Nodes A, B, and C
are version groups of atomic objects, while S and R are version groups con-

taining configurations. AND-nodes are depicted graphically by arcs con-

necting their offsprings. Labels on the out-arcs of AND-nodes distinguish

composites from sequences. For example, version 1.0 of R is a composite.

Note that by searching the graph starting with version 2.0 of node 5, we

reach no OR-nodes. Such a start node identifies a baseline, because it unam-

biguously specifies a set of nodes making up a configuration. Establishing a

baseline is important at release time. In a large project, where multiple

changes are carried out concurrently, a baseline is an important point of ref-

erence. Updates usually are relative to a baseline. A private baseline is creat-

ed whenever an actual system instance is generated. It may contain

revisions that are not yet checked in. It is handled like a minor revision in

that only a few of them are stored per user. A public baseline must not con-

tain checked-out revisions, is itself checked into a version group, and

should satisfy established quality control criteria. Quality control is a sub-

ject beyond the scope of this survey. For more information on baselining,

see Reference [5].

An AND-node that leads to one or more OR-nodes represents a generic

configuration, since some selection will be necessary when constructing an

actual system instance. Generic configurations are important for compactly

representing a large set of possible baselines, without having to enumerate

all combinations. Without generic configurations. SCM requires the mainte-

nance of bulky configuration tables. The problem with these tables is that

they are difficult to keep up to date in a large project. For instance, the addi-

tion of an upward compatible version of a pervasively used module may

cause such tables to double in size because the new version can be used

wherever the old one was permitted.

Version selection is currently an active research area within SCM. The gen-

eral approach is to associate constraints with generic configurations. The

constraints are conditions on attributes of software objects that select appro-

priate variants, revisions, and derived versions. Attributes usable for revi-

sion selection are revision number and state, creation date, author, and the

relation revision-of with its subclasses. With these attributes it is possible to

express the following example constraint:

For all version groups where the invoker has a revision checked out, se-

lect that revision; otherwise use the most recent revision that is checked

in and has state ’stable’.

Constraints of this sort are called "configuration threads" in DSEE [25]. By

adding a cut-off constraint for the creation date (a maximum date), a config-

uration can be regenerated as it would have been produced at a certain

date.

Variants should be selected based upon the relation variant-of and user-de-

fined variant attributes, as described in Section 3.2. For example, one may

want to choose a variant on the basis of the hardware processors on which

it can run. Note that a variant attribute may be single-valued or set-valued.

Using the previous example, a variant may actually run on several proces-
15

Software Configuration Management
sors. Single-valued attributes for differentiating variants were used in IN-

TERCOL and RCS [41, 38]. The Adele and Nomade configuration managers

[12, 13] use sophisticated constraints on attributes, including negation and

conditionals. The latter can be used to specify preferences, that is, if a cer-

tain constraint cannot be met, then some secondary choice may be accept-

able. A similar approach to preferences, based on a relational database for

describing generic configurations, is due to Bernard et al [4]. Winkler [44]

discusses set-valued attributes and introduces constraints expressed as

functions over attribute values.

Additional selection criteria can be based on modification requests (see Sec-

tion 7). For instance, a constraint of the following sort would configure a

new release:

Select the previous baseline. Let O be the set of objects in this baseline

that have modification requests to be addressed in the current release,

and have a corrected revision for each request. Replace the elements in 0
with the corrected revisions.

Parameters for the derivers finally select derived versions. An additional

degree of freedom is available here: If a certain parameter is left unspeci-

fied, the SCM system can make its own choice. For instance, if the user does

not care whether certain subconfigurations have been compiled with opti-

mization on or off, SCM can choose whatever is available and save deriva-

tion time that way.

If constraint-based version selection is available, it is straightforward to

provide an automatic function for constructing baselines. This function

simply runs the selection process and records the outcome. Recording the

outcome involves creating new revisions in the visited configuration

groups. For example, revision 2.0 of S and R in Figure 2 could have been

generated automatically. It is convenient to store the constraints used to

produce a baseline along with it, in order to document the intent behind the

baseline. Saving the constraints permits a similar selection to be repeated at

the next release time.

Module interconnection languages (MILs) take a different approach to ver-

sion selection. They concentrate on the interfaces among software modules.

