
Smartest Recompilation

Zhong Shao and Andrew W. Appel

Department of Computer Science, Princeton University

Princeton, NJ 08544-2087

ZSMCS. pxinceton. edu appel@cs .princeton. edu

Abstract

To separately compile a program module in traditional

statically-typed languages, one has to manually write down

an import interface which explicitly specifies all the external

symbols referenced in the module. Whenever the definitions

of these external symbols are changed, the module haa to be

recompiled. In this paper, we present an algorithm which

can automatically infer the “minimum” import interface for

any module in languages baaed on the Damaa-Milner type

discipline (e.g., ML). By “minimum”, we mean that the in-

terface specifies a set of assumptions (for external symbols)

that are just enough to make the module type-check and

compile. By compiling each module using its “minimum”

import interface, we get a separate compilation method that

can achieve the following optimal property: A compilation

unit never needs to be recompiled unless its own implemen-

tation changes.

1 Introduction

Most traditional separate compilation methods rely on man-

ually created contexts (e.g., Modula-3 interfaces, “include-

files” in C, and Ada package specifications) to enforce type

correctness across module boundaries. Using the proper con-

texts, the compiler can check that each module uses its im-

ported interfaces properly, and implements its exported in-

terface as expected. The disadvantage of using these man-

ually created contexts is that to guarantee consistency, all

modules using a changed context must be recompiled, no

matter how small the change is. The conventional recom-

pilation rule (as described in Tichy [31]) is stated aa fol-

lows: “A compilation wait must be recompiled whenever (1)

its own implementation changes, or (2) a context changes

upon which the compilation unit depends. ” This is obviously

not satisfactory because adding a comment or adding a new

declaration to a pervasive context may cause the unnecessary

recompilation of the entire system. Tichy [31] presents an

effective technique called “smart recompilation” that elimi-

nates most of the redundant recompilation triggered by (2).

Permission to copv without fee all or part of this material ia

granted provided that the copies are not made or distributed for
direct commercial advantage, tha ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ACM-20th PoPL-1 /93-S. C., USA
@1993 ACM 0.89791-561-5/93/0001 /0439... $ 1.50

In Tichy’s scheme, a compilation unit ia recompiled only

if its implementation changea, or if it references a symbol

defined elsewhere whose definition haa changed. Schwanke

and Kaiser [29] define “smarter recompilation” which can

eliminate even more (but not all) redundant recompilation

caused by (2). So a natural question to ask is: Can we elim-

inate all redundant recompilation? that ia, can we achieve

the following smartest recompilation rule: A compila-

tion unit never needs to be recompiled unless its own imple-

mentation (source code) changes?

Standard ML (SML) [20] has a rather elaborate module

system, but SML compilers have not supported separate

compilation very well. The problem ia that in SML, modules

such as structures and functora can liberally reference exter-

nally defined identifiers wit bout even mentioning what are

their specification. For example, by using “qualified” (dot-

ted) identifiers, a structure FOO can use BAR. QUX. f to refer-

ence the function f defined in the substructure QUX of the

structure BAR, without even knowing what the type of f ia.

Because of the lack of explicit import interfaces, structures

and functors with free variables (Iet’a call them open-formed

modules) are not considered aa separately compilable units.

So how can we separately compile open-formed modules in

SML?

This paper presents a new separate compilation method

which actually answers both of the above two queationa.

Surprisingly, not only can we separately compile arbitrary

structures and functors in SML, but we can also accomplish

the “smarteat recompilation rule.” Our idea ia simple: in

order to separately compile a module with references to ex-

ternal identifiera, we have to know the specifications (e.g.,

types) of these external identifiers; since they are not explic-

itly specified, we infer them by looking at how these exter-

nal identifiers are used inside the module; then we compile

the module by using this inferred import interface as ita

context; finally, when all the modules are linked together,

cross-module type errors are reported by checking whether

the surroundings match (or satiafy) the specification in each

inferred import interface. The catch here is that in order to

achieve the “smartest recompilation rule”, we have to in-

fer the “minimum” import interface. Informally speaking,

this “minimum” import interface specifies a set of assump-

tions (on those external identifiers) that are just enough to

make the module type-check and compile; at link time, if

the module’s aurroundinga satisfy this aet of assumptions,

the compiled code can be reused, otherwise there must be

cross-module type errora. The inference algorithm ia dis-

cussed in detail in section 2 and 3.

439

Now let’s see an example of how our method works. From

the following SML structure declaration,

structure FOO . struct
Vd X = BAR.f
val y . (BAR.g 4, BAR. g true)

end

we know that in order to compile FOO, the context should

contain a structure named BAR. Inside BAR, there should be at

least two val declarations: one is f, which can have any type,

say a; the other is g, which should be a function that can be

applied to both integers and booleans, that is, g should have
a type more general than int -+ P and bool + -y. Here, a,

/3 and ~ are just type variables we used to denote unknown

types. Compiling FOO in this inferred interface will result in

a structure with two components: the variable x has type a

and the variable y has type /3 * y. Now suppose that the

real structure BAR is defined as follows:

structure BAR = struct val f = 3

val h = true
valg=fnz=>z

end

then at link time, when the real BAR is matched against the

import interface of FOO, we find that the type variables a and

/3 should be d and y should be bool, thus FOO. x will have

type int and FOO. y will have type int * booi. This is exactly

what we will get if we compile FOO in the environment that

would result from compiling BAR.

To achieve the “smartest recompilation rule”, the back

end of the compiler must use only the type information

specified in the module’s inferred import interface. This

limitation is not a big problem. The back end of the cur-

rent SML/NJ compiler [4] uses almost no type information

from the front end but it still produces quite efficient code.

Many optimization techniques that do use the type informa-

tion, such as Leroy’s representation analysis [17], can still be

partially incorporated into our separate compilation system.

The details will be described in section 4 and 5 of this paper.

Our separate compilation method immediately has the fol-

lowing advantages over traditional methods:

e

e

*

e

*

Because of the smartest recompilation rule, each module

never needs to be recompiled unless its own implemen-

tation changes; so maximum reusability is achieved.

Because all modules are compiled independently of each

other, they can be compiled in any order. This also

means that programmers need no longer maintain de-

pendency files (e.g., Makefi.le [9]).

Open-formed modules can also be separately compiled.

Cross-module type errors are now symmetric. In tra-
ditional methods, if module A references identifiers de-

fined in module l?, type inconsistencies between mod-

ule A and module B will show up when A is compiled.

If the programmer fixes the error by editing B, both A

and B must be recompiled. But in our method, because

cross-module type errors are reported at link time, only

B will be recompiled.

The compiler based on our method will automatically

be a standalone compiler. As far as we know, no one has

yet built a standalone compiler for the complete SML

module system.

1.1 Closed vs. open-formed modules

Standard ML SJ1OWSprogramming in open-formed modules.

The essential difference between closed and open-formed

modules can be seen from rewriting the above open-formed

structure FOO in closed form, the SML functor FOO’.

functor FOO’ (BAR : sig val f : int
val g : la .-> >a

end)
= struct val x = BAR.f

val y = (BAR. g 4, BAR. g true)
end

This shows that programmers have to give assumptions

about the types of BAR. f and BAR. g based on a pro forma

implement ation of the structure declaration BAR. If later,

BAR. g is changed to have a type scheme Va.a -+int, the

above declaration will no longer be useful and will have to

be modified and recompiled. An open-formed module such

as structure FOO does not have this problem because it does

not require that the specifications of imported identifiers be

explicitly given. People may want to write FOO’ using its

minimum import interface as its argument signature, but

this “minimum” is not expressible in the SML type system.

