The ergonomics of software porting. Automatically configuring
software to the runtime environment -or- Everything you wanted
to know about your C compiler, but didn’t know who to ask

S. Pemberton

Computer Science/Department of Algorithmics and Architecture

CS-R9266 1992

The Ergonomics of Software
Porting

Automatically Configuring Software to the Runtime Environment
Or
Everything you wanted to know about your C compiler,
but didn’t know who to ask

Steven Pemberton

CWwiI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Email: Steven.Pemberton@-cwi.nl

Abstract

When porting C programs to different platforms, you typically need to know many
properties of the target machine, such as word length, byte order, minimum and
maximum values for a range of types, and so on.

Since the introduction of ANSI C, porters have been aided by the availability of the
environment enquiry header files f loat.h and limits.h , which give you many
such values.

But what do you do if your compiler doesn’t have the header files, or the values
there are wrong, or you need some value that they don't supply? Where do you
find out the maximum floating point value, for instance? What do you do if you are
writing a portable C compiler, and you want to supply f loat.h for each machine
that the C compiler runs on?

Presented here are the techniques used in a program, enquire.c, that calculates
and prints out more details of your machine and C compiler than you'll ever want
to know.

The program can be used just for interest, to see the properties of your machine,
and it can be used to produce the two header files mentioned. An additional option
allows you to check that your compiler reads the header files correctly
(depressingly many read the minimum floating point number back as zero, or get
the last few digits of floating point numbers wrong).

1991 Mathematics Subject Classification: 68M07, 68N20.
1991 CR Categories: B.2.0, C.1.0, D.2.2, D39, D.3.4, G.4.

Keywords and Phrases: Portability, C (Programming language), arithmetic formats,
processor architectures, mathematical software, automatic software configuration

2 The Ergonomics of Software Porting

1 The problems of porting

Porting software to new machines poses a problem to the porter: finding which parts of the
software reflect architectural features of the hardware that it runs on. Such pieces of code
can exist for several reasons: bad programming — the programmer just hadn’t considered
the possibility; the necessity to address features of the architecture — principally for
system programming; and through lack of support in the language for a portable
expression of the aim.

Typical sorts of problems in C are: the existence of maximum and minimum values for
certain types, whether the character type has signed values or not, the order that
characters are stored in memory, most properties of floating point values, how values are
converted between different types, certain properties of pointers, and differences between
different implementations of C.

Having identified the problem areas, the porter has the option of producing a new
version of the program that will run on the new hardware, or of changing the program so
that it will run on both machines without change.

Of course, this latter option is to be preferred: it is far easier to keep both versions up to
date with the latest modifications, and once you have ported a program once and made
the program more portable, it is far easier to then port it to a third architecture.

For many unportable sections of code, there is a solution that will work on all machines
without having to make any reference to hardware features; not dereferencing nil pointers
is an obvious example of this.

But for sections that address architectural features (like byte swapping) or use
unavoidably unportable features (like maxint), the only solution is to parameterise the
source code on these features, such as defining a constant, or conditionally compiling
different sections of code.

Any good software is designed from the start to be portable, especially with the advent
of open-systems, where the likelihood is ever greater that the software will be run on a
range of machines. In a sense, open systems have made the task of porting both easier
and harder: easier because there are now standards that can be followed; harder because
the range of target hosts is even larger, and you can never know all the systems your
program will run on.

Software is often not ported or installed by the author of the software, but by someone
else frequently at a site far distant from the author, so that there is little opportunity for
advice. This means that the author has to make provision to make the job as obvious and
straightforward as possible for the porter. The typical set up is to supply a makefile or a
header file with constants that have to be changed to match the system it is to be run on
before it is compiled. A problem with this is that the values to be filled in may not be
obvious for the porter.

2 Enquire.c

The author is responsible for a large piece of software, ABC, a programming language
and programming environment designed for non-expert computer users [Geurts]. The
software is widely distributed to many different sites, and it is often installed by the very
non-experts that the language is designed for. This means that it must be especially easy
for them to install the software, since they will have had little experience with the target
machine.

Integral values 3

Even worse, there are certain parameters of the system, principally to do with
properties of the floating-point representation used on the target machine, that even we
found difficult to fill in when we first wrote the software. At best it meant referring to some
hardware manual, at worst the manual wasn’'t even available.

As a consequence, we wrote a small program to determine these properties for the
machine it was run on, and print them out. These values could then be filled in in the
header files and makefiles, and then a set of header files could be distributed with the
system for a range of machines and the installer could choose one suitable for the
machine being used.

Of course, it was a small step from this program to one that generated the header file
automatically, and could be distributed with the software, so that the software
automatically configured itself. This also fitted in well with the aims of the project: the
design of the language was on ergonomic principles, and self-installing software can be
seen as an ergonomic improvement. A rule of computer ergonomics is that you should
never ask the user for information that you know how to calculate; let the computer do the
work, that's what it's there for.

From these simple beginnings — a program around 10,000 characters long designed
for a particular package — it has evolved into a fully-fledged tool, enquire.c, almost 10
times larger, for automatically configuring a range of software packages.

