
Smartest Recompilation �

Zhong Shao Andrew W. Appel

zsh@princeton.edu appel@princeton.edu

CS-TR-395-92

Princeton University

October 1992

Abstract

To separately compile a program module in traditional statically-typed languages, one has to manually

write down an import interface which explicitly speci�es all the external symbols referenced in the module.

Whenever the de�nitions of these external symbols are changed, the module has to be recompiled. In

this paper, we present an algorithm which can automatically infer the \minimum" import interface for

any module in languages based on the Damas-Milner type discipline (e.g., ML). By \minimum", we mean

that the interface speci�es a set of assumptions (for external symbols) that are just enough to make the

module type-check and compile. By compiling each module using its \minimum" import interface, we get

a separate compilation method that can achieve the following optimal property: A compilation unit never

needs to be recompiled unless its own implementation changes.a
�A short version of this paper will appear in the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, January, 1993.



1 Introduction

Most traditional separate compilation methods rely on manually created contexts (e.g., Modula-3 interfaces,

\include-�les" in C, and Ada package speci�cations) to enforce type correctness across module boundaries.

Using the proper contexts, the compiler can check that each module uses its imported interfaces properly, and

implements its exported interface as expected. The disadvantage of using these manually created contexts

is that to guarantee consistency, all modules using a changed context must be recompiled, no matter how

small the change is. The conventional recompilation rule (as described in Tichy [30]) is stated as follows: \A

compilation unit must be recompiled whenever (1) its own implementation changes, or (2) a context changes

upon which the compilation unit depends." This is obviously not satisfactory because adding a comment or

adding a new declaration to a pervasive context may cause the unnecessary recompilation of the entire system.

Tichy [30] presents an e�ective technique called \smart recompilation" that eliminates most of the redundant

recompilations triggered by (2). In Tichy's scheme, a compilation unit is recompiled only if its implementation

changes, or if it references a symbol de�ned elsewhere whose de�nition has changed. Schwanke and Kaiser [29]

de�ne \smarter recompilation" which can eliminate even more (but not all) redundant recompilations caused

by (2). So a natural question to ask is: Can we eliminate all redundant recompilations? that is, can we achieve

the following smartest recompilation rule: A compilation unit never needs to be recompiled unless its own

implementation (source code) changes?

Standard ML (SML) [20] has a rather elaborate module system, but SML compilers have not supported

separate compilation very well. The problem is that in SML, modules such as structures and functors can

liberally reference externally de�ned identi�ers without even mentioning what are their speci�cations. For

example, by using \quali�ed" (dotted) identi�ers, a structure FOO can use BAR.QUX.f to reference the function

f de�ned in the substructure QUX of the structure BAR, without even knowing what the type of f is. Because of

the lack of explicit import interfaces, structures and functors with free variables (let's call them open-formed

modules) are not considered as separately compilable units. So how can we separately compile open-formed

modules in SML?

This paper presents a new separate compilation method which actually answers both of the above two

questions. Surprisingly, not only can we separately compile arbitrary structures and functors in SML, but

we can also accomplish the \smartest recompilation rule." Our idea is simple: in order to separately compile

a module with references to external identi�ers, we have to know the speci�cations (e.g., types) of these

external identi�ers; since they are not explicitly speci�ed, we infer them by looking at how these external

identi�ers are used inside the module; then we compile the module by using this inferred import interface

as its context; �nally, when all the modules are linked together, cross-module type errors are reported by

checking whether the surroundings match (or satisfy) the speci�cations in each inferred import interface. The

catch here is that in order to achieve the \smartest recompilation rule", we have to infer the \minimum"

import interface. Informally speaking, this \minimum" import interface speci�es a set of assumptions (on

those external identi�ers) that are just enough to make the module type-check and compile; at link time, if

the module's surroundings satisfy this set of assumptions, the compiled code can be reused, otherwise there

must be cross-module type errors. The inference algorithm is discussed in detail in section 2 and 3.

Now let's see an example of how our method works. From the following SML structure declaration,

structure FOO = struct val x = BAR.f

val y = (BAR.g 4, BAR.g true)

end

we know that in order to compile FOO, the context should contain a structure named BAR. Inside BAR, there
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should be at least two val declarations: one is f, which can have any type, say �; the other is g, which should

be a function that can be applied to both integers and booleans, that is, g should have a type more general

than int ! � and bool ! 
. Here, �, � and 
 are just type variables we used to denote unknown types.

Compiling FOO in this inferred interface will result in a structure with two components: the variable x has

type � and the variable y has type � � 
. Now suppose that the real structure BAR is de�ned as follows:

structure BAR = struct val f = 3

val h = true

val g = fn z => z

end

then at link time, when the real BAR is matched against the import interface of FOO, we �nd that the type

variables � and � should be int and 
 should be bool, thus FOO.x will have type int and FOO.y will have

type int � bool. This is exactly what we will get if we compile FOO in the environment that would result from

compiling BAR.

To achieve the \smartest recompilation rule", the back end of the compiler must use only the type informa-

tion speci�ed in the module's inferred import interface. This limitation is not a big problem. The back end of

the current SML/NJ compiler [4] uses almost no type information from the front end but it still produces quite

e�cient code. Many optimization techniques that do use the type information, such as Leroy's representation

analysis [17], can still be partially incorporated into our separate compilation system. The details will be

described in section 4 and 5 of this paper.

Our separate compilation method immediately has the following advantages over traditional methods:

� Because of the smartest recompilation rule, each module never needs to be recompiled unless its own

implementation changes; so maximum reusability is achieved.

� Because all modules are compiled independently of each other, they can be compiled in any order. This

also means that programmers need no longer maintain dependency �les (e.g., Makefile [9]).

� Open-formed modules can also be separately compiled.

� Cross-module type errors are now symmetric. In traditional methods, if module A references identi�ers

de�ned in module B, type inconsistencies between module A and module B will show up when A is

compiled. If the programmer �xes the error by editing B, both A and B must be recompiled. But in

our method, because cross-module type errors are reported at link time, only B will be recompiled.

� The compiler based on our method will automatically be a standalone compiler. As far as we know, no

one has yet built a standalone compiler for the complete SML module system.

1.1 Closed vs. Open-formed Modules

Standard ML allows programming in open-formed modules. The essential di�erence between closed and open-

formed modules can be seen from rewriting the above open-formed structure FOO in closed form, the SML

functor FOO'.
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functor FOO' (BAR : sig val f : int

val g : 'a -> 'a

end)

= struct val x = BAR.f

val y = (BAR.g 4, BAR.g true)

end

This shows that programmers have to give assumptions about the types of BAR.f and BAR.g based on a pro

forma implementation of the structure declaration BAR. If later, BAR.g is changed to have a type scheme

8�:� !int, the above declaration will no longer be useful and will have to be modi�ed and recompiled. An

open-formed module such as structure FOO does not have this problem because it does not require that the

speci�cations of imported identi�ers be explicitly given. People may want to write FOO' using its minimum

import interface as its argument signature, but this \minimum" is not expressible in the SML type system.

Moreover, inferring the minimum import interface cannot be easily done by hand.

We do not advocate writing large programs all in open-formed modules. SML strongly encourages that

every structure declaration should be written with a result signature constraint (as its export interface).

Programmers can write their programs all in the form of closed functors such as FOO'. On the other hand, in

practice, we �nd it extremely convenient and 
exible to write parts of our programs as open-formed modules.

For languages based on the Damas-Milner type discipline [7] such as SML and Haskell [11], there is another

reason in favor of writing certain modules in opened forms. One of the most important features of the Damas-

Milner type discipline is that the most general type for arbitrary expressions can be automatically inferred

by compilers. It is, however, nontrivial to infer the most general type simply by hand, especially with the

presence of polymorphic references in SML or type classes in Haskell. This makes it also nontrivial to write

explicit import interfaces for many modules. The SML commentary [19] also suggests that programmers will

probably need to write down many sharing equations if they want to close every module and that it will be

too restrictive to write everything in closed functors.

2 Assumption Inference in Core ML

ML has a sophisticated type inference system. Given an ML expression e = �x:f(x+1), even though the type

of newly introduced variable x is not speci�ed, we can still �nd the most general type of e if we know the type

of f and +. For example, if f has type 8�:�! � and + has type int � int ! int , e will have type int ! int.

Milner's type inference (or type reconstruction) algorithm W (as in Tofte [31]) takes two arguments, a type

environment TE and an ML expression e; all the free variables in e (such as f and +) must be speci�ed with

a type in TE , and W (TE ; e) will return the most general type for e.

To support \smartest recompilation," we face the challenge of doing type inference without even knowing

the type of external identi�ers. For example, can we �nd out the most general type of the above expression e

if we do not know the type of f and +? This seems impossible. But in the case of separate compilation, we

assume that the types of external identi�ers will be known at link time. We can divide the type inference into

two phases: �rst (at compile time), we infer a type � for e and a set of assumptions A for the free variables in

e, which essentially means that e will have type � if the free variables in e satisfy the constraints in A; then

(at link time) when the types of those free variables (i.e., TE) are known, we match them against those in A

and \magically" recover the most general type of e in TE . To distinguish it from usual ML type inference,

we call the inference done in the �rst phase \assumption inference".
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In this section and section 3 we discuss the details of our assumption inference algorithm and show how

the matching done at link time can successfully recover the correct type for each expression. To simplify the

presentations, we divide our algorithms into two parts: this section for Core ML and the next section for the

ML module language. We only give the details of our algorithm for the mini-ML language Exp and the skeletal

module language ModL used by Tofte [31]. However it is easy to extend our algorithm to the rest of SML.

The expressions in the mini-ML language Exp are de�ned by the following grammar:

e ::= x j �x.e1 j e1 e2 j let x = e1 in e2

Here is a brief review of the notation. Suppose TyVar is an in�nite set of type variables and TyCon is a set of

nullary type constructors, the set of types, Type, ranged over by � and the set of type schemes, TypeScheme,

ranged over by � are de�ned by � ::= � j � j �1 ! �2 and � ::= � j 8�.�1. A type environment is a �nite map

from program variables to type schemes. tyvars(� ), tyvars(�) and tyvars(TE ) are the set of type variables

that occur free in � , � and TE respectively. A type � 0 is a generic instance of a type scheme � = 8�1; :::; �n:� ,
written as � 0 � �, if there exists a substitution S with its domain being a subset of f�1; :::; �ng and � 0 = S(� ).

A type scheme �1 is more general than �2, denoted as �2 � �1, if all generic instances of �2 are also generic

instances of �1. The generalization of a type � in a type environment TE is denoted by gen(TE ; � ), it is the

type scheme 8�1; :::; �n:� where f�1; :::; �ng = tyvars(� )ntyvars(TE ). The core ML type system, in the form

of type deduction rules as TE ` e : � , is listed in the appendix at the end of this paper. It is directly copied

from Tofte's thesis [31].

2.1 The assumption inference algorithm W*

We de�ne a type assumption to be a pair (x,� ) where x is a program variable and � is a type. An assumption

environment, ranged over by A, is a set of type assumptions; it is usually represented by a �nite mapping from

program variables to lists of types. In the following, we use Anfxg to denote the set of type assumptions in A

except those for variable x, and A(x) to denote the set of types associated with variable x in A. We also use

Unify to denote Robinson's original uni�cation algorithm on classical term algebras [26]. Unify takes a set of

pairs of types and returns a substitution (the most general uni�er).

Figure 1 gives the assumption inference algorithm W � and the matching algorithm Match. W � takes an

ML expression, and returns a type and an assumption environment. Match takes an ML type environment and

an assumption environment, and returns a substitution. The other two procedures in �gure 1 are MonoUnify

and PolyUnify. MonoUnify takes a type and a set of types, and returns a substitution. PolyUnify takes two

arguments: a triple of a TyVar set and a type and an assumption environment, and a set of types; it returns

a substitution and an assumption environment.

