
Relations in Software Manufacture

David Alex Lamb

March, 1991
External Technical Report

ISSN-0836-0227-
90-292a

Department of Computing and Information Science
Queen’s University

Kingston, Ontario K7L 3N6

Version 1.4
Document prepared Friday, October 7, 1994

Copyright © 1990 David Alex Lamb

Abstract

Software manufactureis the process of building or re-building a large software system
from myriad components. The UNIXmakeprogram is the most well-known software
manufacture tool. One deficiency ofmakeand similar systems is that they manage only a
single dependency relation. This paper shows how to solve sev eral software manufacture
problems by generalizing such tools to support additional relations and relational expres-
sions.

Keywords and phrases:relational algebra, configuration management, software manu-
facture, programming environments, abstraction,makeprogram,

Computing Reviews categories:D.2.6 (Software Engineering: Programming Environ-
ments). D.2.9 (Software Engineering: Management - Software Configuration Manage-
ment).

General Terms:Design

Relations Page i

Table of Contents

1 Introduction .. 1
1.1 Context and Background .. 1
1.2 Relational Expressions ... 1
1.3 Sets ... 2

2 Problems and Solutions .. 3
2.1 Transitive Dependencies ... 3
2.2 Derived Dependencies .. 4
2.3 Multiple Inclusion .. 4
2.4 Testing .. 6

3 Discussion .. 7
3.1 Prior Work .. 7
3.2 Future Work .. 7
3.3 Acknowledgements .. 8

References ... 8

List of Figures
Figure 1: Relational Operations ... 2
Figure 2: Transitive Includes in C .. 3
Figure 3: Using the implies_link Relation ... 4
Figure 4: Implies_Link Relationships.. 5
Figure 5: Use of Requires Relation.. 6
Figure 6: Controlling Testing ... 6

Version 1.4 October 7, 1994

Relations Page 1

1. Introduction
Software manufactureis the term Borison introduced to describe the activity of construct-
ing a software system from a collection of source objects [1]. The archetypical software
manufacture tool is the UNIXmakeprogram [3]. Make-like tools work well for systems
with simple structure, but for complex ones do not provide appropriate abstraction mech-
anisms in their input languages [6].

Our goals are to design a few simple mechanisms to minimize what someone
(whom we call thesystem builder) must write to specify the graph of relationships among
objects in the system (themanufacture graph). We propose extending manufacture tools
to handle several user-defined relations and relational expressions, and show how this
solves several software manufacture problems. We use examples from C and UNIX, but
the ideas would be equally useful with other languages and systems. We presume readers
are familiar withmake.

1.1. Context and Background

The kinds of systems this work addresses have sev eral properties. A system consists of
several subsystems, many of them reused in several other systems. Subsystems evolve,
each controlled by a separate project with its own development schedule. The system
builder can choose a version of a subsystem, but cannot otherwise control its contents.
Each subsystem consists ofexported(visible) components plushiddencomponents; com-
ponents include programming language modules, tools, and data files. System-wide pro-
cessing tools such as the linker need to know all the components, or perhaps all compo-
nents with certain properties, of all subsystems. Source components are not all written in
the same language; tools may generate portions of the system, and there may be long
chains of tools producing input for other tools.

1.2. Relational Expressions

For concreteness we suggest a particular way of encoding relations as an incremental
change in the currentmakeinput language; a full redesign of such tools might suggest
better alternatives. Anexplicit relation names the particular files involved in the relation.
Thus

generated_file :(relation_name) file1 file2 ...

says that the given generated file (named before the colon) bears the given relation
(named in parentheses) to all the other files (after the relation name). One defines an
implicit relation via a relational expression.

name := expression

Figure 1 defines the operations permitted in such expressions. If several such definitions
occur, the relation is their union; this permits a form of distributed specification of a rela-
tion. One specifies when to rebuild a generated file by naming the relation that governs
generation.

Version 1.4 October 7, 1994

Relations Page 2

Operation Infix Postfix Other

() parentheses (grouping)
; composition
! inv erse
+ union transitive closure
− set difference
* intersection reflexive transitive closure

Figure 1: Relational Operations

output_file (expression):
command

means that, whenever any file related tooutput_file by the given relational expres-
sion changes, one executes the given command to rebuild the output file. We permit only
one such declaration per output file; in future work we will investigate methods of disam-
biguating among several of them.

