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Abstract

This paper describe the principles, design and implementation of DERIVE, a deductive
database for software configurations, in which primitive items (e.g. source files) are
stored as facts, configurations are described by rules, compilers (and other derivation
tools) are regarded as pure functions (over byte strings), and system building is realised
by query evaluation meta-programmed in Prolog.

Configuration items can have unlimited independent variance, which is inherited by
derived items, and which interacts combinatorially.  New degrees of variance can be
added to an existing configuration.

DERIVE makes extensive use of memoisation to achieve minimal recompilation; it
employs partial evaluation to produce partly built product configurations which are
described by mechanically generated make files or build scripts; and it employs
abstract interpretation to answer queries about product feasibility.  It demands and
exploits referential transparency in all configuration items, infers all derivation
dependencies, and perceives and exploits all potential concurrency in the execution of
tools in the course of a build.  Comparisons are drawn with make and its derivatives.
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1  Introduction 1

Building Software by Deduction:
Why and How

Paul Singleton  (paul@cs.keele.ac.uk)
O. Pearl Brereton  (pearl@cs.keele.ac.uk)

1  Introduction
The research summarised here had the objective of exploring the application of deductive meta-
programming to the building of software products from their components, performingversion
selection andminimal recompilation in a well-founded framework with established theoretical
properties, and demonstrating the applicability and usefulness of several logic programming
techniques, especiallymemoisation, abstract interpretation andpartial evaluation.

1.1  What do we mean by “building”?

By “building” we meansystem integration: the construction of a product release (whether for
testing or for delivery) from a complex collection of components (e.g. fragments of source

code, executable modules, documentation) using existing derivation tools (e.g. compilers, link-
ers, text formatters).

Our proposal places no restrictions upon the updating of the database, except that it must be
declarative (i.e. changes must be made by adding new versions of components rather than by
destructively updating existing components).  It is intended to be compatible with any change
control policy.

We describe a prototype system calledDERIVE, a deductive database in which version selec-
tion and minimal recompilation are performed in the course of query evaluation.

In addition to concrete builds,DERIVE supports the following:

• abstract builds: e.g. a “dry run” build of a product, without performing compila-
tions, but perhaps performing version selection, and showing the feasibility and
general structure of the build.

• hypothetical builds: like abstract builds, but if a needed component (or tool) is
missing, then it can be hypothesised (in no great detail) to allow the build to pro-
ceed.  This answers questions such as: What tools and header files would we
need to buildGIZMO 3.1.1 for VMX 2.2a?

 version
selection

   minimal
recompilation

database
of

components
+disciplined

  update

building:development:
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• generic builds: using partial evaluation we can partly build a target, deliberately
leaving some version selection still to be done, and some tools yet to be invoked.
This is the general case for commercial product delivery: final parameterisation
and linking of a product is generally done within the customer’s system.

1.2  Why is building non-trivial?

A single configuration item may vary in many independent dimensions, e.g.

• differentbugs (such variants are typically called “revisions”);

• differentspecifications;

• differentperformance (e.g. different time/space trade-offs);

• compatibility with differentoperating system environments (e.g. UNIX,MVS);

• compatibility with differentuser interface systems (e.g.X, Windows 3);

• compatibility with differentcommunications protocols (e.g.TCP/IP, X.25);

• employing differentnatural languages in their user interfaces;

• being either a fully coded procedure, or just a “stub” for testing.

Variance of components propagates through builds, giving rise to variance of products.  Inde-
pendent variance of components interacts combinatorially.  Variance arises not only from ver-
sions of source files, but also from flags and options passed to tools, from versions of tools, and
from versions of build rules.  The independent dimensions in which source files, rules and tools
vary cannot generally be anticipated: they will accrue during product development and evolu-
tion.  Inadequate global control of version selection gives rise to version skew, whereby distinct
versions of the same component are incorporated into a product via different dependency paths.

1.3  Building by Deduction?

How can wededuce a complex structured entity such as a deliverable software package? With
propositional logic, we can only deduce the truth of formulae composed of simple atomic prop-
ositions, e.g.

With predicate logic, however, we can instantiate variables (bind them to values) in the course
of the search of a proof of a query:

query:  fuse_has_blown ?

answer: yes

query:  square( 3, X) ?
Does there exist
some X such that the

answer: yes

where X = 9

the logical answer

a useful bonus

square of 3 is X ?
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and this reply can, furthermore, be structured:

If we allow variables to range over large values such as source texts and executable programs,
and if we implement compilers (etc.) as predicates, then we can pose queries to build delivera-
ble software products, e.g.