Of course, with the advent of ANSI C [ANSI], and its environment enquiry header files
limits.h and float.h , it could be argued that there is less need for a program like
enquire Now.

This would be true, except that not all compilers (by a long way) are ANSI compatible
yet, and even those that are often have faults in the header files. Finally, enquire is used
by several compiler producers for the very task of producing limits.h and f loat.h

3 How Enquire works

The aim of enquire is to be usable with as wide a range of compilers as possible, an
extreme case of portability. The basic principle is that it must be compilable on any C
compiler, under any operating system, with the minimum of user intervention. This means
that amongst other things the program must be written in a lowest common denominator
version of C, approximately Kernighan and Ritchie level [Kernighan], with no use of
modern features like #if directives, ANSI standard C, or non-standard or optional
libraries such as the math library, and there should be no need for a Makefile or shell or
command file to run the program.

3.1 Integral values

A basic value enquire produces is the maximum integer value. The essence of the
process is this: increase a value until the new value is not larger than the previous value:

int intmax= 0, new=1;

while (new > intmax) {
intmax= new;
new= hew*2+1;

}

After this loop, intmax has as value the largest integer value.

You will note that this code assumes the base for integers is 2, and not for instance 10.
Luckily base 2 is demanded by the language definition for C for int , so we can safely
make this assumption (which is not the case for floating point as we shall see below).

4 The Ergonomics of Software Porting

A problem with this code is that some compilers (though not many) produce overflow
signals for integer arithmetic, so we have to protect the code with a trap handler:

#include <signal.h>
#include <setjmp.h>

jmp_buf lab;

overf low(sig) int sig; {
/* what to do on over/underf low */
signal(sig, overf low);

longjmp(lab, 1);

and then:

#ifdef SIGFPE

signal(SIGFPE, overf low);
#endif
#ifdef SIGOVER

signal(SIGOVER, overf low);
#endif

int intmax=0, new=1;
if (setjmp(lab)==0) {
while (new > intmax) {
intmax= new;
new= new*2+1;

}

if (setjimp(lab)!=0) {
fprintf(stderr, "Unexpected signal\n™);
exit(1);

}

The #ifdefs for SIGFPE and SIGOVERmean that the code compiles without further
intervention on machines that don’t have one or other of these signals.

There is now an added complication: not all compilers have signal and/or longjmp
in their libraries. This means that there has to be a compile-time flag, settable by the user,
for this case:

#ifdef NO_SIG /* No signal() or setjimp/longjmp():
Dummy routines instead */
int lab=1;
int setimp(lab) int lab; { return 0; }

signal(i, p) inti, (*p)(); {}
#else

#include <signal.h>

#include <setjmp.h>

jmp_buf lab;

overf low(sig) int sig; {

/* what to do on over/underf low */
signal(sig, overf low);

longjmp(lab, 1);
}
#endif
The advantage of supplying dummy routines like this is that the rest of the program can

remain the same, and can call signal and setjmp with dummy effects, without having to
pepper the program with #ifdef NO_SIG everywhere they are used.

Integral values 5

An upshot of all this is that compilers that produce overflow signals, but do not supply
signal and longjmp to catch them, cannot run enquire. Luckily we have only come
across one such defective compiler, that was later updated to include both functions.

There is a remaining problem with the code: longjmp on some systems restores the
values of some local variables to what they were at the time of the setjmp . Principally
variables stored in registers may be restored, and unfortunately the compiler may put
variables in registers without being asked, so the value we get out of intmax after the
loop may be zero!

There are two possible solutions. ANSI C has the keyword volatile that helps in this
case: volatile variables are never put in registers; Kernighan and Ritchie C has the
keyword static

So one cure is to use the following:
#ifdef _ ~_STDC__ /* Then we have an ANSI standard
C compiler */
#def ine Volatile volatile
#else
#def ine Volatile static
#endif
Volatile int intmax=0, new=1; ...
Another possibility is to move the setjmp into the loop:

while (new > intmax) {
intmax= new;
if (setjimp(lab)==0) new= new*2+1;
else break;

}

A final portability problem with our tiny piece of code to calculate the maximum integer
is due to Cyber machines. These have the odd property that some integer operations
(such as multiplication) use 48 bits, while others (such as addition and shifting) use 64
bits. This means that replacing

new= new*2+1;
with the apparently identical
new= new+new+1,;
or
new= new<<l1+1,;
would give a different result. Worse yet, some compilers recognise
new= new*2+1;
as a special case, and ‘optimise’ the code by replacing it with code that does
new= new<<1+1;
thus defeating our purpose.

What we have done then is to define a variable
int two= 2;
and used
new= new*two+1;

which foils the optimiser sufficiently to get it to do what we want. If optimisers get any
smarter, then we would have to take more drastic action, like defining a function that

6 The Ergonomics of Software Porting

returns the value 2 (similar to the drastic action described later to fool the optimiser when
compiling floating point operations).