Certain dependencies are common enough to require some form of rule. Thus we
allow

&.c :(c_derives) &.o

to mean that any file with type.c has relationc_derives to a file of the name name
with type.o . This is similar to themetarulesof themkprogram [5]; however, we allow
naming several separate dependencies, whilemkallows more complex name pattern
matching.

1.3. Sets

Any set of files corresponds to an identity relation. The expression(rel!);rel
defines an identity relation for the range ofrel ; similarly, rel;(rel!) corresponds
to the domain. Certain useful sets correspond to such domains and ranges; we introduce
dom(relation) andrng(relation) to represent them. The set of all object mod-
ules generated by the C compiler is thusrng(c_derives) . Composing a relation
with a set means restricting the domain or range of the relation; thusrel;set is the
subset ofrel with range restricted toset . We can say
{file1,file2,...,fileN} to explicitly construct a set of N named files.

Tools may need to process lists of files obtained from relations; we thus give a way
to generate a string from a set or relation. The expression@[relation] constructs a
string consisting of the names of all the files in the domain and range of the relation,

Version 1.4 October 7, 1994

Relations Page 3

separated by spaces.@[option relation] gives a sequence of files in a topological
sort ofrelation; if file A is related to file B, then the < (>) option requires that A appear
before (after) B in the result string.@[option relation[file]] gives a topologi-
cal sort of the named relation starting with the given file instead of with the natural roots
of the relation.@[relation[file]] is the set of files related to the given file by the
given relation; it is a shorthand for@[rng({file};relation)] . As topological
sorting is related to transitive closure,@[option relation+] gives the same results
as@[option relation] .

2. Problems and Solutions
This section uses the facilities of Section 1.2 to solve sev eral software manufacturing
problems.

2.1. Transitive Dependencies

Current manufacture tools create some difficulty in describing transitive dependencies.
For example, consider the C source filex.c , which incorporates several.h files by file
inclusion (#include directive):

x.o: x.c x.h lib1.h lib2.h lib3.h
cc $(CCFLAG) x.c

Suppose we are trying to simulate abstract data types in C. Modulelib1 might define a
type with some fields intended to be visible to its clients, and others intended to be hid-
den. Suppose we add a ‘‘hidden’’ field and so modifylib1.h to includeadt1.h .
Unfortunately, we cannot really hide such fields in C, even though we know we will not
reference them in clients oflib1 . We must recompilex.c wheneveradt1.h changes,
since the sizes of some records defined inlib1.h might change. With the relational
extension, we can define anincludes relation to capture one-level file inclusion, and

lib.h :(includes) adt1.h adt2.h
x.c :(includes) x.h lib1.h lib2.h lib3.h

&.c :(c_derives) &.o
o_from_c := c_derives!
c_depends := o_from_c;includes*
&.o (c_depends):

cc ${CCFLAGS) &.c

Figure 2: Transitive Includes in C

Version 1.4 October 7, 1994

Relations Page 4

use transitive closure to discover the full set of dependencies, as Figure 2 shows.

2.2. Derived Dependencies

Suppose source filemod.c depends directly onlib1.h . Often,lib1.h is the specifi-
cation part of a module whose implementation is inlib1.o . This means thatmod.o
implies a dependency onlib1.o ; that is, any system that includesmod.o must also
includelib1.o ; we say thatmod.h implies_link mod.o . The simplicity of
Ada-specific or Modula-specific manufacture tools comes from their deducing these
kinds of dependencies automatically.

Current systems manage this problem in one of two ways, both of which have some
difficulties. The system builder might explicitly list all relocatable object files for the
linker. This is tedious and error-prone if done manually. Alternatively, the system
builder might place all such relocatable object files in linker libraries (one per subsys-
tem), and rely on the library external symbol resolution rules to link in all appropriate
components. This works well if there is an appropriate order in which to pass these
libraries to the linker. Howev er, many linkers cannot handle backward references from
one library to another (although they may handle such references within a library); this
may force a project to make its own super-library from all the individual libraries, which
may cost too much space for the copies.

A system builder can solve this problem by using theincludesandc_derivesrela-
tions of the previous section, and by defining new relations (see Figure 3).
linked_from means thatmain.o contains the main program (entry point) of the
exec program. Consider Figure 4 (which omits how to buildx.o andz.o , for brevity).
To buildexec , the linker must put togethermain.o , x.o , y.o , andz.o ; this is exactly
the set of files related toexec by the relationobject_files .

