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Authors’ Abstract

The problems of software configuration and release management limit the size
of systems that we can build efficiently. Today’s large systems strain the ca-
pabilities of traditional development tools. The Vesta system provides a novel
repository and system builder that emphasize complete yet manageable descrip-
tions of software components. These facilities enable Vesta to eliminate much
of the manual and error-prone drudgery of system construction without enforc-
ing a particular methodology on its users. This paper presents an overview
of Vesta, followed by a series of detailed examples that illustrate how Vesta’s
facilities simplify the development of large systems. These examples are drawn
from a year’s use of Vesta by a group of about 25 researchers developing a
rapidly changing software system of over 1.4 million source lines. That experi-
ence clearly demonstrates the power and practicality of the Vesta approach and
its advantages over conventional tools.
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1 INTRODUCTION 1

1 Introduction

Organizations that develop software inevitably face the considerable problems
of configuration and release management. They must arrange their evolving
body of software and documentation so that new versions can be produced,
tested, and distributed efficiently without compromising the integrity of previ-
ously completed versions. Too often, the available management tools simply
cannot cope with large and complex systems. When the tools break down, peo-
ple must intervene manually, and their inevitable errors are generally difficult
to detect and tedious to correct.

The Vesta configuration management system addresses this problem with a
novel integrated storage system (repository) and system builder. In this paper
we show how we used these Vesta facilities to describe system components and
their interconnections. We illustrate our method with concrete examples and
explain how it is able to cope with the essential problems of configuration and
release management.

Those problems become evident only when systems grow beyond a certain
size. So, to validate our approach, we used the Vesta system to organize and
manage a large body of software that was under active development in 1991-92
at Digital Equipment Corporation’s Systems Research Center (SRC). That soft-
ware included about 4400 modules comprising 1.4 million lines of source code,
mostly written in Modula-2+ [Rovner et al], but with some C and assembly
language. The code included many different kinds of subsystems, such as a
micro-kernel operating system, a comprehensive set of user libraries, software
development tools, and a substantial collection of application programs. New
versions of these components were being produced frequently by the 25 full-time
developers, and changes in the interfaces between major components occurred
often, necessitating frequent integration. The development tools (e.g., compil-
ers) were evolving concurrently with the software that was built with them.
Nearly every component was targeted to run on multiple operating systems and
machine architectures.

Such a setting clearly presents a substantial challenge for a configuration
management system, and the traditional Unix software development tools were
inadequate. Their deficiencies became the requirements for Vesta’s configuration
management facilities:

1. Human work should be commensurate with the size of a change. In Vesta,
the amount of effort required for a developer to propagate a change is
proportional to the size of the change, not the size of the affected body
of code. We emphasize that this requirement addresses conceptually small
changes; in this sense both “change the local variable x to y in this line
of C-code” and “rebuild the system for a different instruction set archi-
tecture” are small changes. Notice that many conventional development
tools limit the kinds of conceptually small changes that are feasible. For
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example, 1t may be difficult to rebuild a large system consistently with a
new version of a compiler, or to rebuild a collection of related applications
with a new subroutine library.

We clearly distinguish the human and machine work required to effect a
change. Requirement 1 talks about human work, but says nothing about
machine work. Of course, the amount of machine work must be reasonable
for the particular change. It makes sense to recompile every module of a
system if the compiler version changes, but not if a local variable name
changes.

2. Tools should support programmers working indwidually and cooperatively.
Vesta supports development of large systems without complicating the
creation of small programs. The system-building descriptions are concise;
that is, the size and complexity of the descriptions the individual pro-
grammer must understand or write scale with the size and complexity of
the individual piece of software being developed, not the entire system.

3. Software construction recipes should be complete and self-contained. Any
object (e.g., executable program, documentation) constructed by Vesta
can be traced back to a collection of source objects. Also, the construction
of any object can be reproduced by Vesta, if necessary.

These requirements led us to adopt a particular methodology in organizing
our descriptions of software construction (in Vesta terminology, system models,
or models for short [Lampson and Schmidt]). The methodology has the follow-
ing characteristics:

o Modularity. System models are modular, not monolithic. An individual
working on a single component of a large system should, in the main,
be able to carry out development and unit testing by manipulating only
the system model of that component (requirement 2). But since a sys-
tem description must be complete (requirement 3), it follows that models
necessarily refer to each other.

e Isolation of construction algorithm and environment. System models
completely define both construction algorithms and construction environ-
ments, but keep them carefully separated. The construction algorithm de-
fines the set of pieces that comprise a particular component and the rules
for assembling them. That assembly also incorporates externally defined
components, which are provided by the construction environment. Both
must be specified precisely if the system description is to be complete (re-
quirement 3). Keeping their specification carefully separated follows from
requirement 2, since individual developers need to perform unit testing of
their components, while integrators need to test collections of components
together, and the environments for constructing these two sorts of tests
necessarily differ.
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e FErxtensive parameterization. The construction algorithm for each compo-
nent of a system is highly parameterized. It binds as few decisions as
possible, leaving most of the choices to be bound by the environment in
which the construction occurs. By accepting many parameters, the con-
struction algorithm becomes usable in a wide variety of circumstances,
and a conceptually small change generally translates into a change in a
parameter value (requirement 1).

The remaining sections of the paper present detailed examples of this
methodology. Section 2 gives an overview of the essential properties of the
Vesta repository and builder on which the methodology depends. Section 3
introduces the basic forms of Vesta system models and gives concrete exam-
ples of each. Section 4 illustrates how system models are combined to build up
large systems from their components. Section 5 addresses scaling issues, show-
ing how to construct a large, consistent development environment with Vesta
models. Section 6 concludes the paper with an evaluation of our approach.

2 Vesta Fundamentals

In this section, we give an overview of selected aspects of Vesta that are nec-
essary for understanding the subsequent examples. We don’t attempt to cover
any topic in depth. Companion papers [Chiu and Levin] [Hanna and Levin]
[Brown and Ellis] provide more comprehensive discussions of Vesta’s repository
and system-builder.

2.1 Repositories, Objects, Packages, and System Models

Vesta stores objects' in repositories. Every object is either a source object
or a derived object. The Vesta system regards source objects as atomic enti-
ties that 1t cannot construct from other objects. Derived objects are just the
opposite—Vesta constructs them mechanically from other objects (and, signif-
icantly, using other objects). All objects—source and derived—possess unique,
machine-oriented names (UIDs) and are immutable, meaning that the binding
between a unique name and a value, once established, never changes.

A Vesta repository is a specialized file system that stores and names Vesta
objects. Source objects have user-sensible, hierarchical names similar to Unix
paths, but which include versioning information (see below). Derived objects
have no user-sensible names; they can be named only by their UIDs. (For details
on the representation and management of Vesta objects, see [Chiu and Levin].)

A Vesta repository may be either public or private. A private repository
belongs to a single user, meaning that only that user can create new objects in

1Vesta objects resemble files in many ways, although, as we shall see, there are significant
differences [Chiu and Levin]. For the purposes of this paper, however, the reader can treat
the two terms as synonymous.
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it. Any user can create objects in a public repository. All users can read objects
in any repository.

A Unix file system provides a naming hierarchy using directories. FEach
directory holds a collection of named entities, each of which is either a file or
another directory. A Vesta repository is slightly more complicated; it consists of
packages and system models, each of which participates in the naming hierarchy
in addition to performing other functions. We’ll briefly describe each of these
concepts.

A package 1s the unit of software conveniently worked on by one person at a
time. This obviously isn’t a very formal definition; operationally, it means that
Vesta repositories provide checkout/checkin on packages, not individual files.
(We’ll explain this is some detail in section 2.5.) Vesta packages are versioned;
each version is described by a system model, which is a source object that can
name other source objects. So, a Vesta package version consists of a collection
of named source objects.

Once created, a package version is immutable (since it is described by a
system model, which is a Vesta object, and all Vesta objects are immutable).
Thus, we can’t change a package version, but we can create new ones.

Package versions are naturally grouped into package families, which reflect
the evolution of the software unit embodied by the package. Fach repository
has a flat name space of package families; each family has a tree-structured
name space that resembles RCS [Tichy], but uses a mixture of textual and
numerical naming elements. For example, suppose we have a repository named
/vesta/proj that contains a package family named text. Then the following
are all package versions in this family:

/vesta/proj/text.4
/vesta/proj/text.4.levin. 17
/vesta/proj/text.8.for_vax.1.bugfix.2

For the purposes of this paper, we needn’t delve any further into the interpre-
tation of these names. More details can be found in [Chiu and Levin].

A system model has three parts: a directory clause, an optional import clause,
and a butlding part. The directory clause binds simple, human-sensible names
to source objects identified by UIDs, analogously to a traditional file system
directory. The import clause binds simple names to the unique names of other
package versions; that is, it enables one system model to refer to another, some-
what like a link in a Unix file system. Together, the directory and import clauses
define a naming environment in which the building part is interpreted. The
building part contains the rules for constructing derived objects. It is written
in a functional programming language (the Vesta language [Hanna and Levin])
that is based on the typed A-calculus.