We shall show how this can be achieved, and discuss its advantages over established mecha-
nisms.

2  Enabling techniques
There are two major technical prerequisites for building by deduction:

• file bodies, however large, must be treated as atomicvalues;

• derivation tools, however complex, must be treated asfunctions.

We consider these in turn.

2.1  File bodies as pure values

We need to manipulate the bodies of files as pure values, but we don’t want to store them within
the database (since they can be arbitrarily large), so we implement a strict naming scheme, us-
ing compact identifiers within the database and storing the file bodies within the host operating
system’s filestore.

Many-to-one naming schemes are easily implemented: it is necessary merely to allocate a novel
identifier to each newly-created file body.  But we needone-to-one naming, otherwise we may
undermine the deduction, particularly ifnegation is employed.  If a file body is created which
happens to be identical to one which already exists, then it must be given the same name as the
existing one.  Thus the equality (or otherwise) of two file bodies is reflected in the equality (or
otherwise) of their compact names.

We call this schemebigtexts with equality (hereafter justbigtexts), and implementation details
are in[Sing92a] and[Sing92b].

Bigtexts arenever destructively updated: they begin life as uniquely-named empty scratch files,
created as necessary to capture the outputs of derivation tools; then they are interned as big-
texts.  Ultimately they may be deleted in the course of garbage collection.

The mapping between bigtext names and bigtext values may be seen as a dynamic symbol ta-
ble, such as is used in many other interpreted language systems (e.g. Prolog and Lisp).

query:  prime_factors( 12345678, X) ?

answer:  yes

  where X = [2,3,3,47,14593]

Does there exist
some X such that
the prime factors
of 12345678 are X?

a useful structured bonus

the logical answer

query:  build( Gizmo, V6.2.28.1, Sun4, UK-English, X) ?

answer: yes

where X = [[..],
complex structured value
denoting source and binary
files, libraries, documentation ...[..,..],

[..,..]]
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2.2  Derivation tools as functions

By “function” we refer to the mathematical concept of a (many-to-one) mapping from values
to values, e.g.

We regard compilation as a function, not as a process.  In practice, a compiler may have several
source file inputs and several options and flags, and is thus a function of many variables.  (It
may have several outputs, in which case it is strictly adirected relation, but we use the term
“function” hereafter.)

Just as we have made file bodies behave like the most appropriate concept within the deductive
programming model (i.e. atomic values), so we make compilers behave like the most appropri-
ate concept: functions (implemented as predicates).

We require that the behaviour of each derivation tool is as follows:

• “ sound” - not yielding any results which wedon’t need.  Example of misbehav-
iour: a compiler may report the date on which it was built, or produce a running
commentary on the progress of its activity.  These are inappropriate and distract-
ing, although not necessarily harmful.

• “ complete” - yielding all the information which we need.  Example of misbehav-
iour: a compiler may report failure merely by sending a textual message to some
file or terminal, rather than by returning a formal error code to whichever process
spawned it.

• “ benign” - without side-effects.  When invoked, a tool must behave as cleanly
as an arithmetic operator.  It must simply deliver a value (or values), and must
not alter the state of its environment (e.g. by writing to public files).

• “deterministic” - without side-infects.  The results of each tool invocation must
be determined solely and explicitly by its arguments, and not implicitly and in-
sidiously by its environment.  Example of misbehaviour: a text processor may
observe preferences defined within the user’s home directory.

The terms “sound” and “complete” are borrowed from database theory, where they have similar
but more formal meanings.

In general, derivation tools will have been implemented independently, without regard to their
possible use in declarative systems such asDERIVE: indeed, they may have been written on
the assumption that they will be invoked directly by human users, and they often have features
which obstruct their use within a declarative build system.