2.3. Multiple Inclusion

Supposem.c includesy.h andz.h , andn.c includesz.h . Now suppose a maintainer
changesz.h to define field of some type declared iny.h , but some clients ofz.h will

&.h :(implies_link) &.o
exec :(linked_from) main.o
object_files := linked_from;(o_from_c;includes+;implies_link)*

exec (object_files):
ld -o exec @[object_files[exec]]

Figure 3: Using the implies_link Relation

Version 1.4 October 7, 1994

Relations Page 5

exec

linked_from

main.o

o_from_c

main.c

x.h
includes

y.h

includes

y.c

o_from_c

y.ox.o

implies_link

includes
includes

implies_link

Figure 4: Implies_Link Relationships

never manipulate such fields. How should the system builder record this new depen-
dency? Ifz.h includesy.h , there is a double inclusion ofy.h in compilations ofm.c ;
this is inefficient, and may lead to spurious errors about redefinitions. Conditional inclu-
sion is possible with the C preprocessor, but lacks elegance.

What is really happening here is that the preprocessor’s include directive has at least
two distinct uses: ‘‘compose a source file by combining several partial files,’’ and ‘‘ensure
that you’ve read the following definitions before you compile this program.’’ We can
solve the multiple inclusion problem by separating these two uses. Whenever header file
f1.h defines fields of types defined inf2.h , we declare

f1.h :(requires) f2.h

Wedo notincludef2.h within f1.h . If x.c directly uses definitions fromf1.h , we
declare

x.c :(requires) f1.h

We similarly avoid includingf1.h within x.c . If for some reason we are composing
x.c from code fragments in several files, we declare

x.c :(includes) fragment1 fragment2 ...

and this time wedo includefragment1 at the appropriate place inx.c . We then topo-
logically sortrequires , create a list of files to whichx.c is related by the result, and
concatenate these files (in reverse topological order) together withx.c as input to the C

Version 1.4 October 7, 1994

Relations Page 6

compiler (see Figure 5; we assume a C compiler that acts as a filter). This approach
ensures that the C compiler sees each header file only once, and in a correct order. To
allow included files to have their own ‘‘requires’’ relations, we can say

c_depends := o_from_c;(includes*;requires)*

2.4. Testing

Suppose we have relationshas_stub , relating each C source file to a stub module that
has the same interface but trivial implementation, andhas_driver , relating each C file
to a corresponding test driver. Figure 6 shows how we can rebuild an executable test pro-
gram when the C module, its driver, or any stubs it uses change.ident is a (predefined)
identity relation that relates each file to itself. Given a relation between a C source file
and corresponding test cases (inputs to the driver program), we could also rerun all the
test cases whenever any of them change. Running just the changed test cases would
require a mechanism to select the set of changed files.

m.c :(requires) y.h z.h
n.c :(requires) z.h
z.h :(requires) y.h

c_depends := o_from_c;(requires*)
&.o (c_depends):

cat @[>c_depends[&.o]] | cc >&.o

Figure 5: Use of Requires Relation

uses := requires;implies_link;o_from_c
&.c :(executable_test) &.test
test_link := executable_test!;(ident+(uses;has_stub)+has_driver);c_derive s

&.test (test_link):
ld -o &.test @[test_link[&.test]]

Figure 6: Controlling Testing

Version 1.4 October 7, 1994

Relations Page 7

3. Discussion
We hav e shown four examples of using relational expressions to solve software manufac-
ture problems; we have found others, and undoubtedly system builders can think of their
own. Existing tools manage one relation and its transitive closure; extending them to
handle several relations should be reasonably easy.

3.1. Prior Work

There are many make-like programs; most manage a single dependency relation. In con-
trast, Schwanke et al. [8] describe the BiiN™ Software Management System (SMS),
which provides four built-in relations, and allows developers to specify ‘‘dependency
rules’’ to deduce the built-in relations from user-defined relations. It then uses the built-in
relations to deduce the order in which to invoke processing steps, and what inputs to give
to the tools invoked during processing steps. Theirneeds relation is the one that gov-
erns when to invoke a processing step: if A needs B, then one rebuilds A when B
changes; we would view their relation as the union of several separately-specified rela-
tions. Theirderives relation is simply(needs*)! in our notation. Their other two
primitives are ternary relations between pairs of objects (files) and tools; our paper does
not directly address modeling of tools and automatically constructing inputs to tools,
although we expect to address these issues in future work.