The directory clause refers to source objects that “belong” to a package
version, in the same sense that the files in a Unix directory belong to that
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directory. Any of these source objects may itself be a system model, called a
submodel, in which case it introduces another level in the naming hierarchy,
just like a Unix subdirectory. Two different system models may refer to the
same UID in their directory clauses; the Unix analogy is multiple hard links.
This situation arises often within a package family, since successive versions of
a package frequently have many source objects in common.

The import clause refers to other package versions. These references cut
across the normal naming hierarchy, much as symbolic links do in Unix. Con-
sider the following two package versions and their directory and import clauses:

/vesta/proj/text.4 (bound to some UID, say uid-{) is a system model
that begins:

DIRECTORY
Text.def = uid-2,
Text.mod = wuid-3

/vesta/proj/stdio.7 (bound to some UID, say uid-4) is a system model
that begins:

DIRECTORY
Stdio.def = wid-J,
Stdio.mod = wid-6

IMPORT

text.v (*/vesta/proj/text.4*) = wid-1

These two package versions comprise six distinct source objects, identified
by the six UIDs. Their natural user-sensible names are:

/vesta/proj/text.4/MODEL for  wid-1
/vesta/proj/text.4/Text.def for wid-2
/vesta/proj/text.4/Text.mod for wid-3
/vesta/proj/stdio.7/MODEL for  wid-4
/vesta/proj/stdio.7/Stdio.def for wid-5
/vesta/proj/stdio.7/Stdio.mod for wid-6

However, the following are also valid user-sensible names:

/vesta/proj/stdio.7/text.v for  wid-1
/vesta/proj/stdio.7/text.v/Text.def for wid-2
/vesta/proj/stdio.7/text.v/Text.mod for wid-3

The directory and import clauses both introduce names that can be refer-
enced in the building part of the model, as we’ll see in the next section.
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2.2 Dependency and Parameterization

Because it is a functional programming language, the Vesta language conve-
niently expresses the essence of the system construction process: the applica-
tion of software tools to objects according to a dependency description. We
represent each tool (e.g., a C compiler, a linker) used by a system model as
a Vesta function[Brown and Ellis]. The function’s arguments are the tool’s in-
puts, which are typically one or more Vesta objects (files) and other parameters
corresponding to switches or options (e.g., to enable optimization or runtime
range checks). The function’s result is typically a Vesta derived object that can
serve as the input to another function. So, a fragment of (the building part of)
a system model that compiles and links a two-module program might look like
this:

M2$Prog( (M2$Compile(Main.mod), M2$Compile(Subs.mod)) )

M2$Compile and M2$Prog are Vesta functions that invoke the Modula-2+ com-
piler and linker, respectively. This fragment invokes the compiler twice, com-
bines the results in a two-element list, and passes the list to the linker. The
value of the fragment therefore depends on the two source files (Main.mod and
Subs.mod) and the two functions (M2$Compile and M2$Prog).

Let’s expand this fragment according to the methodology described in sec-
tion 1. We want to parameterize the construction algorithm of this hypothetical
program, so we introduce a function?, as shown in figure 1.

01 DIRECTORY
02 Main.mod
03 Subs.mod

/v/0haM08002P.Zay/S94f.73. sample,
/v/0haM08002P.Zay/S100a.4. sample,

04 IN {

05 build = FUNCTION M2$Prog, M2$Compile IN

08 M2$Prog( (M2$Compile(Main.mod), M2$Compile(Subs.mod)) );
07

08 other stuff

09 }

Figure 1: System model fragment with a build function

We still have a fragment, but one that is closer to a real Vesta model. Note
the directory clause, which binds the names Main.mod and Subs.mod to unique
identifiers (whose format is typical, but doesn’t concern us here®). The building

2In this example, and many that follow, we include line numbers for convenient reference
in the subsequent text. These numbers don’t appear in real system models.

3Unique identifiers are intended for machine, not human, consumption, so although they
are visible in this example, users don’t actually type or manipulate them directly. Section 2.5
explains how unique identifiers are introduced into models.
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part is a binding, in which the name build is bound to a function produced by
evaluating the FUNCTION expression. We’ll examine bindings in more detail in
the next section.

Here, the build function has two parameters, M2$Compile and M2$Prog.*
In the real-life examples in subsequent sections, we’ll see that the set of param-
eters of a typical function is much larger. Modula-2+ modules often import
tens of interfaces, meaning that an invocation of M2$Compile often depends on
tens of values that the environment must supply. So, if Main.mod were a typ-
ical Modula-2+ program, it might import a dozen interfaces, and if we had to
write explicitly the values for those interfaces as additional parameters to the
compilation, our system model would become unwieldy. Furthermore, we would
also have to add their names to the formal parameter list of the build function,
thereby making the system model even bulkier.

Clearly, we need a way to suppress details that are easily inferred. The
Vesta language provides two defaulting mechanisms for this purpose. First,
any actual parameters omitted from a function call are supplied by looking up
the corresponding formal parameters in the naming environment of the call.
Second, some or all of the formal parameter list in a FUNCTION expression may
be replaced by “...”, which indicates that any free variable in the body of
the FUNCTION expression that is not bound in the lexical scope enclosing the
FUNCTION expression is to be treated as an implicit formal parameter. So, we
would typically write lines 5-6 in the fragment in figure 1 as:

05 build = FUNCTION ... IN
08 M2$Prog( (M2$Compile(Main.mod), M2$Compile(Subs.mod)) );

Notice that, as a consequence of these defaulting rules, any interface im-
ported by Main.mod is now implicitly a formal parameter of build. That is,
since the lexical environment of this function binds only the source file names
(in the DIRECTORY clause), all the defaulted parameters to the compilation and
linking become formal parameters of build, along with the compiler and linker
themselves.

2.3 Bindings

During the process of constructing substantial software systems, the naming en-
vironment can grow to be quite large. Since Vesta system models are complete
and self-contained (requirement 3), they necessarily include large collections of
names. As a result, the Vesta language has to provide mechanisms for conve-
niently manipulating sets of named values. We call a set of <name, value>
pairs a binding. Technically, a binding is a (partial) function from names to
values; that is, a name may appear at most once in a binding. Bindings are

4This is a deliberate oversimplification. The truth comes at the end of section 2.3.
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first-class values in the Vesta language; in particular, a binding may be (and
often is) returned as the result of a function call.
The value of each of the following expressions is a binding;:

{ A = 3, optimize = FALSE }

{ Double
Triple

FUNCTION x IN PLUS(x,x),
FUNCTION x IN PLUS(PLUS(x,x),x) }

{ pair = { first = 1, second = 3 }, something else = "abc" }
The following expressions evaluate to the same value:

LET { x =3, y =4 } IN { sum = PLUS(x, y) }
and

{sum =7 }
The following expressions evaluate to the same value:

LET { Z = FUNCTION x IN { x2 = PLUS(x,x),
x3 = PLUS(PLUS(x,x),x) } }
IN Z(7)

and
{ x2 =14, x3 = 21 }

If B1 and B2 are bindings, the construct {B1,B2} produces a binding that is
the union of B1 and B2, with the members of B2 taking precedence when the same
name appears in both bindings. If B1 and B2 are bindings, the construct {B1;B2}
produces a binding equivalent to {B1, LET B1 IN B2}. If B is a binding and N
is an identifier, the construct B$N produces the value that is paired with N in B.
We use these constructs extensively in the examples in subsequent sections.

The following five expressions evaluate to the same value:

LET { f = FUNCTION x IN { x2
x3
LET £(7) IN PLUS(x2, x3)

PLUS(x,x),
PLUS(PLUS(x,x),x) } } IN

and

LET { £ = FUNCTION x IN { x2 = PLUS(x,x),
x3 = PLUS(PLUS(x,x),x) }; £(7) } IN

PLUS(x2, x3)

and
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LET { f = FUNCTION x IN { x2
x3
PLUS(£(7)$x2, £(7)$x3)

PLUS(x,x),
PLUS(PLUS(x,x),x) } } IN

and
LET { x2 = FUNCTION ... IN PLUS(x,x),
x3 = FUNCTION ... IN PLUS(PLUS(x,x),x) } IN
LET { x =7 } IN
PLUS(x2(), x3())
and
35

Notice, therefore, that when we wrote M2$Compile in the fragments in sec-
tion 2.2, we were actually writing an expression, not a simple identifier. In
reality, then, the build function in that section has M2 as a formal parameter,
not M2$Compile and M2$Prog.