 3  9

-3

 4 16

kjh lkj lkj
kjh lkjhl hlk
jhlkj hlkjh
lkjh lkjhlf
fg fg fg fg fg

12309 89475
31426 74748
72623 84845
74764 70011
84387 34534
54353 23535
23454 18345
23454

the square function thecompilation function

ui uiou 3 i u
543 iu87 5 jj
6  4iu 7 ui
6  ui o9 u8 i
6 7i7 7i7 7i7

xxx 3x 3x3
3    3 3x3yy
xx3 3 3xx3
3x3 3x3 x3
x3x3

00177 66922
44407 89475
31423 74748
72621 84845
74761 70011
84387 34534
54353 23535
23454 18345

query:  compilation(     , X) ?

answer:  yes

  where X =

kjh  lkj lkj
kjh  kjhl h
lk jhl kj hlk
jh lk jh lkj
hlf  fg fg fg
fg fg fg fg

1874 1523
0639 1852
7900 6147
6531 0998
4193 3542

“Does there exist some X
 such that the compilation
 of     is X ?”kjh  lkj lkj

kjh  kjhl h
lk jhl kj hlk
jh lk jh lkj
hlf  fg fg fg
fg fg fg fg
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We therefore attempt to clean up tool behaviour as follows:

• by unbundling tools, where feasible, into simpler components  For example, a
compiler may comprise a driving program for several underlying stages:

• by repackaging tools or their components within calling envelopes which sup-
press or correct their undesirable behaviour (examples are given in[Sing92a]).

We urge all designers of derivation tools to make provision for this mode of use, by allowing
noise to be switched off, defaults to be overridden, failures to be denoted by the exit status, etc.

3  Philosophy and rationale of DERIVE
A software developer may find commercial advantage in having full control of variance in
builds and releases: when sending software upgrades or bug fixes to customers, it will be ad-
vantageous to send only those items which are essential, and to be able to identify this set of
items mechanically.  When investigating bug reports, it may be necessary to reconstruct exactly
the product version in which the bug was encountered.  We seek rigorous control and tracea-
bility of variance within builds.

We seek the most abstract description of configurations, from which other representations (e.g.
bills of parts, diagrams) can be derived mechanically (and hence cheaply and reliably).

A software configuration can be regarded as a program, whose operators are derivation tools,
whose primitive values are source files, and whose parameters include the flags passed to com-
pilers and the variables associated with version selection.  Building a product can be seen as an
evaluation of this program.

Software products under development are typically highly generic: many independent version
selection decisions must be made to achieve a single concrete product.  Products delivered to
customers will, in general, still be generic, pending final specialisation and customisation to the
target environment.  Construction of a generic product corresponds to partial evaluation of the
configuration, and exploring the feasibility or structure of a build corresponds to abstract eval-
uation.

Configurations can be described by trees or graphsa), but these representations are not primi-

tive: they can be derivedb) from rules c) by a proof procedure.  These rules may be reused in
many configurations.

preprocessor
code generator
optimiser
assembler
linker

compiler

goal

subgoal

head

subgoal

head

if

and

and

head

subgoal

subgoal

subgoal
a) b) c)
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For maximum abstractness, we thus seek a rule-based model for configurations, and for partial
and abstract  evaluability we seek a purely declarative model.  The deductive programming
model satisfies these requirements admirably.

4 DERIVE’s architecture

DERIVE is essentially a deductive database, implemented on top of three major components:

• a general-purpose networked operating system and filestore (UNIX + NFS);

• a networked relational database (Oracle + SQL*Net);

• a (relational) host language (Prolog).

Oracle provides a large, shareable, persistent store for configuration rules and items (other than
bigtexts);  UNIX provides a large shareable persistent store for bigtexts and an environment in
which to execute derivation tools;  Prolog supports evaluation of build queries by interpretation
of build rules written inDECL (DERIVE’s EvaluableConfigurationLanguage).  In addition,
we employ ‘C’ for interfacing these components.

EachDERIVE user interacts with a private stateless front-end process (implemented in Prolog
and C), which in turn accesses the shared network database.

4.1 DERIVE’s model of configuration items

DERIVE’s item model is simple and general: it is a finite map from names to values (possibly
to bigtext values).  We compare it with two other models of configuration items.

A UNIX file (below) has an updateable file body and a fixed set of attributes (name, suffix,

owner, create date, etc.).

