
On the design of the Amoeba Configuration Manager

Erik H. Baalbergen
Kees Verstoep

Andrew S. Tanenbaum

Vrije Universiteit
Amsterdam, The Netherlands

ABSTRACT

The program Amoeba Make, or Amake, is being designed to fulfil the
need of a make-like configuration manager capable of exploiting the poten-
tials of the Amoeba distributed operating system. The major design goal is to
create a software configuration manager that is both easy to use and efficient.
The specification and maintenance of a large configuration should be easy,
and should be automated as much as possible. Furthermore, the build process
should exploit Amoeba’s capabilities and resources when creating or updat-
ing a target. In this paper we show how a smart file server can contribute to
Amake’s efficiency. We also show how a declarative configuration descrip-
tion allows Amake to take full advantage of parallelism and to determine the
commands needed for building and maintaining targets.

1. INTRODUCTION

The program Amake was designed to fulfil the need of a make-like configuration
manager that tries to overcome make’s inability to maintain large and complex systems in a
convenient way, and that is capable of exploiting the potentials of the Amoeba distributed
operating system.

Make8 was introduced in 1979 as part of the UNIX™ programming environment. Its
task is to maintain small and medium-sized programs. Make uses the user-supplied descrip-
tion file (called the Makefile), the file names and last-modified times of the files involved,
and built-in rules, to maintain the system as described in the Makefile. To assure that the pro-
gram is up-to-date with its sources, the user simply types ‘‘make’’. Make then checks all
dependencies between generated (intermediate) files and the components that were used to
generate them, and tries to update the final target with as few operations as possible. We
assume the reader is familiar with make and make-related terminology.

Throughout make’s existence, people have used it for maintaining both small and large
projects. Since programs have grown and the tools used for developing these programs have
become fairly complex, make has shown its deficiencies for maintaining such systems. Most
critique on the make program stems from the use of make for maintaining large and complex
systems, for which make was not intended.31 Feldman already said:8

Make is most useful for medium-sized programming projects; it does not solve the
problems of maintaining multiple source versions or of describing huge programs.

Therefore we should not criticize the make program as such; it has proved its usefulness in
the environment it was aimed at. But people have started to use the tool for maintaining

- 2 -

large systems, and as such criticisms have arisen.

Due to make’s inability to maintain large systems and to handle parallelism, many new
make-like programs have seen the light of day.1, 7, 9-11, 19, 27, 32 These make-clones and make
derivates solve a subset of the problems in ad hoc ways, and place the burden of writing com-
plex description files on the programmer’s shoulders. Another development is the integration
of configuration management tasks into software development environments.3, 6, 13, 14, 16, 17

Our purpose, however, is to design a configuration manager that runs stand-alone, and that is
as independent from its environment as possible.

Instead of listing all make’s deficiencies, we limit ourselves to the ones that we wish to
solve in Amake. The most important problem is that of writing and maintaining description
files, which is boring and error prone. The programmer often has to twist and turn to express
his needs. The difficulties that we try to overcome are:

d Implicit rules are based on file name suffixes only.

d Make does not combine implicit rules. The user has to be aware of and specify inter-
mediate steps and targets.

d Multiple-output command blocks need a recursive invocation of make.

d Integrity is hard to maintain. A target can only be up-to-date if its dependency list is
kept up-to-date. Furthermore, since macro definitions within a Makefile may change,
Makefile itself should be in the dependency list of each target that is made using a
macro definition. Worse yet, macro definitions can be specified as command-line
options to make.

d Makefiles often contain repetitive and redundant information.

d Make assumes that a target’s command block indeed produces the target. This may lead
to obscure description file constructions.

A second important problem is that make’s notion of a target being ‘‘out-of-date’’ with
respect to its dependents is based on the notion of time. In practice, time is a well-defined
notion on single computers, but is hard to maintain in a distributed environment. Note that
make’s time notion in combination with fast compilations requires a fine-grained time meas-
urement. A third problem is that the original Feldman make does not exploit parallelism.
True parallelism can be exploited in today’s systems, and can be employed to significantly
speed up the build process.1

Section 2 discusses the relevant aspects of Amoeba. In section 3 we present the pur-
poses and the design of Amake. An example of the build process performed by Amake is dis-
cussed in section 4. Related work is discussed in section 5.

