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Abstract

The make command has been a central part of the UNIX* programming environment for over fifteen years. An
excellent example of a UNIX system software tool, it has a simple model and delegates most of its work to other
commands. By dealing with general relationships between files and commands, make easily adapts to diverse
applications. This generality, however, has become a handicap when compared with specialized integrated
programming environments. Integrated environments are collections of tightly coupled (seamless) programs that
can take advantage of programming language details not available to the loosely coupled (tool-based) make model.

There are limitations to both approaches, but it would seem that the make model, at least for software construction,
is reaching the breaking point. make can be revitalized by abandoning restrictive implementation details and by
extending the basic model to meet modern software construction demands. This paper explores these demands and
changes and their affects on the UNIX system tool-based programming style.

1 Background

make is a tool-based software configuration management command [Feld]. A user asserts relationships between files
and commands in a makefile and runs make to fulfill the assertions. An assertion

target : [ prerequisite ... ]
action

specifies the action (shell command script) that generates a target file from zero or more prerequisite files. A target
is out-of-date if it has no prerequisites or if one or more of its prerequisites is newer, where newer is determined by
comparing system supplied file modification times. Executing the action brings the target up-fo-date with all its
prerequisites and fulfills the assertion. Assertions are recursive in that a prerequisite may appear as the target in
another assertion.

The set of all assertions forms a directed graph. make traverses this graph from a given main target node, and
recursively brings each out-of-date parent target node up-to-date with its child prerequisite nodes by executing the
appropriate actions.

The make model joins declarative and sequential programming styles into a single language. Action ordering is
implied by the target-prerequisite relationships: a target action executes only after all prerequisites have been
brought up-to-date. Commands within actions execute sequentially, as determined by the shell.

This simple model allows much leeway in make implementations. Some implementation decisions, however,
needlessly hamper make usage.

* UNIX is a trademark of AT&T.



2 Programming
How does make fit into a complete programming environment? Consider the basic program development cycle:
edit — compile — execute — query

Much is omitted here, such as the research, design and documentation stages that may precede the first edit and the
enhancement, bug report, packaging and marketing stages that may follow the first successful execution. However,
these stages capture the typical programmer development cycle.

A user edits source based on some design, compiles the source if necessary, and executes to test results. Testing
and debugging involves information queries to files and commands in all cycle stages. This brings about design
changes and another round of the cycle.

make most often handles the compile stage, but tie-ins with execution and queries are also possible. For example, a
language interpreter may use makefile information to combine compilation and execution, or special makefile targets
may generate [int or static language analysis information for queries. The problem is, such tie-ins require extra work
by the makefile programmer.

An integrated programming environment (IPE) combines the development stages into a seamless environment
[WDK]. The user rarely executes individual commands or manipulates inter-stage information directly. In contrast,
the tool-based UNIX system environment has many commands for each stage, with user accessible boundaries
(seams) between each.

An IPE controls the entire development cycle and can readily maintain internal information to be shared among the
stages. For a given programming language and system the tool-based approach is clearly at a disadvantage.
Communication between commands is limited to the individual command interfaces. It may not be possible to share
or even extract the desired information. For example, an editor can easily determine incremental source file changes,
but without an incremental compiler this information is useless.

Tool-based development, however, has the advantage of flexibility. If all commands follow a similar, general
interface convention, then different commands may be substituted at any stage. For example, one changes the C
compiler by adding the argument CC=mycc to the make command line. Changing the compiler for an IPE, on the
other hand, would often require compiler interface changes.

make can enhance the development cycle by providing the thread to close these tool-based seams. To do this with
minimal user overhead, however, requires some basic changes to the make command. Such changes have been
going on for years, but in a somewhat haphazard way [CF, EP, Hume, Palk, SM, SV1]. The following interrelated
goals give direction to these changes. make must:

« easily scale from one to many users

 do accurate change propagation

« have sensible information distribution

« run with reasonable speed

« provide portable configuration management

These goals are discussed in the following sections.

3 Scale

A single user often generates many versions of a given source file. When many users share source configured by a
common makefile the number of file versions and versioning methods may become unmanageable. Some users save
old versions using complete backup copies, others use some form of source code version control. Past attempts to
integrate version control and make have resulted in increased make complexity, mostly by forcing make to do the
actual version extraction. A more elegant solution provides a unified concept of version file that is available to all
commands. This concept, called viewpathing [EP], forms the basis of the 3D Filesystem [KK].