An AFS object (below) refines and generalises this to a non-updateable body associated with

an extensible set of user-defined attributes[Lamp88].

blah blah blah blah uiyosd

.kjha sdgl lklkjhasdlkhj fdg

ytuikpok ouiy ers aq cswr

vfry nuio ,po poi oiu fff1345

tyfeszqw xwcrtyvtypoi npiu

uy trqwse xrt vyt nu po pop-

iuuy yt yre ewwqe werxer

yexfvcyubyunu miop p9127

kmokojhjytrtcwervecufytug

fred.c

name
suffix
body

      name = otto
    suffix = apl
generation = 4
  revision = 3
   variant = b
     state = saved
    author = andy
      mode = 0644
     mdate = 881001-12:22
   project = shape
test_level = low

blah blah blah blah uiyosd

.kjha sdgl lklkjhasdlkhj fdg

ytuikpok ouiy ers aq cswr

vfry nuio ,po poi oiu fff1345

tyfeszqw xwcrtyvtypoi npiu

uy trqwse xrt vyt nu po pop-

iuuy yt yre ewwqe werxer

yexfvcyubyunu miop p9127

kmokojhjytrtcwervecufytug
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A DERIVE item is an extensible set of user-defined attributes, some of which may have bigtext
values.  This model is simpler and more expressive that either the UNIX orAFS model.  Within

our deductive model, themost general unifier of two items is the union of the two maps which
represent them.  If, for some attribute, the items have incompatible values, then they do not uni-
fy.

5  Advantages of building by deduction
We have taken considerable care to integrate the peculiarities of software building (i.e. the awk-
ward size of the data items which it manipulates, and the unclean behaviour of the tools with
which it manipulates them) into a purely deductive framework, and this is repaid in our freedom
to exploit powerful and general techniques from deductive programming:

• various proof strategies;

• abstract evaluation;

• partial evaluation;

• memoisation.

These techniques are application independent: they do not need to be adapted to our applica-
tion, because we have already adapted the application to the deductive paradigm.  Much of the
accumulated expertise and understanding of deductive programming can immediately be re-
used.

5.1  Proof strategies

First-order deduction has well-defined semantics, and the various proof strategies (no matter
how complex or subtle) should all give the same results for the same query, and should differ
only in their consumption of computational time and space resources.

We currently employ only two strategies:

• simple depth-first backward chaining (to which we have added cycle detection
[Brou84] and subgoal memoisation);

• breadth-first forward chaining.

The backward chaining strategy is appropriate for building well-specified targets (e.g. for con-
crete builds); the forward chaining strategy is more efficient for answering vague queries such
as “What can we build”, or foropportunistic manufacture [Kais87].

name = fred
suffix = exe

body = blah blah blah blah uiyosd

.kjha sdgl lklkjhasdlkhj fdg

ytuikpok ouiy ers aq cswr

vfry nuio ,po poi oiu

tyfeszqw xwcrtyvtypoi npiu

uy trqwse xrt vyt nu po pop-

iuuy yt yre ewwqe werxer

yexfvcyubyunu miop p

kmokojhjytrtcwervecufytug

 state = saved
author = derek
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Proof techniques are the subject of current research, and new results in e.g.magic templates
[Rama92] should be readily applicable withinDERIVE.

5.2  Abstract evaluation (AE)

This concept is not peculiar to deductive programming, and we illustrate it by examples from
the imperative ‘C’ programming language.

In general, a ‘C’ routine cannot be executed unless all input parameters are bound to specific
values, i.e. it is only amenable toconcrete evaluation.

There are, nevertheless, three respects in which ‘C’ routines are commonly subject toAE:

• type checking, as in:

WARNING: type conflict of operands

• reachability checking, as in:

WARNING: statement not reached

• initialisation checking, as in:

WARNING: variable used before set

In each case, the ‘C’ routines are “executed” abstractly, not with specific values for parameters
and variables, but with abstract values such asinteger or uninitialised.

Abstract evaluation ofDECL allows the feasibility or structure of a build to be explored, with-
out incurring the cost of a concrete build.

5.3  Partial evaluation (PE)

PE, like AE, generalises concrete evaluation, and again we illustrate it with reference to an im-
perative language.

Suppose a routinep(A,B) is called with some input parameters bound to specific values, but
with other input parameters still unbound.  Can we sensibly evaluate it?

Yes: if B is known then we can evaluate the routine (above centre) to yield a simpler routine
(above left) which is parameterised only byA; and ifA is known then we can evaluate it to one
or other of two routines (above right) which are parameterised only inB.