Given an ML expression e, W �(e) delays the type-checking of all free variables in e by recording their

monomorphic type instances in an assumption environment A. In the case of lambda abstraction �x:e1, the

type � of x is treated as monomorphic; the procedure MonoUnify checks whether the set of assumptions

collected for x from e1 satis�es this constraint. One the other hand, in the let expression, the type of x is

treated as polymorphic; for each use of x in e2, the type and the assumption environment from e1 is renamed

with new type variables; the procedure PolyUnify then checks the typing of x in e2 and merges the assumption

environments collected from e1 and e2. When the real type environment TE for the free variables is known

(at link time), the matching algorithm Match(TE ; A) precisely recovers everything, including the result type

of elaborating e in TE.
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aa a aa Def W �(e) = case e of aa Def MonoUnify (�;TS ) = aa x ) a let assume TS = f� 01; :::; � 0ng aa let � be a new type variable a in Unify(f(�; � 01); (�; � 02); :::; (�; � 0n)g) aa in (�,fx 7! �g) a aa aa Def PolyUnify((TV 0; �0; A0); TS) = aa �x:e1 ) a let A = ;, P = ; aa let � be a new type variable a assume TV 0 = f�1; �2; :::; �ng aa (��1 ; A1) = W �(e1) a for each � 2 TS aa S = MonoUnify (�;A1(x)) a �1; �2; :::; �n be new type variables aa in (S(�! ��1 ), S(A1nfxg)) a S = f �i 7! �i for i = 1; :::;n g aa a A = A [ S(A0) aa e1e2 ) a P = P [ f(S �0, � )g aa let (��1 ; A1) = W �(e1) a in (Unify(P ); A) aa (��2 ; A2) = W �(e2) a aa � be a new type variable a aa S = Unify(f(��1 ; ��2 ! �)g) aa Def Match(TE ; A) = aa in (S(�); S(A1 [A2)) a let P = ; aa a for each (x,� ) 2 A aa let x = e1 in e2 ) a 8�1; :::; �n:�1 = TE(x) aa let (��1 ; A1) = W �(e1) a �1; �2; :::; �n be new type variables aa (��2 ; A2) = W �(e2) a S = f �i 7! �i for i = 1; :::; n g aa TV = tyvars(��1 ) [ tyvars(A1) a P = P [ f(S �1, � )g aa (S;A) = PolyUnify((TV ; ��1 ; A1); A2(x)) a in Unify(P ) aa in (S(��2 ), A1 [ S(A [ (A2nfxg))) a aa a aa
Figure 1: The Inference Algorithm W � and Match

For example, given an expression e = \let g = �x:fx in g g", the free variable of e is f ; W �(e) will
return an assumption environment A = ff 7! (�6 ! �7)! �8, f 7! (�6 ! �7), f 7! (�1 ! �3)g and a type

�8 for e. If the real type environment TE is ff 7! 8�:�! �g, Match(TE ; A) will result in the substitution

S� = f�6 7! �1, �7 7! �1,�1 7! �1, �3 7! �1, �8 7! (�1 ! �1)g. Thus the expression e will have the type

S�(�8) = (�1 ! �1). This is exactly what we will get if we apply Tofte's algorithm W to TE and e.

In fact we can show that the algorithm W � is equivalent to Milner's W [31] in the following sense:

Theorem 2.1 Given a type environment TE and an expression e, then (S; � ) = W (TE ; e) succeeds if and

only if both (��; A) = W �(e) and S� = Match(TE ; A) succeed; Moreover, there exists two substitutions R1 and

R2, such that the following are true: (1) R1 � R2 = R2 � R1 = ID; (2) R1(S(TE ); � ) = (S�(TE ); S���); (3)
(S(TE ); � ) = R2(S�(TE ); S���).

Proof By structural induction on the expression e. For details, see appendix. QED.

Notice that theorem 2.1 is not trying to show the soundness and completeness of W � directly. It is just

proving that the result of W � and Match is equivalent to the result of W . Proving this kind of equivalence is
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relatively easier. From the soundness and completeness of the algorithm W (which is proved in Damas's Ph.D

thesis [6]), and the above theorem 2.1, we can easily get the following soundness and completeness results for

our algorithm W �.

Corollary 2.2 (Soundness of W �) Given a type environment TE and an ML expression e, if both (��; A) =
W �(e) and S� =Match(TE ; A) succeed, then S�(TE 0) ` e : S���.

Corollary 2.3 (Completeness of W �) Given a type environment TE and an ML expression e, suppose that

TE1 = S1(TE ) and TE1 ` e : �1, then both (��; A) = W �(e) and S� = Match(TE ; A) will succeed; Moreover

there exists a substitution S0 such that TE1 = S0(S�(TE )) and �1 � S0(gen(S�(TE ); S���)).

The algorithm W � itself is interesting. Recursive calls to W � in the algorithm will not interfere with each

other so they can be called in any order. If concurrency is used, W � can be e�ciently implemented. The case

for the let x = e1 in e2 expression implies that we can link two pieces of programs, i.e., e1 and e2, even

though both of them contain free variables; this is done by the algorithm PolyUnify in �gure 1.

The assumption environment A returned from W � may be big. A possible optimization is to insert a

simplifying procedure at each recursive call to W � in the algorithm. This simplifying procedure will identify

all \isolated" type assumptions in A. Given (�; A) = W �(e), we de�ne an equivalence relation � on type

variables: \� � � if there exists a type � 0 such that either � 0 = � or (x; � 0) 2 A for some x is true, and

both � and � are type variables of � 0." Let TV be the transitive closure of tyvars(� ) under �, then all pairs

(x; t) in A where tyvars(t) \ TV = ; are denoted as \isolated" assumptions. All type variables occurred in

\isolated" assumptions need not to be renamed in PolyUnify and most redundant \isolated" assumptions can

be eliminated.

2.2 The assumption inference algorithm D

One disadvantage of W � is that its sequential implementation may be not very e�cient in practice. In most

compilers, there is a pervasive basis (or initial library) which tends to be referenced very frequently by user

programs, thus the resulting assumption environment from W � may be quite big (even if it uses certain

optimizations mentioned above). It turns out that this problem can be elegantly solved by extending ML

types with type predicates and assumptions. This extension, which is called \constrained type" in Kaes [13]

and \quali�ed type" in Jones [12], is normally used to reason about the ML type system in the presence of

overloading and subtyping. The algorithm D presented in this section is the type reconstruction algorithm

for Kaes's constrained type system. By using a special set of type predicates, the algorithm D can e�ciently

solve the assumption inference problem even when there is a pervasive basis.

2.2.1 An extension of ML with constrained types

The extension of ML type system with constrained types (denoted as ML+) is discussed in detail by Kaes [13]

and Jones [12] to solve the type inference problem in languages that support overloading and subtyping. It

turns out that it can also be used to solve our assumption inference problem. The language syntax they use is

essentially same as the mini-ML language Exp. In the following, we give a quick review of Kaes's framework

of extending ML with constrained types. To ease the notation,
a
xn is used to denote a sequence x1; :::; xn.
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De�nition 2.1 Let P be a �nite n-indexed family of predicate symbols. The set of predicate constraints over

Type is de�ned as fp(a�n) j p 2 Pn; �i 2 Type where i = 1; :::; ng. An interpretation of P is a family of total

computable functions (p̂)p2P , such that for p 2 Pn; p̂ : (Type)
n ! 2.

De�nition 2.2 A set C of constraints is satis�able if there exists a substitution S such that if p(
a
�n) 2 C then

p̂(S(
a
�n)) is true. Satis�ablity will be denoted as S j= C.

De�nition 2.3 A substitution S is a solution of C, if S0 � S j= C for all substitutions S0. A solution S is

called the most general solution of a constraint set C, if for any solution R of C, there exists a substitution

S0, such that R = S0 � S. In most cases, the most general solution does not exist.

The entailment relation on constraint sets, written C1 `̀ C2, may be de�ned once a particular predicate system

is given. In the following, we only consider those predicate systems which satisfy the following properties: if

C1 `̀ C2 then 8S : S j= C1 ) S j= C2.

De�nition 2.4 A constrained type is a pair � jC, consisting of a type � and a set of constraints C. A

constrained type scheme is of the form 8a�n:� jC. A constrained type environment is now just a �nite map

from variables to constrained type schemes.

De�nition 2.5 A constrained type � 0 jC0 is a generic instance of a constrained type scheme � = 8a�n:� jC,
written as � 0jC0 � �, if there exists a substitution S with domain being a subset of

a
�n such that � 0 = S(� )

and C0 `̀ S(C). We also denote �0 � � if all generic instances of �0 are generic instances of �; and �0 � �

if �0 � � and � � �0.

Typability of an expression e in ML+ is expressed as a judgement C;TE ` e : � , which can be read as \e has

type � under (constrained) type environment TE, provided C is satis�able." The generalization of a constrained

type �jC in the context of a type environment TE is denoted by gen(TE ; �jC), it is the constrained type scheme

8a�n:�jC0 where f�1; :::; �ng = tyvars(�jC)ntyvars(TE ) and C0 =fp(a�) 2 C where tyvars(p(
a

� )) \a�n 6= ;g.

De�nition 2.6 A typing C;TE ` e : � is more general than C0;TE 0 ` e : � 0, if there exists a substitution S,

such that (1) x 2 dom(TE )) TE 0(x) � S(TE (x)) (2) gen(TE 0; � 0jC0) � S(gen (TE ; �jC)).

Kaes [13] presented the type deduction rules (also listed in the appendix at the end of this paper for

reference) and the type inference algorithm D (as in �gure 2) for the above extension. It can be proved that

his type inference algorithm D is sound and (syntactically) complete in the following sense:

Theorem 2.4 Let an instance of a constraint based inference system be given, e be an expression, TE and

TE 0 be type environments. Suppose for certain substitution S1, for each x 2 dom(TE );TE 0(x) � S1(TE (x));

and C0;TE 0 ` e : � 0 is a valid typing, then (S; �jC) = D(TE ; e) succeeds. Moreover, C; S(TE) ` e : � is valid

and more general than C0;TE 0 ` e : � 0.

2.2.2 Application to assumption inference

We can use the above extension to solve our assumption inference problem. The set of predicates we use,

denoted by Pm, is fpx(� ) where x is any program variableg. The interpretation of px is \p̂x(� ) = true if
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Def D(TE ; e) = case e of

x ) let TE(x) = 8a�n:�jC and
a
�n be new type variables and S =f�i 7! �i for i = 1; :::; n g

in (ID , S(� )jS(C))

�x:e1 ) let � be a new type variable and (S1; �1jC1) = D(TE � fx 7! �j;g; e1)
in (S1 , (S1(�)! �1)jC1)

e1e2 ) let (S1; �1jC1) = D(TE ; e1) and (S2; �2jC2) = D(S1(TE ); e2)

� be a new type variable and S3 = Unify(S2�1; �2 ! �)

in (S3 � S2 � S1 ; (S3�)j(S3(S2(C1) [ C2)))

let x = e1 in e2 )
let (S1; �1jC1) = D(TE ; e1) and (S2; �2jC2) = D(S1(TE ) � fx 7! gen(S1(TE ); �1jC1)g; e2)
in (S2 � S1 ; �2j(S2(C1) [ C2))

Figure 2: The Type Inference Algorithm D

and only if � � �, assuming that the type of x is a closed ML type scheme �." The entailment relation on

constraint sets is de�ned as: C1 `̀ C2 if and only if C1 is satis�able and 8S : S j= C1 ) S j= C2. This relation

is decidable for our particular predicate system Pm because of the following lemma:

Lemma 2.5 For any constraint set C formed in the predicate system Pm, either there is no solution or there

exists a most general solution S.