With nearly 40 lines of code necessary for an idea expressed originally in 5 lines, it is
clear that portability has its price.

3.2 Floating point
Floating point has all these problems and more. Among the new problems are that we
don’t know what base is used, and arithmetic doesn’t always do what we expect of it.

Floating point numbers are represented as a fraction f of some fixed number of digits,
in some base b (usually 2, but 16 is not unknown) and an exponent e, so that a given
number is represented as f Xb€. For more details on the representation and properties of
floating point, see [Goldberg].

Typical values that you want to know about floating point are the base, the accuracy
available (the number of digits in the fraction), the maximum and minimum values, and
epsilon, the smallest value comparable to 1.0.

To find the base used you can use algorithms described in [Cody]. First you find a
small number that adding 1.0 to leaves unchanged:

double a= 1.0;
do a= a+a;
while ((((a+1.0)-a)-1.0) == 0.0);
And then you find a small number that you can add to this number to give a different value:
double b= 1.0, base;
do {
b= b+b;
base= (at+b)-a;
} while (base == 0.0);
The value of base is then the base used.

To understand how this works, assume the base of the arithmetic we are using is 10,
and that there are 3 significant digits of accuracy in the fraction.

In the first loop then, a takes the values 1, 2, 4, 8, ..., 512, 1024. The loop then stops,
since with 3 digits of accuracy, 1024 is only representable as 1020, and 1020+1 will also
give 1020.

In the second loop, the values b takes will depend on how the arithmetic operations
round. If they round to nearest, then we will have 1, 2, 4, 8. At this point, 1020+8=1028,
which will round to 1030. 1030-1020 is 10, which is the base we are searching for.

If on the other hand floating point rounds down, then 1028 will round to 1020 again,
and so the loop will execute once more for b=16, giving 1020+16 = 1036 which will round
to 1030 again as in the first case, giving us the base again, 10.

Once you have the base, then it is easy enough to find the number of significant digits
by finding the largest power of the base that you cannot add 1.0 to:

ndig=0; b=1.0;
do { ndig++; b= b*base; }
while ((((b+1.0)-b)-1.0) == 0.0);

There are two portability problems with these pieces of code: firstly, several compilers

optimise code even when you don’t explicitly ask for it, and they take one look at

while ((((a+1.0)-a)-1.0) == 0.0);
and replace it with

while (2);
i.e. an infinite loop.

Floating point 7

The golden rule of optimisation (see for instance [Aho]) is that optimisers may never
replace code with code that does something else (unless the original code doesn’t do
anything useful anyway). We leave it to the reader to decide in this case whether the rule
has been broken.

The second problem is that some compilers evaluate floating point expressions in
registers that give greater accuracy than the variables of the same type. For instance in
our fictitious example above, expressions might be evaluated with 5 digits accuracy, so
that the value of a found would be 131070 instead of 1020. This will still find the right base,
but the accuracy reported will be for expressions and not for variables, which is what we
are trying to find out.

The solution for the second problem is to ensure that all intermediate results are stored
in variables. Unfortunately something like the following is not enough:

do {
a= ata;
al=a+1.0;
ala= al-a;
alal=ala-1.0;
} while (alal == 0.0)

The reason is the same: optimisers may spot that a value is still available in a register
and use that instead.

To get round this, we hide the arithmetic operations in function calls to do basic
arithmetic:

double sum(a, b) double a, b; {

double c;
store(a+b, &c);
return c;
}
store(val, var); double val, *var; {
*var= val,
}

and similar for subtraction. Note that
double sum(a, b) double a, b; { return a+b; }
wouldn't be sufficient in the case that the compiler returned doubles in wide registers.

Luckily, using these functions also solves the first problem, since instead of
while ((((a+1.0)-a)-1.0) == 0.0);

we now write
while (diff(diff(sum(a, 1.0), a), 1.0) == 0.0);
which optimisers have a harder time optimising away.

This is theoretically insufficient for very smart optimisers that also look at the content of
functions. However, we have never met optimisers that do this sort of optimisation by
default: all compilers that we know of that do extensive and advanced optimisation only do
so at the request of the user (via a compiler switch). If there ever comes a time that such
optimisations are not suppressible, then we would have to resort to using separate
compilation for the basic arithmetic functions, so that the optimiser never sees them.

Actually, there is a third problem to the two already mentioned, that shouldn’t arise, but
that occurs often enough in practice to make it worthwhile checking for: some compilers
generate a loss-of-accuracy signal for the first loop for a. Loss-of-accuracy traps should

8 The Ergonomics of Software Porting

never be the default (see [IEEE]), so it is difficult to know why these do occur, but in any
case, the program checks for these traps, and aborts if it gets one (since it would be too
much work to always account for them when they shouldn’t occur anyway).