2. AMOEBA

Amoeba20, 24 is an object-based distributed operating system originally designed at the
Vrije Universiteit and now being further developed there and at the Centre for Mathematics
and Computer Science (CWI), both in Amsterdam. The Amoeba architecture consists of four
components. First are the workstations, one workstation per user, which run window
management software, and on which the users can perform tasks that require fast interactive
response, such as editing.25, 30 Second are the pool processors, a groups of CPUs that can be
dynamically allocated as needed, used, and then returned to the pool. Third are the special-
ized servers, such as directory and file servers. Fourth are the wide-area network gateways,
which are used to link local Amoeba systems at different sites into a single, uniform sys-
tem.23, 26

Objects in Amoeba are instances of abstract data types such as files, directories and

- 3 -

processes, and are managed by server processes. A client process carries out operations on
an object by sending a request message to the server process that manages the object. While
the client blocks, the server performs the requested operation on the object. When the opera-
tion finishes, the server sends a reply message back to the client, which is then unblocked.
This request/reply message exchange is called a transaction in Amoeba.

The objects in Amoeba are named and protected by capabilities.33 The capabilities,
combined with transactions, provide a uniform interface to all objects in Amoeba. A capabil-
ity is composed of four fields as shown below.

���
Server Port Object Number Rights Check Field��
�

�
�

�
�

�
�

�
�

The server port is a sparse address identifying the server process that manages the object.
The object number is an internal identifier the server uses to distinguish among its objects.
The rights field is a bit string telling which operations on the object are permitted by the
holder of the capability. A capability is protected against forging and tampering by the check
field, a large number. Since capabilities are clumsy to work with directly, they can be stored
in directories, managed by the directory service. A directory is effectively a set of
<ASCII string, capability> pairs. Common operations on directories are entering and delet-
ing directory entries, and mapping ASCII names onto the corresponding capabilities.

3. AMOEBA MAKE

Given the deficiencies of make on the one hand, the parallelism available and the
absence of a suitable ‘‘time’’ concept in Amoeba on the other hand, we felt the need to
design a new configuration manager for Amoeba. The configuration manager is called
Amoeba Make, or Amake. Our major design goal is to make Amake easy to use and to exploit
Amoeba’s potentials. A less important goal is to allow Amake to be used on other, possibly
distributed, systems.

In more detail, we have the following design goals. First, we adopt the basic philosophy
of make, in which model a target is created and kept up-to-date according to the description
file. Second, we want to exploit the parallelism and distribution offered by Amoeba. Experi-
ments have shown that parallelism and distribution can lead to a significant reduction of the
time needed for building a target.1, 2 Finally, we want Amake to be rather ‘‘intelligent’’, in
order to provide a tool that is easy to use. The ideal case would be to have a tool that, given a
set of sources, builds and maintains a specified target with as little information from the user
as possible.

Amake acts as a configuration manager; each time a programmer wants to ensure that
targets are up-to-date according to a description file, he invokes Amake. Amake then runs the
build process using information from the description file, the Amakefile. As soon as Amake
finishes successfully, the configuration will be consistent with its description. From then on,
the programmer can alter sources, and run Amake again to regain consistency.

Amoeba Make has to perform three tasks. Given a description of the source and target
objects, it initially has to determine the list of commands needed for creating the targets.
Next, Amake has to reduce the number of commands, since the results from commands from
previous builds can be used and applied. Finally, it has to execute the remaining commands
to update a target as efficiently as possible. We believe that the current design of Amake in
combination with Amoeba serves these three needs and meets the design goals.