Type checking the interfaces assures that only type-safe configurations are

constructed. DeRemer and Kron [10] originated the concept of a MIL, as a

language separate from the programming language. Prieto-Diaz [32] gives

an extensive survey of the MILs developed since then. Most MILs suffer

from not treating interfaces as firstclass software objects. Thus, it is difficult

to represent versions of interfaces. This is a serious limitation, even though

versions of interfaces do not arise as frequently as versions of the imple-

menting programs. Exceptions are the programming languages Mesa and

Cedar [28, 37]. Both provide a common sub-language for describing config-

urations, called C-Mesa. A key aspect is the distinction between interfaces

and implementations. An interface contains the types, variables, subpro-

gram headers, etc., visible to clients of the interface, whereas an implemen-

tation of an interface provides the subprogram bodies and data structures

invisible to clients. C-Mesa programs represent not only configurations, but
16

Software Configuration Management
also record the relations has-implementation and has-client. The first relation

holds between interfaces and corresponding implementations; the second

between interfaces and their clients. Both can be viewed as subtypes of the

general traceability relation, because the change of an interface must trigger

changes in affected implementations and clients. A serious limitation of C-

Mesa is that its version scheme distinguishes only two revisions, the current

one and its predecessor.

Ada and Modula [19, 45] also separate interfaces and implementations and

the relations has-implementation and has-client make dependencies traceable.

Ada and Modula do not provide a separate configuration language. The

implicit configurations and unnecessarily strict recompilation rules in both

languages make treatment of versions difficult.

6 Software Manufacture

Software manufacture is the process of generating derived objects. Using

the AND/OR graph, software manufacture operates on a baseline and pro-

duces a mirror image of that baseline containing only derived objects. The

nodes in that minor image are connected to the corresponding nodes in the

input baseline, showing the derivation history. In Figure 2, consider what

must be produced by compiling and linking revision 2.0 of S.

To speed up the derivation process, an SGM system must manage a cache

containing derived objects which are likely to be reused. Make [14] is a

widely used program that uses a simple form of such a cache. It is based on

a time-stamp mechanism for deciding when to update the cache: If a de-

rived object is older than its input objects, then rederivation is necessary.

Make also uses simple rules to process objects based on their types. One

such rule describes how to produce machine code from C source code.

Make can be combined with SCCS or RCS to provide a limited versioning

capability.

Despite its popularity, Make has a number of serious drawbacks for large-

scale SGM. The timestamping mechanism is inappropriate for determining

whether a derived object can be reused. When there are multiple versions, a

time stamp is insufficient for deciding from which versions of input objects

a derived object was generated [38]. Another problem is that Make does not

record the parameter settings on derivers. For example, it is impossible to

decide whether a given machine code module was produced with optimi-

zation turned on or off. Make also handles derivation processes with inter-

mediate objects inefficiently, because it always rederives a target object if its

intermediate objects have been deleted, regardless of whether the target is

up-to-date. Finally, Make provides derivation rules for atomic objects only;

processing of configurations must be programmed explicitly.

DSEE’s handling of derived objects is more reliable [25]. Each derived ob-

ject carries a history attribute that describes precisely how the object was pro-

duced, including version identifiers and parameter setting. For high speed

processing, DSEE performs parallel manufacture on idle workstations [26].

A remaining drawback is that DSEE provides no general rule for processing
17

Software Configuration Management
configurations; the individual steps have to be programmed explicitly for

every configuration.

Smile [22] and Marvel [21) provide opportunistic manufacture. In this pro-

cessing mode, derivers start up automatically as soon as new source object

versions are created. By running derivations in parallel with the program-

mer’s activities, opportunistic manufacture attempts to have derived ob-

jects ready ahead of time. This approach reduces programmer idle time.

However, a problem is limiting the combinatorial explosion of derivations

caused by multiple versions. Without a specific target configuration, almost

all of the derivation runs after a change could be useless.