Proof If we consider each px(� ) as an assumption (x; � ), also assume that the type of x is known, the

Match algorithm in �gure 1 can be used to �nd the most general solution of C. The lemma then follows from

Robinson's uni�cation theorem. QED.

Given a closed ML type scheme � = 8a�n:� , it can be written as ML+ constrained type schemes �1 = 8a�n:�j;
or �2 = 8�:�jfpx(�)g, but obviously �1 � �2 in ML+.

The great thing about the algorithm D is that when it is running, it does not need any knowledge about

the interpretation of the predicate system. This leads to the following theorem:

Theorem 2.6 Given a ML type environment TE = TE1 � TE2, where Dom(TE1) \ Dom(TE2) = ; and

tyvars(TE2) = ;, we construct a ML+ constrained type environment TE 0 = TE 0
1 � TE 0

2 where TE 0
1= fx 7!

8a�n:(�j;) where x 2 Dom(TE1) and TE1(x) = 8a�n:�g and TE 0
2= fx 7! 8�:(�jfpx(�)g) where x 2 Dom(TE2)g

and the interpretation of px is \p̂x(� ) = true if and only if � � TE2(x)". Then (S; � ) = W (TE ; e) succeeds

if and only if (S0; � 0jC0) = D(TE 0; e) succeeds and there exists a most general solution S� for C0. Moreover,

there exists two substitutions R1 and R2, such that the following are true: (1) R1 � R2 = R2 � R1 = ID; (2)

R1(S(TE ); � ) = (S�(S0(TE )); S�� 0); (3) (S(TE ); � ) = R2(S�(S0(TE )); S�� 0).

Proof Follows from lemma 2.5 and theorem 2.4. For details, see the appendix. QED.

In practice algorithm D will be more useful than W � because it resembles the algorithm W and it also

works more e�ciently when the types of some free variables are known. Moreover, D can be easily extended to

9



aa a aa dec ::= a m 2 StrName aa j strdec a N 2 NameSet = Fin(StrName) aa j strdec dec1 a GE 2 SigEnv = SigId
�n! Sig aa a FE 2 FunEnv = FunId
�n! FunSig aa strexp ::= strid a SE 2 StrEnv = StrId

�n! Str aa j struct dec end a S or (m;E) 2 Str = StrName � Env aa j strexp.strid a E 2 Env = StrEnv aa j fctid(strexp) a � or (N )S 2 Sig = NameSet � Str aa a N (S;N 0(S0)) 2 FunSig = NameSet � (Str � Sig) aa strdec ::= structure strid = strexp a B 2 Basis = Nameset � SigEnv aa a � FunEnv � Env aa a aa
Figure 3: left: Grammar; right: Semantic objects

work on various extensions of the ML type system with overloading and subtyping such as those in Kaes [13].

3 Assumption Inference in the SML Module Language

In this section, we present an assumption inference algorithm for the SML module language. To simplify the

presentation, we only consider the skeletal language ModL (as in Tofte [31]) in �gure 3. Notice that signature

expressions and declarations are intentionally left out because their elaborations can be delayed to link time,

thus are irrelevant to our assumption inference. Functor declarations are not considered in our language either

because only their body, which is a structure expression, is elaborated at compile time. However, functor

applications are considered in our language because they are structure expressions which must be elaborated

at compile time.

The static semantics of ModL is discussed in detail in the de�nition [20] and Tofte [31]. Its deduction rule

is in the form of \B ` phrase ) A" meaning that phrase is elaborated into a semantic object A in the basis

B. The semantic objects are also de�ned in �gure 3. The appendix at the end of this paper lists the set of

static semantic rules for ModL. Here we give a quick review on the main concepts used in the static semantics.

De�nition 3.1 A structure S is a pair (m;E), where m is the name of the structure and E is an environment,

which gives the static information about the components of the structure. To make the presentation clear, from

now on, we shall use str(m,E) to denote a structure (m,E). A signature is an object of the form (N )S, where

S is a structure and N is a �nite set of names. A functor signature � is an object of the form N (S;N 0(S0))
where N (S) is the principal signature for the parameter signature expression of the functor and S0 is the body

structure of the functor, the names bound in S0 are the names in S0 which have to be generated afresh upon

each functor application.

De�nition 3.2 A structure environment SE is a �nite map from structure identi�ers to structures, similarly

for signature environment GE and functor environment FE.
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De�nition 3.3 (Names) StrName is an in�nite set of names: names that are speci�ed in a signature ex-

pression and are not shared with already declared structures are called 
exible names, denoted as FlexStrName;

names of declared structures are called rigid names, denoted as RigStrName.

De�nition 3.4 (Realization) A realization is a �nite mapping from FlexStrName to StrName, and a re-

naming realization '=fmi 7! m0
i where i = 1; :::;kg is a realization where m0

is are distinct rigid names.

De�nition 3.5 (Enrichment) A structure S1 = str(m1;SE 1) enriches a structure S2 = str(m2; SE2) if

m1 = m2 and the structure environment SE 1 enriches the SE 2. A structure environment SE1 enriches a

structure environment SE2 if Dom(SE 2) � Dom(SE 1) and for each s 2 Dom(SE 2), SE 1(s) enriches SE 2(s).

De�nition 3.6 (Signature Matching) A structure S0 matches a signature � = N (S) if there exists a

realization ' such that S0 enriches '(S).

Because the SML module language is explicitly typed, the elaboration of a module expression simply

involves type-checking. The static semantics in the De�nition [20] can be viewed as a type checking algorithm.

Given a structure expression with free identi�ers, we want to infer the minimum constraints on these free

identi�ers with which the expression will just type-check. Again the minimum constraints are not expressible

if we only use semantic objects in �gure 3. We introduce a new kind of structure variable which is similar

to row variables used in typing record calculi. Let StrVar be an in�nite set of structure variables; structures

and structure environments are now extended as Str0 = (StrName � StrEnv0) [ StrVar and StrEnv0 = StrId

! Str0. Each structure variable t must have a kind. Kinds are de�ned as (StrName � KindEnv) where

KindEnv is just a �nite mapping StrId ! (Str [ StrVar). To distinguish it from structures, a kind (m;KE )

is represented as STR(m;KE ). A kind assignment is a �nite mapping from structure variables to kinds. A

structure S = str(m;SE) has the kind k under the kind assignment K, written as K ` S :: k, if it is derivable

from the following set of kinding rules:

(1) K ` t :: STR(m,KE), if K(t) = STR(m;KE )

(2) K ` str(m; SE ) :: STR(m;KE ) if Dom(SE) � Dom(KE) and 8s 2 Dom(KE ); SE (s) = KE (s).

A substitution now consists of two parts: one from StrVar to Str0, another from FlexStrName to StrName

(i.e., realization). A kinded substitution is a pair consisting of a kind assignment and a substitution. A

kinded substitution (K1,R) respects a kind assignment K2 if, for all t in dom(K2), K1 ` R(t) :: R(K2(t)) is

a derivable kinding. A kinded substitution (K1,R1) is more general than (K2,R2) if R2 = R3 � R1 for some

R3 such that (K2,R3) respects K1. A kinded substitution (K1,R) is an uni�er of a kinded set of equations

(K2,P ) if it respects K2 and R(t1) = R(t2) for all (t1; t2) in P .

Figure 4 gives our inference algorithms Wstrexp on structure expressions, Wdec on declarations, Wfctid on

functor identi�ers, Wstrdec on structure declarations and the matching algorithm ModlMatch. The argument

V and M records those already-used structure variables and 
exible names. All functor applications are

done by the matching algorithm at link time. The \thinning e�ect" in functor applications (on the argument

signature) is achieved by the set of constraints generated by the GenRec algorithm. The inferred assumption

environment A automatically records the \minimum" sharing constraints required to make the structure

expression elaborate.
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aa a aa Def Wstrexp(se ; V;M ) = case se of aa Def Wdec(d; V;M ) = case d of aa x ) a sd ) Wstrdec(sd; V;M ) aa let t =2 V , m =2 M , a sd d ) aa V 0 = V [ ftg;M 0 =M [ fmg a let (K1; Env1; A1; V1;M1) = Wstrdec(sd; V;M ) aa in (ft::STR(m,;)g, t, fx 7! tg, V 0, M 0) a assume Env1 = fs 7! u1g aa a (K2; Env2; A2; V2;M2) = Wdec(d; V1;M1) aa s.a ) a assume A2(s) = ft1; :::; tkg aa let (K1; u1; A1; V1;M1) = Wstrexp(s; V;M ) a A3 = (A1 [ (A2nfsg)) aa t1; t2 =2 V1, and m1;m2 =2M1 a P = f(u1; t1); :::; (u1; tk)g aa K2 = K1[ ft1::STR(m1,fa 7! t2g)g a (K3,R) = KindUnify(K1 [K2; P ) aa K3 = K2[ ft2::STR(m2,;)g a in (K3, R(Env1 �Env2), R(A3), V2, M2) aa V2 = V1 [ ft1; t2g, M2 = M1 [ fm1;m2g a aa (K4,R) = KindUnify(K3,f(u1,t1)g) a aa in (K4, R(t2), R(A1), V2, M2) a Def GenRec(�; str(m;Env );K; V ) aa a let KE = ; aa f(s) ) a for each s 2 Dom(Env ) aa let (K1; u1; A1; V1;M1) = Wfctid(f; V;M ) a � =2 V and V = V [ f�g aa (K2; u2; A2; V2;M2) = Wstrexp(s; V1;M1) a (K;V ) = GenRec(�;Env (s);K; V ) aa t =2 V2;m =2M2 a KE = KE � fs 7! �g aa V3 = V2 [ ftg;M3 = M2 [ fmg a aa K3 = K1 [K2[ ft::STR(m,;)g a K = K [ f� :: STR(m;KE )g aa (K4,R) = KindUnify(K3,f(u1,u2 ! t)g) a in (K;V ) aa in (K4, R(t), R(A1 [A2), V3, M3) a aa a aa struct d end ) aa Def ModlMatch(B,T ) = aa let (K1; Env1; A1; V1;M1) = Wdec(d) a let (N;GE ;FE ; SE) = B aa m =2M1;M2 =M1 [ fmg a (K;u;A; V;M ) = T and P = ; aa in (K1, str(m,Env1), A1, V1, M2) a for each (x; tx) 2 A and x 2 StrId aa a P = P [ f(tx; SE (x))g aa a aa Def Wfctid(f; V;M ) = case f of a for each (x; tx) 2 A and x 2 FunId aa x ) a assume N1(S1; N 0
1(S

0
1)) = FE (x) aa let t1; t2 =2 V ;m1;m2 =2M a � =2 V and V = V [ f�g aa V1 = V [ ft1; t2g;M1 = M [ fm1;m2g a assume fm1; :::;mkg = N1 [N 0

1 aa K = ft1::STR(m1,;), t2::STR(m2,;)g a m0
1; :::;m

0
k =2M aa in (K; t1 ! t2; fx 7! t1 ! t2g; V1;M1) a M =M [ fm0

1; :::;m
0
kg aa a '=fmi 7! m0

i where i = 1; :::; kg aa Def Wstrdec(sd ; V;M ) = case sd of a P = P [ f(�! '(S0
1); tx)g aa structure s = se ) a (K;V ) = GenRec(�; '(S1);K; V ) aa let (K1; u1; A1; V1;M1) = Wstrexp(se; V;M ) a aa in (K1, fs 7! u1g, A1, V1, M1) a (K0; R) = KindUnify(K;P ) aa a in R(u) aa a aa

Figure 4: Assumption Inference in ModL
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Def KindUnify(K;P ) = case (K;P ) of

(K1; ;)) (K1; ID )