A viewpath is an ordered sequence of directory hierarchies in which files occurring earlier in the sequence take
precedence over files occurring later. It provides a logical hierarchy that is a layering of many physical hierarchies.
Many users can share common source by creating local private views that overlay the common official source view.
All changes are done in private views that contain only those files that are different from the corresponding files in
the official view. Since many users may be involved, it is important that official view updates be a controlled
operation. Figure 1 shows the physical directory hierarchies for both private (prv) and official (ofc) source. Figure
2 shows the logical view provided by viewpathing the private view on top of the official view, where the italicized
file names are those found in the physical private view.

x.c x.h X.C y.¢ Z.cC xh yh la.a 1b.a

Figure 1. Physical view

X.c y. z.c x.h yh laa lb.a

Figure 2. Logical view with viewpathing

Not only does viewpathing avoid the problem of each user having a complete copy of official source, the physical
views clearly show the official files that need to be changed.

Viewpathing should be a system wide service available to all existing commands. A transparent operating system or
shared library implementation would be ideal. Alternatively, commands of interest could be re-compiled with a
special viewpathing library that captures all pathname system calls. Finally, if source and relocatable object files are
not available, then viewpathing can be implemented entirely within make. This last solution, however, requires that
make pass physical file pathnames, and possibly additional options, to all commands that it executes.

As with most UNIX system abstractions, there are a few commands that must manipulate the internal details. For
viewpathing, make must distinguish between the physical views to detect files that may change when the viewpath
changes. This is not possible, however, without state, a feature that will be explored in more detail in the next
section.



4 Accuracy

make must accurately propagate source file changes to the generated targets. Given the importance of this issue it is
surprising to find failings in the current algorithm. The first relates to the monotonic out-of-date test and the other
relates to makefile specifications and implicit prerequisites.

Recall that a target file is out of date if its modification time is older than any prerequisite time. Other than the
system maintained file time, this is a stateless algorithm. The algorithm works well based on the following time
assumptions:

(1) A file time is updated (to the current time) whenever the file contents change.
(2) All file times are relative to a common system clock.
(3) Action execution updates the target time to the current time.

Until the arrival of remote file systems, (1) and (2) were almost always true. Even when restricted to local file
systems, violation of (1) could happen if archive files were restored with original times (presumably from the past),
and violation of (2) could happen if the system were rebooted with an inaccurate system clock setting. All the
conditions are easily violated when remote and local files system clocks differ. One drawback to viewpathing is that
(1) may be violated whenever viewpath layers are changed. For instance, removing a middle view might uncover
prerequisite files that are different but older than the current targets. These files will be considered up-to-date and
the corresponding targets will not be updated.

Time inconsistencies may allow some changed files to go undetected, or they may cause some targets to be always
out of date. This is unacceptable. Assuming an accurate local system clock (1), (2), and (3) can be met by adding
state to the out-of-date algorithm.

Associate with each file f three times:

time.previous (f)
time.event (f)
time.current (f)

where time.previous(f) is the file time from a previous make, time.event(f) is the time when time.previous(f) was
observed to have changed, and time.current(f) is the file time during the current make. Notice that time.event(f)
may be later than the time f actually changed. A time value of O indicates that the file doesn’t exist
(previous,current) or that the event has not been observed yet (event). time.previous(f) and time.event(f)
represent the state of f and must be saved between make invocations. The statefull out-of-date algorithm can now be
stated in terms of these times.

A target file fis out-of-date if any of the following conditions are true:

(a) time.previous(f) ==

(b) time.previous(f) != time.current(f)

(c) for any prerequisite file p, MAX time.event(p) > time.event(f)
A target fis brought up-to-date by:

(d) execute f’s action

(e) evaluate time.current(f) when the action completes

(f) set time.previous(f) to time.current(f)

(g) set time.event(f) to the current system clock

The time assumptions (1), (2), and (3) are met because only the local system clock is used in monotonic time
comparisons*. Observe that since time.previous(f) and time.current(f) are only involved in strict inequalities the



values need not be restricted to time stamps. For instance, makefile prerequisite, variable and action changes,
ignored by most implementations, can be handled by adding the target prerequisite list and action contents to the
previous and current values. Other items, such as file checksums are also accommodated. By retaining the time
component, file-related state components (file-attributes) need only be recomputed when time.previous(f) !=
time.current(f). In other words, time.current(f) == time.previous(f) implies file-attribute.current(f) == file-
attribute .previous(f).