Moreover, inferring the minimum import interface cannot be

easily done by hand.

We do not advocate writing large programs all in open-

formed modules. SML strongly encourages that every struc-

ture declaration should be written with a result signature

constraint (as its export interface). Programmers can write

their programs all in the form of closed functors such as

FOO’. On the other hand, in practice, we find it extremely

convenient and flexible to write parts of our programs as

open-formed modules.

For languages based on the Damas-Milner type disci-

pline [7] such as SML and Haskell [11], there is another

reason in favor of writing certain modules in opened forms.

One of the most important features of the Damae-Milner

type discipline is that the most general type for arbitrary

expressions can be automatically inferred by compilers. It

is, however, nontrivial to infer the most general type simply

by hand, especially with the presence of polymorphic ref-

erences in SML or type classes in Haskell. This makes it

also nontrivial to write explicit import interfaces for many

modules. The SML commentary [19] also suggests that pro-

grammers will probably need to write down many sharing

equations if they want to close every module and that it will

be too restrictive to write everything in closed functors.

2 Assumption Inference in Core ML

ML has a sophisticated type inference system. Given an
ML expression e = Ar..f(z + 1), even though the type of

newly introduced variable x is not specified, we can still

find the most general type of e if we know the type of j

and +. For example, if ~ has type Va. cY ~ a and + has

type int * int + int, e will have type int + int. Milner’s

type inference (or type reconstruction) algorithm W (as in

Tofte [32]) takes two arguments, a type environment TE and

an ML expression e; all the free variables in e (such as j and

+) must be specified with a type in TE, and W(TE, e) will

return the most generaJ type for e.

To support “smartest recompilation,” we face the chal-

lenge of doing type inference without even knowing the type

440

Def W*(e) = case e of Def lfono~nify(~, TS) =

x =$’ let assume TS = {7{,...,7;}

let a be a new type variable in unifg({(~,r;),(r,~;), (~, ~;)})
in (a,{x ~ a})

Def PoiyUnify((TVo, 7., Ao), TS) =

Jz.el + let A= O,P=O

let a be a new type variable assume TVO = {ci,, ~,,~n}
(r~, Al)= W*(el) for each T c 7’S

S = MorIo Lkifg(cY, Al(z)) /%, F?z,.....% be new type variables
in (S(a ~ r:), S(A1 \{z})) s={at14/3, fori=l,..., n}

A = A u S(AO)

elez * P= P u {(s 7,, 7)}

Iet (r~, Al) = W*(el) in (Vraify(P), A)

(r~, A2) = W*(ez)

a be a new type variable

s = Unify({(r; ,T; + a)}) Def Match(TE, A) =

in (S(a), S(AI U Az)) let P=O

for each (z,~) E A

letz=e~ine~+- VCYI,an.rl = TE(z)

let (rf, AI) = W“(el) ,&, /32,....A be new type variables
(r~,A2) = W*(e2) S={a, w/?~fori=l,..., n}

‘TV = tyuars(r~) U tyvars(A1) P= PU {(S r~, r)}

(S, A)= PolyUnify((TV, rf, AI), Az(x)) in Unify(P)

in (S(t-J), AI uS’(AU (Az\{t})))

Figure 1: The Inference Algorithm W* and Match

of external identifiers. For example, can we find out the

most general type of the above expression e if we do not

know the type of f and +? This seems impossible. But in

the case of separate compilation, we assume that the types

of external identifiers will be known at link time. We can

divide the type inference into two phases: first (at compile

time), we infer a type r for e and a set of assumptions A for

the free variables in e, which essentially means that e will

have type r if the free variables in e satisfy the constraints

in A; then (at link time) when the types of those free vari-

ables (i. e., TE) are known, we match them against those in

A and “magically” recover the most general type of e in TE.

To distinguish it from usual ML type inference, we call the

inference done in the first phase “assumption inference”.

In this section and section 3 we discuss the details of our

assumption inference algorithm and show how the matching

done at link time can successfully recover the correct type

for each expression. To simplify the presentations, we divide

our algorithms into two parts: this section for Core ML and

the next section for the ML module language. We only give

the details of our algorithm for the mini-ML language Exp

and the skeletal module language ModL used by Tofte [32].

However it is easy to extend our algorithm to the rest of

SML.

The expressions in the mini-ML language Exp are defined

by the following grammar:

e::= z[Az.el lelez/letz=elin ez

Here is a brief review of the notation. %nmose TvVar is an. .
infinite set of type variables and TyCon is a set

type constructors, the set of types, Type, ranged

of nullary

over by r

and the set of type schetnet+ TypeScheme, ranged over by a

are defined by T ::= rrlal~l~r2anda::=r /VCV.Ul.

A type environment is a finite map from program variables

to type schemes. tyvars(r), tyvars(a) and tgvars(TE) are

the set of type variables that occur jree in r, a and TE re-

spectively. A type r’ is a generic instance of a type scheme

a=val, ..., a~.r, written as ~’ < a, if there exists a substi-
tution S with its domain being a subset of {al, cm} and #

= S(T). A type scheme al is more general than crz, denoted

as aZ < al, if all generic instances of az are also generic in-

stances of al. The generalization of a type r in a type envi-

ronment TE is denoted by gen(TE, r), it is the type scheme

Val, an.i- where {al, CYn} = tyvars(r) \ tyvars(TE).

The core ML type system, in the form of type deduction

rules as TE * e : r, is omitted here because it is the same

as in Tofte [32].

2.1 The assumption inference algorithm W*

We define a type assumption to be a pair (z,~) where x is

a program variable and r is a type. An assumption envi-

ronment, ranged over by A, is a set of type assumptions;

it is usually represented by a finite mapping from program

variables to lists of types. In the following, we use A\ {x }

to denote the set of type assumptions in A except those for

variable z, and A(z) to denote the set of types associated

with variable z in A. We ah% use Unify to denote Robinson’s

original unification algorithm on classical term algebras [26].

Unify takes a set of pairs of types and returns a substitution

(the most general unifier).

Figure 1 gives the assumption inference algorithm W* and

441

the matching algorithm Match. W* takes an ML expression,

and returns a type and an assumption environment. Match

takesan ML type environment and an assumption environ-

ment, and ret urns a substitution. The other two procedures

in figure 1 are Mono Unify and Poly Unify. Mono Unify takes

a type and a set of types, and returns a substitution. Poly U-

n i$y takestwo arguments: a triple of a TyVar set and a type

and an assumption environment, and a set of types; it re-

turns a substitution and an assumption environment.