- 4 -

3.1. Command determination

To enable Amake to derive the commands needed for constructing a target, the program-
mer needs to specify at least the corresponding source files and the set of programs (or tools)
that Amake may consider. The input for Amake is purely declarative, since the user specifies
all components needed to build a target, without indicating how to build it. The declarative
approach offers the advantage that the user is not concerned with details of when to run what
program with which inputs. Furthermore, Amake can compose its own blue-print of the build
process, and thus use any obscure system-specific features without the user noticing it. This
blue-print is called the configuration graph of the system. The build process fills in the com-
ponents of the graph and checks if the graph is up-to-date with respect to the current set of
source objects.

Amake considers its sources, targets, and any intermediate objects to be attributed
objects. The sources, targets, and (most) intermediate file objects are represented as typeless
files, without a means to store out-of-band information. Typed file systems22 are not widely
used, and attributed file systems still are rare.15 However, Amake attaches semantic
knowledge to the objects using a set of, possibly valued, attributes, such as TYPE=... and
NAME=.... In an Amakefile, each object has an attribute NAME=id, and is referred to by id.
The attributes are either declared explicitly or derived. The user can assign attributes to the
file objects explicitly. Amake is able to derive or compute other attributes of an object
according to attribute derivation rules, using the already known attributes and probably some
tools. For example, an attribute derivation rule may express that any object with a name that
ends with ‘‘.c’’ is a C-source file, and therefore has attribute TYPE=C-SOURCE.

Having attributed files instead of (strongly) typed files has the advantage that semantic
knowledge can be attached to objects dynamically, and that the typing scheme is less severe.
Semantic knowledge might include the fact whether an object is generated or not
(GENERATED=yes/no), is suitable for being sent to the line printer (PRINTABLE=yes/no),
or any other information that is relevant when applying operations to an object. In Amake,
the attribute CAPABILITY=cap is attached to each object, and is used in the build process as
we will explain further on.

The second source of information in Amake is the set of tools that can be applied in the
build process. Tools are declared in tool definitions that express the characteristics and
behavior of the tools. The requirements on the inputs and characteristics of the outputs are
specified by means of attributes and attribute values that must be attached to the input objects
or become attached to the output objects. A tool definition describes the commands to be
executed, without specifying when to do this. It is up to Amake to decide when to invoke a
particular tool and execute the corresponding commands. Furthermore, a tool invocation
records its own actual inputs, and updates the configuration graph if needed.

It is possible that the actual inputs of a tool are not known when the tool has to be
applied, since their names are computed from the contents of the explicit inputs. Explicit
inputs are the inputs that are named explicitly in a tool invocation. Consider cc -c f.c,
where the explicit input f.c may #include a set of files directly and indirectly. Make requires
the included files to be specified as dependents of the target that is the result of the command.
Tools like makedep automate the process of collecting the dependents, but are often clumsy
to work with from within a Makefile. In Amake, a tool itself produces a list of files that were
indeed read during the execution of the commands. The list of input files is merged into the
outputs’ dependency lists. Each dependency list is the list of actual inputs of the tool that
produced the outputs. Note that this mechanism triggers the tool if any of the real input files,
included either directly or indirectly by an input, has changed since the last Amake run.
Whenever a new file is included by one of the current input files of a tool, the input file

- 5 -

becomes changed, and the tool is triggered. The tool itself takes care of appending the new
file to its input list, thus updating the configuration graph.

Tools can be invoked in several ways. The normal use, as in conventional systems, is to
invoke a tool imperatively, to produce the desired outputs or effects immediately. An exam-
ple is make print. Another strategy is demand-driven (backward chaining) tool invoca-
tion. The execution of the corresponding commands is triggered if one of its outputs is
needed, without directly naming the tool. This is the way UNIX make works when requested
to create or update a target. A third strategy is data-driven (forward chaining, optimistic)
tool invocation. As soon as the inputs of a tool become available or change, the commands
are triggered for execution. Amake will use the tool definitions in a forward chaining
manner, but sometimes applies backward chaining to build subtargets. Tools are used
imperatively in commands like Amake clean and Amake print, and within other tool
definition command parts, for example to rename or move files.