(K1; P1 [ f(t; t)g)) KindUnify(K1; P1)

(K1; P1 [ f(t1 ! t2; t
0
1 ! t02)g)) KindUnify(K1; P1 [ f(t1; t01); (t2; t02)g)

(K1 [ ft1 :: STR(m1;Env1)g; P1 [ f(t1; str(m2;Env2))g))
let check Dom(Env1) � Dom(Env2), otherwise fail

(Rm;m) = NameUnify(m1;m2) and Env 0
1 = Rm(Env1) and Env 0

2 = Rm(Env2)

R = (ft1 7! str(m;Env 0
2)g)(Rm) and K2 = R(K1)

P2 = R(P1) [ f(Env 0
1(s);Env

0
2(s)) j 8s 2 Dom(Env1)g

(K3; R
0) = KindUnify(K2; P2)

in (K3; R
0 �R)

(K1 [ ft1 :: STR(m1;Env1); t2 :: STR(m2;Env2)g; P1 [ f(t1; t2)g))
let (Rm;m) = NameUnify(m1;m2) and R = (ft1 7! t2g)(Rm)

Env 0
1 = R(Env1) and Env 0

2 = R(Env2) and Env 0 = Env 0
2 [ (Env 0

1nDom(Env 0
2))

K2 = R(K1) [ ft2 :: STR(m;Env 0)g
P2 = R(P1) [ f(Env 0

1(s);Env
0
2(s)) j 8s 2 Dom(Env 0

1) \Dom(Env 0
2)g

(K3; R
0) = KindUnify(K2; P2)

in (K3; R
0 �R)

(K1; P1 [ f(str(m1;Env1); str(m2;Env2))g))
let check Dom(Env1) = Dom(Env2), otherwise fail

(Rm;m) = NameUnify(m1;m2) and Env 0
1 = Rm(Env1) and Env 0

2 = Rm(Env2)

K2 = Rm(K1) and P2 = Rm(P1) [ f(Env 0
1(s);Env

0
2(s)) j 8s 2 Dom(Env 0

1)g
(K3; R

0) = KindUnify(K2; P2)

in (K3; R
0 �Rm)

Def NameUnify(m1;m2) =

if m1 = m2 then (ID,m1)

else if m1;m2 2 RigStrName then fail

else if m1 2 RigStrName then (fm2 7! m1g;m1)

else (fm1 7! m2g;m2)

Figure 5: Kinded uni�cation algorithm
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Figure 5 gives the uni�cation algorithms KindUnify and NameUnify. The kinded uni�cation algorithm

KindUnify presented there extends the one in Ohori [24] with considerations on ML structure names. The

following theorem can be proved in the same way as Ohori [24].

Theorem 3.1 Given any kinded set of equations, the algorithm KindUnify computes a most general uni�er

if one exists and reports failure otherwise.

The following lemma shows how the \thinning" e�ect is achieved in our algorithm.

Lemma 3.2 Given a signature � = N (S) and a structure S0, suppose that S0 does not contain any 
ex-

ible names; let � be a structure variable and V1 be any set of structure variables; suppose that (K;V ) =

GenRec(�; S; ;; V1), then KindUnify(K; f(�; S0)g) succeeds if and only if the structure S0 matches the signa-

ture �. Moreover, if R = KindUnify(K; f(�; S0)g), then S0 enriches R(S).

The following theorem can be proved by structural induction on structure expressions.

Theorem 3.3 Given an ML basis B and a structure expression strexp, then B ` strexp : S succeeds if and

only if both (K;u;A; V;M ) = Wstrexp(strexp; ;;RigStrName) and S0 = ModlMatch(B; (K;u;A; V;M )) succeed.

Moreover, there exists a renaming realization ' such that S = '(S0).

The algorithmWstrexp possesses most properties that W � has. It can also be modi�ed to take a basis B as

its argument (just as algorithmD) so that it can work more e�ciently when we compile a structure expression

in the pervasive basis.

4 Code Generation Issues

A compiling process usually contains two parts: elaboration (i.e., type inference or type-checking) and code

generation (also code optimization). The assumption inference algorithms presented in the last two sections

successfully solve the problem in the elaboration phase. In order to achieve the \smartest recompilation rule",

our compiler should generate code that will be reusable as long as the surroundings satisfy the \minimum"

import interface (i.e., match the assumption environment). This requires that our code generator should use

no more type information than is speci�ed in the \minimum" import interface.

Fortunately there are very few dependencies between the static semantics and the dynamic semantics in

SML. Moreover, although Leroy's representation analysis [17] shows that the compiler can bene�t a lot by

using type information in the front end, the SML/NJ compiler [4] uses almost no type information in its back

end but it still produces quite e�cient code. In SML/NJ, the only things that the back end needs to know

from the front end are the corresponding dynamic interface for each signature and the identi�er status for

each identi�er. By delaying these dependencies to be resolved at link time, a program can be translated into

machine code even before it is elaborated.

In the following, we only informally discuss the solutions to these issues.

Functor application In SML, a functor F with argument signature SIG can be applied to any structure S

that matches SIG. A structure does not have to agree exactly with a signature in order for it to match

the signature, instead it can contain more components than required. In such cases, signature matching
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will coerce the structure against the signature, producing a \thinned" structure that exactly agrees with

the signature in terms of number of components and their types. Suppose the corresponding dynamic

code for the functor F and the structure S is fd and sd , the code generated for a function application

F (S) will be fd(th(sd)) where th is a thinning function from S to SIG. In our separate compilation

scheme, it is possible that we still do not know the argument signature of F or the exact speci�cation of

structure S when we have to generate code for the functor application F (S). This is simply solved by

adding an abstraction on th, and the code becomes �th:(:::fd(th(sd )):::). The correct thinning function

is �lled in at link time when the real speci�cations of SIG and S are known.

Pattern matching In the SML/NJ compiler, the representation of a user de�ned datatype is determined by

its de�nition. For example,

structure A = struct datatype color = RED | GREEN | BLUE | MIX of real * real * real

end

structure B = struct fun redp(A.RED) = 1.0

| redp(A.MIX(x,_,_)) = x

| redp(_) = 0.0

end

the datatype color in A may be represented with integer tags 0,1,2,3 for the data constructors BLUE,

GREEN, MIX, and RED. However this imposes some problems if we want to separately compile structure B.

What representations are we going to use for A.RED and A.MIX in the redp function? Again this is solved

by making the representation of data constructors abstract (as in Aitken and Reppy's recent work [2]).

A \constant" data constructor (such as A.RED) is compiled as a variable. A value carrying constructor

(such as A.MIX) is compiled as a pair of injection and projection functions. These details are �lled in at

link time when the de�nition of the datatype is known.

Polymorphic equality functions Nothing needs to be done to support our separate compilation scheme

if the equality function is implemented as it currently is in the SML/NJ compiler. In SML/NJ (as in

all ML compilers to our knowledge), the polymorphic equality function is implemented as a runtime

\equality interpreter" which checks equality of two objects based on their runtime tags. Another way

to implement polymorphic equality, which is used in Haskell [11], is to pass an equality function for

each formal parameter that is a polymorphic equality type variable. The code produced by this scheme

closely depends on the derivation tree of the elaboration phase. In our separate compilation scheme,

because the types of some external identi�ers are not known at compile time, the derivation tree we get

at compile time is not accurate. For example,

fun f x = S.g (3,x)

from assumption inference, we know S.g's type must be in the form of int � �! � and f's in the form

of �! �. Because S.g may want to test the equality on its 2nd argument, the function f here has to be

implemented with an equality function for type � as its extra argument. This will have some runtime

overhead in the common case that S.g actually never does equality test on its 2nd argument.

Representation analysis Leroy [17] presented a program transformation that allows polymorphic languages

to be implemented with unboxed, multi-word data representation. The main idea is to introduce coer-

cions between various representations based on the typing derivation tree. In our separate compilation

system, accurate type information for external identi�ers are not available at compile time, so the typing

derivation tree is not very speci�c. However the representation analysis can still be carried out since

all type instances of external identi�ers are recorded in the assumption environment. At link time, the
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matching algorithm Match will �nd out the accurate type information of all external identi�ers and co-

erce them into di�erent type instances in the assumption environment. For example, the above function

f will be implemented as a polymorphic function �! �. When we �nd that S.g has type int � int ! int,

S.g has to be coerced to type int � �! � and f has to be coerced from �! � to int ! int. The code

produced in this way will be less e�cient, but it should be acceptable if in practice there are not too

many external identi�ers in a module (especially when we use algorithm D).

Open declaration The open declaration in SML causes several nasty problems for our separate compilation

scheme. For example, in the following structure declaration, there is no way to �gure out the identi�er

status of RED without looking at the de�nition of structure A.

structure S = struct open A

fun redt(RED) = RED

| redt _ = BLUE

end

Here RED can either be a data constructor if it is de�ned in a data type declaration in structure A, or

RED could simply be a pattern variable if it is not de�ned elsewhere (this is one of the ugliest features in

ML). A solution to this problem is to introduce a boolean status variable for each \ambiguous" identi�er.

This status variable speci�es whether the identi�er is a data constructor or a pattern variable. Assume

that status-RED is the status variable of RED, then the above redt function can be rewritten as follows:

val redt = if status-RED then fn x => x (* RED is not a constructor *)

else (fn RED => RED (* RED is a constructor *)

| _ => BLUE)

However this solution may cause code explosion if not careful. Another solution is to introduce a

predicate for each ambiguous identi�er. Assume that pred-RED is the corresponding predicate for RED,

then at link time, pred-RED will be set to fn x => true if RED is a pattern variable, and fn x => (x

= RED) otherwise. Then the above redt function can be rewritten as follows:

fun redt(x) = if pred-RED(x) then x

else BLUE

This solution may incur some runtime overhead for the case that RED is a pattern variable. But in that

case, the above code is written in such a bad style that it well deserves such a penalty. Other nasty

problems related with open can be solved in the same way by resolving certain information at link time.

These solutions may increase the complexity of compiling and linking but most of them do not incur

any runtime overhead (however, they may stop some inline-expansion optimizations).

5 Implementation

We are currently prototyping a separate compilation system based on our algorithms into the SML/NJ com-

piler. In our system, a large ML program is composed of a set of top-level structure declarations, signature

declarations and functor declarations. No two top-level structures (or signatures, functors) can have the same

identi�er name so that we can uniquely determine which de�nition each external identi�er refers to. Every

top-level declaration is considered as a compilation unit. Because signatures are usually small and compiling

signature declarations does not take much time, their elaborations are delayed to be done at link time. To

compile a structure or functor declaration, we apply the assumption inference algorithm to its body (which

is always a structure expression), generate the machine code for the body, and then write both the inferred
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interface (i.e., the assumption environment) and the machine code into its binary �le. The �nal linking phase

is done in certain order according to the dependency relation among di�erent modules. This dependency

relation has been already recorded in the inferred interface in each binary �le. For each module, the linker

simply reads the binary �le, elaborates every signature expression, applies the matching algorithm (i.e.,Match

and ModlMatch) to recover the correct static environment and detect cross-module type errors if there are

any, and then concatenates the machine code with correct thinning functions.

6 Related Work

Most dynamically-typed languages such as Lisp also allow independent compilations and can achieve the

same kind of \smartest recompilation" in the sense that a module never needs to be recompiled unless its

implementation changes. However, this is based on a big sacri�ce: cross-module type errors will be detected

only at runtime. Our method, however, will detect all cross-module type errors at link time.

Levy [18] presents a separate compilation method very similar to ours for PASCAL-like languages. Its

compiler also automatically infers the import interface for each compilation unit. Cross-module type errors

are reported at link time. However he does not mention whether he achieves the smartest recompilation rule,

and the type systems of PASCAL-like languages are much simpler than that of SML.