Given an ML expression e, W*(e) delays the type-checking

of all free variables in e by recording their monomorphic

type instances in an assumption environment A. In the

case of lambda abstraction Az. el, the type a of z is treated

as monomorphic; the procedure Mono Unify checks whether

the set of assumptions collected for z from el satisfies this

constraint. One the other hand, in the let expression, the

type of z is treated as polymorphic; for each use of m in

ez, the type and the assumption environment from el is re-

named with new type variables; the procedure Poly Unifi

then checks the typing of z in ez and merges the assump-

tion environments collected from el and ez. When the real

type environment TE for the free variables is known (at link

time), the matching algorithm Match(TE, A) precisely re-

covers everything, including the result type of elaborating e

in TE.

For example, given an expression

e = let g = Az. fz in g g,

the free variable of e is ~; W*(e) will return an assumption

environment A = {f H (~6 + cr7) + as, f + (~6 + cr7),

f * (al -+ cr3)} and a type a~ for e. If the real type

environment TE is {f H VCY.CXA a}, Match(TE, A) will

result in the substitution S“ = {we w /?1, a7 H /?I, crI I+ PI,

~3 w /11, as w (pl + /31)}. Thus the expression e will have

the type S* (CY8) = (~1 -+ ,61). This is exactly what we will

get if we apply Tofte’s algorithm W to TE and e.

In fact we can show that the algorithm W* is equivalent

to Milner’s W [32] in the following sense:

Theorem 2.1 Given a type environment TE and an ex-

pression e, then (S, r) = W(TE, e) succeeds if and only

if both (r”, A) = W“(e) and S* == Match(TE, A) succeed;

Moreover, there exists two substitutions R1 and R2, such

that the following are true: (1) RJ o R2 = R2 o R1 = ID;

(~) R1(S(TE), ~) = (S*(TE), S“r”); (3) (s(TE), ~) =
R2(S*(TE), S*T*).

Proof By structural induction on the expression e. For

details, see the technical report [30]. QED.

Notice that theorem 2.1 is not trying to show the sound-

ness and completeness of W* directly. It is just proving that
the result of W* and Match is equivalent to the result of W.

Proving this kind of equivalence is relatively easier. From

the soundness and completeness of the algorithm W(which

is proved in Damas’s Ph. D thesis [6]), and the above theo-

rem 2.1, we can easily get the following soundness and com-

pleteness results for our algorithm W*.

Corollary 2.2 (Soundness of W*) Given a type envi-
ronment TE and an ML expression e, if both (r”, A) =

W“(e) and S* = Match(TE, A) succeed, then S*(TE’) k

e : S:7-’.

Corollary 2.3 (Completeness of W*) Given a type en-

vironment TE and an ML expression e, suppose that TE1 =

S1 (TE) and TEI k e : rl, then both (r”, A) = W*(e)

and S* = Match(TE, A) will succeed; Moreover there ex-

ists a substitution S’ such that TE1 = S’(S”(TE)) and

T1 + S’(gen(S*(TE), S*r*)).

The algorithm W* itself is interesting. Recursive calls to

W* in the algorithm will not interfere with each other so they

can be called in any order. If concurrency is used, W* can be

efficiently implement ed. The caae for the 1 et x = el in ez

expression implies that we can link two pieces of programs,

i.e., el and ez, even though both of them cent ain free vari-

ables; this is done by the algorithm Po2y Unify in figure 1.

The assumption environment A returned from W* may be

big. A possible optimization is to insert a simplifying proce-

dure at each recursive call to W* in the algorithm. This sim-

plifying procedure will identify all “isolated” type assump-

tions in A. Given (r, A) = W*(e), we define an equivalence

relation N on type variables: “a - ,8 if there exists a type

such that either r’ = ~ or (z, ~’) E A for some x is true,

and both a and /3 are type variables of T’.” Let TV be the

transitive closure of tyvars(r) under N, then all pairs (z, t)

in A where tyvars(t) n TV = 0 are denoted as “isolated”

assumptions. All type variables occurred in “isolated” as-

sumptions need not to be renamed in Poiy Unify and most

redundant “isolated” assumptions can be eliminated.

2.2 The assumption inference algorithm D

One disadvantage of W* is that its sequential implementa-

tion may be not very efficient in practice. In most compilers,

there is a pervasive basis (or initial library) which tends to be

referenced very frequently by user programs, thus the result-

ing assumption environment from W* may be quite big (even

if it uses certain optimizations mentioned above). It turns

out that this problem can be elegantly solved by extending

ML types with type predicates and assumptions. This ex-

tension, which is called “constrained type” in Kaes [13] and

“qualified type” in Jones [12], is normally used to reason

about the ML type system in the presence of overloading

and subtyping. The algorithm D, which is presented in the

appendix at the end of this paper, is the type reconstruction
algorithm for Kaes’s constrained type system. By using a

special set of type predicates, the algorithm D can efficiently

solve the assumption inference problem even when there is

a pervasive basis. For more details, please see the appendix.

3 Assumption Inference in the SML Mod-

ule Language

In this section, we present an assumption inference algo-

rithm for the SML module language. To simplify the pre-

sentation, we only consider the skeletal language ModL (as in

Tofte [32]) in figure 2. Notice that signature expressions and

declarations are intentionally left out because their elabora-

tions can be delayed to link time, thus are irrelevant to our

assumption inference. Functor declarations are not consid-

ered in our language either because only their body, which is

a structure expression, is elaborated at compile time. How-

ever, functor applications are considered in our language be-

cause they are structure expressions which must be elabo-

rated at compile time.

442

dec ::= m G StrName

I strdec N G NameSet = Fin(StrName)

I strdec decl GE c SigEnv = SigId ~ Sig

FE ~ FunEnv = FunId ~ FunSig

strexp ::= strid SE c StrEnv = StrId 9 Str

I struct dec end S or (m, E) ~ Str = StrName x Env

.drexp. strid E c Env = StrEnv

I jctid(strexp) X or (N)S ~ Sig = NameSet x Str

N(S, IV’(S’)) c FunSig = NameSet x (Str x Sig)

strdec ::= structure strid = strexp B c Basis = Nameset x SigEnv

x FunEnv x Env

Figure 2: left: Grammar; right: Semantic objects

The static semantics of ModL is discussed in detail in the

definition [20] and Tofte [32]. Its deduction rule is in the

form of “B 1- phrase + A“ meaning that phrase is elabo-

rated into a semantic object A in the basis B. The semantic

objects are also defined in figure 2. Here we give a quick

review on notations and concepts used in the static seman-

tics: A structure S is a pair (m, E), where m is the name

of the structure and E is an environment, which gives the

static information about the components of the structure.

To make the presentation clear, from now on, we shall use

str(m, E) to denote a structure (m,12). A signature is an

object of the form (N)S, where S is a structure and N is

a finite set of names. A functor signature Q is an object of

the form N(S, N’(S’)) where N(S) is the principal signature

for the parameter signature expression of the functor and S’

is the body structure of the functor, the names bound in

S’ are the names in S’ which have to be generated afresh

upon each functor application. A structure environment SE

is a finite map from structure identifiers to structures, sim-

ilarly for signature environment GE and functor environ-

ment FE. StrName is an infinite set of names: names that

are specified in a signature expression and are not shared

wit h already declared structures are called flexible names,

denoted as FlexStrName; names of declared structures are

called rigid names, denoted as ftigStrName.

Definition 3.1 A realization is a finite mapping from the

set FlexStrName to the set StrName; a renaming realization

p={m, I+ m; where i = I , k} is a realization where m~s

m-e distinct rigid names.