3.3 Epsilon

A useful value when using floating point is epsilon. There are several possible definitions
for this, but a usual one is “The smallest value that can be added to 1.0 to give a different
value”; in fact, this value is dependent on the rounding mode used by arithmetic, and so a
generally more useful definition is: “the positive difference between 1.0 and the next larger
floating point number”. If we call the number according to the first definition el, and
according to the second definition e2, then e2=(1.0+e1)-1.0

Calculating epsilon is actually one of the easier parts of the program: we use binary
search to find el, and then calculate e2 from it. In the binary search, the range that we still
have to search is bounded by the variables bot and top ; the invariants are that
1.0+bot=1.0 , and 1.0+top>1.0

top=1.0; bot= 0.0;

mid= bot+(top-bot)/2.0;

while (mid != bot && mid !=top) {
if ((mid+1.0) > 1.0) top= mid;
else bot= mid;
mid= bot+(top-bot)/2.0;

}

el=top;

e2= (1.0+el)-1.0;

(Of course, the real code uses things like
mid= sum(bot, div(diff(top, bot), 2.0));
)

3.4 Floating maxima

When finding the maximum integer, we had to deal with the cases of arithmetic wrap-
around (effectively an arithmetic operation producing the wrong value), and possible
signals for overflow.

With floating point, we have an extra problem: the possible existence of an infinite
value. The problem here is that some floating point systems (principally IEEE [IEEE]) have
an infinite value which is larger than all other floating point values, and yet isn't a useful
numeric value.

For instance, the basic algorithm for finding the maximum exponent could be
something like:
f_max_exp=2; f _max= 1.0; new= base+1.0;
while (new > f_max) {
f_max= new;
if (setjimp(lab) == 0) new= new*base;
else break;
f_max_exp++;
}

The problem here is that if there is an infinite value, the test new > f_max succeeds,
and we go one too many times round the loop. The easiest cure here is after multiplying
by base, to see if dividing by base again gives you the original number. If not, we've
reached infinity:

if ((new/base) !=f _max) break;
Finding the maximum double is not a case of taking the code for integer, and replacing:

Duplication of code 9

new= new*2+1;
with
new= new*base+(base-1.0);

To see why, suppose floating point has base 10, 3 digits of accuracy, and one digit of
exponent (so that the largest number is .999e9). Then the algorithm will calculate for new
9, 99, 999,and then 9999. But this will get rounded to 10000, and further iterations will only
multiply this by base (because adding 9 will have no effect), so that we would find a
largest number of .1e9, rather than the desired .999e9. The cure is first to fill in the digits,
and then find the exponent by multiplying by base .

3.5 Duplication of code

In enquire, a lot of code has to be duplicated: the code for short, int and long are identical
except for the type of the variables used; similarly for float, double, and (where available)
long double. Not only is a lot of code involved here, but maintenance of the program is
difficult, since changes to a function have to be applied consistently in three different
places.

This is of course an ideal situation for using macros. Unfortunately many of the
functions used are larger than can be handled by most macro processors. Even the ANSI
C standard says that a compiler may refuse to process macros larger than 509 characters.

The solution to this tricky problem is equally tricky: the source file is read three times by
the compiler by letting the source file #include itself, each time with certain preprocessor
symbols set to different values. Three preprocessor symbols PASS1 PASS2and PASS3
are used to tell which pass is involved, and the preprocessor symbols are set accordingly.
In outline:

#undef INT

#undef DOUBLE
#undef INTMAX
#undef DOUBLEMAX

#ifdef PASS1

#def ine INT short

#def ine DOUBLE f loat

#def ine INTMAX shortMax

#def ine DOUBLEMAX f loatMax
#endif

#ifdef PASS2

#def ine INT int

#def ine DOUBLE double

#def ine INTMAX intMax

#def ine DOUBLEMAX doubleMax
#endif

#ifdef PASS3

#def ine INT long

#def ine INTMAX longMax

#ifdef _ _STDC__

#def ine DOUBLE long double

#endif

#def ine DOUBLEMAX IdoubleMax
#endif

Then the functions are declared as follows:

10 The Ergonomics of Software Porting

INT INTMAX() {
INT a, b, c;
/* Code to f ind the max short/int/long */

}

#ifdef DOUBLE
DOUBLE DOUBLEMAX() {
DOUBLE x, Y, z;

b
#endif
Then at the beginning of the file, the PAS variables are initialised; PASSis used to
indicate whether the file has already been read and it will be initially unset:
#ifndef PASS
#def ine PASS

#def ine PASS1
#endif

and then at the end of the file is preprocessor code to increment the PASS and reread the
file if necessary:

#ifdef PASS3
#undef PASS /* No more to do */
#endif

#ifdef PASS2
#undef PASS2
#def ine PASS3
#endif

#ifdef PASS1
#undef PASS1
#def ine PASS2
#endif

#ifdef PASS
#include _ _FILE_ _
#endif

Note that the order of the tests (PASS3, PASS2, PASS1) is important. The
preprocessor symbol __FILE__ is a standard symbol giving the filename; using this
allows you to rename enquire.c to anything else without having to change the code.