Odin [8,9] is a flexible system for managing derived objects. Similar to

Make, it uses an extensible set of rules that form a derivation graph for ob-

ject types. Unlike Make, Odin’s rule language covers derived configura-

tions as well as atoms, and distinguishes sequences and composites. (Make

only has sequences.) Users need only indicate the objects to be combined in

configurations, and Odin determines how to process them, based on their

types. For instance, it is not necessary to always redescribe how configura-

tions are linked, or how documents consisting of several parts are pro-

cessed. Furthermore, composites handle derivation processes with more

than one output cleanly. Odin also provides facilities for including quality

control tests, such as regression tests, as part of the derivation. In its cache

of derived objects, Odin stores a full history attribute, including the param-

eters used during derivation. Unfortunately, support for versioning is poor.

Automatic system manufacture guarantees that the correct derived objects

are produced when necessary. However, the cost of the processing involved

may be too high. In large system families, changing a single line in an object

with shared declarations may trigger massive recompilations. Many of

these recompilations may be redundant, because the change may actually

affect only a small fraction of the compilation units. Selective recompilation
mechanisms, such as smart recompilation [40], reduce the number of re-

dundant derivations. These mechanisms analyzes changes for their effect

and prevent redundant compilations when, for example, an unused decla-

ration is deleted, a new declaration is added, or a comment is changed.

Hood et al [17] generalize smart recompilation to recursive interface depen-

dencies. Smarter recompilation [35] reduces the number of recompilations

further by allowing harmless inconsistencies to remain. As an example,

consider a type declaration T used in a set S of source objects. Assume we

change T into T’, and update a few source objects to be compatible with T’.
Suppose furthermore we can partition S into a subset S1 in which only T is

used, and a subset S2 in which only T’ is used. If there are no interactions

among S1 and S2 that depend in any way on T or T’, then recompilation of

S1 is not necessary and smarter recompilation will suppress it. More impor-

tant than saving the recompilations is perhaps the fact that programmers

can delay the work of making the source objects in S1 compatible with T’.

Thus, programmers can test their changes without having to wait for others

to bring their modules up-to-date. Without a mechanism for managing in-

consistencies in this manner, programmers have to resort to the unsafe
18

Software Configuration Management
practice of subverting the type checking and manufacturing system to get

their work done.

7 Modification Requests

A modification request (MR) is a change proposal. General configuration

management is MR-driven, that is, every change is initiated by one or more

MRs. Tracking of modification requests makes it possible to answer ques-

tions about past, current, and future capabilities of a system family, as well

as providing important management data about project status. There is no

reason why SCM should not be MR-driven as well, yet few tools for manag-

ing software modification requests exist. The author is aware of only two

published tools: MRCS [23], a control system running on Unix, and Crystal

[2], an SCM system that integrates version control, MR tracking, and project

management.

Modification requests propose to correct errors, to modify existing system

capabilities, or to extend or contract capabilities. An MR may address any

set of source objects in the software lifecycle: requirements documents, de-

sign documents, interfaces, program code, test data, documentation, etc. An

MR should be machine-readable and is itself a source object.1

MRs can be processed into derived objects, for instance into formatted ob-

jects or summary reports. Versions of MRs do not seem necessary, but each

MR has an attribute that reflects its state. A useful set of states is submitted,

rejected, accepted, delayed, in progress, and completed. When an MR is first en-

tered, it has state submitted. A review decides whether to accept or reject the

MR. A rejected MR is not discarded, but filed with a note describing the rea-

son for rejection. A third alternative is to delay an MR, which means that it

will assure the state submitted again at a later time for reconsideration. Once

the work involved in an MR is assigned to a person, then the MR assumes

state in progress. State completed indicates the modifications required by the

MR have been performed and tested. To allow for effective tracing of an

MR, the state attribute should not just have the current value, but should

actually log all previous states, including the times when the state changes

occurred. That way, it is easy to determine the history of MRs and to find

MRs that have fallen behind schedule.

Usually, each programmer is responsible for a set of related MRs. This set

can be represented naturally by a configuration. Configurations of MRs are

often called tasks, and are associated with a workspace for managing tem-

porary objects.

Additional useful data items associated with an MR are the relations has-
MR and has-change. The first links an object with its MRs, the second an MR

with the updates it caused. These relations support MR-based selection, as

illustrated in the second query in Section 5. The submitter or reviewer of an

MR establishes has-MR, while has-change is entered during check-in. To sim-

plify entry and prevent errors, check-in should allow selection from a menu

1. Modification requests for modification requests appear useless.
19

Software Configuration Management
of relevant MRs. This set can easily be derived from the MR configurations

in the work space.