Definition 3.2 A structure S1 = str(ml, SEI) enriches a

structure S2 = str(m2, SE2) if ml = m2 and the struc-

ture environment SE1 enriches the SE2, A structure en-

vironment SE] enriches a structure environment SE2 if

Dom(SEz) ~ Dom(SEl) and for each s c Dom(SEg),

SE1 (s) enriches S,?32(s).

Definition 3.3 A structure S’ matches a signature Z =

N(S) ij there ezists a realization p such that S’ enriches

yJ(s).

Because the SML module language is explicitly typed, the

elaboration of a module expression simply involves type-

checking. The static semantics in the Definition [20] can

be viewed as a type checking algorithm. Given a structure

expression with free identifiers, we want to infer the min-

imum constraints on these free identifiers with which the

expression will just type-check. Again the minimum con-

straints are not expressible if we only use semantic objects

in figure 2. We introduce a new kind of structure variable

which is similar to row variables used in typing record calculi.

Let StrVar be an infinite set of structure variables; struc-

tures and structure environments are now extended as Str’

= (StrName x StrEnv’) U StrVar and StrEnv’ = StrId ~

Str’. Each structure variable tmust have a kind. Kinds are

defined as (StrName x KindEnv) where KindEnv is just a fi-

nite mapping StrId ~ (Str U StrVar). To distinguish it from

structures, a kind (m, KE) is represented as STR(m, KE). A

kind assignment is a finite mapping from structure variables

to kinds. A structure S = str(m, SE) has the kind k un-

der the kind assignment K, written as A’ 1- S :: k, if it is

derivable from the following set of kinding rules:

(1) K k t:: STR(m,KE), if K(t)= STR(m, KE)

(2) Af k str(m, SE) :: STR(m, KE)

if both Dom(SE) ~ Dom(KE)

and Vs c Dom(KE), SE(s) = KE(s).

A substitution now consists of two parts: one from StrVar

to Str’, another from FlexStrName to StrName (i.e., realiza-

tion). A kinded substitution is a pair consisting of a kind as-

signment and a substitution. A kinded substitution (KI ,lt)

respects a kind assignment K2 if, for all t in dom(K2), KI E

R(t) :: R(Kz (t)) is a derivable kinding. A kinded substitu-

tion (Kl ,Rl) is more general than (K2,1?2) if R2 = Rs o RI

for some R3 such that (K2,R3) respects IYl. A kinded sub-

stitution (KI ,R) is an unifier of a kinded set of equations

(Kz,P) if it respects KZ and R(tl) = R(tz) for all (t,, -tz) in

P.

Figure 3 gives our inference algorithms Wstrew on struc-

ture expressions, W&c on declarations, wfc~zd on functor

identifiers, W8~~&c on structure declarations and the match-

ing algorithm Mod/Match. The argument V and Af records

those already-used structure variables and flexible names.

All functor applications are done by the matching algorithm

at link time. The “thinning effect” in functor applications

(on the argument signature) is achieved by the set of con-

straints generated by the GenRec algorithm. The inferred

assumption environment A automatically records the “min-

443

Def W,t~~~P(se, V, M) = case se of

x +

let t$+V, m@M,

V’=vu{t}, iw=fwu{m}
in ({t:: STR(m,O)}, t, {x w t}, v’, M’)

s.a

let &l,ul,Al, K, Ml) = Wstrezp(S, V M)

tl, tz$!Vl, andml, mz~Ml

K2 = ~IU {tl::STR(ml,{a w tz})}
Ii”s= A-zU {t,:: STR(mz,@)}

V2 = V1 u{tl, t2}, M2 = MI U{ml, mz}

(KA,R) = Ifinduniig(~s,{(~l,tl)})

in (K,, R(tz),R(AI), k, Jf2)

f(s) *

let (KI, uI, A, U,~I] = ~f.t!d(f~~ ~)

(K2, t42, A2, u,Jf2) = W$trer,(%w, fw)

t@ V2, m$Ik12

V3 = VZ U{t}, M3 = M2U{m}

K3 = IifI U KzU {t:: STR(m,O)}

(K4,R) = I{indUnifg(K3,{ (u~,u2 - t)})

in (K,, R(t),IZ(A1 uAz), IL, M3)

struct d end *

let (KI, Envl, Al, VI, Ml) = Wciec(d)

m$Ml, Mz=MILJ {m}

in (Kl, str(m,Envl), Al, u, Mz)

Def wf,t,~(f, V, M) = case f of
x *

let tl, tz$V; ml, mz$M
VI =Vu{tl, tz}; Ml =MU{ml, m2}

K = {tl::STR(ml,O), t2::STR(m2,@)}
in (K,tl+ tz,{z + tl+ t2}, IL, Ml)

Def W.trdec(Sd, V, M) = case sd of

structure s = se ~

let (KI, UI, Al, V1, MI) = WstrexP(se, ~ M)

in (K’1, {s * al}, Al, Vi, Ml)

Def Wdec(d, V, M) = case d of

sd * W$trdec(sd, v, M)

sd d+-

let (K1, Envl, Al, K, Ml) = w~td~c(sd, ~ M)

assume Envl = {s # u1}

(K~, Envz, Az,15, Mz)=W~~~(d, W, Ml)

assume Az(s) = {tl,....t~}
A3 = (A, U (Az\{s}))

P = {(u,, t,),..., (ul, tk)}

(K3,R) = KindUnifg(K~ U K2, P)

in (Ifs, R(Env~ + Env2), R(A3), %, M2)

Def Genl?ec(a, str(m, Env), K, V)

let KE = 0

for each s E Dom(Env)

,B@Vand V= VLJ{~}

(K, V)= GenRec(@, Env(s), K, V)

KE=KE+{s+-+f3}

K = I?(U {a :: STR(m, KE)}

in (K, V)

Def ModlMatch(B,T) =

let (N, GE, FE, SE) = B

(K, u, A,~M)=Tand P=O

for each (z, t.)E A and z G StrId

P = P u {(t.,SE(Z))}

for each (z, t.)c A and z E FunId

assume N1(S1, N~(S’1)) = FE(z)

a@ Vand V= VU {a}

assume {ml, mk) = NI uN;

m; ~.. ..m~ ~ M

M = M U {m~,..., mj}
p={n, w rnj where t’= 1,..., k}

P = Pu {(cl + p(s;),tz)}

(K, V)= GenRec(a, P(SI), K’, V)

(K’, R)= KindUni.fg(K, P)
in R(u)

Figure 3: Assumption Inference in ModL

444

Def h’indUnify(K, P) = case (K, P) of

(K,, O) =) (K,, ID)

(K,, P, u {(t, t)})* A’indfwfy(x,,P,)
(K,,P, U {(t,+ tz,t;+ t;)})a Kind17taify(K,, P, U {(f,, t~), (t,, tj)})

(1<1 u {tl::STR(ml, Env])}, PI U {(tl, str(rnz, J%oz))}) +

let check Dom(Envl) G Dom(Env2), otherwise fail

(R~, m) = Name Unify(ml, mz) and E..; = Rm(Envl) and Envj = Rm(Env2)

R = ({tl + str(m, Envj)})(R~) and IC2 = R(K1)