Unfortunately for those who use imperative languages,PE is obstructed by destructive assign-
ment and by referential opacity.  For instance, we can only replace the expressionthis(B)

p(A,B)
    {
    if A > 0
    then  this(B)
    else  that(B)
    fi

p(B)
    {

    }

    this(B)
    }

p(B)
    {
    that(B)
    }

p(A)
    {
    if A > 0
    then K1
    else K2
    fi
    }

PE  w.r.t.  fixed B PE  w.r.t.  fixed A

or
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by a constantK1 if this(B) is referentially transparent and free from side-effects.  Declara-
tive languages, however, are quite amenable toPE, andDERIVE exploits it extensively.

Partial evaluation ofDECL permits the construction of generic product releases.

5.4  Memoisation

Wherever referential transparency prevails, a particular function call or expression should al-
ways yield the same result, and it is possible to record (memoise) and reuse the result of any
particular evaluation[Kell86].  But if a procedure has side effects, or accesses global variables,
then it is infeasible to capture and reuse the impact (destructive or otherwise) of any particular
call.

Declarative languages, whether deductive, functional or relational, are amenable to memoisa-
tion, andDERIVE employs it to achieve minimal recompilation.  Indeed,DERIVE’s minimal
recompilation is more minimal than the timestamp-based scheme ofmake [Sing92a].

6 DERIVE versus make
Stuart Feldman’s widely-used UNIX utilitymake [Feld79] was the starting point of this re-
search, as it was for many other developments, several of which are described below.

6.1  Analysis and criticism of ’make’

make describes a configuration by a set of rules in amake file, where a rule has this structure:

Essentially,make is a rule-based minimal recompilation utility for configuration items (wheth-
er primitive or derived) which are kept as files within a conventional (UNIX,VMS, MS-DOS
or similar) filestore.  It attempts to rebuild targets with minimal compilation activity, after prim-
itive files have been updated in place.

Remarkably, it maintainsno record of the status or derivation history of those items which it
purports to manage: it attempts to inferneed-to-recompile by inspecting the times-of-last-mod-
ification (or of creation) of whichever primitive and derivable files it can find.

It is a pragmatic and cleverly-judged engineering compromise which has been widely adopted
by those software developers whose basic tools are a text editor and a compiler, thanks to its
remarkably low entry threshold (simply creating and using a two-linemake file can bring im-
mediate benefit to anyone working in a compile-test-edit cycle).

Its shortcomings have been treated at length[Mill86], although it almost suffices to say that
they stem from

• lack ofreferential transparency in the configuration items (the primitive and de-
rived files);

target item prerequisite item ...
action ...

to (re)make this ... ... first (re)make these iff necessary ...

... then execute these
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• flaws in its timestamp-based deduction;

• the non-declarativity of the actions which it executes.

In particular, it has these faults:

• it employsbackward chaining, but implements only two special cases, one of
which is severely deficient (it cannot chain its generic, or “suffix”, rules);

• it doesn’t understand the effects of the actions which it executes;

• it doesn’t record the options passed to (or assumed by) the tools which it invokes;

• it is unsafe when multiplemake processes run concurrently;

• it spawns tools strictly serially, failing to exploit any potential for concurrency;

• it doesn’t provide formal traceability from products back to their components;

• it doesn’t facilitate, or even accommodate, version selection;

• it doesn’t propagate build parameters through rules;

• it recompiles unnecessarily in certain common circumstances, e.g. whenever an
intermediate file is reconstructed but retains its previous value.

In short, it does only what was claimed for it.

6.2  The make-oids and allied developments

The shortcomings ofmake have been addressed (mostly inmake’s original spirit of pragma-
tism) in several ways:

• make-oids: many have re-implemented it in the hope of providing a popular suc-
cessor; Fowler[Fowl90] seems to have succeeded, after a false start[Fowl85];

• bolt-ons: these typically address one of two main issues:

• version selection;

• automatic dependency extraction;

• generalisations, especially to support concurrent building (typically, this is ad-
vantageous only in local-area networks, or on multiprocessor machines
[Sequ87]).

The “Rounder Wheel”make-oid [Hirg83] adds iterative constructs for applying rules to sets of
files, and crudely solves the unsafeness of concurrentmake invocations, not by locking the af-
fected files, but by preventing other builds from starting.

build [Eric84] uses a modified file naming scheme to overlay filestore subtrees for related con-
figurations and thereby factor out common files.

shape [Mahl88], is built over an attributed file system[Lamp88] and attempts to provide uni-
form treatment of several forms of variance.  Its designers pessimistically assume that a com-
pilation which was performed by one machine within a network will not be valid for reuse on
another machine, due to differences in the “compile environment”: this suggests inadequate
control of “side-infects”.