3.6 Checking the output

The output of enquire contains many boundary values of course, and it became clear at an
early stage that not all C compilers had been fully tested with all possible boundary
numbers; in particular many printf ’'s failed in one way or another to correctly print
certain values out. Some produce a trap or garbage when asked to print out the maximum
or minimum floating point values; some print zero when printing the smallest floating point
value; some get the last few digits of any floating point number wrong, so that reading the
number back would produce a different number.

Especially since the output of enquire is to be read back and used by other programs,
it is important that the output be reliable. To this end, though also to reduce the number of
reports that would come in complaining that enquire produces the wrong results, all output

Checking the compiler 11

is checked for correctness by instead of using printf , using sprintf to output the
value to a buffer, and then reading the value back with sscanf , and checking that the
value read back is the same as the value printed; in outline:

sprintf(buf, outformat, val);

printf("%s”, buf);

sscanf(buf, informat, &new);

if (new !=val) printf("*** Possibly bad output\n”);

It won't surprise you by now to know that the actual code used is more than 10 times
longer than this fragment because of the need to handle problems like sprintf
producing a trap, sscanf producing a trap while reading the number back, or producing
an infinite value or other unusable value (like an IEEE NaN [IEEE]). The diagnostics are
also more helpful than just announcing that there is a problem, and try to pinpoint the
trouble.

Of course if the check fails, the fault may lie with sscanf and not sprintf : the output
may have been correct after all, but at least this code increases the confidence you can
have in the output, and indicates possible errors.

3.7 Checking the compiler
The above check on the output tells you if printf has produced the right output, but of
course, since the results are destined to be read by the C compiler, as a header file, it
doesn't tell you if the compiler will read the header file correctly: for the same reasons that
scanf can fail, so could the compiler. So the final piece of confidence building is an option
that allows you to recompile the program so that it reads the f loat.h and limits.h
files it has produced, and checks that the values it finds there are the same as the values
it produces. The kernel of this is a preprocessor symbol VERIFY, that is set when
compiling enquire:

#ifdef VERIFY

#include "limits.h”

#include "f loat.h”

#endif

printf("#def ine FLT_RADIX %d\n”, f It_radix);
#ifdef VERIFY
if (f It_radix I= FLT_RADIX)
printf("*** Compiler has %d for above value\n”,
FLT_RADIX);
#endif

This option can also be used to check that the output agrees with the values the
compiler manufacturer has supplied in the two header files.

3.8 Autoconfiguring the autoconfigurer

As mentioned before, the desire to be able to compile the program on as many C
compilers as possible means that a certain lowest-common-denominator level of C has
had to have been used.

On the other hand, there are certain features of compilers that you would still like to
report on, even if those features are not available on all compilers. A good example is
long double : not all compilers have it, but you want to be able to use it on those that do.

For many such features, you can check at compile time. Long double only comes
with ANSI standard C compilers, and there is a preprocessor symbol for that, as
demonstrated above.

12 The Ergonomics of Software Porting

But features like unsigned short and unsigned long cannot be tested for at
compile-time, and so there has to be a compile-time flag to allow these parts of the code to
be conditionally compiled.

Earlier versions of the program just had compile-time flags for these features, like
NO_SCfor a compiler that has no signed character type. If the user didn’t know whether
the compiler had this type, the answer was to try compiling the program; at each potential
problem point there is a comment saying which flag to set:

#ifndef NO_SC
signed char sc; /* compile with -DNO_SC if this
fails to compile */

But still, for a program that is intended to minimise the user intervention necessary
when porting software, it is unfortunate to demand user intervention here.

The solution (which only works on Unix and Unix-like platforms) is to provide a shell-
script that determines which features are not available. For instance (in outline):
echo "main(){signed char c; c=0;}" > test.c
if cc test.c
then echo ” Signed char ok”
else
CFLAGS="$CFLAGS -DNO_SC"
echo "Signed char not accepted; using $CFLAGS”
fi
and then

cc $CFLAGS -0 enquire enquire.c

The clever part is that the shell script is worked in along with the C program: most
people have seen examples of programs that compile on both Fortran and Pascal
compilers; enquire.c is both a C program and a shell-script. The trick is that a # at the
beginning of a line is a comment symbol to the standard Unix Bourne shell, so we can use
at the beginning of a file something like:

#ifdef NOTDEFINED
echo Any shell code may go here
exit 0

#endif

and the C compiler will ignore it; the shell will ignore the first line, and exit at the “exit 0"
and so ignore the rest, which is just the normal C program.

So the shell code to discover the features and compile the program goes at the
beginning of the file and then a call to the shell:
sh enquire.c

ensures that enquire configures and compiles itself.

4 Typical compiler errors

While it is difficult to anticipate bugs in compilers, and it has not been a policy to program
around compiler bugs in enquire, where a certain bug has appeared in more than one
compiler, it has been treated as a feature, and we have tried to allow for it (partly to reduce
the number of reports coming in from users).