Since most tool definitions are common, there exists a standard prelude that can be
included in a user’s Amakefile. The standard set contains tool definitions for compilers, code
generators, linkers, and common file operations, such as copying, renaming, etc. The stan-
dard prelude contains the system-specific definitions, hidden inside tool definitions; system-
dependent information can thus be kept out of the Amakefile itself. Amakefiles can therefore
be kept rather system independent.

3.2. Command reduction

To speed up the build process, make tries to detect if a target is still up-to-date by look-
ing at the file modification times of the target’s dependents. If the target is newer than all its
dependents, there is no need to regenerate the target. Since there is no suitable concept of
time in Amoeba, we have adopted another mechanism to check targets against their depen-
dents. To do this, we use the CAPABILITY attributes of the files involved. The value of the
CAPABILITY attribute is the capability of the current contents, or value, of the file.

We assume the files involved in Amake to be stored on the Bullet server.24 The Bullet
server is a fast file server with an immutable-file store, with as principal operations
CREATE_FILE and READ_FILE. The CREATE_FILE operation stores the given value on
the file store, and returns a capability for further references, such as read requests.
READ_FILE returns the value corresponding to the given capability. An advantage of the
immutability of files is that processes always see an internally consistent file. When an
application wants to change a file, it reads the complete file into its memory, makes the
required changes, and stores the new file, thus getting a new capability. The old file is left
unchanged. The binding from Bullet capabilities to the Bullet files’ contents is immutable; a
given capability returns the same value, irrespective of time.

The link between a Bullet file, identified by its capability, and the symbolic name, used
by programmers and Amake, is done via the directory service. The directory service maps
the symbolic name onto the Bullet-file capability, representing the current value of the file.
The value of a symbolically named file therefore can change, since the directory service
allows entries to be added and deleted, and thus the binding of a symbolic name to a capabil-
ity to change. To detect if the value of a symbolically named file has changed since a previ-
ous point, we need to check if the binding from its name onto the Bullet-file capability has
changed. This can be done by remembering the capability at the previous point. Note that
this is not possible in UNIX since the most primitive file identifiers the programmer can use,
namely inode numbers, are bound to mutable values.

Amake keeps track of the name-capability bindings when invoking tools. At each tool
invocation, the bindings from the names of the inputs and outputs, and possibly the program

- 6 -

itself, to Bullet-file capabilities are stored. Outputs are inconsistent with the inputs if one or
more of the name bindings have changed. If the user edits a file, and the file gets a new
value, the Bullet-file capability will be different, and Amake will detect and propagate the
change. The name-capability bindings of a configuration, in which all targets are up-to-date,
are kept by Amake in a so-called Statefile.

Further reduction of the number of commands to be executed can be achieved by using
the fire wall concept: a change in the source objects propagates as far as the (intermediate)
targets change. Consider, for example, the change of a comment in a C-source file. The
source file is changed, and thus requires recompilation of the source file into an object file.
Make simply assumes that the contents of the object file now have changed, and decides to
take the next step, namely linking the object modules. However, the object file may have the
same contents as the previous version, in which case there is no need to proceed the build
process. To be able to reuse previous file contents, the tools might compare the contents of
the output files against those of the previous output files, and replace output files only if the
contents have changed.

Instead of letting the tools take care of file reuse, we have chosen to have the file server
provide the concept. We added a third operation, COMPARE_CREATE, to the Bullet server.
When creating a Bullet file, the Bullet server can be given an additional capability that is
used as a hint. This hint is the Bullet-file capability of the current value of a symbolically
named file. The Bullet server then checks if the hint represents a value that is equal to the
new value to be stored. If it does, the server does not create a new Bullet file, and returns the
hint as the capability of the Bullet file. In the C-source file example, the newly generated
object code is stored on the Bullet server with the capability of the previously generated
object-code file as hint. Amake checks afterwards if the binding of the object file name to its
capability has changed. If it has not changed, no further action is required because the inputs
of the linker have not changed.