Pz = R(P1) U {(1.hv~(s), Envj(s))] V.s c Dom(Envl)}

(Ks, R’)= KindUnify(Kz, Pz)

in (Kz, R’ o R)

(KI U {ii :: STR(ml, &wl), t2 :: STR(mZ, Env2)}, Pl U{(tl, t2)}) +

let (Rm, m) = Name Uni~y(ml, mz) and R = ({tl H tz})(lt~)

Envj = R(Envl) and Envj = R(Env2) and Env’ = Env~ U (Env~ \Dom(Envj))

KZ = R(K1) U {t2 :: STR(m, Env’)}

P2 = R(P1) U {(llnv~ (s), Envj(s)) I Vs G Dom(Env~) n Dom(Env~)}

(K3, R’)= li’indUnify(K2, P2)

in (Ks, R’ o R)

(Kl, PI u {(str(ml, Envl), str(mz, Envz))}) +-

let check Dom(.Envl) = Dom(Env2), otherwise fail

(R~, m) = Name Unify(ml, m2) and Env~ = Rm(Envl) and Envj = Rm(Env2)

K2 = Rm(K1) and P2 = Rm(P1) U {(Env~(s), Envj(s)) I Vs c Dom(Envj)}

(Ks, R’)= KindUnify(K2, P2)

in (Ks, R’ o Rm)

Def Nanae Unify(ml, m2) =

if ml = m2 then (ID,ml)

else if ml, mz G RigStrName then fad

else if ml E RigStrName then ({m2 * ml}, ml)

else ({ml w mz},mz)

Figure 4: Kinded unification algorithm

445

i mum” sharing constraints required to make the structure

expression elaborate.

Figure 4 gives the unification algorithms Kind Unify and

Name Unify. The kinded unification algorithm Kind Unify

presented there extends the one in Ohori [24] with consider-

ations on ML structure names. The following theorem can

be proved in the same way as Ohori [24].

Theorem 3.1 Giuen any kinded set of equations, the al-

gorithm I<ind Unify computes a most general unifier if one

exists and reports failure otherwise.

The following lemma shows how the “thinning” effect is

achieved in our algorithm.

Lemma 3.2 Given a signature Z = N(S) and a structure

S’, suppose that S’ does not contain any flexible names;

let a be a structure variable and VI be any set of struc-

ture variables; suppose that (K, V) = GenRec(a, S, 0, VI),

then KindUnify(K, {(a, S’)}) succeeds if and only if the

structure S’ matches the signature Z, Moreover, if R =

KindUnify(A’, {(a, S’)}), then S’ enriches R(S).

The following theorem can be proved by structural induc-

tion on structure expressions.

Theorem 3.3 Given an ML basis B and a structure ex-

pression strexp, then B F strexp : S succeeds if and only if

both (K, u, A, V, M) = W.trezp(stresp, 0, RigStrName) and

S’ = ModlMatch(B, (K, u, A, V, M)) succeed, Moreover,

there ezists a renaming realization y such that S = yJ(S’).

The algorithm W.t.ezP possesses most properties that W*

has. It can also be modified to take a basis B as its argument

(just as algorithm D) so that it can work more efficiently

when we compile a structure expression in the pervasive ba-

sis.

4 Code Generation Issues

A compiling process usually contains two parts: elaboration

(i.e., type inference or type-checking) and code generation

(also code optimization). The assumption inference algo-

rithms presented in the last two sections successfully solve

the problem in the elaboration phase. In order to achieve the

“smartest recompilation rule” , our compiler should generate

code that will be reusable as long as the surroundings satisfy

the “minimum” import interface (i.e., match the assumption

environment). This requires that our code generator should

use no more type information than is specified in the “min-

imum” import interface.

Fortunately there are very few dependencies between the

static semantics and the dynamic semantics in SML. More-
over, although Leroy’s representation analysis [17] shows

that the compiler can benefit a lot by using type information

in the front end, the SML/NJ compiler [4] uses almost no

type information in its back end but it still produces quite

efficient code. In SML/NJ, the only things that the back

end needs to know from the front end are the correspond-

ing dynamic interface for each signature and the identifier

status for each identifier. By delaying these dependencies to

be resolved at link time, a program can be translated into

machine code even before it is elaborated.

Because of space limitations, we only informally discuss

the solutions to these issues here.

Punctor application

In SML, a functor F with argument signature SIG can be

applied to any structure S that matches SIG. A structure
does not have to agree exactly with a signature in order for

it to match the signature, instead it can contain more com-

ponents than required. In such cases, signature matching

will coerce the structure against the signature, producing a

“thinned” structure that exactly agrees with the signature

in terms of number of components and their types. Suppose

the corresponding dynamic code for the functor F and the

structure S is fd and sd, the code generated for a function

application F(S) will be fd(th(sd)) where th is a thinning

function from S to SIG. In our separate compilation scheme,

it is possible that we still do not know the argument signa-

ture of F or the exact specification of structure S when we

have to generate code for the functor application F(S). This

is simply solved by addhrg an abstraction on th, and the code

becomes Ath .(... fd(th(sd))...). The correct thinning function

is filled in at link time when the real specifications of SIG

and S are known.

Pattern matching

In the SML/NJ compiler, the representation of a user defined

datatype is determined by its definition. For example,

structure A
= struct

dat atype color = RED i GREER I BLUE
I IIIIX of real * real * real

end

structure B
= struct fun redp(A. RED) = 1.0

I redp(A.ltIX(x,-, -)) = x
I redp - = 0.0

end

the datatype color in A may be represented with integer

tags 0,1,2,3 for the data constructors BLUE, GREEN, MIX, and

RED. However this imposes some problems if we want to sep-

arately compile structure B. What representations are we go-

ing to use for A. RED and A. MIX in the redp function? Again

this is solved by making the representation of data construc-

tors abstract (as in Aitken and Reppy’s recent work [2]). A

“constant” data constructor (such ae A. RED) is compiled as

a variable. A value carrying constructor (such aa A. MIX)

is compiled as a pair of injection and projection functions.

These details are filled in at link time when the definition of

the datatype is known.

Polymorphic equfllty function

Nothing needs to be done to support our separate compi-

lation scheme if the equality function is implemented as it

currently is in the SML/NJ compiler. In SML/NJ (ss in all

ML compilers to our knowledge), the polymorphic equality

function is implemented ae a runtime “equality interpreter”

which checks equality of two objects based on their rnn-

time tags. Another way to implement polymorphic equality,

which is used in Haskell [11], is to paas an equality fnnction

for each formaJ parameter that is a polymorphic equality

type variable. The code produced by this scheme closely

depends on the derivation tree of the elaboration phase.

In our separate compilation scheme, because the types of

446

some external identifiers are not known at compile time, the

derivation tree we get at compile time is not accurate. For

example,

fun f 1[= S.g (3,x)

from assumption infereuce, we know S. g’s type must be in

the form of id * a -+ $ and f’s in the form of a e /3.

Because S. g may want to test the equality on its 2nd argu-

ment, the function f here has to be implemented with an

equality function for type cr as its extra argument. This will

have some runtime overhead in the common case that S. g

actually never does equality test on its 2nd argument.