The other accuracy failing lies in makefile specifications. Most common makefile errors involve improper (or
missing) implicit file prerequisite assertions. Explicit prerequisite files must be specified to the target action
commands or the commands will fail, whereas implicit prerequisite files are determined by the individual commands
and need not be specified for proper command execution. This is a difficult problem to attack since an incomplete
makefile often appears to be correct, even after several make invocations.

Missing prerequisites are not benign, however. They emerge as changed files that go undetected. Undetected
prerequisites can cause insidious run-time bugs, such as data structure mismatches between routines compiled with
different versions of a common header file.

C language #include files exhibit most of the implicit prerequisite problems. Library files implied by the C compiler
—llibrary options and text formatter macro files implied by the —-mmacro options are other examples.

A common solution for the C language provides an implicit prerequisite scanner that recursively scans C source files
for #include prerequisites. The scan results are then appended to the makefile as prerequisite assertions. Some
systems have a C preprocessor with a =M option that generates makefiles assertions for individual source files. This
is attractive from a completeness standpoint, since the same preprocessor is used as part of the C compiler.

Separate source file scans provide static analysis only; a complete scan must be re-evaluated whenever any —-D
macro definition option, —I include directory option, viewpath configuration, or implicit prerequisite changes. Static
analysis fails when an #include of a generated file is encountered before the file has been generated. The major
static analysis shortcoming, though, is that the analysis is usually at the user’s discretion. This may be satisfactory
for single user projects, but omitting the analysis in multi-user project invariably leads to the omitted prerequisite
bugs mentioned above. For this reason most large projects periodically clobber all generated target files, do a new
static analysis, and regenerate all targets to ensure that all changes have been incorporated.

Another approach modifies the compiler interface to provide dynamic implicit prerequisite information directly to
make. This is an improvement, since the prerequisite analysis is done whenever the source or prerequisite files
change. As with static analysis, generated files are still a problem; make must create the generated implicit
prerequisites before the compiler is called, but it must call the compiler to generate the implicit prerequisite list.
Several compiler passes may be required to generate all nested prerequisites. This method is impractical in the
general case because of the nonstandard make-compiler interface.

Although it complicates the make model, source file scanning supported directly within make provides the most
consistent prerequisite analysis. make scanning can be driven by patterns specified in the global make rules. An
advantage to this form of scanning is that it can be incrementally applied to the source and prerequisite files. In this
way only those files that have changed since the last scan need be rescanned. make scanning also correctly handles
generated implicit prerequisites by bringing the prerequisites up to date as they are encountered during the scan. A
dontcare attribute for non-existent implicit prerequisite files within conditionals allows make to continue as if the
files existed (with a very old modify time).

* In all algorithms there is a slight chance that an invalid system clock setting could make time.current(f) == time.previous(f), even though the
file has changed.



#ifdef mymachine

#include <mymachine.h> /* dontcare */
#else

#include <theirmachine.h> /* dontcare */
fendif

In this conservative approach, a source file potentially depends on all its implicit prerequisite files, even though a
only small subset of these may actually be referenced by the compiler. This is not a serious problem, though, since
in the common case only one conditional choice is present for a particular system environment.

A drawback to make scanning is the complexity of include forms for the various language processors. For
simplicity, constructs requiring language dependent macro evaluation may be ignored by a given implementation.

Efficient scanning implementations require state to save previous scan information. State times are also necessary to
determine when prerequisite files must be rescanned.

5 Information

The make information distribution must accommodate various programming styles, ranging from individual,
independent users to large, multi-user projects spanning many machines. make currently has builtin rules that define
the local environment, and a makefile include statement for makefile sharing. The builtin rules are usually compiled
into the make executable, and are sometimes difficult to change or override. This flat information model encourages
overspecified makefiles that expose many implementation details.

Most projects have makefile guidelines that require common variable definitions and target assertions. Consider a
typical project makefile template:

COMMAND = cmd

SOURCES = cmda.c cmdb.c
OBJECTS = cmda.o cmdb.o
$ (COMMAND) : $(OBJECTS)

$(CC) $(CFLAGS) -o $(COMMAND) $ (OBJECTS)

clean

rm —-f $(OBJECTS)
clobber : clean

rm —f $ (COMMAND)
lint

lint $ (SOURCES)
tar

tar cf $(COMMAND) .tar makefile $ (SOURCES)

Changing any of the common target assertions (clean, clobber, etc.) requires an edit of all project makefiles —
not an encouraging prospect for large projects. A common solution, similar to the static prerequisite generators of
the previous section, is to provide a local command that generates makefiles from project specific descriptions. As
with static prerequisite generators, unless make usage is tightly controlled, the makefiles will frequently be out of
sync with the specification files.