3.3. Command execution

Tool definitions provide an abstraction of the programs and actions needed to accom-
plish a tool invocation. As such, tool definitions provide a system independent method of
building a configuration graph. A tool definition contains a description of the actions that
implement the tool. As soon as Amake has decided to invoke a tool, the corresponding
actions need to be executed. We currently have two interfaces in mind. Since Amake may
run on UNIX the Shell command language can be used to specify actions.4 In Amoeba the
Bulletin Board server can be used.28 To execute a command, Amake fills in a form and
invokes the Bulletin Board service, which takes care of the execution of the requested com-
mand on the form.

Parallelism can be exploited to further speed up the build process.1 Like other parallel
makes,5, 9, 27, 29 Amake can execute the command blocks in parallel if there is no depends-on
relation among them. Synchronization is done at the points where the results of the tools are
needed. Mutual exclusive execution of tools is needed if the tools use fixed-named inter-
mediate files. Yacc, for example, uses y.tab.c. Running multiple yacc invocations in the
same environment is therefore dangerous. Mutual exclusion is taken care of by providing
semaphores.

- 7 -

4. AMAKE AT WORK

In this section we present a simple example of Amake’s build process. We consider a
small compiler with one YACC12 source file containing the parser code, parse.y, one LEX18

input file, scan.l, describing the lexical scanner, two C-source code files, comp.c and defs.h,
and a library, comp.a, containing some utility routines, which may be used in the compiler.
Furthermore, we assume that scan.l, parse.y, and comp.c include defs.h and parse.h, the latter
of which is produced by running yacc. To enable Amake to produce the desired executable
program, comp, out of the source files, we need to specify the tool definitions of the tools that
can be applied during the build process. An Amakefile that describes our configuration is
shown in Figure 1:

include std_amakefile .

target comp(TYPE=PROGRAM) :

parse.y scan.l comp.c defs.h comp.a .

define CFLAGS = -DSUN .

Fig. 1. An example Amakefile. The tool definitions and attribute derivation rules are obtained from
std_amakefile , which is included. The second line specifies that comp is an executable pro-
gram (indicated by the attribute TYPE=PROGRAM) and can be created using the five given source
objects and the definitions and rules obtained from std_amakefile . The last line specifies a
configuration flag, which is used in C compilations. Configuration flags can also be specified per
source file, thus overruling possible global definitions or enabling per-file compilation flags.

Using the Amakefile from Figure 1, Amake determines the configuration graph, as is shown
in Figure 2. The resulting configuration graph is used in further builds.

The Statefile contains after a build the (name, capability) bindings of the input and out-
put files, together with tool options, of each tool invocation. For example, the state informa-
tion of the cc -c command to create comp.o, is shown in Figure 3. As soon as at least one of
comp.c, parse.h, defs.h, or the definition of CFLAGS changes, comp.o must be remade. The
command is also triggered if comp.o has changed without using Amake. Suppose that, for
example, the programmer changes parse.y. Since the (parse.y, cap) binding has changed, the
yacc command is triggered. After yacc has finished, parse.c and parse.h may be bound to
new capabilities. Now assume that parse.c indeed has changed, but parse.h has not. Make
assumes that both files have changed, thus triggering rebuilds of scan.o, parse.o and comp.o.
Amake notices that only parse.c has changed, thus triggering a rebuild of parse.o. However,
parse.h is still bound to cap2. Therefore, there is no need to rebuild comp.o or scan.o. Note
that any redefinition of CFLAGS also triggers the cc -c commands.

5. RELATED WORK

Many new stand-alone make programs and preprocessors have been developed during
the last decade. These makes provide the programmer with extra facilities for describing
configurations, but the description files have become fairly complex. They still require the
programmer to specify intermediate targets; few of them provide facilities for building confi-
guration graphs out of source dependencies, without intermediate targets being specified.
The Fourth Generation Make9 allows a target’s direct dependents to be the source files that
build up the target. Dependencies are then generated for C, yacc, and lex files according to
hard-coded rules. Mkmf, part of the SPMS system,21 creates a Makefile out of set of source
files, a set of macro definitions, and a table containing mappings from file-name suffixes to
file types.