Traditional separate compilation systems adopted in most statically typed languages all use manually

created interface �les. Each compilation unit contains an implementation plus several interface �les. It has

to be fully closed up to the pervasive basis so that the speci�cations of all external symbols will be found at

compile time. The make system [9] is the simplest one along this line. It will trigger recompilations if the

interface �le a module depends on changes. Tichy [30] and Schwanke [29] eliminated most recompilations by

examining �ner-levels of dependency relations between interfaces and implementations. In their methods, if

the interface �le a module depends on changes, but the set of symbols the module imports does not change,

then the module does not need to be recompiled. SRC Modula-3 [22, 14] implements exactly the same idea: a

version stamp which encodes the speci�cation of a symbol is produced for each exported symbol in an interface;

modules import the version stamps of the symbols that they import; a module only needs to be recompiled

if any of its imported version stamps are no longer exported. Languages with very powerful module systems

such as Mesa [21], the System Modeller in Cedar [15], and FX-87 [8] also adopt similar separate compilation

methods which are only applicable to closed modules. The compiler for Russell [5] does partially support

separate compilations on \open-formed" expressions, however its \module system" is very restrictive and all

\modules" must be loaded and compiled in an order determined by their dependencies. In summary, these

previous methods cannot achieve the smartest recompilation rule, neither can they be applied to compile

open-formed modules in SML.

In SML, two kinds of separate compilation methods have been proposed: Rothwell and Tofte's import

scheme [28] and Rollins's SourceGroup scheme [27]; both methods apply only to closed functors. Recently,

Emden Gansner [10] is implementing a make-like separate compilation system for open-formed modules in the

interactive SML/NJ compiler. In his method, all modules are loaded and compiled in a top level environment

in an order determined by their dependencies. Whenever a module is compiled, a new time stamp is generated;

both the binary and the time stamp are then written out to the binary �le. A module has to be recompiled

whenever its source changes or any of its predecessors (in the dependency graph) have been recompiled.

Gansner is also planning to export the static semantics of each module into the binary �le so that redundant

recompilations can be detected and avoided if the static semantics of a module has not been changed.
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Aditya and Nikhil [1] have been working on similar kinds of assumption inference algorithms for their

incremental compiler for Id [23]. However as far as we know, their algorithm does not infer the minimum

constraints, thus fails to achieve our theorem 2.1. Because their system allows mutually recursive top-level

declarations, it cannot fully recover the correct type information by simply using our assumption inference

and matching algorithm. In the SML module language, however, top-level declarations cannot be mutually

recursive.

Damas [6] gave an inference algorithm called T which is very similar to our W � in section 2. His type

system permits that a variable can be bound to several distinct types in the type environment (just like our

assumption environment). However since he mainly used the system to handle overloading, he did not try

to prove our theorem 2.1. The soundness and syntactic completeness results he proved for T are only for

his particular type system, not for the usual ML type system [31], so they are not in the same sense as our

corollary 2.2 and 2.3. The algorithm V in Leivant [16] is just Damas's T restricted to the type system without

ML-polymorphism. Its extension V2 is for the polymorphic discipline of rank 2 and the relation between W

and V2 is not clear. On the side of the SML module language, Aponte [3] presented a type checking algorithm

for ModL based on Remy's approach to record typing [25]. Her approach is very elegant; however, in practice

it is probably very di�cult to implement e�ciently. It is also not clear whether her algorithm can be modi�ed

to do our assumption inference.

7 Concluding Remarks

We have presented a separate compilation method that achieves the \smartest recompilation rule" for open-

formed modules in Standard ML. In our method, each module is compiled independently without knowing

the speci�cations of its external identi�ers; its import interface, instead, is inferred by looking at how each

external identi�er is used inside the module. Cross-module type inconsistencies are detected at link time by

simply matching the real speci�cations against the inferred import interface (this process should be very fast

because it only involves an uni�cation of a set of types). The independent compilation of each module may

disable some inter-module optimizations, but we believe that the code generated by our recompilation method

will be comparable to the quite e�cient code generated by the current SML/NJ compiler [4]. We plan to

implement and measure our algorithm in SML/NJ in the future.

The smartest recompilation technique in this paper is presented in the framework of SML; however, it

can be easily applied to other polymorphic languages based on the Damas-Milner type discipline. It should

be straightforward to extend the algorithm D in section 2.2 to work on the extension of ML type system

with parametric overloadings [13]. The assumption inference algorithms presented in section 2 and 3 can also

be used as a basis to build incremental compilers for similar languages. On the other hand, we still do not

know how to extend the algorithm for ModL to work on the extension of ML module system with high-order

functors [32].

The smartest recompilation technique should also be applicable to languages in the Algol family. The

type system in those languages are much simpler than that in ML, so it is not hard to infer the \minimum"

import interface for each module. However, the code produced by smartest recompilation will be less e�cient

because the code generators of these languages usually rely much more on the inter-procedure type and data


ow information than those of polymorphic languages. For applications where reusability and recon�guration

are more important than e�ciency, the smartest recompilation property is still very desirable.
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8 Appendix: Proof of Theorem 2.1

The proof of theorem 2.1 is organized in �ve parts: the �rst part introduces some notations and lemmas used

later in the proofs; the rest four parts give the detailed proofs.

8.1 Notations and Lemmas

Before we proceed, let's introduce some new notations and lemmas:

De�nition 8.1 A substitution is a �nite map from type variables to types. The domain of a substitution

S, denoted as Dom(S), is the set of type variables � such that S(�) 6= �. The region of a substitution S,

denoted as Reg(S), is the union of all tyvars(S(�)) for all � 2 Dom(S). A substitution is called a variable-

pure substitution if for all � 2 TyVar, S(�) is a type variable. The addition of two substitutions S1 and S2,

denoted as S1 + S2, is \S(�) = if � 2 Dom(S1) then S1(�) else S2(�)." Assume that D is a set of type

variables, the substitution S#D denotes the substitution S with its domain restricted to D \Dom(S).

We de�ne an object to be either a type, a type scheme, a type environment, or a tuple of other objects. The

set of type variables occurred free in an object A is denoted as tyvars(A).
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De�nition 8.2 Given an object A, a renaming substitution for this object is a variable-pure substitution

f�i 7! �i j i = 1; :::;ng such that f�i j i = 1; :::; ng � tyvars(A), the �is are distinct and (tyvars(A) n
f�i j i = 1; :::; ng) \ f�i j i = 1; :::; ng = ;.

De�nition 8.3 Two types �1 and �2 are called variants if there exist substitutions S1 and S2 such that �1 =

S1(�2) and �2 = S2(�1), we can also de�ne variants relations similarly on type schemes, type environments,

or objects with same shapes. The variant relation is denoted as �=.

The variants relation is obviously re
exive, symmetric and transitive, thus it is an equivalence relation. \Vari-

ants" is very important in comparing two objects because of the following lemma:

Lemma 8.1 If two objects A and B are variants, then there exist a renaming substitution S for A and a

renaming substitution R for B such that B = S(A) and A = R(B) and S �R = R � S = ID.

From lemma 8.1, to prove the second part of the theorem 2.1, we only need show that (S(TE ); � ) and

(S�(TE ); S���) are variants. Here are some other lemmas we are going to use in the proof:

Lemma 8.2 Given a �nite set of pairs of types P , suppose both S1 and S2 are the most general uni�ers of

P , then for any objects A, S1(A) and S2(A) are variants.

Lemma 8.3 Given a �nite set of pairs of types P , then the following statements are true:

� If Unify(P ) succeeds, it will return a mgu S with Reg(S) � tyvars(P ).

� If Unify(P ) succeeds and P1 � P , then Unify(P1) also succeeds; moreover, if P = P1 [ P2 and S1 is a

mgu of P1, then Unify(S1(P2)) also succeeds.

� Suppose P = P1 [ P2, Unify(P1) succeeds and S1 is a mgu of P1, and Unify(S1(P2)) succeeds and S2 is

a mgu of S1(P2), then Unify(P ) succeeds and (S2 � S1) is a mgu of P .

� Given a renaming substitution R for P , suppose R0 is an inverse substitution of R in the sense that

R �R0 = R0 �R = ID, then Unify(P ) succeeds if and only if Unify(R(P )) succeeds. Moreover, if S is a

mgu of P then (S �R0) is a mgu of R(P ).

In the �gure 6 we review Tofte [31]'s version of the classical ML type inference algorithm W . The following

lemma can easily be proved by structural induction on the expression e.

Lemma 8.4 Given TE and e, if (S; � ) = W (TE ; e) succeeds, and (S0; � 0) is simply the result of another run

of the algorithm W on TE and e by choosing di�erent new type variables, then (S(TE ); � ) and (S0(TE ); � 0)
are variants.

We use TyVar0 to denote the set of new type variables used in running W (TE ; e) plus those type variables

occurred free in TE. Then we let W � and Match only use new type variables from TyVarnTyVar0. From

lemma 8.4, whichever set of new type variables W is using, the resulting (S(TE ); � ) is always a variant of

each other. Thus it su�ces to prove that theorem 2.1 is true when W and W � are using di�erent set of new

type variables. In the next for sections, we show it by structural induction on the expression e in Exp.
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Def W (TE ; e) = case e of

x ) let TE(x) = 8a�n:� and
a
�n be new type variables and S =f�i 7! �i for i = 1; :::; n g

in (ID , S(� ))

�x:e1 ) let � be a new type variable and (S1; �1) =W (TE � fx 7! �g; e1)
in (S1 ; (S1(�)! �1))

e1e2 ) let (S1; �1) = W (TE ; e1) and (S2; �2) =W (S1(TE ); e2)

� be a new type variable and S3 = Unify(S2�1; �2 ! �)

in (S3 � S2 � S1 ; (S3�))

let x = e1 in e2 )
let (S1; �1) = W (TE ; e1) and (S2; �2) =W (S1(TE )� fx 7! gen(S1(TE ); �1)g; e2)
in (S2 � S1 ; �2)

Figure 6: The classical ML Type Inference Algorithm W

8.2 Case 1: variable
aa e = x aa

(Part 1) W (TE ; x) will succeed only when x 2 Dom(TE ), in which case both (��,A) = W �(x) and

Match(TE ,A�) will succeed, vice versa.

(Part 2) Now suppose (��; A) = (
; fx 7! 
g) and TE (x) = 8a�n:� , then W (TE ; x) = (ID ; S0
1� ) where S

0
1 =

f�i 7! �i j i = 1; :::; ng and all �i are new type variables. On the other hand, S� = Match(TE ; A) = f� 7! S0
2�g

where S0
2 = f�i 7! 
i j i = 1; :::; ng and all 
i are new type variables. Thus let's choose R1 = f�i 7! 
ig and

R2 = f
i 7! �ig, then obviously (S� (TE), S��) and (ID (TE ), S0
1� ) are variants through R1 and R2.

8.3 Case 2: lambda abstraction
aa e = �x:e1 aa

(Part 1) Suppose W (TE ; e) succeeds, we want to prove that both (��; A) = W �(�x:e1) and Match(TE ; A)

will also succeed.

Let � be a new type variable used inW , then (S1; �1) =W (TE �fx 7! �g; e1) should also succeed. Therefore

by induction, both (��
1 ; A1) = W �(e1) and S�

1 = Match(TE � fx 7! �g; A1) will succeed too. Let the set

of type assumptions for x in A1 be fx 7! ti where i = 1; :::;kg and let � be a new type variable used in

W � and let S�
0 = MonoUnify(�;A1(x)), then obviously S�

0 is simply Unify(f(�; ti) j i = 1; :::; ng). Let P

= f� 7! �g and P 0 = f� 7! �g, by lemma 8.3, because both P (TE ) = TE and P 0(A1) = A1 are true,

Match(TE � fx 7! �g; A1) will also succeed and S�
1 � P 0 is one of its mgu. On the other hand, because

Match(TE � fx 7! �g; A1) succeeds, by lemma 8.3, Unify(f(�; ti) j i = 1; :::; ng) should also succeed. Thus

S�
0 = Unify(f(�; ti) j i = 1; :::; ng) will succeed too. Thus because S�

0 (TE ) = TE is true, by lemma 8.3,

S�=Match(TE ; S�
0(A1 n fxg)) will also succeed. The reverse direction can be proved in the same way using

lemma 8.3.