An example of such a bug is not being allowed to #undef something that hasn't been
defined. Another problem is that not all compilers support the predefined __FILE_
symbol, so that the line:

#include _ _FILE_ _

Autoconfiguring the autoconfigurer 13

fails to compile. To fix this, we replaced it with:

#ifdef _ _FILE_ _
#include _ _FILE_ _
#else
#include "enquire.c”
#endif
but it then turned out that a couple of compilers couldn’t cope with the line
#ifdef _ _FILE_ _

apparently (incorrectly) expanding _ _FILE_ _ before doing the #ifdef
We then bracketed the code with a symbol BAD_CPPwhich the user could set when
compiling:
#ifdef BAD_CPP
#include "enquire.c”

#else

#ifdef _ _FILE_ _

#include _ _FILE_ _

#else

#include "enquire.c”

#endif
but there is still one compiler we know of that even then can’t cope, since it incorrectly
looks at skipped over sections and still doesn’t accept “#include _ _FILE __ " (there is

nothing we can do about that).

As mentioned earlier, some parts of the code are bracketed with an ifdef on the
symbol __STDC__; unfortunately, some bad compilers define this symbol even if they
don't fully accept ANSI C (a case of wishful thinking, perhaps). Some of these compilers at
least define the symbol as 0, instead of the required 1, which is testable for, but others
define it as 1.

5 Conclusions

Enquire is a program designed to aid portability, and in a sense is a case of extreme
portability: whereas most programs can depend on a set of well chosen preprocessor
symbols in order to be portable, enquire has to do it alone, and it must do it on an
unusually wide range of platforms.

C is often proclaimed as a portable language, but as this article shows, the truth is that
it can only offer post hoc portability: you can’t be sure beforehand that your program is
going to compile and run on a given platform, but you have to try it first.

Enquire started out as a modest program with a specific purpose, but expanded in the
face of the demands of ever more platforms, compiler bugs, and user requirements, and
has ended up as a useful program, for porting as its main aim, for testing compilers, for
evaluating compilers, and for generating compilers for new platforms.

As you may suspect from the exposition, enquire is actually much more complicated
than we have presented here: we have simplified the exposition to indicate the main
features, and prevent the reader from being flooded with excessive detail.

6 Availability

Enquire is available from several sources: from several ftp servers, for instance
ftp.eu.net which is the repository for the latest version at any time, in directory misc . It
is similarly available from a mail-server should you have no ftp facilities: send the two-line

14 The Ergonomics of Software Porting

mail message “request misc ", “topic index "to info- server @nluug.nl for a list
of available files. One of them will be enquire XX.c , where XX is the version number.
The message “request misc ", “topic enquire XX.c " will send this file.

Finally, enquire is used by the GNU project for generating the f loat.h header file for
their gcc C compiler, and can be found in the gcc distribution.

7 References

[Aho] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques and
Tools, Addison Wesley, Reading, Mass., 1986.
[ANSI] Draft Proposed American National Standard for Information Systems —

Programming Language C, ANSI Standard X3J11/88-158, American National Standards
Institute, New York, 1990.

[Cody] W.J. Cody, W. Waite, Software Manual for the Elementary Functions,
Prentice-Hall, 1980.

[Geurts] Leo Geurts, Lambert Meertens, Steven Pemberton, The ABC
Programmer’s Handbook, Prentice Hall, 1990.

[Goldberg] David Goldberg, What Every Computer Scientist Should Know About
Floating-Point Arithmetic, ACM Computing Surveys, Vol 23, No 1, March 1991, pp. 5-48.

[IEEE] IEEE Standard 754-1985 for Binary Floating-Point Arithmetic, IEEE.
Reprinted in SIGPLAN Notices, Vol. 22, No. 2, pp. 9-25.

[Kernighan] B. W. Kernighan, D. M. Ritchie, The C Programming Language, Prentice
Hall, Englewood Cliffs, 1978.

Autoconfiguring the autoconfigurer 15

Appendix 1: Example shell output

The following is an example of the output when compiling enquire with “sh enquire.c”

on a Sun Sparc processor:

Testing for needed CFLAGS ...

Signed char not accepted; using -DNO_SC

Unsigned char ok

Unsigned short and long ok

Void ok

Compiling enquire.c ...

cc -DNO_SC enquire.c -0 enquire

Producing enquire.out limits.h and f loat.h ...

enquire > enquire.out

enquire -l > limits.h

enquire -f > f loat.h

Verifying the contents of limits.h and f loat.h ...

cc -DVERIFY -DNO_SC enquire.c -0 verify

verify -f | > verify.out

*** Some problems: see verify.out

Done

Appendix 2: Example output

The following is an example of the sort of output you get from enquire. It is from cc on a
Sun Sparc processor.