Representational analysis

Leroy [17] presented a program transformation that allows

polymorphic languages to be implemented with unboxed,

multi-word data representation. The main idea is to in-

troduce coercions between various representations based on

the typing derivation tree. In our separate compilation sys-

tem, accurate type information for external identifiers are

not available at compile time, so the typing derivation tree

is not very specific. However the representation analysis

can still be carried out since all type instances of external

identifiers are recorded in the assumption environment. At

link time, the matching algorithm Match will find out the

accurate type information of all external identifiers and co-

erce them into different type instances in the assumption

environment. For example, the above function f will be im-

plemented as a polymorphic function a ~ /3. When we find

that S .g has type irat* id + int, S .g has to be coerced to

type int * cr - ,6 and f has to be coerced from u ~ /3 to

id + int.The code produced in this way will be less effi-

cient, but it should be acceptable if in practice there are not

too many external identifiers in a module (especially when

we use algorithm D).

Open declaration

The open declaration in SML causes several nasty problems

for our separate compilation scheme. We have solved these

problems by delaying certain operations to link time [30].

Our solutions may increase the complexity of linking but

they do not incur any runtime overhead (however, they may

stop some inline-expansion optimizations).

5 Implementation

We are currently prototyping a separate compilation sys-

tem based on our algorithms into the SML/NJ compiler. In

our system, a large ML program is composed of a set of

top-level structure declarations, signature declarations and

functor declarations. No two top-level structures (or signa-

tures, functors) can have the same identifier name so that we

can uniquely determine which definition each external iden-

tifier refers to. Every top-level declaration is considered as a

compilation unit. Because signatures are usually small and

compiling siguature declarations does not take much time,

their elaborations are delayed to be done at link time. To
compile a structure or functor declaration, we apply the as-

sumption inference algorithm to its body (which is always

a structure expression), generate the machine code for the

body, and then write both the inferred interface (i.e., the

assumption environment) and the machine code into its bi-

nary file. The final linking phase is done in certain order

according to the dependency relation among different mod-

ules. This dependency relation has been already recorded

in the inferred interface in each binary file. For each mod-

ule, the linker simply reads the binary file, elaborates every

signature expression, applies the matching algorithm (i.e.,

Match and ModLkfatch) to recover the correct static envi-

ronment and detect cross-module type errors if there are

any, and then concatenates the machine code with correct

thinning functions.

6 Related Work

Most dynamically-typed languages such as Lisp also allow

independent compilations and can achieve the same kind of

“smartest recompilation” in the sense that a module never

needs to be recompiled unless its implementation changes.

However, this is based on a big sacrifice: cross-module type

errors will be detected only at runtime. Our method, how-

ever, will detect all cross-module type errors at link time.

Levy [18] presents a separate compilation method very

similar to ours for PASCAL-like languages. Its compiler

also automatically infers the import interface for each com-

pilation unit. Cross-module type errors are reported at link

time. However he does not mention whether he achieves

the smartest recompilation rule, and the type systems of

PASCAL-like languages are much simpler than that of SML.

Traditional separate compilation systems adopted in most

statically typed languages all use manually created interface

files. Each compilation unit contains an implementation plus

several interface files. It has to be fully closed up to the per-

vasive basis so that the specifications of all external symbols

will be found at compile time. The make system [9] is the

simplest one along this line. It will trigger recompilation if

the interface file a module depends on changes. Tichy [31]

and Schwanke [29] eliminated most recompilation by exam-

ining finer-levels of dependency relations between interfaces

and implementations. In their methods, if the interface file

a module depends on changes, but the set of symbols the

module imports does not change, then the module does not

need to be recompiled. SRC Modula-3 [22, 14] implements

exactly the same idea: a version stamp which encodes the

specification of a symbol is produced for each exported sym-

bol in an interface; modules import the version stamps of the

symbols that they import; a module only needs to be recom-

piled if any of its imported version stamps are no longer ex-

ported. Languages with very powerful module systems such

as Mesa [21], the System Modeller in Cedar [15], and FX-

87 [8] also adopt similar separate compilation methods which

are only applicable to closed modules. The compiler for

Russell [5] does partially support separate compilations on

“open-formed” expressions, however its “module system” is

very restrictive and all “modules” must be loaded and com-

piled in an order determined by their dependencies. In sum-

mary, these previous methods cannot achieve the smartest

recompilation rule, neither can they be applied to compile

open-formed modules in SML.

In SML, two kinds of separate compilation methods have

been proposed: Rothwell and Tofte’s import scheme [28]

and Rollins’s SourceGroup scheme [27]; both methods ap-

ply only to closed functors. Recently, Emden Gansner [10]

447

is implementing a make-like separate compilation system for

open-formed modules in the interactive SML/NJ compiler.

In his method, all modules are loaded and compiled in a top

level environment in an order determined by their depen-

dencies. Whenever a module is compiled, a new time stamp

is generated; both the binary and the time stamp are then

written out to the binary file. A module has to be recom-

piled whenever its source changes or any of its predecessors

(in the dependency graph) have been recompiled. Gansner

is also planning to export the static semantics of each mod-

ule into the binary file so that redundant recompilation can

be detected and avoided if the static semantics of a module

has not been changed.

Aditya and Nikhil [I] have been working on similar kinds

of assumption inference algorithms for their incremental

compiler for Id [23]. However as far as we know, their algo-

rithm does not infer the minimum constraints, thus fails to

achieve our theorem 2.1. Because their system allows mutu-

ally recursive top-level declarations, it cannot fully recover

the correct type information by simply using our assumption

inference and matching algorithm. In the SML module lan-

guage, however, top-level declarations cannot be mutually

recursive.

Damas [6] gave an inference algorithm called T which is

very similar to our W* in section 2. His type system per-

mits that a variable can be bound to several distinct types

in the type environment (just like our assumption environ-

ment). However since he mainly used the system to han-

dle overloading, he did not try to prove our theorem 2.1.

The soundness and syntactic completeness results he proved

for T are only for his particular type system, not for the

usual M L type system [32], so they are not in the same

sense as our corollary 2.2 and 2.3. The algorithm V in

Leivant [16] is just Damas’s T restricted to the type sys-

tem without ML-polymorphism. Its extension V2 is for the

polymorphic discipline of rank 2 and the relation between

W and VZ is not clear. On the side of the SML module lan-

guage, Aponte [3] presented a type checking algorithm for

ModL based on Remy’s approach to record typing [25]. Her

approach k very elegant; however, in practice it is proba-
bly very difficult to implement efficiently. It is also not clear

whether her algorithm can be modified to do our assumption

inference.

7 Concluding Remarks

We have presented a separate compilation method that

achieves the “smartest recompilation rule” for open-formed

modules in Standard ML. In our method, each module is

compiled independently without knowing the specifications

of its external identifiers; its import interface, instead, is

inferred by looking at how each external identifier is used

inside the module. Cross-module type inconsistencies are

detected at link time by simply matching the real specifi-

cations against the inferred import interface (this process

should be very fast because it only involves an unification of

a set of types). The independent compilation of each module

may disable some inter-module optimizations, but we believe

that the code generated by our recompilation method will

be comparable to the quite efficient code generated by the

current SM L/NJ compiler [4]. We plan to implement and

measure our algorithm in SML/NJ in the future.