2.4 Modula-2+ programs

Since most of the source code we developed using Vesta is written in Modula-
2+ [Rovner et al.], the characteristics of that language naturally affected the
structure of the system models we wrote. For the purposes of these descriptions,
Modula-2+ is identical to Modula-2 [Wirth]. Tt has formal interfaces (called
definition modules) which are compiled into an intermediate form. The compiled
representation of an interface is needed (read) by the compiler when it compiles
a module that imports (uses) the interface. Such a module may be another
interface, an implementation module, or a main program module. The compiler
must also read the compiled interface when compiling an implementation module
that exports (implements) the interface. The linker accepts a compiled main
program plus a collection of compiled implementation modules and checks that
they were all produced using a consistent set of interfaces.

Since two Modula-24+ modules can refer to each other only through a
Modula-2+4 interface, we can see that the system model fragment in figure 1
1sn’t quite complete—it should include an interface. In the fragment that ap-
pears in figure 2 we’ve added one. To make 1t look more like the real system
models we will encounter later, we’ve given a name to the result returned by
Prog, and exploited some of the language mechanisms for manipulating bindings
to tidy things up a bit.

On line 7 this model fragment compiles the Modula-2+ interface named
Subs.def, producing a single-element binding. By convention, the Modula-2+
compiler attaches the suffix “.d” to compiled interface names, that is, on line 7
it constructs the binding
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01 DIRECTORY

02 Main.mod = wuid-1,

03 Subs.mod = wid-2,

04 Subs.def = wid-3,

05 IN {

06 build = FUNCTION ... IN LET M2 IN

07 LET Compile(Subs.def) IN

08 { Sample = Prog( (Compile(Main.mod),
09 Compile(Subs.mod)) ) };
10

11 other stuff

12 }

Figure 2: System model fragment with a Modula-2+ interface

{ Subs.d = compiled version of Subs.def }

The two compilations on lines 8-9 both need to refer to this compiled interface,
since Main.mod imports it and Subs.mod exports it. The LET expression on
line 7 places Subs.d in the lexical environment where it can be found by the
two subsequent compilations. Subs.d is therefore an implicit (i.e., defaulted)
parameter to these compilations.

2.5 Where new versions come from

To conclude our overview of Vesta fundamentals, we briefly consider how new
package versions come into existence.

In most source-code control systems (e.g., SCCS [Rochkind], RCS [Tichy], and
their descendants), versions of source files are created by a checkout-checkin pro-
cess. Roughly speaking, a new version of a source file is created by copying some
existing version from a public directory into a private working area (checkout),
editing it one or more times to produce a new version, and copying the result
back to the public directory (checkin). Most systems combine some concur-
rency control with either or both of the copying actions in order to reduce the
possibility of chaos and lost edits.

Vesta also has a checkout-checkin process, but it differs in several significant
ways:

e The unit of checkout-checkin is a package version, not a single file. Re-
call that a package version is completely described by a system model,
which lists all the source objects that comprise the package. So, in Vesta,
checkout-checkin involves copying a directory tree rather than a single file.
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e Vesta manages derived files as well as source files. Traditional source-code
control systems, true to their name, manage only source code, leaving the
user to manage the naming of derived objects manually. In Vesta, derived
objects don’t have user-sensible names; they are managed entirely “under
the covers” by Vesta (that is, they can be named only with UIDs). The
user works exclusively with source files.

e Versioning is available to the programmer during a development session,
that is, while files are checked out. We’ve seen that package families
contain multiple package versions, organized in a tree. This arrangement
has obvious benefits for the shared public versions. However, programmers
also find it convenient to retain intermediate versions during development
sessions. Vesta extends the package versioning scheme to include these
intermediate versions.

To understand the practical consequences of these differences, let’s walk
through a development session using Vesta. Assume that our public repository
is named /vesta/proj and that it contains a package family named text in
which we want to create a new version. By browsing, we discover that version 4
of the package (i.e., /vesta/proj/text.4) is the one we want to start from; we
propose to create /vesta/proj/text.5, which doesn’t yet exist. Suppose that
the system model named /vesta/proj/text.4 has the form shown in figure 3.

DIRECTORY
Text.def = wuid-1,
Text.mod = uid-2
IN

the building part; not relevant just now

1

Figure 3: System model at the start of a development session

We initiate a checkout session by invoking Vesta’s Checkout operation and
specifying

e the version we intend to create (/vesta/proj/text.5),
e the version we intend to start from (/vesta/proj/text.4),

e the private repository to hold the intermediate versions that we create
during the checkout session (call it /vesta/levin), and

e the (Unix) working directory in which we will perform our editing (call it
/udir/levin/text).
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When Checkout completes, the name /vesta/proj/text.5 will have been re-
served for us and the working directory /udir/levin/text will have been suit-
ably initialized, as discussed below.

Already things look quite different from conventional source-control systems.
Vesta evaluates only immutable system models, which reside in repositories.
Yet while a package is checked out, many versions of only transient interest are
created. These versions reside in the private repository, which also holds the
derived objects produced by evaluation of these versions. The working directory
holds only mutable files that correspond to the source objects of the package.
Let’s look at this in more detail.

After the Checkout operation, our working directory contains a file corre-
sponding to each source object in /vesta/proj/text.4. The package has three
source objects—two files named in the DIRECTORY and the system model itself—
so /udir/levin/text will contain three files: Text.def, Text.mod, and MODEL.
These are ordinary, mutable, Unix files. This package doesn’t have any sub-
models, but if it did, the Checkout operation would construct subdirectories of
the working directory for each submodel in the natural way.

So far, only the public repository and working directory have been involved.
Now suppose that we alter /udir/levin/text/Text.mod. We use an ordinary
Unix text editor to make this change; no special Vesta facilities are involved.
Next we want to evaluate a Vesta model that resembles MODEL, but which refers
to our freshly edited file. Accordingly, we invoke the Vesta Advance operation,
which performs the following actions:

e For each file F in the working directory that has changed, copy F’s contents
to the private repository and assign it a new unique identifier (UID), then
alter the MODEL file so that the DIRECTORY clause binds the name F to the
new UID.

e Copy the contents of the altered MODEL file to the private repository and
assign it a new unique identifier (UID), then create a new package name
in the private repository and bind it to this UID.

In this case, the result of the Advance operation is the new package named
/vesta/levin/text.5.checkout.1, which appears in figure 4. Notice that a
new UID has been assigned to Text.mod, reflecting our change to the working
directory file of the same name.

In short, Advance creates a new (immutable) package version in the pri-
vate repository whose content matches the working directory. Naturally, Ad-
vance also copes with file creations and deletions in the working directory, ed-
its to the MODEL file itself, and changes to subdirectories. For example, if we
edited the file /udir/levin/text/Text.mod again, created a new file named
/udir/levin/text/Text.doc, and then invoked Advance again, we would get
a new package version named /vesta/levin/text.5.checkout.2 with the sys-
tem model shown in figure 5.
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DIRECTORY
Text.def = wuid-1,
Text.mod = uid-3
IN

the building part; not relevant just now

1

Figure 4: System model following the Advance operation

DIRECTORY
Text.def = wuid-1,
Text.mod = wid-5,
Text.doc = uid-6
IN

the building part; not relevant just now

1

Figure 5: System model after a second Advance operation

We can ask Vesta to perform the Fvaluate operation on any package ver-
sion 1n a repository, for example, on /vesta/levin/text.5.checkout.1 or
/vesta/levin/text.5.checkout.2. Since these are immutable “snapshots”,
no subsequent changes to the working directory can alter their contents. Most
commonly, we perform alternating Advance and Evaluate operations, first cre-
ating a new immutable version, then attempting to build the derived files that it
describes. Vesta provides a combined Advance-and-FEvaluate operation for this
common case.

Now let’s imagine that we’ve finished our changes and have successfully
evaluated the system model in figure 5 to build and test it. We’re ready to end
our checkout session, so we invoke the Checkin operation and specify

e the public repository name previously reserved (/vesta/proj/text.5),
and

e the version in the private repository that is to be bound to the reserved
name (/vesta/levin/text.5.checkout.2).

Notice that the working directory plays no part in the Checkin operation.
Checkin binds the reserved package name /vesta/proj/text.5 to the same
UID as /vesta/levin/text.5.checkout.2. Also, it copies to the public repos-
itory all the source objects created as part of this session whose UIDs appear
in the checked-in system model (that is, uwid-5 and wid-6). The intermediate
versions we created in the private repository still exist, should we need to go



3 BASIC VESTA SYSTEM MODELS 14

back and look at them, but they don’t clutter up the public repository, which
many users share®.

Before leaving this subject, we need to consider one other way in which
system models are frequently modified. Models commonly import other models,
and, as we have seen, these imports specify particular versions. Often a new
version of a package must be created solely to reference one or more new versions
of imported packages. That 1s, in this new system model, the only change will
be in the import clause.