Produced by enquire version 5.0, CWI, Amsterdam
Compiled without signed char
Compiler does not claim to be ANSI C

Compiler names are at least 64 chars long
Preprocessor names are at least 64 long

SIZES

char = 8 bits, signed

short=16 int=32 long=32 f loat=32 double=64 bits
char*=32 bits

int* =32 bits

func*=32 bits

Type size_t is signed int/long

ALIGNMENTS

char=1 short=2 int=4 long=4
f loat=4 double=8

char*=4 int*=4 func*=4

CHARACTER ORDER
short: AB

int: ABCD

long: ABCD

16 The Ergonomics of Software Porting

PROPERTIES OF POINTERS

Char and int pointer formats seem identical
Char and function pointer formats seem identical
Strings are not shared

Type ptrdiff_t is signed int/long

Dereferencing NULL causes a trap

PROPERTIES OF INTEGRAL TYPES

Overf low of a short does not generate a trap
Maximum short = 32767 (= 2**15-1)
Minimum short = -32768

Overf low of an int does not generate a trap
Maximum int = 2147483647 (= 2**31-1)
Minimum int = -2147483648

Overf low of a long does not generate a trap
Maximum long = 2147483647 (= 2**31-1)
Minimum long = -2147483648

Maximum unsigned short = 65535

Maximum unsigned int = 4294967295
Maximum unsigned long = 4294967295

PROMOTIONS
unsigned short promotes to unsigned int/long
long+unsigned gives unsigned int/long

PROPERTIES OF FLOAT

Base = 2

Signif icant base digits = 24 (at least 6 decimal digits)
Arithmetic rounds towards nearest

Tie breaking rounds to even

Smallest x such that 1.0-base**x !=1.0 = -24

Smallest x such that 1.0-x != 1.0 = 2.98023259e-08
Smallest x such that 1.0+base**x |= 1.0 = -23

Smallest x such that 1.0+x != 1.0 = 5.96046519e-08
(Above number + 1.0) - 1.0 = 1.19209290e-07

Number of bits used for exponent = 8

Minimum normalised exponent = -126

Minimum normalised positive number = 1.17549435e-38
The smallest numbers are not kept normalised
Smallest unnormalised positive number = 1.40129846e-45
Maximum exponent = 128

Maximum number = 3.40282347e+38

Overf low doesn’t seem to generate a trap

There is an ‘inf inite’ value

Divide by zero doesn’t generate a trap

Arithmetic uses a hidden bit

It looks like single length IEEE format

Autoconfiguring the autoconfigurer

PROPERTIES OF DOUBLE

Base =2

Signif icant base digits = 53 (at least 15 decimal digits)
Arithmetic rounds towards nearest

Tie breaking rounds to even

Smallest x such that 1.0-base**x != 1.0 = -53

Smallest x such that 1.0-x 1= 1.0 =5.5511151231257839e17
Smallest x such that 1.0+base**x I=1.0 = -52
Smallest x such that 1.0+x 1= 1.0 =1.1102230246251568e16

(Above number + 1.0) - 1.0 = 2.2204460492503131e-16
Number of bits used for exponent = 11
Minimum normalised exponent = -1022

Minimum normalised positive number = 2.2250738585072014e-308
The smallest numbers are not kept normalised
Smallest unnormalised positive number=4.9406564584124654e-324

Maximum exponent = 1024

Maximum number = 1.7976931348623157e+308
Overf low doesn’t seem to generate a trap
There is an ‘inf inite’ value

Divide by zero doesn’t generate a trap
Arithmetic uses a hidden bit

It looks like double length IEEE format

Float expressions are evaluated in double precision
Double expressions are evaluated in double precision
Memory mallocatable ~= 22 Mbytes

Appendix 3: Sample limits.h file

/* limits.h */
/* Produced by enquire version 5.0, CWI, Amsterdam */

/* Number of bits in a storage unit */
#def ine CHAR_BIT 8

[* Maximum char */

#def ine CHAR_MAX 127

/* Minimum char */

#def ine CHAR_MIN (-128)

/* Maximum signed char */

#def ine SCHAR_MAX 127

/* Minimum signed char */

#def ine SCHAR_MIN (-128)

/* Maximum unsigned char (minimum is always 0) */
#def ine UCHAR_MAX 255

/* Maximum short */

#def ine SHRT_MAX 32767

/* Minimum short */

#def ine SHRT_MIN (-32768)

/* Maximum int */

17

18 The Ergonomics of Software Porting

#def ine INT_MAX 2147483647

/* Minimum int */

#def ine INT_MIN (-2147483647-1)

[* Maximum long */

#def ine LONG_MAX 2147483647L

/* Minimum long */

#def ine LONG_MIN (-2147483647L-1L)

/* Maximum unsigned short (minimum is always 0) */
#def ine USHRT_MAX 65535

/* Maximum unsigned int (minimum is always 0) */
#def ine UINT_MAX 4294967295

/* Maximum unsigned long (minimum is always 0) */
#def ine ULONG_MAX 4294967295L

Appendix 4: Sample float.h file

/*f loat.h */
/* Produced by enquire version 5.0, CWI, Amsterdam */

/* Radix of exponent representation */
#def ine FLT_RADIX 2

/* Number of base-FLT_RADIX digits in the signif icand of a
f loat */

#def ine FLT_MANT_DIG 24

/* Number of decimal digits of precision in a f loat */

#def ine FLT_DIG 6

/* Addition rounds to 0:zero, 1:nearest, 2:+inf, 3:-inf, -

1l:.unknown */

#def ine FLT_ROUNDS 1

/* Difference between 1.0 and the minimum f loat greater than
1.0%

#def ine FLT_EPSILON ((f loat)1.19209290e-07)