The Pmak configuration manager, developed as part of the 7001 project from IST,34

provides a collection of script generators for generating Pmakfiles out of short descriptions.
For example, the pmcmd command deals with C, yacc, and lex files. A significant

- 8 -

scan.l parse.y defs.h comp.c comp.a

yacclex

parse.c parse.hscan.c

cc -ccc -ccc -c

comp.oparse.oscan.o

ld

comp

Fig. 2. The configuration graph constructed by Amake with source objects scan.l, parse.y, defs.h,
comp.c, and comp.a. The target is comp. Circles represent file objects, and boxes represent tool in-
vocations. The solid arrows display the structure of the initial configuration graph before any com-
mand is executed. A solid arrow from a file object to a tool invocation indicates that the file object
is an explicit input of the tool. The dashed arrows represent the links that were added during the
first build. The actual inputs of a tool are the file objects from which an arrow, either solid or
dashed, is drawn to the tool invocation.

(comp.c, cap1)
(parse.h, cap2)
(defs.h, cap3)
CFLAGS=-DSUN
(comp.o, cap4)

Fig. 3. The state information concerning object comp.o directly, according to the Amakefile from
Figure 1.

improvement in Amake is that the knowledge about both tools and file types is not hard-
coded. Tool definitions and attribute derivation rules allow users to tailor their own confi-
guration management contexts.

The development of integrated software development environments leads to important

- 9 -

improvements to the process of configuration management. Files are no longer typeless
values stored in a file system, but have become entities in a data base or objects in an object
base. Knowledge about file objects is kept with the objects themselves, and knowledge about
tools, configurations, and relationships among the files, is expressed by rules, stored in a rule
base. Version control, concurrent software development, and other software development
activities, are integrated within a single programming environment.

In the Cosmos distributed programming environment,22 a file is a typed object, which is
an instance of a class. Rules use the type information for deriving objects and relationships
among objects, for checking the proper usage of tools, and for maintaining consistency
within a context. Shape is a make that uses the Attributed File System, AFS,15, 19 for storing
file objects. A set of attributes is attached to each file object maintained in AFS. The attri-
butes are used in the selection of file objects when Shape is requested to compose a confi-
guration.

Adele3 uses a program data base to maintain a system. Files are attributed entities
within the program data base. The attribute information is used for specifying configura-
tions, according to which systems are composed and reconstructed. The DSEE Configura-
tion Manager16, 17 uses a system model, which is a set of dependencies among objects, and a
configuration thread, which provides selection information, to compose a version descrip-
tion. The version description is then used in the build process to search the derived-object
pool; if a desired object is not present, it is created and stored in the derived-object pool
along with the version description used for creating it. Caching of previous results is
achieved through the derived-object pool.

Marvel13, 14 is an intelligent software development and maintenance assistant. It uses
an active object base to manage its attributed file objects. A set of precondition-action-
postcondition rules allows tools to be invoked, and activities to take place automatically
when the object base is updated. The rules allow actions to be done in both forward and
backward chaining fashion; the decision when to activate tools and actions is user-tailorable.

Amake is being developed as a stand-alone configuration manager, and as such does not
resemble an integrated software development environment. Amake borrows and combines
useful concepts from existing environments, like exploiting knowledge about file objects,
automatic configuration building, result caching, and rule-based processing.

6. CONCLUSIONS

We expect the smart file server and the declarative way of describing things will indeed
contribute to Amake’s performance and user-friendliness. The capabilities offered by
Amoeba are exploited well enough to provide the user a make-like tool that can compete with
other rather intelligent, and often integrated, configuration managers. Amake is currently
being developed to run on Amoeba, but we expect to make it run on other systems as well;
the least requirement is that Amake is able to uniquely (both in time and space) identify a
file’s contents. In UNIX, for example, we can use information from a file’s inode (e.g., com-
bination of inode number, device number, and file modification time) to identify the contents
of a file. Unfortunately, UNIX offers possibilities to indeed change inode information expli-
citly. (E.g. via the system call utime.) In the UNIX implementation, we assume that the user
would not tamper inodes.