Another solution, more tolerant to change, is to use a project wide include file:



COMMAND = cmd
SOURCES cmda.c cmdb.c
OBJECTS cmda.o cmdb.o

include $ (PROJECT) /command.mk

where the user makefiles define interface variables for the project makefile. The $ (PROJECT) / directory prefix is
required because make lacks the equivalent of the C compiler —Idirectory include directory option. Given a well
defined include file interface, all project makefiles can be enhanced by changing a single controlling makefile.

Now suppose a library target, rather than a command, is to be generated. Since make has no if-else programming
support, a new include file interface is required:

TYPE = library
TARGET = lib.a
SOURCES = liba.c libb.c
OBJECTS liba.o libb.o

include $(PROJECT) /S (TYPE) .mk

These examples show that the key to manageable makefiles is high-level abstractions for low-level constructs. A
few makefile language extensions allow for more concise abstractions. Notice that the last example is just a
cumbersome emulation of a makefile procedure call and conditional test. An if-else construct would allow a single
project makefile to test for target types:

if "S$(TYPE)" == "command"

/* command target assertions */
elif "$(TYPE)" == "library"

/* library target assertions */
else

/* error */
end

and a procedure call mechanism would eliminate the explicit project makefile interface variables:

include $ (PROJECT) /rules.mk
cmd :source: cmda.c cmdb.c

lib.a :source: liba.c libb.c

Procedures, as presented here, are a simple extension of the make assertion style. In this example :source: isa
programmable assertion operator that specifies the source files required to generate a target file. New operators may
be defined using assertions:

source :operator:
if "S()" == "*_ a"
/* library assertion */
else
/* command assertion */
end

As opposed to shell scripts, operator actions are written in the makefile language. Operators are called with two
parameter lists, accessed by the builtin variables; $ (<) is the left hand side target list and $ (>) is the right hand
side prerequisite list.



Assertion operators encourage high level specifications. The operators break these down into normal assertions
based on target and prerequisite attributes. A project can now define its make environment in terms of a few well
defined operators. By providing enough abstraction, the same makefile style can adapt to a wide range of
environments simply by changing the operator definitions.

Managing and accessing operator definitions now becomes a crucial issue. General operators and rules belong in the
make base environment, traditionally provided by a set of builtin rules compiled into the make executable.
Flexibility dictates that the builtin rules be moved to a more accessible part of make, so that they may be easily
overridden or modified to suit local needs. This can be done by providing a base rules makefile that may be
augmented by global makefiles specified either directly in the user makefiles or on the make command line. The
latter accommodates portable user makefiles.

Programmable operators, combined with the base, global, and user makefile hierarchy offers the make user much
flexibility. This flexibility allows generic makefiles to be used for applications not intended by the original makefile
author. For the :source: operator above, source related common actions are easily added:

source :operator:
target = $ (<)

sources = $(>)

/* additional assertions ... */
print

/* print the sources */

pr $(sources) | 1lp
tar

/* archive the sources */
tar cf $(target).tar $(sources) makefile

By agreeing on a common set of base makefile operators, most user makefiles reduce to trivial assertions that
associate target names with their source components:

make :source: make.h doit.c file.c main.c

State information, mentioned in the previous section, must also fit into the information hierarchy. It is most often
kept in a file (statefile) in the directory where make is executed. State implementations must take care to handle
cases where a directory contains more than one makefile. A reasonable solution is to use the makefile name as part
of the statefile name. Viewpathing may also require a merge of statefile information from each view level.

For consistency and portability, the information hierarchy precedence must be clearly stated. Ultimately, the make
user must have complete control over predefined information. This means that assertions must be retractable, a
feature not found in many implementations. A consistent information definition precedence order, from highest to
lowest, is:

(1) command line
(2) makefile

(3) environment
(4) global makefile
(5) base makefile

Some implementations reverse (2) and (3), enhancing environment related makefile bugs. Other implementations
have the base rules compiled into the make executable and provide (5) at the cost of make startup time. The most
flexible implementations have no builtin rules, allowing the make environment to be completely redefined.



6 Performance

As with most seasoned commands, changes and enhancements run the risk of degrading command performance.
New features usually present performance/functionality tradeoffs. If the cost of a feature is too high then
knowledgeable users will either circumvent the feature or abandon the command altogether. Performance effects
can be reduced by amortizing computations over many make invocations or by precomputing repeated evaluations.