(Part 2) Let's still use the notations in part 1, by induction, we know that there exists two substitutions
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R11 and R12 such that the following are true:

� R11 �R12 = R12 �R11 = ID ,

� S1(TE � fx 7! �g) R11�! S�
1 (TE � fx 7! �g) and �1

R11�! S�
1 (�

�
1 ),

� S�
1 (TE � fx 7! �g) R12�! S1(TE � fx 7! �g) and S�

1 (�
�
1 )

R12�! �1.

Then we can deduce the following by using lemma 8.3 and lemma 8.2,

S�(TE ; S�
0(� ! ��

1 )) �= (Match(TE ; S�
0(A1 n fxg)))(TE ; S�

0(� ! ��
1 ))�= (Match(S�

0 (TE ); S
�
0(A1 n fxg)) � S�

0 ) (TE ; � ! ��
1 )�= (Match(TE � fx 7! �g; A1)) (TE ; � ! ��

1 )�= (Match(TE � fx 7! P (�)g; A1)) (TE ; � ! ��
1 )�= (Match(TE � fx 7! �g; A1) � P 0) (TE ; � ! ��
1 )�= (Match(TE � fx 7! �g; A1)) (TE ; �! ��

1 )�= (S�
1 (TE ), S

�
1 (�! ��

1 ))�= (S1(TE ),(S1 � ! �1))

Thus we prove that S�(TE ; S�
0(� ! ��

1 )) and (S1 TE ,(S1 � ! �1)) are variants.

8.4 Case 3: application
aa e = e1 e2 aa

(Part 1) Suppose W (TE ; e) succeeds, we want to prove that both (��; A)=W �(e1 e2) and Match(TE ; A)

will also succeed.

Because W (TE ; e) succeeds, both (S1; �1) = W (TE ; e1) and (S2; �2) = W (S1(TE ); e2) will also succeed.

Let � be a new type variable used in W , then S3 = Unify(S2(�1); �2 ! �) will succeed. By induction we know

that both (��
1 ,A1)=W

�(e1) and (��
2 ,A2)=W

�(e2) will succeed. The corresponding uni�cations S�
1 =Match(TE ,

A1) and S�
2=Match(S1(TE ); A2) will succeed too. Moreover there exists four (renaming) substitutions R11,

R12, R21 and R22 such that the following are true:

� R11 �R12 = R12 �R11 = ID , and R21 �R22 = R22 �R21 = ID .

� S1(TE )
R11�! S�

1 (TE ) and �1
R11�! S�

1 (�
�
1 ),

� S�
1 (TE )

R12�! S1(TE ) and S�
1(�

�
1 )

R12�! �1,

� S2(S1(TE ))
R21�! S�

2 (S1(TE )) and �2
R21�! S�

2 (�
�
2 ),

� S�
2 (S1(TE ))

R22�! S2(S1(TE )) and S�
2 (�

�
2 )

R22�! �2,

First we prove R22(S
�
2 (�1)) = S2(�1). Suppose TT is the set of pairs of types to be uni�ed in running

Match(S1(TE ); A2), TT will contain type variables from tyvars(S1(TE )) [ tyvars(A2) and some new type

variables. From the de�nition of a mgu, S�
2=Unify(TT ) should be the identity on all type variables except

those in tyvars(TT ). Because we are running Robinson's original uni�cation algorithm, Reg(S�
2) is a subset

of tyvars(TT). Similarly from the de�nition of renaming substitutions, R22 should be the identity on all type
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variables except those in Reg(S�
2). We also know S2 will be the identity on tyvars(�1)ntyvars(S1(TE )) because

Dom(S2) will be tyvars(S1(TE )) plus some new type variables. Thus we have R22(S�
2 (�1)) = S2(�1).

Now because S3 = Unify(S2(�1); �2 ! �) succeeds, Unify(R22(S�
2 (�1)); R22(S�

2 ((�
�
2 ! �)))) should also suc-

ceed. By lemma 8.3, Unify(S�
2�1; S

�
2(�

�
2 ! �)) will succeed too and (S3 �R22) is one of its mgu.

Because S�
2 = Match(S1(TE ); A2) succeeds, by lemma 8.3, Match(S1(TE )�fx 7! �1g; A2[ fx 7! (��

2 ! �)g)
will also succeed (here x is used to ease the notation; it is an unused program variable). Moreover also by

lemma 8.3, Q1 = (S3 �R22) � S�
2 will be one of its mgu.

Because we are using di�erent new type variables in W and W �, and the call of W �(e1) and W �(e2) are

using totally di�erent type variables, the following equations are obviously true: R12S
�
1 (TE ) = S1(TE ) and

R12S
�
1 (A2) = A2 and R12S

�
1�

�
2 = ��

2 and R12S
�
1�

�
1 = �1 and R12S

�
1� = �.

Because Match(TE �fx 7! R12S
�
1�

�
1 g; A2[fx 7! (��

2 ! �)g) succeeds and Q1 is one of its mgu, by lemma 8.3,

Match(TE � fx 7! ��
1g; A1 [A2 [ fx 7! (��

2 ! �)g) will also succeed. Moreover Q2 = (Q1 � R12) � S�
1 is one

of its mgu.

Let � be the new type variable used inW �, let's de�ne P = f� 7! �g and P 0 = f� 7! �g. Again by lemma 8.3,

Match(TE �fx 7! ��
1 g; A1[A2[fx 7! (��

2 ! �)g) will also succeed. Moreover, Q2 �P 0 will be one of its mgu.

Thus again by lemma 8.3, S�
3 = Unify(f(��

1 ; �
�
2 ! �)g) also succeeds. Let's assume S�

3 be the mgu produced

when running W �. Thus because S�
3 (TE ) = TE is true, S� = Match(TE ; S�

3(A1 [A2) also succeeds.

The reverse direction can be proved in the same way as above by keeping applying lemma 8.3.

(Part 2) Let's still use the notations introduced in part 1, we can get the following by using lemma 8.3 and

lemma 8.2:

S�(TE ; S�
3(�))

�= (Match(TE ; S�
3 (A1 [A2)))(TE ; S�

3(�))�= (Match(S�
3 (TE ); S

�
3 (A1 [A2)))(S�

3 (TE ); S
�
3 (�))�= (Match(TE � fx 7! ��

1 g; A1 [A2 [ fx 7! (��
2 ! �)g)) (TE ; �)

�= (Q2 � P 0) (TE ; �)
�= Q2(TE ; �)
�= ((Q1 �R12) � S�

1 )(TE ; �)�= Q1(R12(S�
1 (TE )); R12(S�

1 (�)))�= Q1(S1(TE ); �)
�= ((S3 �R22) � S�

2 )(S1(TE ); �)�= S3(R22(S
�
2 (S1(TE ))); R22(S

�
2 (�)))�= S3(S2S1(TE ); �)

�= (S3S2S1(TE ); S3�)

Thus we prove that S�(TE ; S�
3(�)) and (S3S2S1(TE ); S3�) are variants.

8.5 Case 4: let expression
aa e = let x = e1 in e2 aa

(Part 1) We want to prove that if W (TE ; e) succeeds, then both (��; A) = W �(e) and Match(TE ; A) will

also succeed. Suppose W (TE ; e) succeeds, then both (S1; �1) =W (TE ; e1) and (S2; �2) = W (S1(TE )� fx 7!
gen(S1(TE ); �1g; e2) will also succeed. By induction, both (��

1 ,A1)=W �(e1), (��
2 ,A2)=W �(e2) and S�

1 =
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Match(TE ; A1) and S�
2 = Match(S1(TE ) � fx 7! gen(S1(TE ); �1)g; A2) will succeed too. Moreover, there

exists four renaming substitutions R11, R12, R21 and R22 such that the following is true:

(1) R11 �R12 = R12 �R11 = ID , and R21 �R22 = R22 �R21 = ID ;

(2) S1(TE )
R11�! S�

1 (TE ) and �1
R11�! S�

1 (�
�
1 ); S

�
1(TE )

R12�! S1(TE ) and S�
1 (�

�
1 )

R12�! �1;

(3) S2(S1(TE )� fx 7! gen(S1(TE ); �1)g) R21�! S�
2 (S1(TE ) � fx 7! gen(S1(TE ); �1)g) and �2

R21�! S�
2 (�

�
2 );

(4) S�
2(S1(TE )� fx 7! gen(S1(TE ); �1)g) R22�! S2(S1(TE ) � fx 7! gen(S1(TE ); �1)g) and S�

2 (�
�
2 )

R22�! �2.

First we de�ne the following notations: let the type assumptions for x in A2 be A2(x) = fti j i = 1; :::; kg;
let tyvars(A1) be TVA1 = f�i j i = 1; :::;mg and tyvars(��

1 ) be TV ��1 = f�ij j 1 � ij � m, j = 1; :::;u

and u � mg [ f�i j i = 1; :::; vg; we assume that ��
1 contains some type variables �ij from TVA1 and some

new type variables �i. Assume that �ij, where j = 1; :::; k and i = 1; :::;m, are m � k new type variables, for

each j = 1; :::; k, we de�ne a renaming substitution Cj for A1 where Cj = f�i 7! �ij j i = 1; :::;mg, and a

substitution C0
j = f�ij 7! �i j i = 1; :::;mg. Let C0 = C0

1 + :::+ C0
k. Assume that �ij, where j = 1; :::; k and

i = 1; :::; v, are v � k new type variables, for each j = 1; :::; k, we de�ne a renaming substitution Hj for ��
1

where Lj = f�i 7! �ij j i = 1; :::; vg. Also we denote Hj = Cj + Lj for each j = 1; :::; k.

Using the above notations, (S�
3 ; A3) = PolyUnify((TV ��1 [ TVA1 ; �

�
1 ; A1); A2(x)) is equivalent to that S�

3 =

Unify(f(Hj�
�
1 ; tj) j j = 1; :::; kg) and A3 = C1A1 [ ::: [ CkA1. Therefore, to prove that both S�

3 =

Unify(f(Hj�
�
1 ; tj) j j = 1; :::; kg) and S� = Match(TE ; A1 [ S�

3 (A3 [ A2 n fxg)) succeed, by lemma 8.3,

we simply need to prove that Match(TE �fx(j) 7! Hj�
�
1 j j = 1; :::; kg; A1[C1A1 [ :::[CkA1[A2) succeeds.

Here we informally use x(j) to mean the k di�erent instances of x, corresponding to those k assumptions tj in

A2 for x.

We are going to prove that Match(TE � fx(i) 7! Hi�
�
1 j i = 1; :::; kg; A1[C1A1 [ :::[CkA1 [A2) succeeds in

the following two steps:

Step 1.1 First, we prove that the uni�cation S+ = Match(TE ; A1 [ C1A1 [ :::[ CkA1) succeeds. We shall

construct such mgu S+ from S�
1 = Match(TE ; A1).

Assume that when doing Match(TE ; A1), the set of new type variables introduced by instantiating bound

variables in TE is f�i j i = 1; :::; ng. Let �ij , where i = 1; :::; n and j = 1; :::; k, be n � k new type variables.