Just as the Advance operation performs a specialized editing operation on
the directory clause of a system model, so the Revise-imports operation selec-
tively modifies the import clause. Of course, we could modify the import clause
with an ordinary text editor if we wished, but Revise-imports automates some
tedious aspects of the editing process. The automation is provided by a set of
user-supplied rewriting rules, which can be predicated on various properties of
packages, including version number, date of checkout or checkin, author, package
name, etc. The details aren’t particularly relevant here; what matters is:

e The import clause changes only because of an explicit, user-invoked action,
so the environment in which a package is developed (which is provided by
the set of imports, as we will see) is stable by default. No blunder by
another user can “sneak in” unnoticed; each user explicitly decides when
to tolerate an environment change.

o If a user wants to accommodate frequent environmental changes (e.g.,
because he is part of a group that is cooperatively developing related
packages), tools like Revise-imports can ease the process of updating the
explicit version in import clauses.

Contrast the Vesta approach with the standard Unix tools, in which con-
nections between components are frequently represented weakly (e.g., by search
paths through the file system). No immutability guarantees exist, and the user
cannot prevent changes from occurring in the components that his package im-
ports. Consequently, reproducible construction is impossible to assure. Vesta,
on the other hand, makes all connections immutable, so reproducibility is en-
sured. Only by constructing new versions through explicit user actions can
change be introduced.

3 Basic Vesta system models

Our methodology for defining packages groups them into three major classes:
applications, libraries, and umbrellas.

5For pragmatic reasons, Vesta does provide a way to recover the disk space consumed by
these private versions, so, strictly speaking, they aren’t immutable. However, Vesta prevents
the names from ever being reused, so there is no possibility of subsequent confusion with other
versions.
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e An application package provides one or more executable programs that
can be invoked directly by a user, typically from a shell. An interesting
special case is an application that is used for program construction, such
as a preprocessor or stub generator.

o A library package provides at least one (often more than one) interface and
at least one implementation of each interface. An important sub-case 1s a
client /server library package, in which the implementation is divided into
two parts, a client library and a server program, and the interfaces are
sometimes grouped into two or more sets as well, reflecting different kinds
of clients (e.g., ordinary client programs, server administration tools).

o An umbrella package groups a set of related packages (generally libraries,
applications, or other umbrellas), in some systematic way. That is, an
umbrella usually defines how a collection of system components are inte-
grated into a larger, consistent group. Thus, an umbrella typically provides
a convenient environment for constructing and testing the components to-
gether. Two important umbrellas deserve mention, namely building-env
and release. building-env brings together and constructs a consis-
tent collection of tools, libraries, interfaces, and default option settings.
release builds a large collection of application programs in a single con-
struction environment, which is provided by a version of building-env.
We'll look at these two umbrellas in more detail in section 5.

In this section, we examine application and library package models; in sec-
tion 4, we see how umbrella models aggregate them.

3.1 Application packages

An application package provides one or more executable programs that a user
can invoke directly, typically from a shell. Thus, the building part of an applica-
tion package’s system model will typically invoke a compiler one or more times
to produce Vesta derived objects that correspond to conventional binary object
files, then combine these derived objects into one or more executables. The run-
ning example of section 2 developed parts of a system model for a hypothetical
application package; let’s now switch to a real one. Refer to figure 6.

Although this system model is more complicated than our hypothetical ex-
ample, its broad outlines are the same. The body of the build function (line 8)
constructs a single executable (a program called Hanoi) by compiling a Modula-
2+ main program (Hanoi.mod) and linking it with a standard shared library
(SL-ui). Line 10 defines a roughly analogous function (doc) that constructs
the documentation using a document compiler. Both build and doc are in-
voked from the test component, which establishes a suitable environment via
the imported building-env package (line 12).
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01 DIRECTORY

02 Hanoi.mod = wid,

03 Hanoi.mss = wid

04 IMPORT

05 building-env.v (*/vesta/proj/building-env.22%) = wid

06 IN {

07 build = FUNCTION ... IN

08 LET M2 IN { Hanoi = Prog( (Compile(Hanoi.mod), SL-ui) ) },
09

10 doc = FUNCTION ... IN { Hanoi.doc = Scribe$Compile(Hanoi.mss) },
11

12 test = LET building-env.v$Env-default IN {

13 build(),

14 doc()

15 }

16 }

Figure 6: System model for an application package

Let’s relate this system model to the three methodological properties listed
in section 1.

e Modularity. The description of the environment needed to build Hanoi
doesn’t appear directly in the system model. Instead, a version of the
building-env umbrella is explicitly imported on line 5. So, the Hanoi
system model, while complete and precise, 1s nevertheless quite compact,
since the details of the construction environment are packaged elsewhere.

e [solation of construction algorithm and environment. The construction
algorithm is embodied in the functions on lines 7-10, and doesn’t refer to a
specific version of the construction environment. Instead, the items needed
from the environment are (implicit) formal parameters to the function.
The specific environment provided by the imported building-env model
is used only in the test component on line 12.

e FErxtensive parameterization. We see that build and doc are parameterized
in the same way as the example of figure 2. They are invoked from the
test component for individual testing purposes. However, they can also
be invoked from other system models. In particular, the release model,
which builds all the applications using a single building-env, invokes
these functions. Notice that the isolation of the construction algorithm
and environment makes this possible.

It’s also worth noting how extensive use of defaulting reduces the size of
the environment’s description. As a result, even though many name scopes
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are quite large (e.g., the Env-default binding contains over 1000 names), the
system model is short and contains only essential material. However, this brevity
comes at a price; we can’t easily discover by perusing the source text of the model
what names are defined in a scope and where their associated values came from.
Vesta must provide tools (such as browsers) to help users answer these questions
conveniently.

3.2 Library packages

SRC has several hundred library packages, each of which provides one or more
Modula-2+ interfaces and at least one implementation of each interface. A
single module frequently implements more than one interface and, of course,
libraries often depend on other libraries. This interdependency immediately
raises a structuring issue: how best to group this large collection of named
pieces for the convenience of the application packages that need to use them.

There 1s no single correct answer, but we adopted an approach that works
reasonably well, given the size of our system. Our libraries export about 1500
compiled interfaces, and we put them all into a flat name space. We group
the implementations of those interfaces into a small set of libraries (about 10)
that represent major abstraction layers, chosen so that most applications need
only mention a single one. The names of these libraries conventionally begin
with SL- (e.g., SL-ui) and are added to the same name space with the compiled
interfaces. This name space forms the bulk of the Env-default binding provided
by the building-env model.

To make it straightforward for the building-env umbrella to assemble this
name space, each library package supplies two functions, named intfs and
impls, which the building-env system model invokes. Consider the library
package named quadedge (figure 7), which is part of a set of graphics facilities
in the standard library SL-ui.

The two functions intfs and impls simply compile the package interfaces
and implementations, respectively, and return bindings containing the results.
The test component invokes a function in a submodel that does the actual work
of testing (figure 8). Of course, there’s no requirement to isolate the testing code
in a submodel, but doing so conveniently separates the construction algorithms
and environment, especially when the testing portion of the system model is
substantial.

Evidently, there’s more going on here than in the Hanoi example. Let’s work
top-down. The test component of the system model (figure 7, line 16) invokes
the function do-tests (figure 8, lines 30-36) in the submodel to perform the
actual testing. This function’s body invokes the function do-a-test twice with
different parameters; each parameter is a source object defined in the DIRECTORY
clause (lines 20-21). Looking at line 25, we discover that the parameter has the
suggestive name test-script, so we can reasonably expect it to contain the
input that drives some sort of testing program.
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01 DIRECTORY

02 OctEdge.def = wd,

03 OctEdge.mod = wid,

04 QuadEdge.def = wid,

05 QuadEdge.mod = wid,

068 tests = uid,

07 IN {

08 intfs = FUNCTION ... IN

09 LET M2 IN {

10 Compile(OctEdge.def),

11 Compile(QuadEdge.def) },
12 impls = FUNCTION ... IN

13 LET M2 IN {

14 Compile(OctEdge.mod),

15 Compile(QuadEdge.mod) };
16 test = tests$do-tests(),

17 }

Figure 7: System model for a library package

Next, let’s look at the body of do-a-test. On line 27, we see the construc-
tion of an executable named Tester; it closely resembles the construction of
the Hanoi program. Tester is then used on line 28, where we see a call of the
function Shell$Sh.

Shell$Sh provides carefully-regulated access to the Unix shell. Shell$Sh
treats its argument as a shell script and executes it in a restricted Unix envi-
ronment. In effect, the script can access files in only a single directory, and
Shell$sSh arranges that the names in that directory correspond to the set of
Vesta names in the scope at the point of its invocation®. In this case, the shell
script i1s a rather simple one; it executes a single program named Tester and
gives it a file named test-script as its (standard) input. Both of these names
must therefore be in the environment in which Shell$Sh is invoked, and we
see that they are. Tester is bound on line 27, and test-script is a formal
parameter (line 25) whose value is bound when the function is applied (lines 35
and 36).