Crystal [2] implements the above relations. A simple experiment with bug

reports on a medium-sized system showed that software engineers can at-

tach their MRs to the affected objects in an unfamiliar system with high ac-

curacy, provided the overall system architecture is explained with a few

sentences per object. Crystal therefore presents the submitter of an MR with

a sophisticated browser for locating relevant objects. This browser shows

system configurations graphically and lets the user read documentation as

well as the existing MRs (to avoid duplication). As a heuristic to speed up

the search process, the browser even highlights "suspect" components, i.e.,

those that changed relative to the last baseline. Once the relation has-MR

has been entered, it opens several possibilities for project management sup-

port. The history of the objects can be inspected to identify competent pro-

grammers for carrying out the changes. The history can also yield a rough

estimate for the time required for the change, by averaging past periods be-

tween check-out and check-in. In Crystal, this information is used to update

a PERT-chart of maintenance activities.

8 Conclusions

Software configuration management is a discipline whose goal is to control

changes to large software systems. The present state of the art is that man-

aging and tracking the update of atomic objects via the check-in/edit/

check-out cycle is well understood. Reliably selecting versions and software

manufacture are also well developed. The remaining paragraphs enumer-

ate areas in need of further research.

Progress in accommodating and managing unavoidable inconsistencies in

very large systems is still needed, as discussed by Schwanke and Kaiser

[35]. An area presently under active investigation is version selection based

on constraints and preferences. An area that is virtually untapped is repre-

senting and manipulating traceability relations, for instance the relations

between specifications, their implementations, the associated documenta-

tion, and the tests. MR-driven SCM and its integration with project man-

agement is also an underdeveloped area.

With the spread of workstations, the problem of manufacturing distributed

applications has gained in importance. The difficulties in these applications

involve interfacing multiple programming languages and operating sys-

tems, distributing configurations over a network of (possibly heteroge-

neous) computers, and initializing the processes and the communication

paths. Two representative approaches are Matchmaker [20] and Agora[6].

Semantic modelling of SCM with semantic networks [2, 43] or object-orient-

ed programming languages is a topic worthy of further exploration. A se-

mantic model of SCM would associate the various software object types

with appropriate operations and organize the types into a class hierarchy

with inheritance. The model would have to be extensible, for instance with

new programming languages or configuration types. Another requirement
20

Software Configuration Management
is to accommodate versions of operations, for example versions of compil-

ers. The benefits of semantic modelling are greater conceptual clarity, direct

representation of the model for machine interpretation, more sophisticated

operations and queries, and simplified implementation.

Finally, an interesting topic is building a maintainer’s assistant, i.e., a pro-

gram that helps with carrying out changes in complex software systems.

The maintainer initiates a change, while the assistant provides decision

support and takes over the task of bringing the system back into a consis-

tent state. For example, the assistant detects all places that are affected by a

given change and present them to the programmer for update. It proposes

corrections and perhaps even derives corrections by observing the pro-

grammer. This approach is, of course, not limited to programs; it is just as

applicable to updating specifications or other formal representations con-

sistently. Intensive research in smart editing systems will be needed to

achieve the goal of automating consistency maintenance.

9 A Glossary

AND/OR graph model: a model for describing system families with multi-

ple versions and configurations.

Atom, atomic object: a software object whose body is not decomposable for

SCM.

Baseline, baseline configuration: a baseline composite or baseline se-

quence.

Baseline composite : a composite whose body’s field values are atomic ob-

jects or baselines.

Baseline sequence : a sequence whose body’s elements are atomic objects

or baselines.

Check-in: a command applied to an object reserved with check-out; it re-

moves the reservation and makes the object publicly visible.

Check-out: a command that creates a private copy of an existing source ob-

ject and reserves it for editing by the invoker.

Composite, composite object: a software object whose body consists of

named fields with software object identifiers or version group identifiers as

field values.

Configuration: a software object with a structured body; either a composite

or a sequence. Delta: a record of the difference between two software ob-

jects, suitable for generating one from the other.