All these type variables virtually corresponds to di�erent instantiations of bound variables in TE when doing

Match(TE ; A1 [C1A1 [ :::[CkA1). Let's de�ne a substitution Bj for each j = 1; :::; k such that Bj = f�i 7!
�ij j i = 1; :::; ng. We also de�ne substitutions B0

j = f�ij 7! �i j i = 1; :::; ng for each j = 1; :::; k and

B 0 = B0
1 + :::+ B0

k. Let's denote the set of free type variables tyvars(TE ) in TE by f
1; :::; 
pg. Suppose

S�
1 = Match(TE ;A1) = Unify(f(xi; yi) j i = 1; :::;qg). The domain of S�

1 will be TV S�1 = f�1; :::; �mg
[ f�1; :::; �ng [ f
1; :::; 
pg. The region of S�

1 will be a subset of TV S�1 . Therefore we know for all �i,

S�
1 (�i) = �i. We also de�ne TV S+ = TV S�1 [ f�ij j i = 1; :::;n; j = 1; :::; kg[ f�ij j i = 1; :::;m; j = 1; :::; kg.

Because Dom(Bj) \ Dom(Cj) = ;, we de�ne a substitution Dj to be Bj +Cj and D0
j to be B0

j +C0
j for each

j = 1; :::; k. Now Match(TE ; A1 [ C1A1 [ :::[CkA1) is essentially equivalent to Unify(TT) where

TT = (f(xi; yi) j i = 1; :::; qg[ (
k[

j=1

f(Bjxi; Cjyi) j i = 1; :::; qg))

The substitution S+ is constructed as follows, note that the domain of S+ is TV S+ and the region of S+ is a

subset of TV S+ .

� First we de�ne a substitution Fj for each j = 1; :::; k such that
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{ Fj(�i) = if �i 2 � then �i else �ij where i = 1; :::;m;

{ Fj(�i) = if �i 2 � then �i else �ij where i = 1; :::; n;

{ Fj(
i) = 
i where i = 1; :::;p.

� We de�ne a substitution F 0
j on Dj(TV S�1 ) such that

{ F 0
j(�ij) = if �i 2 � then �ij else �i where i = 1; :::;m;

{ F 0
j(�ij) = if �i 2 � then �ij else �i where i = 1; :::; n;

{ F 0
j(
i) = 
i where i = 1; :::; p.

We also de�ne F 0 = F 0
1 + :::+ F 0

k. Obviously we have Fj � F 0
j = F 0

j � Fj = ID .

� Now we can de�ne the substitution S+ on TV S+ :

{ S+(�i) = S�
1 (�i) where i = 1; :::;m;

{ S+(�ij) = (Fj � S�
1 )(�i) where i = 1; :::;m and j = 1; :::; k;

{ S+(�i) = S�
1 (�i) where i = 1; :::; n;

{ S+(�ij) = (Fj � S�
1 )(�i) where i = 1; :::; n and j = 1; :::; k;

{ S+(
i) = S�
1 (
i) where i = 1; :::; p. Notice here we also have Fj(S�

1 (
i)) = S�
1 (
i) for each j = 1; :::; k

because tyvars(S�
1 (
i)) is a subset of �.

We can easily prove the following several statements:

� S+ is an uni�er of TT ;

Proof

{ S+(xi) = S�
1 (xi) = S�

1 (yi) = S+(yi) where i = 1; :::; q;

{ From the de�nition of Fj , we know for each type variable � 2 TV S�1 , S
+(Dj(�)) = Fj(S�

1 (�)).

Thus for each j = 1; :::; k, we have S+(Bjxi) = Fj(S�
1 (xi)) = Fj(S�

1 (yi)) = S+(Cjyi) where

i = 1; :::; q.

� The substitution S�
1j = S+ # (Dj(TV S�1 )) is a most general uni�er of f(Bjxi; Cjyi) j i = 1; :::; qg;

Proof We know for each type variable � 2 TV S�1 , S
+(Dj(�)) = Fj(S�

1 (�)). Thus S
�
1j �Dj = Fj � S�

1

and therefore S�
1 = F 0

j � S�
1j �Dj .

Given an uni�er G of f(Bjxi; Cjyi) j i = 1; :::; qg, since G(Bjxi) = G(Cjyi) for each i = 1; :::; q,G�Dj is

also an uni�er of f(xi; yi) j i = 1; :::; qg. Thus there exists a substitution G0 such that G �Dj = G0 � S�
1 .

Thus we can get G = G0 �S�
1 �D0

j = (G0 �F 0
j) �S�

1j This exactly means that S�
1j is a most general uni�er

of f(Bjxi; Cjyi) j i = 1; :::; qg;
� S+ is a most general uni�er of TT .

Proof Given an uni�er G for TT , G0 = G # TV S�1 will be an uni�er for f(xi; yi) j i = 1; :::; qg and
for each j = 1; :::; k, Gj = G # Dj(TV S�1 ) is an uni�er of f(Bjxi; Cjyi) j i = 1; :::; qg. Thus from the

de�nition of mgu, there exists k + 1 substitutions G0
j where j = 0; :::; k such that G0 = G0

0 � S�
1 and

Gj = G0
j � S�

1j for each j = 1; :::; k. Since the region of S�
1 is a subset of TV S�1 , and for each j = 1; :::; k,

the region of S�
1j is a subset of Dj(TV S�1 ), we can construct a substitution G0 from G0

j for j = 0; :::; k as

follows:

{ For each � 2 Reg(S+), because S+(�) = �, we de�ne G0(�) = G(�).
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{ For all � =2 Reg(S+), we simply de�ne G0(�) = �.

Now it's easy to see for all � 2 TV S+ , G(�) = G0(S+(�)), that is, G = G0 � S+, thus S+ is a most

general uni�er of TT .

From the de�nition of S+, we know that the following are true:

� S+(TE ) = S�
1 (TE ) = R11(S1(TE ));

� S+(��1 ) = S�
1 (�

�
1 ) = R11(�1);

� S+(Hj�
�
1 ) = Lj(S

�
1j(Dj�

�
1 )) = Lj(Fj(S

�
1 (�

�
1 ))) = (Lj � (Fj �R11))�1 where j = 1; :::; k;

Step 1.2 We prove that the uni�cation Match(S+(TE ) � fx(j) 7! S+Hj�
�
1 j j = 1; :::; kg; S+A2) also

succeeds.

We denote TV j = f�ij j i = 1; :::;mg[ f�ij j i = 1; :::; ng[ f�ij j i = 1; :::; vg for each j = 0; :::; k. Let

� =

p[
j=1

tyvars(S�
1 (
j)) = f�i j i = 1; :::; rg;

Notice that if 
j 2 Reg(S�
1 ), then S�

1 (
j) = 
j thus 
j 2 �. Because S�
1 (TE )

R12�! S1(TE ), let the image

of �i in S�
1 (TE ) after R12 be denoted by  i. Obviously we have tyvars(S1(TE )) = 	 = f i j i = 1; :::; rg

and tyvars(S�
1 (TE )) = �. In doing the uni�cation S�

2 = Match(S1(TE ) � fx 7! gen(S1(TE ); �1)g; A2),

there are k instantiations of the type gen(S1(TE ); �1). Suppose 8�1:::�s:�1 = gen(S1(TE ); �1), for each

j = 1; ::; k, we de�ne a substitution Pj = f�i 7! �ij j i = 1; :::; sg where �ij are just new type variables

used in W . And now the k instantiations of the type gen(S1(TE ); �1) will be simply Pj�1 where i = j; :::; k.

Note Dom(Pj) \ tyvars(S1(TE )) = ; and Reg(Pj) \ tyvars(S1(TE )) = ;. We also de�ne substitutions

P 0
j = f�ij 7! �i j i = 1; :::; sg for each j = 1; :::; k and a substitution P 0 = P 0

1 + :::+ P 0
k. Because 	 is the set

of free type variables in S1(TE ), for each j = 1; :::; k, the set of type variables in Pj�1 is essentially a subset

of PVj = 	 [ f�ijg. we can construct the following renaming substitution for Pj�1:

Qj = (Lj � (Fj � (R11 � P 0
j))) # PVj.

We make the following two observations on Qj:

� Notice that Reg(R11) = tyvars(S�
1 (TE )) [ tyvars(S�

1�
�
1 ) is a subset of � [ TV 0. For each �i 2 �, �i

will be mapped to some free type variable in S1(TE ) by R12. Thus di�erent bound type variables �i in

gen(S1(TE ); �1) will be mapped by R11 to di�erent type variables in TV 0 n�. Also for each j = 1; :::; n,

according to the de�nition of Lj and Fj, di�erent type variables in TV 0n� will be mapped to di�erent

type variables in TV j by (Lj � Fj). Thus Qj is a renaming substitution for Pj�1 because it virtually

maps di�erent type variables �ij to di�erent type variables in TV j .

� For all free type variables  i 2 	 in S1(TE ), Qj( i) = R11( i). This is because for Lj and Fj are

identities on all type variables in � and P 0
j is an identity on all type variables in 	.

Because all Qjs have consistent de�nition on all type variables in 	, we can also de�ne Q = Q1 + :::Qk.

Similarly we let Q0 to denote the inverse substitution of Q such that Q0 �Q = Q �Q0 = ID .

Now that we have already known that S�
2 = Match(S1(TE ) � fx(j) 7! Pj�1 j j = 1; :::; kg; A2) succeeds by

inductions, by lemma 8.3, Match(Q(S1(TE )) � fx(j) 7! Qj(Pj�1) j j = 1; :::; kg; Q(A2)) will also succeed,
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moreover S�
2 �Q0 will be one of its most general uni�er. Because Q(S1(TE )) = R11(S1(TE )) = S+(TE ) and

Qj(Pj�1) = Lj(Fj(R11�1)) = S+(Hj(��1 )) and Q(A2) = A2 = S+A2, we also get thatMatch(S+ (TE )�fx(j) 7!
S+Hj�

�
1 j j = 1; :::; kg; S+A2) succeeds and S�

2 �Q0 is one of its most general uni�er.

Therefore from the above two steps, we prove that Match(TE + fx(j) 7! Hj�
�
1 j j = 1; :::; kg; A1[C1A1 [ :::[

CkA1 [A2) succeeds, moreover by lemma 8.3, (S�
2 �Q0) � S+ is one of its most general uni�er. Thus both S�

3

= Unify(f(Hi�
�
1 ; ti) j i = 1; :::; kg) and S� =Match(TE ; A1 [ S�

3 (A3 [A2nfxg)) will succeed.
The reverse direction can be proved in the similar way.

(Part 2) Let's still use the notations in part 1, we can deduce the following by using lemma 8.3 and the

results in part 1:

S�(TE ; S�
3(�

�
2 ))

�= Match(TE ; A1 [ S�
3 (A3 [A2 n fxg)) (TE ; S�

3(�
�
2 ))�= Match(S�

3 (TE ); S
�
3 (A1 [A3 [A2 n fxg)) (S�

3 (TE ); S
�
3 (�

�
2 ))�= ((S�

2 �Q0) � S+)(TE ; ��2 )�= (S�
2 �Q0)(R11(S1(TE )); ��2 )�= (S�
2 (S1(TE ); �

�
2 ))�= (S2(S1(TE )); �2)

Thus we prove that S�(TE ; S�
3 (�

�
2 )) and (S2(S1(TE )); �2) are variants. QED

9 Appendix: Proof of Theorem 2.6

In this appendix, we are going to prove theorem 2.6, i.e., the equivalence between the algorithm D and W .

As mentioned in section 2, the set of predicates we use, denoted by Pm, is fpx(� ) where x is any program

variableg. The interpretation of px is \p̂x(� ) = true if and only if � � �, assuming that the type of x is a

closed ML type scheme �." The entailment relation on constraint sets is de�ned as: C1 `̀ C2 if and only if

C1 is satis�able and 8S : S j= C1 ) S j= C2. First, we prove the following several lemmas. They will be later

used in the proof of theorem 2.6.