To summarize so far, we see that the submodel builds a custom test program
(Tester) and runs it with inputs that are Vesta source objects mentioned by the

8This limitation prevents arbitrary side-effects, which would compromise Vesta’s functional
language, and helps ensure reproducibility. The shell script is allowed to read and write its
artificially created working directory or any subdirectory. Shell$Sh extracts any files that the
script writes into a binding, whose names are the file names, and returns the binding as the
result of the function application. In this example, we don’t care about the result value, for
reasons that will become clear shortly.
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18 DIRECTORY

19 Tester.mod = uid,

20 OctEdgeTest.testin = wd,

21 QuadEdgeTest.testin = wid,

22 IMPORT

23 building-env.v (* /vesta/proj/building-env.23 *) = wuid,

24 IN

25 do—a-test = FUNCTION test-script, ... IN

26 LET {

27 Tester = LET M2 IN Prog( (Compile(Tester.mod), SL-ui) ) }
28 IN Shell$Sh("Tester < test-script");

29

30 do-tests = FUNCTION ... IN

31 LET {

32 building-env.v$Env-build-with-overrides(

33 { quadedge = {intfs = intfs, impls = impls} } ) }
34 IN

35 do-a-test(OctEdgeTest.testin),

36 do-a-test(QuadEdgeTest.testin) },

37 }

Figure 8: System model for the tests submodel of quadedge

submodel’s DIRECTORY clause. Let’s now look more closely at the construction
of Tester (line 27). Tt appears very similar to the body of the build function
of an application model; a main program is compiled and linked with a shared
library (SL-ui). But how is the environment for this construction established?
Look at lines 32-33, which invoke the function Env-build-with-overrides in
the imported building-env package. If this were Env-default, it would be
familiar; we saw this binding used as the environment for the testing of the
Hanoi program. But here the situation is more complicated, because we want
our test program to be linked not with a standard version of SL-ui, but with
one that includes the version of quadedge that we want to test. Lines 32-33
construct a custom environment containing this non-standard SL-ui for the use
of the test program. The ability to do this entirely from the system model of
the quadedge package is an essential and powerful feature of Vesta, and it’s
important that we understand how it works.

Each version of the building-env model imports particular versions of each
library package, which 1t uses to construct the environment it supplies. So, in
particular, the version of building-env imported by the quadedge package for
testing purposes imports specific versions of library packages. Recall that as part
of the construction algorithm for the Env-default binding, the building-env
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system model invokes the intfs and impls functions from each such package.
Among these packages is a version of the quadedge package, which we noted was
part of the SL-ui library. But this version isn’t what we want to test—it is an
older, stabler version, and we want to substitute the current version we are work-
ing on. That’s what the function Env-build-with-overrides does. It accepts
a parameter that is used to override selected library packages. Look at line 33.
The parameter is a binding containing a single element named quadedge. This
name matches one of the library package names that the building-env model
knows about. The Env-build-with-overrides function therefore constructs
an environment using the value we have bound to quadedge instead of the
building-env model’s wired-in value. Since Env-build-with-overrides ex-
pects the wired-in value to supply two functions (intfs and impls), the value
bound to quadedge on line 33 must be a binding that includes those two names—
and we see that indeed it is. Finally, look at the values bound to those names.
They are the values of the self-same identifiers in the current scope. By the
defaulting rules, we can determine that these names were bound in the main
system model for the quadedge package (figure 7), and passed as implicit formal
parameters through the call of test$do-tests().

Env-build-with-overrides is a bit subtle, but the ability to override pack-
ages in the standard environment without modifying the building-env model
provides great power and convenience. The developer of quadedge can change
the package and test the change in a consistent environment by altering only
the quadedge model. Note that the test program might invoke other interfaces
in SL-ui whose implementations use the QuadEdge interface. If the QuadEdge
interface in this version of the package differs from the standard one (i.e., the
version wired into building-env), then the appropriate modules of those other
packages that are incorporated in SL-ui by the building-env model will be au-
tomatically recompiled. If the interface differences are source-compatible, the
recompilations will succeed and the resulting SL-ui library will be the same as
if the new quadedge package had been wired into the building-env model. It’s
important to understand that this is not the same as simply substituting the
implementation modules of the new quadedge package for the ones in the SL-ui
library included in Env-default. Such a simple substitution doesn’t guarantee
to produce a consistently compiled result; using Env-build-with-overrides
does. In fact, a small change to the QuadEdge interface might produce substan-
tial recompilation of library modules in many packages, if the interface is widely
used.

4 Umbrella packages

An umbrella package groups a set of related packages (libraries, applications,
and/or other umbrellas) in some systematic way, and provides a convenient
environment for constructing them. An umbrella commonly produces an exe-
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cutable and associated documentation, much like an application package. This
occurs when a complex application program (e.g., a compiler, or sophisticated
text editor) is built from several smaller pieces that are developed in parallel
by several programmers. Since a package is Vesta’s unit of individual work, it
is natural to divide a large application into several packages with an umbrella
package to bring them together and build the application.

In the preceding sections, we saw that application and library packages can
be built both for testing purposes and as part of an umbrella (like release or
building-env). An umbrella package must serve the same two constituencies
(its own testing and higher-level umbrellas) plus an additional one: its com-
ponent packages. We want a component package “under” an umbrella to be
testable without modification of the umbrella; hence the umbrella package itself
must supply facilities that enable unit testing of the component.

In fact, we saw an example of this in the previous section. The building-env
umbrella provided a function, Env-build-with-overrides, that enabled one of
the component package models, quadedge, to perform unit testing in a consis-
tent environment that included its own interfaces and implementations. This
paradigm—a construction function that permits selective overrides—is common
in Vesta umbrellas. We’ve seen how it is used by the component packages of an
umbrella. Now let’s look in more detail at the umbrella itself.

For our example, we’ll use the umbrella package that constructs the core of
the Vesta system itself. (Naturally, Vesta is built using Vesta!) First, we must
understand Vesta’s overall implementation structure. The bulk of the imple-
mentation resides in a server, but client programs access Vesta’s core facilities
through a collection of interfaces implemented by a library. This client library
and the server communicate using remote procedure calls (RPC). Consequently,
the (umbrella) system model for the vesta package must build two bundles of
code—the server and the client library—plus the interfaces used by client pro-
grams.

We will look at the consequences of this client/server division shortly, but
initially we’ll focus on the relationship between the umbrella package and the
components it imports. To emphasize this aspect of the umbrella model, we
present it first omitting everything that relates to the server construction (fig-
ure 9).

By definition, an umbrella package groups a set of related packages. We
see these on lines 4-6, which import the three component packages (named
vesta-base.v, vesta-eval.v, and vesta-rep.v) that together provide the
Vesta facilities. Because of the client/server division, each of these component
packages provides two pairs of functions. One of these pairs is already familiar
to us—it’s the customary intfs and impls functions that we saw in section 3.2,
which are used to build a client library. The other pair is for constructing the
server, which we’ll look at shortly.

The functions build-intfs and build-impls, defined on lines 14-21, ap-
pear to collect the interfaces and implementations of the component packages
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01
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
30
31
32
33
34
35
36
37
38
39
51
52
53
55
56
57
58
60
61

DIRECTORY
IMPORT
vesta-base.v (*/vesta/proj/vesta-base.9%) = wid,
vesta-eval.v (*/vesta/proj/vesta-eval.36%) = wid,
vesta-rep.v (*/vesta/proj/vesta-rep.29%) = wid,
building-env.v (*/vesta/proj/building-env.72%) = uid,
IN
LET {
default-pkgs = {
vesta-base = vesta-base.v,
vesta-eval = vesta-eval.v,
vesta-rep = vesta-rep.v },
build-intfs = FUNCTION ... IN {
vesta-base$intfs();
vesta-rep$intfs();
vesta-eval$intfs() },
build-impls = FUNCTION ... IN {
vesta-base$impls (),
vesta-rep$impls(),
vesta-eval$impls() },
}
N |
intfs-with-overrides = FUNCTION pkg-overrides, ... IN
LET { default-pkgs, pkg-overrides } IN build-intfs(),
impls-with-overrides = FUNCTION pkg-overrides, ... IN
LET { default-pkgs, pkg-overrides } IN build-impls();
intfs = FUNCTION ... IN intfs-with-overrides({}),
impls = FUNCTION ... IN impls-with-overrides({}),
b
build-client = FUNCTION ... IN LET intfs() IN impls();
test =

LET building-env.v$Env-default IN {
build-client();

}s

Figure 9: Client-related parts of the vesta system model
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and build them in the obvious way. However, because we want the umbrella to
permit these functions to be overridden, as we did with the quadedge package
in section 3.2, these functions actually do something slightly subtle. Look care-
fully at the identifiers used to refer to the component packages in the bodies of
these functions. They are vesta-base, vesta-eval, and vesta-rep. By de-
fault, these are bound to the imported package versions named vesta-base.v,
vesta-eval.v, and vesta-rep.v, respectively, but that default may be over-
ridden. Let’s see how.