Derived object: a software object that is produced by a program from some

other software object(s).
21

Software Configuration Management
Derived variant: a derived object that has the same abstract specification as

the software objects from which it was derived.

Derived version: a member of a derived version group.

Derived version group: a set of derived objects generated from the same

software objects, but with different derivers or different parameter choices

for the derivers.

Deriver: a program that generates derived objects.

Generic configuration: a generic composite or generic sequence.

Generic composite: a composite whose body has at least one field value

that is (i) a version group or (ii) a generic configuration.

Generic sequence: a sequence whose body has at least one element that is

(i) a version group or (ii) a generic configuration.

History attribute: a data structure that describes exactly how a derived ob-

ject was produced.

Minor revisions: revisions of a source object created between check-out

and check-in.

Modification request: a source object that proposes a change.

Opportunistic manufacture: Starting derivers as soon as a new source ob-

ject is completed.

Parametric: synonym for generic (as in parametric configuration).

Private baseline: a temporary baseline managed as a minor revision. May

contain checked-out revisions.

Public baseline: a baseline that is checked into a version group. Must not

contain checked-out revisions.

Revision: a source object linked to another via the relation revision-of.

Revision-of: a relation linking two source objects if one was produced by

changing the other.

Selective recompilation: a mechanism for saving redundant recompila-

tions after changes.

Sequence: a software object whose body consists of a list (ordered multi-

set) of identifiers of software objects or version groups.

Software manufacture: the process of producing derived objects.

Software object: a machine-readable document.
22

Software Configuration Management
Source object: a software object entered manually.

Source version: a member of a source version group.

Source version group: a set of source objects related via revision-of and vari-
ant-of

System family: a set of related systems, sharing common objects.

System model: see generic configuration.

Traceability link: a relation connecting a source object to those (source or

derived) objects, whose contents was used when the source object was com-

posed.

Variant: a source object linked to another one via the relation variant-of.

Variant-of: a relation linking two source objects that are indistinguishable

under a given abstraction.

Version: a member of a version group.

Version group: a source or derived version group.

10 References

10.1 Main reference

Walter F. Tichy: "Tools for Software Configuration Management", In Proceed-
ings of the International Workshop on Software Version and Configura-
tion Control, Grassau, Germany Jan 27-29, 1988. Also In Ed. Jürgen

Winkler: Software Version and Configuration Control, Band 30, G.G:

Teubner, Stuttgart, 1988.

10.2 Other references

[1] Code Management System. Digital Equipment Corporation, 1982. Docu-

ment No. EA-23134-82.

[2] Lori B. Alperin and Beverly I. Kedzierski. AI-based software mainten-

ance. In IEEE AI Applications Conference, February 1987.

[3] Wayne A. Babich. Software Configuration Management. Addison-Wesley,

1986.

[4] Y. Bernard, M. Lacroix, P. Lavency, and M. Vanhoedenaghe. Configura-

tion management in an open environment. In Proceedings of the First
European Software Engineering Conference, pages 37-45, AFCET, Springer

Verlag, September 1987.

[5] Edward H. Bersoff, Vilas D. Henderson, and Stan G. Siegel. Software

configuration management: a tutorial. IEEE Computer, 12(1):6-14, Janu-

ary 1979.
23

Software Configuration Management
[6] Roberto Bisiani, F. Alleva, F. Correrini, A. Florin, F. Lecouat, and R.

Lerner. The Agora Programming Environment. Technical Report CMU-

CS-87-113, Carnegie-Mellon University, Department of Computer Sci-

ence, March 1987.

[7] William Bryan, Christopher Chadbourne, and Stan Siegel. Tutorial:
Software Configuration Management. IEEE Computer Society Press, 1980.

[8] Geoffrey M. Clemm. The Odin specification language. In Proceedings of
the International Workshop on Software Version and Configuration Control,
Teubner Verlag, Stuttgart, FRG, January 1988.

[9] Geoffrey M. Clemm. The Odin System: An Object Manager for Extensible
Software Environments. PhD thesis, University of Colorado-Boulder, De-

partment of Computer Science, 1986.