Viewpathing slows performance by adding to the number of files to be checked during prerequisite time analysis.
File system pathname lookups are expensive, so a make file and directory cache is essential for viewpath efficiency.

Implicit prerequisite scanning represents a large initialization cost. In practice make time (excluding compile time)
triples when all source files must be scanned. After the initial make, however, incremental file scans are
insignificant when compared with compiles.

Providing statefiles and base and global makefiles can degrade make startup performance. An easily loaded format
for makefiles and statefiles can speed up load time when compared with a full makefile parse.

Finally, sending entire actions to the shell, rather than the traditional line-by-line, not only makes actions more
readable (no backslash-newlines for block constructs), it also reduces make (and shell) fork-exec overhead.
Moreover, individual actions are the natural unit of granularity for parallel execution. Because of I/O and
computation interleaving, parallel support is desirable, even for uniprocessor systems. As mentioned above, the
target-prerequisite directed graph clearly defines action ordering and synchronization. However, an explicit
synchronization primitive must also be provided to support mutual exclusion that cannot otherwise be asserted. One
method presents virtual (non-file) semaphore prerequisites. Any two target actions having the same semaphore
prerequisite cannot execute concurrently. Since the yacc command generates output in a fixed file (v .tab.c), itis
a prime candidate for synchronization:

/* yacc pattern metarule */

.yacc.semaphore : .SEMAPHORE
$.c : %.y .yacc.semaphore /* only one at a time */

yacc $(%).y
mv y.tab.c $(%).c

7 Portability

Configuration management portability runs counter to the model presented by integrated programming
environments. Rather than exploit features of a particular system or compiler, a portable make exploits
compatibilities between systems and compilers. Although not as important as the other goals mentioned above,
portability has practical implications. Many projects and companies will only use standard configuration
management systems during development and testing. This ensures that customers will be able to build and
maintain products with minimal help. Relying on a standard make* also lightens the customer documentation,
education, and maintenance load.

Even though standard makefiles may be required for external use, projects need not be stuck with old make
technology for internal development. A makefile generator, similar to the static prerequisite generator mentioned
above, can translate internal makefiles to external form as a part of the software packaging process. This is an
interesting twist, as most makefile conversion commands translate in the old to new direction. Since all make
derived commands eventually deal with file dependencies and shell actions, new to old translators are easy to build.
Assuming the recipients will not develop the shipped product, the target makefile language can even be a monolithic

* Defining a standard make is left as an exercise to the reader.
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shell script that simply does a one-time product build and installation.

8 Experience

The ideas and features proposed here have been incorporated to a limited extent in the publicly available make
implementations [Fowl, Hume, Palk, SM], and to a greater extent in commands based on different models [Clem,
Wate]. The Bell Laboratories nmake command (internal version) provided the basis for the arguments in this paper,
and so supports them all. Although nmake is not backwards compatible with make, it is used in hundreds of projects
within AT&T. The nmake benefits most cited by users are:

o Makefiles are easier to maintain. Most projects report a factor of 10 makefile size reduction.
« Implicit prerequisite scanning practically eliminates weekend clobber-build cycles.

¢ The information distribution allows common project features to be controlled from a single point while still
allowing user flexibility.

¢ Viewpathing is indispensable for multi-developer, multi-release projects. The view layers clearly delineate
developer and release boundaries.

« State eliminates many bugs common to make in multi-developer and remote file system environments.
e Handles large projects ("100 developers, “1000 makefiles, "8 viewpath levels) without coming apart at the seams.

e Multi-makefile applications often collapse down to a single makefile (System V Release 3 kernel: from ~50
makefiles, "4000 lines down to one makefile, 500 lines).

e The same interface is presented on the popular UNIX system variants (System V, 4.[23] BSD, SunOS, Ultrix)
and machine architectures (vax, 3b, sparc, 1386, 68000, mips, cray, masscomp, pyramid).

nmake is also used to develop and package itself. The nmake source distribution contains standard makefile
equivalents that are generated, using nmake, from the original nmake makefiles. Generated makefiles are then used
to bootstrap the nmake executable. Once installed, nmake is run on itself to prime the statefile and implicit
prerequisite scans. Other commands and libraries distributed with nmake are then built using nmake.

9 Conclusion

Enhancing make can strengthen its place in modern UNIX system software development environments. These
changes can reduce makefile size, support multi-user development, and speed up the software configuration
management cycle. Incompatible extensions can be handled by automatically generating standard makefiles for
portability.
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