First, lines 10-13 establish the default package names by constructing a
binding named default-pkgs. Second, lines 33 and 35 merge this bind-
ing with a second one named pkg-overrides, and invoke build-intfs and
build-impls in an environment containing the result. So, the functions
intfs-with-overrides and impls-with-overrides resemble the function
Env-build-with-overrides that we encountered earlier—they construct some-
thing using a set of wired-in default package versions, but permit selective over-
riding through a parameter.

Notice the two functions defined on lines 37-38, which build the default
versions by invoking the two more general functions with an empty binding
as the set of packages to override. Note also the build-client function and
the test component (lines 53—-60), which simply arrange to compile the default
versions of the interfaces and implementations.

This paradigm recurs in most umbrellas. A set of component packages
appear in the IMPORT clause, each bound to a name of the form foo.v. A
binding named default-pkgs binds foo to foo.v for each such import. A
build-with-overrides function taking a parameter pkg-overrides has as its
body a LET expression in which the binding {default-pkgs,pkg-overrides} is
opened. Finally, all the real work of construction uses a name of the form foo,
not foo.v, to refer to a component package. For convenience, it is also custom-
ary to provide a parameterless function that invokes the build-with-overrides
function with an empty binding as the parameter.

Now that we’ve seen how the overriding machinery works, let’s flesh out the
system model above to include the server-related portions. Refer to figures 10
and 11. The major new portions are lines 22-29 and 40-50. We now can see
that the second pair of functions provided by each component package builds
a collection of interfaces and their implementations for inclusion in the server.
Thus, lines 22-29 are analogous to lines 14-21; they simply build this second set
of interfaces and implementations. Lines 40-50 construct the server itself, and
most of this should now be familiar. Line 42 handles the possibility of overrides,
and lines 45-50 construct an executable program, much as we saw in sections 3.1
and 3.2. (We’ll return to the new wrinkles on lines 46 and 50 in a little while.)
The server evidently consists of a main program VestaDriver.mod, the pieces
taken from the three component packages, and a standard library SL-basics.
The test component builds the server (line 59) in a standard environment
imported explicitly for the purpose (lines 7 and 57), using a convenient function
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(line 54) that invokes server-with-overrides with an empty set of overrides.

Now let’s look at an outline of the system model for one of the component
packages, say vesta-eval, to see how it would exploit the vesta umbrella’s
override feature for testing purposes. The model appears in figure 12. Lines 1—
19 resemble things we’ve already seen. Lines 20-25 construct the parameter
that will be used to override the parts of the client and server contributed
by the vesta-eval package. Lines 27-33 do the real work. Line 28 builds
the server, overriding the vesta-eval component. Lines 29-33 build a test
program using the Vesta client library constructed with the vesta-eval portion

01 DIRECTORY

02 VestaDriver.mod = wid,

03 IMPORT

04 vesta-base.v (*/vesta/proj/vesta-base.9%) = wid,
05 vesta-eval.v (*/vesta/proj/vesta-eval.36%) = wid,
08 vesta-rep.v (*/vesta/proj/vesta-rep.29%) = wid,
07 building-env.v (*/vesta/proj/building-env.72%) = uid,
08 IN {

09 LET {

10 default-pkgs = {

11 vesta-base = vesta-base.v,

12 vesta-eval = vesta-eval.v,

13 vesta-rep = vesta-rep.v },

14 build-intfs = FUNCTION ... IN {

15 vesta-base$intfs();

18 vesta-rep$intfs();

17 vesta-eval$intfs() },

18 build-impls = FUNCTION ... IN {

19 vesta-base$impls (),

20 vesta-rep$impls(),

21 vesta-eval$impls() },

22 build-server-intfs = FUNCTION ... IN {

23 vesta-base$server-intfs();

24 vesta-eval$server-intfs();

25 vesta-rep$server-intfs() },

26 build-server-impls = FUNCTION ... IN {

27 vesta-base$server-impls(),

28 vesta-eval$server—-impls(),

29 vesta-rep$server-impls() },

30 }

Figure 10: Complete vesta system model (part 1)
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

IN

intfs-with-overrides = FUNCTION pkg-overrides, ... IN
LET { default-pkgs, pkg-overrides } IN build-intfs(),

impls-with-overrides = FUNCTION pkg-overrides, ... IN
LET { default-pkgs, pkg-overrides } IN build-impls();

intfs = FUNCTION ... IN intfs-with-overrides({}),

impls = FUNCTION ... IN impls-with-overrides({});

server-with-overrides = FUNCTION pkg-overrides, ... IN
LET {

default-pkgs, pkg-overrides;
build-intfs(); build-server-intfs() }
IN
vesta = M2$Prog {
pieces = (
M2$Compile(VestaDriver.mod),
build-server-impls(),
SL-basics ),
M2-enable-gc = TRUE } },

¥

build-client
build-server

FUNCTION ... IN LET intfs() IN impls(),
FUNCTION ... IN server-with-overrides({}),

test =
LET building-env.v$Env-default IN {
build-client(),
build-server()

}s

Figure 11: Complete vesta system model (part 2)

overridden by the local intfs and impls. The result, then, of evaluating the
test component is a binding containing two executables, server and tester,
built to be consistent with each other and using the locally-defined pieces of
vesta—-eval. We observe the same property that we noted with the quadedge
package—a new version of a component package can be built and tested without
modifying the umbrella package that includes an older version of the component.

We conclude our examination of the vesta umbrella by returning to a detail

of the construction of the server on lines 45-50 of figure 11. Notice that the Prog
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01
02
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04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

DIRECTORY
EvalTester.mod = uid,
entries for all vesta-eval interface and implementation modules
IMPORT
vesta.v (*/vesta/proj/vesta.47*) uid,
building-env.v (*/vesta/proj/building-env.71%) = wid

IN
intfs = FUNCTION ... IN
{ compile all client interfaces },
impls = FUNCTION ... IN
{ compile implementations of client interfaces },
server—intfs = FUNCTION ... IN
{ compile interfaces for use with the server only },
server—impls = FUNCTION ... IN

{ compile server implementation modules };

override = {
vesta-eval = {
intfs = intfs,
impls = impls,
server—-intfs = server—-intfs,
server-impls = server-impls } };

test = LET building-env.v$Env-default IN {
server = vesta.v$server-with-overrides(override),
LET vesta.v$intfs-with-overrides(override) IN {
tester = M2$Prog( (
M2$Compile(EvalTester.mod),
vesta.v§impls-with-overrides(override),
SL-basics) ) } }

Figure 12: System model of the vesta-eval package

function is passed a binding of two values named pieces and M2-enable-gc.

This i1llustrates how a normally defaulted parameter is overridden. The function
Prog actually has a long list of parameters that control the linking process. In
this case, we want to supply (non-default) values for two of them: pieces, the
list of things to be linked together, and M2-enable-gc, a Boolean switch. We
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could use a positional list if we knew these were the first two parameters, but
instead we use a binding to exploit Vesta’s parameter defaulting rules (recall
section 2.2) and achieve the approximate effect of keyword parameters.

5 The release and building-env umbrellas

We’ve seen that an umbrella model constructs a software subsystem by combin-
ing lower-level components. An umbrella model also offers a selective-override
feature, which the component models use to build testing versions of the subsys-
tem. In this section, we’ll look at two substantial umbrella models that exploit
these structuring conventions. These models also illustrate how our description
methodology scales naturally to accommodate large systems.

5.1 The release umbrella

Umbrellas may import other umbrellas. For example, the release model,
which builds a large collection of application programs using a single, consistent
building-env, imports the vesta model and invokes its build-server func-
tion. As we have seen, the vesta model is a rather small umbrella package;
the release model is considerably larger, but not conceptually more difficult
to understand. Refer to figure 13.

DIRECTORY

IMPORT
building-env.v (*/vesta/proj/building-env.76%*) = uid,
bootfile.v (*/vesta/proj/bootfile.20%) = wid,
bitmapeditor.v (*/vesta/proj/bitmapeditor.8*) = uid,
copy.v (*/vesta/proj/copy.5%) = wid,
vesta.v (*/vesta/proj/vesta.55%) = wid,
119 additional imported packages. . .

IN

LET building-env.v$Env-default IN {
bootfile.v$build(),
bitmapeditor.v$build(),
copy.v$build(),
vesta.v$build-server(),

119 additional sitmilar lines. . .

1

Figure 13: The release model



5 'THE RELEASE AND BUILDING-ENV UMBRELLAS 28

>
bitmapeditor copy 119 other
application
packages

bootfile vesta building-env
\ vestabase  vestaeva  vestarep :
nub taos 160 library
packages

29 nub 23 taos

library library
packages  packages

Figure 14: Import graph of the release system model

Note that a building function is invoked in each of the imported models.
Some of the imported packages, like bitmapeditor and copy, are simple appli-
cations of the kind we examined in section 3.1. Others, like vesta, are them-
selves umbrellas. Figure 14 shows the import structure of the release model
and some of its more interesting imported components.