Further make-oids are embedded in various experimental SCM systems, includingAdele
[Estu84] andSAGA [Camp87].
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The mainversion selection bolt-ons areSCCS [Roch75] andRCS [Tich85], both of which are
archive-based version managers, essentially supporting checkin/checkout of items, and both
implementing textual compression of revisions (SCCS uses interleaved deltas andRCS uses
reverse deltas).  Each has also been bolted more intimately ontomake, yielding make-oids
which attempt to extract from the archive any item which they can’t find in the filestore
[Tich85].

Thedependency extraction bolt-ons include Walden’s scheme[Wald84] to track down the in-
sidious dependencies caused by use of the (referentially opaque)#include construct incpp,
and a scheme to extract module interdependencies from modular programs[Olss89].  Both of
these schemes employ utility programs to scan primitive files and generatemake rules; as the
authors observe, you have to remember to run these programs first.  It would be better if the
dependencies were visible tomake.

Most concurrent make-oids (i.e sequentialmake-oids which spawn several compilations con-
currently) rely on explicit user-defined annotation of themake rules to indicate potential safe
concurrency: these includeDYNIX make [Sequ87], pmake [Baal88] andnmake [Fowl90], and
it would be better if:

• compilations werenot invoked within a public namespace (they may unwantedly
overwrite each other’s intermediate and output files);

• eachmake-oid sufficiently understood the actions and their interdependencies so
as to be able to schedule them safely and optimally (rather than relying on the
makefile author to indicate potential concurrency).

Anotherpmake [Doug91] provides not only build concurrency but also transparent process mi-
gration (withinSprite, a prototype UNIX-like network operating system).  Despite reported
process eviction times of “a few seconds” (onSPARC machines), the dynamic load-balancing
of builds around a network of intermittently-used personal workstations apparently yields use-
ful speed-ups, and is reportedly taken for granted by the user community.  Given the likely er-
ratic utilisation of personal workstations in a local area network, there may be scope for similar
process migration within UNIX-based networks, and this paper should provide food for
thought to anyone with strategic responsibility for the development of any of the fifty-seven
varieties of UNIX.

The inventor ofmake has reviewed some of themake-oids (sympathetically) in[Feld88], and
some ritual abuses ofmake (e.g. for installing software as well as merely building it) have been
catalogued (tediously) in[Sing86].

Kielmann[Kiel92] has described a simple Prolog-basedmake-oid which exploits Prolog’s pat-
tern-matching facilities to extend the expressiveness ofmake rules:DERIVE exploits them
rather more to extend it much further.

The most radicalmake-oid is Baalbergen’sAmake [Baal89] which manipulates attributed ob-
jects stored in a specialised fileserver, and uses heuristic “hints” to aid minimal recompilation.

There are undoubted technical challenges in trying to fixmake’s deficiencies without aban-
doning its framework and infrastructure of

• timestamped destructive file update in public namespaces;

• referential opacity and hidden dependencies in configuration items;

• imperative actions with obscure side-effects.
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For us, however, there was a rather different challenge: to find a computational framework in
which these problems simply do not arise.  It is disappointing that none of themake-oid authors
have observed the similarity betweenmake’s building algorithm and formal deduction, and
DERIVE rectifies this omission with a vengeance.

6.3 DERIVE’s advantages over make

We can summarise the advantages ofDERIVE w.r.t.make as follows:

• it handles cyclic dependencies better;

• several builds may proceed concurrently, without any risk of adverse interaction;

• dependencies are inferred automatically;

• generic rules are correctly chained;

• it performs version selection, ensuring global consistency (no version skew);

• it allows variants of rules, and of tools;

• its minimal recompilation is more minimal;

• it handles tool failure better;

• it can detect and exploit all potential tool concurrency;

• it accommodates tools which have several outputs;

• it can treat composite items (e.g. sets of related files) as single entities.

DERIVE has a well-developed body of theory behind it: the foregoing properties are not bolt-
ed-on “features”, but arise naturally from the adopted deductive programming model.

7  Summary of DERIVE
We conclude that a build-oriented programming-in-the-large language should be not merely
descriptive but evaluable, and that furthermore it should be amenable to partial evaluation, in
order that parameterisation (or variance: they are much the same thing) can be fixed or left un-
bound as required.  This suggests that the formalism should be declarative (since non-declara-
tive constructs obstruct partial evaluation).