The smartest recompilation technique in this paper is pre-

sented in the framework of SML; however, it can be easily

applied to other polymorphic languages based on the Damas-
Milner type discipline. It should be straightforward to ex-

tend the algorithm D in section 2.2 to work on the extension

of ML type system with parametric overloadings [13]. The

assumption inference algorithms presented in section 2 and 3

can also be used as a basis to build incremental compilers for

similar languages. On the other hand, we still do not know

how to extend the algorithm for A40dL to work on the ex-

tension of ML module system with high-order functors [33].

The smartest recompilation technique should also be ap-

plicable to languages in the Algol family. The type system

in those languages are much simpler than that in ML, so it

is not hard to infer the “minimum” import interface for each

module. However, the code produced by smartest recompila-

tion will be less efficient because the code generators of these

languages usually rely much more on the inter-procedure

type and data flow information than those of polymorphic

languages. For applications where reusability and recon-

figuration are more import ant than efficiency, the smartest

recompilation property is still very desirable.

Acknowledgements

We would like to thank William Aitken, Carl Gunter, and

QingMing Ma for many valuable comments on an early ver-

sion of this paper. We are also grateful to David MacQueen

and Pierre Cregut for interesting discussions on related sub-

jects. This research is supported by the National Science

Foundation Grant CC1l-9002’786 and CCR-9200790, and by

the first author’s summer research internship at AT&T Bell

Laboratories.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Shail Adit ya and Rkhiyur S. Nikhil. Incremental polymor-
phism. In The Fifth International Conference on Functional
Programming Languages and Compute? Architecture, pages
378405, New York, August 1991. Springer-Verlag.

William E. Aitken and John H. Reppy. Abstract value con-
structors. In ACM SIGPLAN Workshop on ML and its Ap-

plications, June 1992.

Maria Virginia Aponte. Typage d ‘un systeme de modules

paramet?iques avec partage: une application de l’unification

clans /es theo~ies egtiaiionnel[es. PhD thesis, University de

Paris, February 1992.

Andrew W. Appel and David B. MacQueen. Standard ML of

New Jersey. In Martin Wirsing, editor, Third Int’1 Symp. on

Prog. Lang. Implementation and Logic Programming, pages

1–13, New York, August 1991. Springer-Verlag.

Hans Boehm and Alan J. Demers. Implementing Russell. In
Symposium on Compiler Const?wction, pages 186–195. ACM

Sigpkm, June 1986.

Luis Damas. Type Assignment in Programming Languages.

PhD thesis, University of Edinburgh, Department of Com-

puter Science, Edinburgh, UK, 1985.

Lnis Damas and Robin Milner. Principal type-schemes for

functional programs. In Nvnth Annual A GM Symp, on Pr-in-

ciples of P?og. Languages, New York, Jan 1982. ACM Press.

David K. Gitford et al. FX-87 reference manual. Technical

Report MIT/LCS/TR-407, M.I.T. Laboratory for Computer

Science, September 1987.

448

[9]

[10]

[11]

[12]

[1:3]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[’2]

[2:3]

~24]

[’5]

[’6]

[27]

[.28]

[29]

Stuart I. Feldman. Make - a program for maintaining

computer programs. Software – Practice and Experience,

9(4):255-265, Apirl 1979.

Emdeu R. Gansner. AT&T Bell Labs, personal communica-

tion, 1992.

Paul Hudak, Simon Peyton Jones, and Philip Wadler et al.

Report on the programming language Haskell a non-strict,

purely functional language version 1.2. SIGPLAN Notices,

21(5), May 1992.

Mark P. Jones. A theory of qualitied types. In The lth Eu-

Topean Symposusm on Programming, pages 287–306, Berlin,

February 1992. Spinger-Verlag.

Stefan Kaes. Type inference in the presence of overloading,

subt yping and recursive types. In 1992 A CM ConfeTen ce on

Lasp and Fucntional Programming, New York, June 1992.

ACM Press.

Bill Kalsow and Eric Muller. SRC Modula-3 version 1.6 man-

ual, February 1991.

Butler W. Lampson and Eric S. Schmidt, Pratical use of a

polymorphic applicative language. in Tenth Annual ACM

Symp. on Principles of Prog. Languages, New York, Jan

1983. ACM Press.

Daniel Leivant. Polymorphic type inference. In Tenth An-

nual ACM Symp. on Principles of pTog. Languages, New

York, Jan 1983. ACM Press.

Xavier Leroy. Unboxed objects and polymorphic typing. In

Nineteenth Annual ACM Symp. on Principles of Ps-og. Lan-

guages, New York, Jan 1992. ACM Press.

Michael R. Levy. Type checking, separate compilation and

reusability. SIGPLAN Notices (Proc. Sigplan ’84 Symp. on
Compiler Construction), 19(6):285–289, .lune 1984.

Robin Milner and Mads Tofte. Commentary on StandaTd

ML. MIT Press, Cambridge, Massachusetts, 1991.

Robin Milner, Mads Tofte, and Robert Harper. The Defini-

tion of Standayd ML. MIT Press, Cambridge, Massachusetts,

1990.

J. Mitchell, W. Maybury, and R. Sweet. Mesa language man-

ual. Technical Report CSL-79-3, Xerox Palo Alto Research

Center, Palo Alto, CA, 1979.

Greg Nelson, editor. Systems programming with Modula-3.

Prentice Hall, Englewood Cliffs, NJ, 1991.

Rkhiyur S. Nikhil. Id version 90.0 reference manual. Techni-

cal Report TR-CSG-Memo 284-1, MIT Laboratory for Com-

puter Science, 1990.

Atsushi Ohori. A compilation method for ML-style polymor-

phic record calculi. In Nineteenth Annual ACM Symp. on

Principles of PTog. Languages, New York, Jan 1992. ACM
Press.

Didier Remy. Typechecking records and variants in a nat-
ural extension of ML. In Sixteenth Annual ACM Symp. on

Principles of Prog. Languages, pages 77–87, New York, Jan

1989. ACM Press.

J. Robinson. A machine-oriented logic based on the resolu-

tion principle. Journal of the A CM, 12(1):23–41, 1965.

Eugene J. Rollins. Source Group: A selective recompilation

system for SML. In Thtrd Intevsational WoTkshop on Stan-

daTd ML, Pittsburgh, September 1991. Carnegie Mellon Uni-

versity.

Nick Rothwe13 and Mads Tofte. Import command source

code. with Standard ML of New Jersey releases 0.65.

Robert W. Schwanke and Gail E. Kaiser. Smarter recompi-

lation. ACM TTiZnSaCti0n8 on Programming Languages and

Systems, 10(4):627-632, October 1988.

[30]

[31]

[32]

[33]

8

8.1

Zhong Shao and Andrew W. AppeL Smartest recompilation.

Technical Report CS-TR-395-92, Princeton Univ. Dept. of

Computer Science, Princeton, NJ, October 1992.

Walter Tichy. Smart recompilation. ACM Transactions on

Programming Langtiages and Systems, 8(3):273–291, July

1986.

Mads Tofte. Operational Semantics and Polymorphic Type

Inference. PhD thesis, University of Edinburgh, Edinburgh,

UK, November 1987.