Of particular interest in this picture is the bootfile model, which builds
the operating system image for SRC’s Topaz system [McJones and Swart]. This
operating system has a micro-kernel structure; it includes a small kernel (called
the Nub) and a larger server program (called Taos) that executes much as an
ordinary application would. The bootfile model reflects this structure; it is
an umbrella that imports two other umbrellas, nub and taos, which build the
kernel and operating system server from individual components.

The release model is our most comprehensive umbrella, in the sense that
it forms the apex of our entire software pyramid.

5.2 The building-env umbrella

We have already encountered some facilities of the building-env model, no-
tably the Env-default binding and Env-build-with-overrides function. The
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building-env model has additional, unique characteristics that we need to in-
vestigate further.

Until now, we’ve ignored how particular versions of construction tools, such
as the compilers and linkers, were specified. We mentioned that M2 is a binding
containing the Compile and Prog functions, but we didn’t say where these
functions came from and how the binding was constructed.

We don’t simply treat the tools as binaries. Requirement 3 of section 1
compels us to construct the environment, including the tools, from complete
and precise descriptions in terms of source objects. We therefore define the
tools as we would any other program-—by writing the Vesta description that
expresses how they are constructed. So, when we look into the building-env
model, we find the function shown in figure 15.

build-bridges = FUNCTION ... IN {
AS = BRIDGE( as-bridge$build() ),
C = BRIDGE( c-bridge$build() ),
M2 = BRIDGE( m2-bridge$build() ),
Shell = BRIDGE( shell-bridge$build() ),

Figure 15: Bridges built by the building-env system model

as-bridge, c-bridge, m2-bridge, and shell-bridge are packages im-
ported by building-env. (Vesta uses the term bridge for a group of related
tools that support a particular programming language [Lampson and Schmidt].)
Each is essentially an application package, and therefore has a build function
that builds an executable”. The build-bridges function constructs each ex-
ecutable and passes 1t to the built-in Vesta primitive BRIDGE, which launches
the bridge executable, then obtains (via an RPC call), a Vesta binding of the
functions it implements. This binding is returned as the result of the BRIDGE
function®.

By the way, bridges can be overridden just like any other package. Conse-
quently, the testing portion of the system model for m2-bridge can use the func-
tion Env-build-with-overrides to build an entire consistent set of libraries
and tools using, say, new versions of the compiler and linker. The contents of
that environment can be compared with another version of the environment, if

70f course, our models can accommodate a tool for which only the binary form is available.
Construction from source is preferable, because the construction can be repeated in a slightly
different environment if necessary. But if only the binary is available, the build function
simply returns the binary directly as its result; that is, the binary is a source object in the
Vesta sense (see section 2.1).

8The workings of Vesta bridges fall outside the scope of this paper; see [Brown and Ellis]
for a complete discussion.
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desired, as part of a regression test. Furthermore, the entire comparison can be
included in the test component of the bridge model.

Since the build function of each bridge package builds an executable, it must
have a suitable construction environment. Furthermore, as we saw in section 3.1,
the invoker of the build function is responsible for defining that environment.
Thus, the building-env model, in which the build-bridges function appears
and 1is invoked, must itself supply the environment for constructing the bridges.
This environment is delivered by a pre-existing building-env, that is, an earlier
version of the building-env package. Thus, a building-env model imports
another building-env model for building the bridges.

Keeping these two construction environments separate is essential, partic-
ularly during cross-platform software development. The bridges execute tools
that run on the host platform—the one on which the development is occurring.
The software being built by a Vesta model is intended to run on a target plat-
form, which may have a different instruction set, or operating system, or both,
from the host. The building-env model must keep these two environments
separated, or chaos will result. We’ll see how the separation is achieved shortly.

An importer of building-env may need to use both environments. For
most situations, the target environment is all that is necessary, and it is this
environment that the Env-default binding and Env-build-with-overrides
function construct. Recall that this environment contains some facilities (e.g.,
the bridges) that have been built to execute in the host environment and produce
results for the target environment. Some software packages require the use of
specialized tools that are not part of building-env, and hence must be able to
obtain an appropriate host environment in order to specify the construction of
the tool. Let’s look at an example.

In figure 16 we’ve altered the Hanoi example of section 3.1 by eliminating
the source file Hanoi.mod and introducing instead a computation that produces
a Modula-24 program by applying a private preprocessor (my-pp) to a source
file named Hanoi.pp-in. Note the change in line 16 to invoke apply-pp, which
in turn invokes build-pp. Line 9 constructs the preprocessor in a fashion that
1s, by now, quite familiar. However, we’re interested in how the environment
for this construction is established, which happens on lines 7 and 8.

The environment established by the test component is, as usual, the tar-
get environment; that is, it contains suitable interfaces and libraries for the
environment in which the software being constructed will ultimately execute.
Buried in the Env-default binding, however, is another binding that is the
imported building-env used to construct the bridges. This binding is called
Env-for-bridges to emphasize its role; it is an environment suitable for con-
struction of software destined to execute as part of the Vesta evaluation of Hanoi.
In other words, it is the host environment. Consequently, on line 8, we see the
Env-for-bridges$Env-default binding being opened as the environment for
the tool construction on line 9.

Although this example illustrates how the separate host and target environ-
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01 DIRECTORY

02 Hanoi.pp-in = wuid,

03 SpecialPP.mod = wuid,

04 IMPORT

05 building-env.v (*/vesta/proj/building-env.22%) = wid

06 IN {

07 build-pp = FUNCTION Env-for-bridges IN

08 LET Env-for-bridges$Env-default IN {

09 my-pp = M2$Prog( (M2$Compile(SpecialPP.mod),SL-basics) ) };
10

11 apply-pp = FUNCTION source, ... IN

12 LET build-pp() IN Shell$Sh("my-pp source")))$stdout;

13

14 build = FUNCTION ... IN

15 LET M2 IN {

18 Hanoi = Prog( (Compile(apply-pp(Hanoi.pp-in)), SL-ui) ) };
17

18 test = LET building-env.v$Env-default IN build(),

19 }

Figure 16: Tool construction inside an application’s system model

ments are used in a Vesta model, we can extract some other lessons. First,
the Hanoi model got only a few lines longer when we added the preprocessor
complexity, yet it still completely captures what’s going on. Second, the en-
vironment of tool construction is available to any package that needs it. The
tools don’t have to be placed in the building-env model; private tools like
my-pp are easily introduced in suitably smaller scopes. Third, it isn’t necessary
to construct a full-fledged Vesta bridge package in order to execute a simple
tool. The Shell bridge can be used for this purpose, just as it was used for
testing in figure 8. (Incidentally, if we look back at that example, we see that it
ignores the distinction between the host and target environments. It constructs
the test program in the target environment, then executes it with the Shel1$Sh
function, implicitly assuming that the host and target platforms are the same.
This is indeed true for the particular version of building-env that it imports,
so the model 1sn’t buggy, but a similar model that differs only in the version of
building-env it imports could easily fail to work.)

Let’s return now to the building-env model to see how it keeps the host and
target environments separate. We’ve already seen three pieces of this model:
the Env-default binding, the Env-build-with-overrides function, and the
Env-for-bridges binding that is part of Env-default. Now let’s consider the
model as a whole (figures 17 and 18).
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01 DIRECTORY

02 IMPORT

03 building-env.v = wid, (* host environment *)
04 (* bridges *)

05 m2-bridge.v = wd,

06 as-bridge.v = wid,

07 elc.

08 (* library packages *)
09 text.v = wid,

10 quadedge.v = wid,

11 elc.

12 IN {

Figure 17: The building-env system model (part 1)

Once again, we see the principle of extensive parameterization at work.
The heart of the building-env model is the function Env-build, which con-
structs an environment for a specified target architecture and operating system
while allowing selective overrides of component packages. Env-default and
Env-for-bridges$Env-default provide convenient access to common special
cases, in which some of these parameters are defaulted. But Env-build provides
the full generality.

Let’s exploit this generality. Referring to lines 14-15 and lines 46-47, we
see that the Env-default binding constructed on line 50 is targeted for a
VAX running Ultrix. Suppose we needed to build this target environment
on an Alpha AXP running OSF/1. If the (host) environment provided by
Env-for-bridges$Env-default isn’t suitable, we simply replace line 34 with

34a LET Env-for-bridges$Env-build({}, "AXP", "OSFi") IN
34b build-bridges();

Observe how Vesta’s ability to describe environments completely and encap-
sulate them with bindings makes this a tiny change to the source text of the
model, even though it has a dramatic effect on the actions required to construct
the system.