We also conclude that the language should be as abstract as possible, so as to minimise the costs
of maintaining inherently redundant configuration documents such as “build scripts” and “bills
of parts” by allowing them to be mechanically constructed.

We advocate a goal-based model, in which the user never needs to specify actions, but instead
specifies goals, and leaves the build system to determine (by searching its rules) what needs to
be done (and to do it).

These two properties (“goal-based” and “declarative”) suggest deductive computation: the
practical need for concurrent usage (by tens or hundreds of users per system?) over a long pe-
riod (tens of years?) suggests a database, hence deductive database.

The need to interpret a formal language suggests meta-programming, and we can implement
meta-interpreters for deductive languages more concisely in Prolog than in any other general-
purpose language (we need a general-purpose language for implementing the many functions
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besides the central meta-interpretation of the configuration descriptions).  Since the most ma-
ture commercial implementations of Prolog still only provide a clause base which is neither
shareable, persistent nor scalable (i.e. arbitrarily “growable”), we have implemented an exter-
nal virtual clause base by coupling Prolog to a RDBMS with some specialised interface mech-
anisms.

In order to integrate derivation tools into deductive software building, it is necessary to regard
them as functions from byte strings to byte strings, not as processes which destructively update
a filestore.  We conclude that many user-friendly features of proprietary compilers are undesir-
able for formal, mechanical software building: for example, defaults undermine repeatability
(of a build, given the same goal) and traceability (of components through to products).  We sug-
gest that tools should not attempt to provide piecemeal support for these sorts of SCM functions
which can only be successfully implemented  by an overall controlling system.  At least, each
derivation tool should be capable of being run in a quiet, repeatable, well-behaved mode.

Traditionally, Prolog-based deductive systems have manipulated structures of compact sym-
bols: we have shown how arbitrarily large strings of bytes (such as program source text, or ex-
ecutable code) can be represented within a Prolog program by compact surrogates which dis-
play the most important property of those byte strings which they represent (i.e. equality).  The
actual values of particular byte strings are of interest only to derivation tools, to which they are
passed by reference (i.e. filename) whenever a tool is executed.

The total cost of the compilations (etc.) involved in building a large software product can be
very great, both in machine time (perhaps hours or days) and in delay to product development
(e.g. when further development awaits the result of testing some modification to a source item).
In a purely deductive system, the general principle ofmemoisation can be specialised and ex-
ploited to allow reuse of previous compilations, and we show how this can support minimal re-
compilation in a natural and sound way (and that this can be more efficient than schemes based
on timestamps).  The ability to use memoisation is a pay-off of declarativity.

While it has often been recognised that the (vague) notion ofattribute subsumes many details
of configuration items such as their names, types, revision levels etc., we have taken this gen-
eralisation further by proposing that a file’s body is just another attribute, and we have de-
scribed and exploited mechanisms for treating them as such.  This allows a configuration item
to have several bodies, or none, and it allows items to be retrieved associatively (i.e. by the val-
ue of their bodies).  We claim that the extreme simplicity of this model ofitem (a homogenous
map from keys to values) contributes to the simplicity both of the various query interpreters and
of the memoisation procedures.  We believe that this model is, in its combination of simplicity
and expressiveness, superior to anything yet implemented and published.

Just as views in relational databases define virtual tables, soDERIVE’s rules define virtual (or
“derivable”) items.  The fact that considerable computation may be needed to realise these vir-
tual items is hidden from the user.  Sometimes, however, a user wants only an abstract summary
of these virtual items, e.g. “What varieties of X could be built, on the assumption that all the
compilations succeed?”.  We conclude that any build system will need to performabstract in-
terpretation, and it is fortunate that deductive systems are quite amenable to this.

We note thatmodule interconnection languages [Tich79] [Somm92] are more concerned with
expressing detailed module compatibilities that they are with defining the derivation depend-
encies of items (i.e. how and from what an item can be derived).  InDERIVE, module compat-
ibilities must be encoded in shared attributes, which can be structured (as arbitrary Prolog
terms), and thus there is scope for more sophisticated compatibilities.  Alternatively, we can
regard this compatibility checking as an abstract form of compilation, which operates not on
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concrete source text but on abstract interface specifications (as are supported by several pro-
gramming-in-the-small languages).  Whichever approach to type-safe building is taken, the ba-
sic mechanisms ofDERIVE appear to provide an appropriate framework.