The main interesting difference is in how one derives new relations from old. SMS
uses a deductive mechanism that repeatedly applies rules until they are translated to prim-
itive ones; we use direct specification of rules with transitive closure. Our approach is
unimplemented and theirs is not widely available, so we cannot objectively compare the
two; we believe ours would be more efficient, and that system builders would prefer
direct specification (where they can picture what is going on more easily).

Othermakevariants have recognized the need for better abstraction facilities.imake
(available with the X11 distribution) andcake[9] both use the C preprocessor, which pro-
vides file inclusion, conditional text inclusion, and simple macros.

3.2. Future Work

We hav e argued that system builders would find our relational mechanisms better than
alternatives; to test these claims, we plan to build a prototype tool. Before doing so,
however, we expect to continue working on other design issues, including:

• Subsystem interconnection and namespace management issues.

• Managing caches of generated files, perhaps introducing one cache per subsystem.
The Odin system exemplifies many of the issues to consider, but appears to maintain a
single cache per system [2].

• Inclusion of version management facilities. Theshapesystem exemplifies many of the
issues [7].

• Efficiency considerations, such as treating the dependency graph as a cache, and reduc-
ing the number offork system calls [4], and executing system-building commands in
parallel [5].

Version 1.4 October 7, 1994

Relations Page 8

• Partial system building. When porting a system that uses many UNIX tools to a non-
UNIX system, one might run some construction steps on a UNIX host, then transport
generated files to the target system.

3.3. Acknowledgements

Discussions with Ellen Borison, Margaret Lamb, Grant Guenther, and Eric Unteregels-
bacher helped clarify my ideas. The members of IFIP Working Group 2.4 gav e helpful
feedback on the talks on which I based this paper; Reidar Conradi observed that particu-
lar relational expressions seem to characterize particular implementation languages, and
others suggested using different relations to govern different ways of constructing the
same output. Margaret Lamb corrected several small deficiencies in an earlier draft; John
Gannon, Jim Purtilo, Trevor Thompson, Robert Schwanke, Pablo Straub, David Wonna-
cott, and Marvin Zelkowitz gav e helpful criticisms.

This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) under grant OPG0000908, the Information Technology
Research Centre (ITRC), and the Institute for Advanced Computer Studies at the Univer-
sity of Maryland (UMIACS).

References
1. Ellen Borison, ‘‘A Model of Software Manufacture,’’ in Reidar Conradi, editor,Pro-

ceedings of the International Workshop on Advanced Programming Environments,
pages 197-200, Springer-Verlag, Berlin (June 1986). Lecture Notes in Computer
Science 244.

2. Geoffrey M. Clemm,The Odin System: An Object Manager for Extensible Software
Environments, Ph.D. dissertation, CU-CS-314-86, Computer Science Department,
University of Colorado, Boulder (February 1986).

3. S. I. Feldman, ‘‘Make - A Program for Maintaining Computer Programs,’’ Technical
Report 57, Bell Laboratories (April 1977).

4. Glenn S. Fowler, ‘‘The Fourth Generation Make,’’ inProceedings of the 1985 Sum-
mer Conference, USENIX Association (11-14 June 1985). Held in Portland, OR.

5. Andrew Hume, ‘‘Mk: a successor tomake,’’ in Proceedings Summer 1987 USENIX
Conference, pages 445-457, USENIX Association (1987).

6. David Alex Lamb, ‘‘Abstraction Problems in Software Manufacture,’’ Technical Re-
port ISSN-0836-0227-89-243, Queen’s University Department of Computing and In-
formation Science (February 1989).

7. Axel Mahler and Andreas Lampen, ‘‘shape— A Software Configuration Manage-
ment Tool,’’ in Proceedings of the International Workshop on Software Version and
Configuration Control, German Chapter of the ACM (January 1988). Held in Gras-
sau, West Germany.

Version 1.4 October 7, 1994

Relations Page 9

8. R.W. Schwanke, E.S. Cohen, R. Gluecker, W.M. Hasling, D.A. Soni, and M.E. Wag-
ner, ‘‘Configuration Management in BiiN SMS,’’ in11th International Conference
on Software Engineering, pages 383-393, Pittsburgh PA (May 1989).

9. Z. Somogyi, ‘‘Cake: a fifth generation version of make,’’Australian UNIX system
User Group Newsletter7(6):22-31 (April 1987).

Version 1.4 October 7, 1994

Version 1.4 October 7, 1994