[10] Frank DeRemer and Hans H. Kron. Programming-in-the-large vs. pro-

gramming-in-the-small. IEEE Transactions on Software Engineering, SE-

2(2):80-86, June 1976.

[11] Klaus R. Dittrich, Willi Gotthard, and Peter C. Loekemann. Damokles -

a database system for software engineering environments. In Proceed-
ings of the Workshop on Advanced Programming Environments, IFIP,
Springer Verlag, LNCS Vol. 244, June 1986.

[12] Jacky Estublier. A configuration manager: the adele data base of pro-

grams. In Proceedings of the Workshop on Software Engineering Environ-

ments for Programming-in-the-Large, pages 14014T, Harwichport, MA,

June 1985.

[13] Jacky Estublier. Configuration management: the notation and the tools.

In Proceedings of the International Workshop on Software Version and Con-

figuration Control, Teubner Verlag, Stuttgart, FRG, January 1988.

[14] Stuart I. Feldman. Make - a program for maintaining computer pro-

grams. Software, Practice and Experience, 9(3):255-265, March 1979.

[15] Christopher W. Fraser and Eugene W. Meyers. An editor for revision

control. ACM Transactions on Programming Languages and Systems,
9(2):277-29S, April 1987.

[16] A. Nico Habermann and David Notkin. Gandalf: software develop-

ment environments. IEEE Transactions on Software Engineering, SE-

12(12):1117-1127, December 1986.

[17] Robert Hood, Ken Kennedy, and Hausi A. Mueller. Efficient recompila-

tion of module interfaces in a software development environment.

ACM SIGPLAN Notices, 22(1):180-189, January 1987. Proceedings of the

ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-

tical Software Development Environments.

[18] James W. Hunt and Thomas G. Szymanski. A fast algorithm for com-

puting longest common subsequences. Communications of the ACM,
20(5):350-353, May 1977.

[19] Jean D. Ichbiah. Ada Programming Language, Military Standard. United

States Department of Defense, January 1983.
24

Software Configuration Management
[20] Michael B. Jones, Richard F. Rashid, and Mary R. Thompson. Match-

maker: an interface specification language for distributed processing.

In 12th Annual Symposium on the Principles of Programming Languages,
pages 225-235, ACM, January 1985.

[21] Gail E. Kaiser and Peter H. Feiler. An architecture for intelligent assis-

tance in software development. In Proceedings of the Ninth International
Conference on Software Engineering, pages 180-188, IEEE, March 1987.

[22] Gail E. Kaiser and Peter H. Feiler. Intelligent assistance without artifi-

cial intelligence. In Proceedings of the Thirty-Second IEEE Computer Soci-
ety International Conference (COM PCON), pages 236-241, IEEE,

February 1987.

[23] D. B. Knudsen, A. Barofsky, and L. R. Satz. A modification request con-

trol system. In Proceedings of the 2nd International Conference on Software
Engineering, pages 187--192, IEEE and ACM, 1977.

[24] Vincent Kruskal. Managing multi-version programs with an editor.

IBM Journal of Research and Development, 28(1):74-81, January 1984.

[25] David B. Leblang Jr. and Robert P. Chase. Computer-aided software

engineering in a distributed workstation environment. ACM SIGPLAN
Notices,19(5):104-112, May 1984. Proceedings of the ACM SIGSOFT/SIG-
PLAN Software Engineering Symposium on Practical Software Deve-

lopment Environments.

[26] David B. Leblang Jr. and Robert P. Chase. Parallel software configura-

tion management in a network environment. IEEE Software, 4(6):28-35,

November 1987.

[27] Mark A. Linton. Implementing relational views of programs. ACM
SIGPLAN Notices, 19(5):14-21, May 1984.

[28] James G. Mitchell, William Maybury, and Richard Sweet. Mesa Langua-

ge Manual. Technical Report, Technical Report, Xerox Palo Alto Re-

search Center, Feb. 1978.

[29] Wolfgang Obst. Delta technique and string-to-string correction. In Pro-
ceedings of the First European Software Engineering Conference, pages 69-

73, AFCET, Springer Verlag, September 198T.

[30] David L. Parnas. Designing software for ease of extension and contrac-

tion. IEEE Transactions on Software Engineering, SE-5(2):128-138, March

1979.