We conclude that build systems which destructively update a shared filestore have many prob-
lems of their own making, and that a deductive approach avoids these problems.  In particular,
concurrent deductive builds cannot corrupt each other’s workspaces: no locking mechanisms
are required to prevent malignant interaction.

As a general philosophy, we claim that avoiding problems by adopting an appropriate, well-
behaved computational model is preferable to solving them by adding ingenious fixes to badly-
behaved machinery.

Some SCM research has recognised that the logical operationsand andor are at the heart of
version and configuration management[Tich88]. DERIVE takes this to its logical conclusion
by employing predicate calculus as its computational framework.

We note that, in general, software products must be built with some parameterisation left un-
fixed, and that this is an example of partial evaluation.  We conclude that Prolog-based deduc-
tive building provides exceptionally good support for partial evaluation, and that even concrete
builds are best performed in several stages of partial evaluation (in order that potential tool con-
currency can be identified and exploited).  We hope that this perspective will be regarded, not
as a wilfully sophisticated and unnecessary application of an arcane concept, but as an illumi-
nating insight which shows the practical feasibility of (and offers a theoretical basis for) what
is otherwise a challenging computational task.

Memoisation, like partial evaluation, is generally feasible only in declarative systems.  Since
DERIVE is purely declarative, we can employ memoisation at almost any point in the proof
procedures.  We have chosen to memoise tool goals (e.g. compilations), since these are both
expensive and liable to recur.  We also memoise retrievals from the RDBMS, but this would be
less important if either the retrieval bandwidth was much better (i.e. closer to the typical rate of
retrieval from flat files) or the hybrid Prolog+RDBMS system was replaced by a deductive da-
tabase which lacked the former’s retrieval bottleneck.

We observe that many large software products (e.g. the UNIX, Prolog and RDBMS systems
which compriseDERIVE’s infrastructure) are supplied as generic configurations of files
whose further concretisation is controlled bymake files, and that thesemake files are clearly
maintained by human experts.  Where a software product is targeted at many different hardware
and operating system environments, there may be many versions of thesemake files, and their
maintenance may be expensive (if done thoroughly) or unreliable (if not).  Any build system
(such asDERIVE) which can generate thesemake files mechanically from more abstract (and
more cheaply maintainable) configuration descriptions may offer significant cost savings.

Internally, DERIVE uses a single representation both for primitive configuration items (i.e.
facts) and for rules: a fact is a rule whose body istrue.  This simplicity is unwanted from the
point of view of the user, who intuitively regards facts and rules as distinct notions, and we
therefore present them to her as separate categories.  This simplicity is beneficial, however, in
that rules can have variants by the same mechanisms that facts can have variants: few alterna-
tive build systems offer versioning of configuration descriptions with such fine granularity.

Although complex, theDERIVE prototype is well modularised:bigtexts are a tidy abstract data
type, and the memoisation algorithms are implemented quite independently of the meta-inter-
preters to which they are applied, as is the caching of facts, rules and tool results, and the com-
plex machinery which invokes derivation tools as if they were pure functions.  All user-oriented
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features such as defaults, visualisations etc. are implemented in a separate outer layer (theDe-
river’s WorkBench ).

8  Conclusions
DERIVE employs deductive meta-programming, which allows abuild to be realised as pure
query evaluation.  This approach also supports the powerful but essentially simple techniques
of abstract interpretation and partial evaluation, which both find natural applications here.
Memoisation provides sound support for minimal recompilation, and when tools are treated as
pure functions (and repackaged if necessary to make them behave so) it is possible to schedule
the tasks in a build with maximum concurrency.  Redundant (i.e. derived) items can be identi-
fied and destroyed automatically, easing the trade-off between storage space and rebuild costs.
Many builds may proceed simultaneously without harmful interaction, and any build can be ex-
plained by reference to its proof, which is not merely a history of the build but a justification
of it.  Unlimited independent variance can be accommodated, and this general facility can rep-
resent a multitude of particular forms of variance.  Generic products can be built and delivered
(using partial evaluation to specialise the stored configuration), and provision can be made for
continuing their building elsewhere.

Our overall conclusion, then, is that deductive meta-programming is an elegant, practicable and
illuminating mechanism for software building, with considerable scope for accommodating
further programming-in-the-large functionality.
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