5.3 Software distribution with Vesta

We’ve seen that Vesta models emphasize complete description in terms of source
objects. Derived objects are managed automatically by Vesta, which is why they
don’t have user-sensible names (see sections 2.1 and 2.5). But sometimes users
have to deal with derived objects in a more explicit way. An obvious example
is the distribution of a software release.
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LET {

IN

default-inst-set

IIVAXII’

default-platform = "Ultrix",
default-pkgs = {

m2-bridge = m2-bridge.v,
as-bridge = as-bridge.v,
text = text.v,

quadedge = quadedge.v,
elc.

}s

build-bridges = FUNCTION ... IN {

}
{

M2 = BRIDGE( m2-bridge$build() ),
AS = BRIDGE( as-bridge$build() ),
elc.

}s

Env-build = FUNCTION pkg-overrides, inst-set, platform IN {

Env-for-bridges = building-env.v;

LET {default-pkgs, pkg-overrides} IN {
(* Build the bridges in the host environment *)
LET Env-for-bridges$Env-default IN build-bridges();
(* Build the interfaces for the target environment *)
text$intfs();
quadedge$intfs();
elc.
(* Build the libraries for the target environment *)
SL-basics = M2$Lib( (text$impls(), etc.) );
SL-ui = M2$Lib( (quadedge$impls(), etc., SL-basics) ),
elc.
1

b

Env-build-with-overrides = FUNCTION pkg-overrides IN {

Env-build(pkg-overrides, default-inst-set, default-platform)

¥

Env-default = Env-build-with-overrides( {} ),

}s

Figure 18: The building-env system model (part 2)
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Imagine that we have completed the production of a consistent collection of
software that we now wish to distribute. We want to distribute the collection
of derived objects to a customer, but without the source from which it was
produced. Furthermore, the customer may not use Vesta; indeed, the customer
may not be doing software development at all.

Making a software distribution with Vesta is a two-step process. First, we
need to acquire a precise description of the objects, in particular the derived
objects, to be distributed. Second, we need to transfer these objects to the
distribution medium.

Let’s consider an example. Suppose that we wanted to distribute the Hanoi
program (figure 6) with its documentation, but without revealing the sources
or the means of constructing them. We apply a Vesta tool named vcapture to
the Hanoi system model. vcapture invokes the Vesta evaluator on the Hanoi
system model, looks at the resulting value, and writes a new system model

(figure 19).

DIRECTORY
Derived0001 = wid,
Derived0002 = uid

IN
test = {

Hanoi = Derived0001,
Hanoi.doc = Derived0002

}s

Figure 19: “Backstop” system model for Hanoi

The UIDs in the DIRECTORY name the two derived objects that the Hanoi
model in section 3.1 constructs. Notice that evaluating this mechanically-
produced model gives the same result as evaluating the original, but without
invoking any construction tools. We call such a model a backstop.

The backstop handles the first step of the distribution process. The second
step is a straightforward transfer of this model and the objects in its DIRECTORY
to a distribution medium, such as a Unix tar tape, or perhaps just a publicly
accessible directory in an ordinary file system. This can be done with ordinary
Unix tools.

Backstops can be produced for any Vesta model, not just for simple appli-
cation packages. A backstop of release contains an entire collection of con-
sistently constructed applications. A backstop of building-env constitutes a
snapshot of a consistent software development environment (which is roughly
equivalent to the union of the Unix /usr/include and /usr/1ib directories,
plus the subset of /bin that is used as software construction tools). Distribut-
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ing this backstop conveniently transfers the development environment to the
customers without exposing the sources that produced it. Furthermore, the
developers can selectively include sources if they wish; they simply alter the
original building-env model to include the appropriate sources in the value it
produces when evaluated by vcapture to give the backstop.

If the customer who receives the backstop also uses Vesta, he simply puts
the backstop into a (public) repository where it can be imported by his other
system models. If not, the customer uses a simple utility to move the derived ob-
Jjects into appropriate places in the customer’s file system, following the naming
structure defined by the backstop model that 1s part of the software distribution.

6 Evaluation

Let’s evaluate how Vesta addresses the three requirements stated in the first
section.

Human work should be commensurate with the size of a change. The ex-
amples of sections 3-5 clearly show how a conceptually small change can be
introduced by a small amount of editing of system models, even when the effect
of the change, measured in the amount of mechanical work required to construct
the resulting system, is very large. A single change to a fundamental interface
may require editing one source line, but may trigger a complete reconstruction
of the building environment.

We have considerable evidence that Vesta users appreciate and exploit this
flexibility and power:

o In the course of one year, over 200 private versions of the building-env
package were constructed. In many software development shops of com-
parable size, a consistent build of a couple of hundred library packages
can’t be done without major human effort. With Vesta, it occurred every
day or so. Obviously, the users found i1t both easy and useful.

e The changes that users were willing to consider, such as low-level interface
changes, were not constrained by the limitations of the software construc-
tion tools. We had repeated examples of:

e rebuilding the entire environment to enable/disable execution profil-
ing of libraries;

e changing compiler versions to accommodate an incompatible object
file format;

e retargeting the entire operating system to a new hardware platform;

e rebuilding the entire base of applications for a different operating
system.
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Conventional tools don’t support most of these changes at all, or, at best,
can barely be coaxed into doing them with a lot of manual labor.

Tools should support programmers working individually and cooperatively.
Vesta’s support for extensive parameterization makes it possible for a devel-
oper both to work independently and to combine her work with that of others.
We saw how the overriding paradigm is used to enable a developer to test new
components in a precisely controlled environment without affecting any pack-
age but her own. The paradigm applies uniformly from the simplest umbrella
packages for a small project to the entire building environment, with hundreds
of packages and dozens of developers.

We have evidence to support the utility of the overriding paradigm:

e Nearly every umbrella package in Vesta exhibits the facilities discussed
in sections 4 and 5. Obviously, these mechanisms enable a development
process that users find attractive.

e New public versions of the building-env package were announced at least
weekly (over 60 in the space of one year). Each version represented a
consistent integration of nearly 200 packages, many under active develop-
ment. Yet, the responsibility for the weekly release of building-env was
entrusted to a single person, who spent less than one-quarter of his time
on 1t. Most of the problems that normally show up during conventional
integration testing were exposed earlier in the development process by in-
dividual developers using the overriding mechanism to test in the context
of the complete system rather than a test jig. Furthermore, individual de-
velopers could test at their own pace—mno need to submit tentative changes
to a mechanical “nightly build” as was the norm in the heyday of batch
systems and, regrettably, is still common today.

e Even though new releases of building-env occurred frequently, the per-
son responsible for the release rarely encountered pressure if a release was
delayed. Again because of the overriding paradigm, individual users could
construct custom versions of the environment they needed, without wait-
ing for a centrally managed weekly release.

Software construction recipes should be complete and self-contained. Vesta
system models completely describe components and the environment(s) in which
they are constructed, both in terms of immutable source objects. This approach
isolates developers from each others’ changes unless and until they choose to
share components. Equally important, it also isolates them from changes to the
tools in the environment until they consciously decide to upgrade.

As evidence of the value of this approach, we observed that the SRC com-
munity of 25-30 users frequently had 10-15 versions of building-env in active
use, of which two or three often differed only in the version of the Modula-2-+
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compiler (which was under active development at the time). Clearly, they val-
ued the ability to control precisely the contents of their software construction
environment. Traditional system-builders (e.g., make [Feldman]) either lack the
facilities that enable this mode of operation, or support 1t so weakly that con-
siderable discipline is required to achieve the desired degree of isolation. Vesta
replaces human discipline with automation.

While the evidence supports the utility of our methodology for system mod-
els, we know of some things that won’t scale well to larger systems. The name
spaces used for package names and for (compiled) interfaces are flat. For SRC’s
purposes, this wasn’t a problem—each contained under 2000 names. However,
scaling up by a small factor would require imposing some structure on these
name spaces. This, in turn, would add some complexity to the models that im-
port building-env to establish an environment for construction. We anticipate
that the added complexity would be small—a line or two to open a nested name
scope. The umbrella packages would also need to add a line or two so that the
overriding paradigm would continue to work. We don’t see any technical diffi-
culties here, but we haven’t actually performed this change to see what would
happen.

Finally, we reaped considerable benefits from the clear separation of the
Vesta language and the conventions for applying it. The language itself is small
and simple, with few features that directly stem from the desire to describe
large software systems. The hard problem was to devise a workable collection of
conventions and principles for using the language for software development. The
examples in preceding sections demonstrate how we solved that problem. We
expect the Vesta language and many of the principles we devised to work just
as well in other programming shops, although the details of their application
would naturally differ.

In conclusion, then, we believe that Vesta’s novel language and repository
facilities deliver significant advantages to software developers by drastically re-
ducing the complexity of building and evolving large interrelated collections of
software. We believe that our experience demonstrates that Vesta’s configura-
tion management abilities surpass those of many other systems.
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