/* Minimum int x such that FLT_RADIX**(x-1) is a normalised

f loat */

#def ine FLT_MIN_EXP (-125)

/* Minimum normalised f loat */

#def ine FLT_MIN ((f loat)1.17549435e-38)

/* Minimum int x such that 10**x is a normalised f loat */
#def ine FLT_MIN_10_EXP (-37)

/* Maximum int x such that FLT _RADIX**(x-1) is a represent-

ablef loat*/

#def ine FLT_MAX_EXP 128

/* Maximum f loat */

#def ine FLT_MAX ((f loat)3.40282347e+38)

/* Maximum int x such that 10**x is a representable f loat */
#def ine FLT_MAX_10_EXP 38

/* Number of base-FLT_RADIX digits in the signif icand of a
double */

Autoconfiguring the autoconfigurer 19

#def ine DBL_MANT_DIG 53

/* Number of decimal digits of precision in a double */

#def ine DBL_DIG 15

[* Difference between 1.0 and the minimum double greater
than 1.0 */

#def ine DBL_EPSILON 2.2204460492503131e-16

/* Minimum int x such that FLT_RADIX**(x-1) is a normalised
double */

#def ine DBL_MIN_EXP (-1021)

/* Minimum normalised double */

#def ine DBL_MIN 2.2250738585072014e-308

/* Minimum int x such that 10**x is a normalised double */
#def ine DBL_MIN_10_EXP (-307)

/* Maximum int x such that FLT_RADIX**(x-1) is a represent-
able double */

#def ine DBL_MAX_EXP 1024

/* Maximum double */

#def ine DBL_MAX 1.7976931348623157e+308

/* Maximum int x such that 10**x is a representable double
*/

#def ine DBL_MAX_10_EXP 308

Appendix 5: Example checks

* The C standard specifies that all floating-point arithmetic must round in the same
way:
/* *** WARNING: double arithmetic rounds differently (1) from
f loat */

* Printf fails to print the minimum float correctly:

#def ine FLT_MIN ((f loat)0.00000001e-38)

[* *** WARNING: Possibly bad output from printf above */

/* expected value around 2.93873588e-39, bit pattern:
00000000 10000000 00000000 00000000 */

/* sscanf gave 1.15792088e+31, bit pattern:
01110100 00010010 00100110 01110001 */

/* difference=-1.15792088e+31 */

* Printf outputs the correct value, scanf reads it back wrongly:

#def ine DBL_EPSILON 2.77555756156289140e- 17

[* *** WARNING: Possibly bad output from printf above */

/* expected value around 2.77555756156289140e-17, bit pattern:
00100101 00000000 00000000 00000000 00000000 00000000

00000000 00000000 */

/* sscanf gave 2.77555756156289120e-17, bit pattern:
0010010011121121 2121221212 12112112 1212121211 112121111
11112111 11211101 %/

/* difference= 1.54074395550978870e-33 */

* Scanf fails completely to read back the maximum double.
#def ine DBL_MAX 1.7976931348623455e+308
[* *** WARNING: sscanf returned an unusable number */

20 The Ergonomics of Software Porting

/* scanning: 1.7976931348623455e+308 with format: %le */

» Scanf reads the value back incorrectly, but printf prints that in its turn incorrectly in
the warning message, so that it appears to be correct (two wrongs can make a right
after all!):

#def ine DBL_EPSILON 2.77555756156289140e-17

[* *** WARNING: Possibly bad output from printf above */

/* expected value around 2.77555756156289140e-17, bit pattern:
00000000 00100101 00000000 00000000 00000000 0000000
00000000 00000000 */

/* sscanf gave 2.77555756156289140e-17, bit pattern:

00000000 00100101 00000000 00000000 00000000 00000000
00000001 00000000 */
[* difference= -7.70371977754894340e-34 */

The following checks come from the verify phase.

* The cast doesn't convert the value to a float, but leaves it as a double (with too many
digits of precision):
#def ine FLT_EPSILON ((f loat)1.19209290e- 07)
[* *** \WARNING: the cast didn’t work */

* Printf prints the wrong value:
#def ine FLT_MIN ((f loat)0.00000001e-38)
[* *** \/erify failed for above #def ine!
Compiler has 0.00000000e+00 for value */

* Checking an existing limits.h file, which contains the wrong value:
#def ine CHAR_MIN (-128)
[* *** \/erify failed for above #def ine!
Compiler has -127 for value */

* Similarly:
#def ine SHRT_MIN (-32767-1)
[* *** \/erify failed for above #def ine!
Compiler has -32767 for value */

* The compiler fails to read the minimum float back correctly:
#def ine FLT_MIN ((f loat)1.17549435e-38)
[* *** \/erify failed for above #def ine!
Compiler has 0.00000000e+00 for value */