Mads Toft e. Principal signatures for high-order ML fnnctors.

in Nineteenth Annual ACM Symp. on Principles of Prog.
Languages, New York, Jan 1992. ACM Press.

Appendix: the assumption inference al-

gorithm D

An extension of ML with constrained types

The extension of ML type system with constrained types

(denoted as ML+) is discussed in detail by Kaes [13] and

Jones [12] to solve the type inference problem in languages

that support overloading and subt yping. It turns out that

it can also be used to solve our assumption inference prob-

lem. The language syntax they use is essentially same as the

mini-ML language Exp. In the following, we give a quick re-

view of Kaes’s framework of extending ML with constrained

types. To ease the notation, m is used to denote a sequence

~1,~n.

Definition 8.1 Let P be a finite n-indexed family of pred-

icate symbols. The set of predicate constraints over Type is

defined as {p(~)] p G Pfi, r, G Type where i = 1,n}. An

interpretation of P is a family oj total computable functions

(~)pe~, WCh that for P E P~, j : (Type)n ~ 2.

Definition 8.2 A set C of constraints is satisfiable if there

ezists a substitution S such that ifp(~) 6 C then ~(S(R))

is true. Satisfiablity will be denoted as S ~ C.

Definition 8.3 A substitution S is a solution of C’, if

S’ o S ~ C for all substitutions S’. A solution S is called

the most general solution of a constraint set C’, if for any

solution R of C, there exists a substitution S’, such that R

– S’ o S. In most cases, the most general solution does not—

exist.

The entaihnerstrelation on constraint sets, written Cl t+ Cz,

may be defined once a particular predicate system is given.

In the following, we only consider those predicate systems

which satisfy the following properties: if Cl l+- CZ then VS :

S+ CI*S+C2.

Definition 8.4 A constrained type is a pair rlC, consisting

of a type r and a set of constraints C. A constrained type

scheme is of the form WK.TIC. A constrained type environ-

ment is now just a finite map from variables to constrained

type schemes.

Definition 8.5 A constrained type r’ I C’ is a generic in-

stance of a constrained type scheme u = m.rl C, written

as r’lC’ < u, if there exists a substitution S with domain be-

ing a subset of ~ such that r’ = S(T) and C’ H- S(C). We

also denote u’ < c if all generic instances of u’ are generic

instances of u; and u’ z u if a’ < u and u + u’.

449

Def D(TE, e) = case e of

x ~ let Z’E(Z) = V~.r\C and ~ be new type variables and S ={a~ * ~, for i = 1,n }

in (Ill , S(r)\ S(C))

kz.el ~ let a be a new type variable and (S1, rllCI) = D(TE & {z = cr[O}, el)

in (S, , (S,(a)+ TI)[CI)

elez +- let (S1, TIICI) = D(TE, el) and (SZ.,T21CZ)= D(Sl(TE), ez)
a be a new type variable and S’s = UnZfy(SZ71, rz ~ w)

in (L’$so SZ 0.$1, (SSO’)I(S3(SZ(CI) U C2)))

let x = eli.nez+

let (S1, T1[CI) = D(Z’E, el) and (SZ,721CZ) = D(S1(TE) + {z * gen(Sl(TE), rllCl)}, ez)

in (S2 o S, , 7_zl(SZ(CI) U Cz))

Figure 5: The Type Inference Algorithm D

Typability of an expression e in ML+ is expressed as a judge-

ment C, TE t- e : r, which can be read as “e has type

r under (constrained) type environment TE, provided C

is satisfiable. ” The generalization of a constrained type

r I C in the context of a type environment TE is de-

noted by gen(TE, r I C), it is the constrained type scheme

V~.rlC’ where {al, an} = tgoars(rlC) \tyvars(TE) and

C’ ={p(F) c C where tyvars(p(~)) n G # 0}.

Definition 8.6 A typing C, TE + e : r is more general than

C’, TE’ 1- e : i-’, if there exists a substitution S, such that

(1) x c dom(TE) +- TE’(x) < S(TE(Z)) (2) gen(TE’, r’1

C’) + S(gen(TE, TIC)).

Kaes [13] presented the type deduction rules (also listed in

the appendix at the end of this paper for reference) and the

type inference algorithm D (as in figure 5) for the above ex-

tension. It can be proved that his type inference algorithm D

is sound and (syntactically) complete in the following sense:

Theorem 8.1 Let an instance of a constraint based infer-

ence system be given, e be an expression, TE and TE’ be type

environments. Suppose for certain substitution S1, for each

x G dom(TE), TE’(z) < S1(TE(Z)); and C’, TE’ F e : / is

a valid typing, then (S, ~ I C) = D(TE, e) succeeds. More-

over, C, S(TE) 1- e : T is valid and more general than

C’, TE’ 1- e : T’.

8.2 Application to assumption inference

We can use the above extension to solve our assumption

inference problem. The set of predicates we use, denoted

by Pm, is {p.(~) where x is any program variable}. The

interpretation of pz is “p-~(r) = true if and only if r < a,

assuming that the type of x is a closed ML type scheme

u.” The entailment relation on constraint sets is defined

as: Cl tt- Cz if and only if Cl is satisfiable and VS : S ~

C;l ~ S # CZ. This relation is decidable for our particular

predicate system Pm because of the following lemma:

Proof If we consider each pm(~) as an assumption (z, r),

also assume that the type of z is known, the Match algorithm

in figure 1 can be used to find the most general solution

of C. The lemma then follows from Robinson’s unification

theorem. QED.

Given a closed ML type scheme a = V~.T, it can be

writ ten as ML+ constrained type schemes UI = V7iZ. T 10 or

U2 = Va. crl{p=(a)}, but obviously al < UZ in ML+.

The great thing about the algorithm D is that when it is

running, it does not need any knowledge about the interpre-

tation of the predicate system. This leads to the following

theorem:

Theorem 8.3 Given a ML type environment TE = TE, +

TEz, where Dom(TEl)nDom(TE2) = 0 and tyvars(TE2) =

0, we construct a ML+ constrained type environment TE’ =

TE~ + TEj where 7’Ej= {z * V~.(T I 0) where z E

Dom(TEl) and TE1(z) = V~.r} and TEL= {z H Va.(rYl
{pm(w)}) where z E Dom(TEz)} and the interpretation ofpm

is ‘fire(r) = true if and only if T < TEz(x)”. Then (S, r) =

TV(TE, e) succeeds it and onzy if (S’, # I C’) = D(TE’, e)

succeeds and there exists a most general solution S* for Ct.

Moreover, there exists two substitutions RI and R2, such

that the following are true: (1) R1 o Rz = Rz o R1 = ID;

(.2) R,(S(TE), r) = (S*(S’(TE)), S*#); (3) (S(TE), ~) =

R2(S*(S’(T.E)), S*#).

Proof Follows from lemma 8.2 and theorem 8.1. For

details, see the technical report [30]. QED.

In practice algorithm D will be more useful than W* be-

cause it resembles the algorithm W and it also works more

efficiently when the types of some free variables are known.

Moreover, D can be easily extended to work on various ex-

tensions of the ML type system with overloading and sub-

typing such as those in Kaes [13].

Lemma 8.2 For any constraint set C formed in the predi-

cate system Pm, either there is no solution or there exists a

most general solution S.

450