Lemma 9.1 Given a substitution S and two constrained type schemes �1 and �2. If � 0 jC0 � �1 and �2 =

S(�1), then S(� 0jC0) � �2.

Proof Let �1 = 8a�n:(� jC) and let I be the instantiation substitution I = f�i 7! �i where i = 1; :::; ng
with I(� jC) = � 0 jC0. Assume that S0 = S #tyvars(�1) and �1; :::; �n are n new type variables which are

not in Reg(S0). Let R = f�i 7! �ig, then �2 must be of the form 8a�n:S0(R(� jC)). Therefore de�ning

J = f�i 7! S(�i)g we get J(S0(R(�jC))) = S(I(�jC)) = S(� 0jC0) showing S(� 0jC0) � �2. QED.

Lemma 9.2 If C;TE ` e : � is a valid ML+ typing, and S is a solution of C, then S(C); S(TE ) ` e : S(� )
is also valid.

Proof By structural induction on e. The case where e is a variable follows from Lemma 9.1. Of the

remaining cases, only the case for let expressions is interesting.
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Obviously C;TE ` let x = e1 in e2 : � must be inferred from the assumptions that both C1;TE ` e1 : �1
and C;TE � fx 7! gen(TE ; �1jC1)g ` e2 : � are valid, and C `̀ C1. Because S is a solution of C, S must be

also a solution of C1. By inductions, both S(C1); S(TE ) ` e1 : �1 and S(C); S(TE ) � fx 7! S(gen (TE ; �1j
C1))g ` e2 : S(� ) are also valid ML+ typings. Let f�1; :::; �ng be tyvars(�1jC1) n tyvars(TE ). Assume that

S0 = S#tyvars(TE ) and �1; :::; �n are n new type variables which are not in Reg(S0). Let R = f�i 7! �ig,
then S(gen (TE ; �1 jC1)) = S(8a�n:�1 jC1) = 8a�n:(S0(R(�1 jC1))). No �i is free in S(TE ). Moreover, any

type variable that occurs free in (S0(R(�1jC1))) and is not a �i must be free in S(TE ). Therefore we have

S(gen (TE ; �1jC1)) = gen(S(TE ); S(�1)jS(C1)). Because C `̀ C1 and S is a solution of C, so S(C) `̀ S(C1).

Thus we prove that S(C); S(TE ) ` let x = e1 in e2 : S(� ) is valid. QED.

De�nition 9.1 Given an ML+ constrained type scheme � = 8a�n:(� jC), its image ML type scheme, denoted

by forget(�), is 8a�m:� where
a
�m are all those �is that are free in � . Similarly we use forget(TE ) to denote

the ML type environment TE 0 = fx 7! forget(TE (x))g.

Lemma 9.3 If C;TE ` e : � is a valid ML+ typing, and ; `̀ C, let TE 0 = forget(TE ), then TE 0 ` e : � is a

valid ML typing.

Proof By structural induction on the expression e. Only the case for let expressions is interesting. Obviously

C;TE ` let x = e1 in e2 : � must be inferred from the assumptions that both C1;TE ` e1 : �1 and

C;TE � fx 7! gen(TE ; �1 jC1)g ` e2 : � are valid, and C `̀ C1. Because ; `̀ C, thus ; `̀ C1. By

inductions, both TE 0 ` e1 : �1 and TE 0� fx 7! gen(TE ; �1)g ` e2 : �2 are valid. From the de�nition of forget,

tyvars(TE 0) � tyvars(TE ) holds, thus gen(TE ; �1) � gen(TE 0; �1). Therefore TE 0�fx 7! gen(TE 0; S(�1))g `
e2 : S(� ) is also a valid ML typing. So TE 0 ` let x = e1 in e2 : S(� ) is a valid ML typing. QED.

Proof of theorem 2.6

(Part 1) Suppose that (S; � ) = W (TE ; e) succeeds, we want to prove that (S0; � 0 jC0) = D(TE 0; e) also

succeeds. We �rst construct an ML+ type environment TE 00 = fx 7! 8a�n:(� j ;) where x 2 Dom(TE )

and TE (x) = 8a�n:�g. Obviously tyvars(TE 00) = tyvars(TE 0) = tyvars(TE ). Because (S; � ) = W (TE ; e)

succeeds, from the soundness theorem of the algorithm W , we know that S(TE ) ` e : � is a valid ML typing.

Then the type deduction tree of S(TE ) ` e : � can be easily transformed into a ML+ type deduction tree

for ;; S(TE 00) ` e : � , therefore we prove that ;; S(TE 00) ` e : � is also valid in ML+. Because for each

x 2 Dom(TE 0), TE 00(x) � TE 0(x), and by theorem 2.4, (S0; � 0jC0) = D(TE 0; e) also succeeds. Moreover the

typing C0; S0(TE 0) ` e : � 0 is more general than ;; S(TE 00) ` e : � . From the de�nition 2.6, there exists some

substitution S1 such that �j; � S1(gen(S
0(TE 0); � 0jC0)). This also means that there must exist a substitution

S2 such that ; `̀ S2(S1(C0)). Thus S2 �S1 is a solution of the constraint set C0. From lemma 2.5, there exists

a most general solution for C0.

(Part 2) For the other direction, suppose that (S0; � 0 jC0) = D(TE 0; e) succeeds and S� is a most gen-

eral solution for C0, we want to prove that (S; � ) = W (TE ; e) also succeeds. From theorem 2.4, because

(S0; � 0jC0) = D(TE 0; e) succeeds, C0; S0(TE 0) ` e : � 0 is a valid ML+ typing. By lemma 9.2, we know that

S�(C0); S�(S0(TE 0)) ` e : S�(� 0) is also valid. We use the same notation TE 00 as in part 1. Obviously

tyvars(TE 00) = tyvars(TE 0) = tyvars(TE ). We can easily prove that S�(C0); S�(S0(TE 00)) ` e : S�(� 0) is

valid by constructing an ML+ type deduction tree from the typing S�(C0); S�(S0(TE 0)) ` e : S�(� 0). Then

by lemma 9.3, because forget(TE 0) = TE , thus S�(S0(TE )) ` e : S�(� 0) is a valid ML typing. From the

completeness theorem of the algorithm W , (S; � ) = W (TE ; e) should also succeed.
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(Part 3) Suppose that both (S0; � 0jC0) = D(TE 0; e) and (S; � ) = W (TE ; e) succeed, and S� is a most general

solution for C0, we now prove that (S(TE ); � ) and (S�(S0(TE )); S�� 0) are variants.

(Part 3.1) From the discussion in part 1, we know that the typing C0; S0(TE 0) ` e : � 0 is more general than

the typing ;; S(TE 00) ` e : � . Thus there exists a substitution S1 such that the following is true:

� \� j; � S1(gen(S
0(TE 0); � 0jC0))." From the proof of lemma 9.2, we know that S1(gen(S

0(TE 0); � 0jC0))
= gen(S1(S

0(TE 0)); S1(� 0)jS1(C0)). Thus there exists a substitution S2 with its domain being a subset

of tyvars(S1(� 0)jS1(C0)) n tyvars(S1(S0(TE 0))) such that � = S2(S1(� 0)) and ; `̀ S2(S1(C0)). This also
means that S2 � S1 is a solution of C0. Assume that S� is the most general solution of C0, then there

exists a substitution R1 such that S2 � S1 = R1 � S�. Thus � = R1(S�(� 0)).

� \S(TE 00) � S1(S0(TE 0))." Because tyvars(TE2) = ;, thus S(TE ) � S1(S0(TE )) should also be true.

But this can only be true if S(TE ) = S1(S
0(TE )) Because S2 is always an identity on tyvars(S1(S0(TE ))),

we also have S(TE ) = S2(S1(S0(TE ))) and thus S(TE ) = R1(S�(S0(TE ))).

� In summary we have proved that there exist a substitution R2 such that R1(S�(S0(TE)); S�(� 0)) =

(S(TE ); � ).

(Part 3.2) From the discussion in part 2, by the completeness theorem of the algorithm W , we know that

the typing S(TE ) ` e : � is more general than S�(S0(TE )) ` e : S�(� 0). This essentially means that there

exists a substitution S1 such that the following is true:

� \S�(� 0) � S1(gen(S(TE ); � ))." Because S1(gen(S(TE ); � )) = gen(S1(S(TE )); S1(� )), thus S�(� 0) �
gen(S1(S(TE )); S1(� )). This also means that there exists a substitution S2 with its domain being a

subset of tyvars(S1(� )) n tyvars(S1(S(TE ))) such that S�(� 0) = S2(S1(� )). Now let R2 = S2 � S1, then
S�(� 0) = R2(� )

� \S1(S(TE )) = S�(S0(TE ))." Because S2 is always an identity on tyvars(S1(S(TE ))), we also have

S�(S0(TE )) = R2(S(TE ))

� In summary we have proved that there exist a substitution R2 such that (S�(S0(TE )); S�(� 0)) =

R2(S(TE ); � ).

From the de�nition 8.3, we know that (S(TE ); � ) and (S�(S0(TE )); S�� 0) are variants. QED.
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10 Appendix: Type Deduction Rules

In this appendix, we list the type deduction rules for the mini-ML language Exp, the type deduction rules for

the language ML+ (i.e., ML with constrained types), and the static semantics of the skeletal module language

ModL.

10.1 Type Deduction in Exp

(VAR)
� � TE (x)a
TE ` x : �

(ABS)
TE � fx 7! � 0g ` e : �a
TE ` �x:e : � 0 ! �

(APP)
TE ` e1 : � 0 ! � TE ` e2 : � 0a

TE ` e1e2 : �

(LET)
TE ` e1 : �1 TE � fx 7! gen(TE ; �1)g ` e2 : �a

TE ` let x = e1 in e2 : �

10.2 Type Deduction in ML+

(VAR)
�jC � TE(x)a
C;TE ` x : �

(ABS)
C;TE � fx 7! � 0jCg ` e : �a

C;TE ` �x:e : � 0 ! �

(APP)
C;TE ` e1 : �

0 ! � C;TE ` e2 : �
0a

C;TE ` e1e2 : �

(LET)
C1;TE ` e1 : �1 C;TE � fx 7! gen(TE ; �1jC1)g ` e2 : � C `̀ C1a

C;TE ` let x = e1 in e2 : �
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10.3 Static Semantics of ModL

The grammar of ModL and the semantic objects used here are those given in �gure 3. Given a functor

� = (N1)(S1; (N
0
1)(S

0
1)), a functor instance (S2; (N

0
2)(S

0
2)) is an instance of �, written � � (S2; (N

0
2)(S

0
2)),

if there exists a realization ' such that '(S1; (N
0
1)(S

0
1)) = (S2; (N

0
2)(S

0
2)) and Dom(') � N1. Also we use

Names(E ) to denote the set of names occurred free in E and B � E to denote B � (Names(E ); fg; fg;E ).

(DEC)
a
B ` ) fg

B ` strdec ) E1a
B ` strdec ) E1

B ` strdec ) E1 B � E1 ` dec1 ) E2a
B ` strdec dec1 ) E1 � E2

(STREXP)
B(strid) = Sa
B ` strid ) S

B ` dec ) E m =2 ((Nameset of B) [Names(E))a
B ` struct dec end) (m;E)

B ` strexp ) (m;E) E(strid) = Sa
B ` strexp:strid ) S

B ` strexp ) S B(fctid) � (S00; (N 0)S0) S enriches S00 (Nameset of B) \N 0 = ;a
B ` fctid(strexp)) S0

(STRDEC)
B ` strexp ) Sa

B ` structure strid = strexp ) fstrid 7! Sg
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