- 10 -

7. ACKNOWLEDGEMENTS

We would like to thank Dick Grune, Henri Bal, Robbert van Renesse, and Frans
Kaashoek for their critical reading of the manuscript and their valuable suggestions.

8. REFERENCES

1. E. H. Baalbergen, ‘‘Design and Implementation of Parallel Make,’’ Computing Systems
1(2), pp. 135-158 (Spring 1988).

2. E. H. Baalbergen, ‘‘Parallel and Distributed Compilations in Loosely-Coupled Systems:
A Case Study,’’ Proc. Workshop on Large Grain Parallelism, Providence, RI (October
1986).

3. N. Belkhatir and J. Estublier, ‘‘Experience With A Data Base Of Programs,’’ ACM SIG-
PLAN Notices 22(1), pp. 84-91 (January 1987).

4. S.R. Bourne, ‘‘UNIX Time-Sharing System: The UNIX Shell,’’ Bell System Technical
Journal 57(6), pp. 1971-1990 (1978).

5. B. Cmelik, ‘‘Concurrent Make: The Design and Implementation of a Distributed Pro-
gram in Concurrent C,’’ in Concurrent C Project, AT&T Bell Laboratories, Murray
Hill, NJ (1986).

6. J. Donahue, ‘‘Integration Methods in Cedar,’’ SIGPLAN Notices 20(7), pp. 245-251
(July 1985).

7. V.B. Erickson and J.F. Pellegrin, ‘‘Build—A Software Construction Tool,’’ AT&T Bell
Laboratories Technical Journal 63(6), pp. 1049-1059 (July-August 1984).

8. S.I. Feldman, ‘‘Make—A Program for Maintaining Computer Programs,’’ Software—
Practice and Experience 9(4), pp. 255-265 (April 1979).

9. G.S. Fowler, ‘‘The Fourth Generation Make,’’ Proc. USENIX Summer Conference,
Portland, Oregon, pp. 159-174 (June 1985).

10. E. Hirgelt, ‘‘Enhancing Make or Re-inventing a Rounder Wheel,’’ Proc. USENIX Sum-
mer Conference, Toronto, Canada, pp. 45-58 (June 1983).

11. A. Hume, ‘‘Mk: A Successor to Make,’’ Computing Science Technical Report No. 141,
AT&T Bell Laboratories, Murray Hill, NJ (November 1987).

12. S.C. Johnson, Yacc: Yet Another Compiler-Compiler, Bell Laboratories, Murray Hill,
NJ (July 1978).

13. G.E. Kaiser, N.S. Barghouti, P.H. Feiler, and R.W. Schwanke, ‘‘Database Support for
Knowledge-Based Engineering Environments,’’ IEEE Expert (Summer 1988).

14. G.E. Kaiser, P.H. Feiler, and S.S. Popovich, ‘‘Intelligent Assistance for Software
Development and Maintenance,’’ IEEE Software, pp. 40-49 (May 1988).

15. A. Lampen and A. Mahler, ‘‘An Object Base for Attributed Software Objects,’’ Proc.
EUUG Autumn Conference, Cascais, pp. 95-105 (October 1988).

16. D.B. Leblang and R.P. Chase, Jr., ‘‘Computer-Aided Software Engineering in a Distri-
buted Workstation Environment,’’ SIGPLAN Notices 19(5), pp. 104-112 (May 1984).

17. D.B. Leblang and R.P. Chase, ‘‘Parallel Software Configuration Management in a Net-
work Environment,’’ IEEE Software, pp. 28-35 (November 1987).