[31] David L. Parnas. On the criteria to be used in decomposing systems

into modules. Communications of the ACM, 15(2):lOS3-1058, December

1972.

[32] Ruben Prieto-Diaz and James M. Neighbors. Module interconnection

languages. The Journal of Systems and Software, 6:307-334, 1986.

[33] Thomas Reps, Susan Horwitz, and Jan Prins. Support for integrating

program variants in an environment for programming in the large. In

Proceedings of the International Workshop on Software Version and Configu-
ration Control, Teubner Verlag, Stuttgart, FRG, January 1988.
25

Software Configuration Management
[34] Marc J. Roehkind. The source code control system. IEEE Transactions

on Software Engineering, SE-1(4):364-370, December 1975.

[35] Robert W. Schwanke and Gail E. Kaiser. Living with inconsistency in

large systems. In Proceedings of the International Workshop on Software
Version and Configuration Control, Teubner Verlag, Stuttgart, FRG, Janu-

ary 1988.

[36] Richard M. Stallman. EMACS: the extensible, customizable, self-docu-

menting display editor. In Interactive Programming Environments, pages

300-325, MacGraw-Hill, 1986.

[37] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B.

Hagman. A structural view of the Cedar programming environment.

ACM Transactions on Programming Languages and Systems,8(4):419-490,

October 1986.

[38] Walter F. Tichy. A data model for programming support environments

and its application. In Hans-Jochen Schneider and Anthony I. Wasser-

man, editors, Automated Tools for Information System Design and Develop-
ment, pages 31-48, North-Holland Publishing Co, Amsterdam, 1982.

Reprinted in Trends in Information Systems, B. Langefors et al, editors,

North-Holland Publishing Co, 1986.

[39] Walter F. Tichy. RCS — a system for version control. Software-Practice
and Experience, 15(7):637-654, July 1985.

[40] Walter F. Tichy. Smart recompilation. ACM Transactions on Programming
Languages and Systems, 8(3):273-291, July 1986.

[41] Walter F. Tichy. Software development control based on module inter-

connection. In Anthony I. Wasserman, editor, Software Development En-

vironments, pages 272-284, IEEE Computer Society Press, 1981.

Originally published in Proceedings of the Fourth International Con-

ference on Software Engineering, September 1979, IEEE.

[42] Walter F. Tichy. The string-to-string correction problem with block

moves. ACM Transactions on Computer Systems, 2(4):309-321, November

1984.

[43] Walter F. Tichy. What can software engineers learn from AI? IEEE Com-
puter, 20(11), November 1987.

[44] Jürgen F.H. Winkler. Version control in families of large programs. In

Proceedings of the Ninth International Conference on Software Engineering,
pages 150-161, IEEE, March 1987.

[45] Niklaus Wirth. Programming in Modula-2. Springer Verlag, 1985.
26

	Software Configuration Management Overview
	Walter Tichy
	Software Configuration Management
	1 Introduction
	Identification
	Change Tracking
	Version Selection and Baselining
	Software Manufacture
	Managing Simultaneous Update

	2 Basic SCM Concepts
	2.1 Creation of Software Objects
	2.2 Structure of Software Objects

	3 Source Versions
	3.1 Source Version Groups
	3.2 Structure of Source Version Groups
	FIGURE 1
	Figure 1. A source version group with revisions and variants

	3.3 Operations on Source Version Groups
	3.4 Implementation of Source Version Groups

	4 Derived Versions
	FIGURE 2
	Figure 2. An AND/OR graph representing a system family

	5 Version Selection and Baselining
	6 Software Manufacture
	7 Modification Requests
	8 Conclusions
	9 A Glossary
	10 References
	10.1 Main reference
	10.2 Other references
	[1] Code Management System. Digital Equipment Corporation, 1982. Document No. EA-23134-82.
	[2] Lori B. Alperin and Beverly I. Kedzierski. AI-based software mainten- ance. In IEEE AI Applic...
	[3] Wayne A. Babich. Software Configuration Management. Addison-Wesley, 1986.
	[4] Y. Bernard, M. Lacroix, P. Lavency, and M. Vanhoedenaghe. Configuration management in an open...
	[5] Edward H. Bersoff, Vilas D. Henderson, and Stan G. Siegel. Software configuration management:...
	[6] Roberto Bisiani, F. Alleva, F. Correrini, A. Florin, F. Lecouat, and R. Lerner. The Agora Pro...
	[7] William Bryan, Christopher Chadbourne, and Stan Siegel. Tutorial: Software Configuration Mana...
	[8] Geoffrey M. Clemm. The Odin specification language. In Proceedings of the International Works...
	[9] Geoffrey M. Clemm. The Odin System: An Object Manager for Extensible Software Environments. P...
	[10] Frank DeRemer and Hans H. Kron. Programming-in-the-large vs. programming-in-the-small. IEEE ...
	[11] Klaus R. Dittrich, Willi Gotthard, and Peter C. Loekemann. Damokles - a database system for ...
	[12] Jacky Estublier. A configuration manager: the adele data base of programs. In Proceedings of...
	[13] Jacky Estublier. Configuration management: the notation and the tools. In Proceedings of the...
	[14] Stuart I. Feldman. Make - a program for maintaining computer programs. Software, Practice an...
	[15] Christopher W. Fraser and Eugene W. Meyers. An editor for revision control. ACM Transactions...
	[16] A. Nico Habermann and David Notkin. Gandalf: software development environments. IEEE Transac...
	[17] Robert Hood, Ken Kennedy, and Hausi A. Mueller. Efficient recompilation of module interfaces...
	[18] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest common subsequ...
	[19] Jean D. Ichbiah. Ada Programming Language, Military Standard. United States Department of De...
	[20] Michael B. Jones, Richard F. Rashid, and Mary R. Thompson. Matchmaker: an interface specific...
	[21] Gail E. Kaiser and Peter H. Feiler. An architecture for intelligent assistance in software d...
	[22] Gail E. Kaiser and Peter H. Feiler. Intelligent assistance without artificial intelligence. ...
	[23] D. B. Knudsen, A. Barofsky, and L. R. Satz. A modification request control system. In Procee...
	[24] Vincent Kruskal. Managing multi-version programs with an editor. IBM Journal of Research and...
	[25] David B. Leblang Jr. and Robert P. Chase. Computer-aided software engineering in a distribut...
	[26] David B. Leblang Jr. and Robert P. Chase. Parallel software configuration management in a ne...
	[27] Mark A. Linton. Implementing relational views of programs. ACM SIGPLAN Notices, 19(5):14-21,...
	[28] James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Manual. Technical Repor...
	[29] Wolfgang Obst. Delta technique and string-to-string correction. In Proceedings of the First ...
	[30] David L. Parnas. Designing software for ease of extension and contraction. IEEE Transactions...
	[31] David L. Parnas. On the criteria to be used in decomposing systems into modules. Communicati...
	[32] Ruben Prieto-Diaz and James M. Neighbors. Module interconnection languages. The Journal of S...
	[33] Thomas Reps, Susan Horwitz, and Jan Prins. Support for integrating program variants in an en...
	[34] Marc J. Roehkind. The source code control system. IEEE Transactions on Software Engineering,...
	[35] Robert W. Schwanke and Gail E. Kaiser. Living with inconsistency in large systems. In Procee...
	[36] Richard M. Stallman. EMACS: the extensible, customizable, self-documenting display editor. I...
	[37] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B. Hagman. A structura...
	[38] Walter F. Tichy. A data model for programming support environments and its application. In H...
	[39] Walter F. Tichy. RCS — a system for version control. Software-Practice and Experience, 15(7)...
	[40] Walter F. Tichy. Smart recompilation. ACM Transactions on Programming Languages and Systems,...
	[41] Walter F. Tichy. Software development control based on module interconnection. In Anthony I....
	[42] Walter F. Tichy. The string-to-string correction problem with block moves. ACM Transactions ...
	[43] Walter F. Tichy. What can software engineers learn from AI? IEEE Computer, 20(11), November ...
	[44] Jürgen F.H. Winkler. Version control in families of large programs. In Proceedings of the Ni...
	[45] Niklaus Wirth. Programming in Modula-2. Springer Verlag, 1985.