18. M.E. Lesk and E. Schmidt, Lex—A lexical Analyzer Generator, Bell Laboratories, Mur-
ray Hill, NJ (1978).

19. A. Mahler and A. Lampen, ‘‘A Toolkit for Software Configuration Management,’’
Proc. EUUG Spring Conference, London, pp. 185-202 (April 1988).

- 11 -

20. S. J. Mullender and A. S. Tanenbaum, ‘‘The Design of a Capability-Based Distributed
Operating System,’’ The Computer Journal 29(4), pp. 289-300 (March 1986).

21. P.J. Nicklin, ‘‘The SPMS Software Project Management System,’’ pp. 137-178 in UNIX
4.2 BSD Programmers Manual, Vol. 2C, Part 3 (August 1983).

22. J.R. Nicol, ‘‘Operating System Design for Distributed Programming Environments,’’
Ph.D. Thesis, University of Lancaster, UK (October 1986).

23. R. van Renesse, J. M. van Staveren, J. Hall, M. Turnbull, A. A. Janssen, A. J. Jansen, S.
J. Mullender, D. B. Holden, A. Bastable, T. Fallmyr, D. Johansen, K. S. Mullender, and
W. Zimmer, ‘‘MANDIS/Amoeba: A Widely Dispersed Object-Oriented Operating
System,’’ Proc. of the EUTECO 88 Conf., Vienna, Austria, pp. 823-831, North-Holland
(April 1988).

24. R. van Renesse, J. M. van Staveren, and A. S. Tanenbaum, ‘‘The Performance of the
Amoeba Distributed Operating System,’’ Software—Practice and Experience 19(3),
pp. 223-234 (March 1989).

25. R. van Renesse, A. S. Tanenbaum, and G. J. Sharp, ‘‘The Workstation: Computing
Resource or Just a Terminal?,’’ Proc. of the Workshop on Workstation Operating Sys-
tems, Cambridge, MA (November 1987).

26. R. van Renesse, A. S. Tanenbaum, J. M. van Staveren, and J. Hall, ‘‘Connecting RPC-
Based Distributed Systems Using Wide-Area Networks,’’ Proc. of the 7th Int. Conf. on
Distr. Computing Systems, West Berlin, pp. 28-34 (September 1987).

27. E.S. Roberts and J.R. Ellis, ‘‘Parmake and Dp: Experience with a Distributed, Parallel
Implementation of make,’’ Proc. 2nd Workshop on Large-Grained Parallelism, Pitts-
burgh, Pennsylvania, pp. 74-76, Carnegie-Mellon University, Available as Tech. Rep.
CMU/SEI-87-SR-5 (November 1987).

28. A. J. Schrander and J. W. van Otten, ‘‘The Bulletin Board Server: A Tool for Imple-
menting Parallel Algorithms,’’ Master Thesis, Dept. of Mathematics and Computer Sci-
ence, Vrije Universiteit, Amsterdam (February 1988).

29. Sequent, ‘‘DYNIX Make Manual Page,’’ in DYNIX Programmer’s Manual—Revision
1.15 (August 1987).

30. G. J. Sharp, ‘‘The Design of a Window System for Amoeba,’’ Report IR-142, Dept. of
Mathematics and Computer Science, Vrije Universiteit, Amsterdam (December 1987).

31. P. Singleton, Makefile Usage and Abusage: a Case Study, Keele University, UK (1986).

32. Z. Somogyi, ‘‘Cake: a Fifth Generation Version of Make,’’ Australian Unix system
User Group Newsletter 7(6), pp. 22-31, AUUGN (April 1987).

33. A. S. Tanenbaum, S. J. Mullender, and R. van Renesse, ‘‘Using Sparse Capabilities in a
Distributed Operating System,’’ Proc. of the 6th Int. Conf. on Distr. Computing Sys-
tems, Cambridge, MA, pp. 558-563 (May 1986).

34. D.M. Tilbrook and P.R.H. Place, ‘‘Tools for the Maintenance and Installation of a Large
Software Distribution,’’ Proc. EUUG Summer Conference, Florence, Italy (1986).

