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Abstract. The CAPITL programming environment is comprised of a
shared, object-oriented, versioned database, an embedded logic-based
data-manipulation language, and a graphical user interface. With each
software object the database stores a rich set of attributes that de-
scribe its syntax, intended semantics, and relationship to other objects.
CAPITL is implemented in POL, a data model and deductive query lan-
guage with elements of persistent, object-oriented and logic-based pro-
gramming languages. POL is implemented in and tightly coupled with
C++.

A request for a derived object consists of a partial description of its
attributes. A planner written in POL searches the database for tools and
sources that can be combined to create an object meeting the description.
Since tools are stored in the database like other objects, plans that create
tools as well as intermediate inputs are possible. A builder, also written
in POL, executes plans to materialize software products. The builder
verifies that existing objects are current, minimally re-applying tools as
sources, tools, or system descriptions change.

After an overview of the database and the POL programming system, we
outline CAPITL’s logic-based approach to system modelling, illustrating
it with two examples. We conclude with a status report and an outline
of future directions.

1 Introduction

Large software systems are hard to build and maintain. The sheer number of
components involved make the management, coordination, and storage of the
components difficult. Because of the malleable nature of software, components
are constantly changing. Change is not limited to source text; attributes of the
source files, relationships among them, tools used to process them, and even
architectures of whole subsystems change as bugs are fixed, new functionality is
added, and components are re-organized. Maintaining invariants in an evolving
system is a critical task for any support system [41, 48, 50].

* This work was supported in part by the Defense Advanced Research Projects Agency
under ARPA Order No. 8856 (monitored by the Office of Naval Research under
contract N00014-92-J-1937).



The CAPITL ? project at the University of Wisconsin has been investigat-
ing a logic-based approach to software configuration management [42]. The ba-
sic thesis of our approach is that if all objects in the environment carry with
them sufficiently detailed descriptions, desired software products can be de-
scribed declaratively and the system can infer the process necessary to build
them. To test these ideas, we have constructed a environment that tightly in-
tegrates a logic-based language with a versioned, object-oriented database. By
tightly coupling the database with both an imperative object-oriented language
and a declarative language, CAPITL gets the best of both worlds: declarative
queries and specifications, and object-oriented extensibility and state encapsula-
tion. This paper describes the main components of the environment and outlines
how they support maintenance of large software systems.

CAPITL was designed with four principles in mind.

— Uniformity. All objects are represented and described in a common lan-
guage.

— Locality. The information that describes an object and its relationships
with other objects is directly associated with that object.

— Extensibility. New types of objects, new descriptive properties, and new
relationships can be added easily.

— Flexibility. Policies for access control and modification to objects can be
specified rather than such policies being “wired in.”

CAPITL consists of three main components: a shared, versioned database,
a graphical user interface, and a fully embedded logic-based data-manipulation
language. The CAPITL database records all aspects of software construction:
source files, documentation, sub-systems, system descriptions, tools, executables,
and configurations. The form and function of each database object, as well as
its relation to other objects, is described in detail by attributes stored with it.
Support for efficient maintenance of multiple versions of the database is built
in. A compatibility feature allows existing Unix tools to manipulate CAPITL
objects as if they were Unix files.

The database is accessible via an interactive browser/editor based on the
X Window System [45] and the InterViews graphical toolkit [34]. CAPITL’s
browser can navigate the version history of the database and the links between
objects. It also provides facilities for the display and manual update of objects.

Most of the features of CAPITL are implemented in POL [3], a data model
and deductive query language synthesized from elements of persistent, object-
oriented, and logic-based programming languages. POL is tightly integrated with
the database (all database objects are POL terms) and with a general-purpose
host language (C++). The database uses the Exodus toolkit [11] to provide
low-level concurrency control, error recovery, and network access. POL includes
a logic-based programming language called Congress, which also servers as a
query and update language.

3 Computer Aided Programming In The Large



CAPITL uses Congress as the basis for a tool that automatically builds and
maintains derived objects. An architect of a software system describes tools
and policies using Congress as a specification language. A program written
in Congress accepts declarative specifications of desired products and deduces
plans to locate or construct them. CAPITL thus provides a platform supporting
application-specific notions of consistency and correctness.

The remainder of this paper is organized as follows. Section 2 describes the
POL data model, the embedded language Congress, and the interface between
Congress, C++, and the database. The use of the database to store software
objects is explored in Section 3. Section 4 explains how CAPITL is used for
software configuration management (SCM). Section 5 illustrates these ideas with
two concrete examples. Section 6 discusses related work. We close with a status
report and future plans.

2 POL

POL (Persistent Objects with Logic) is a mixture of three styles of programming
language: object-oriented, logic-based, and persistent. Each style has features
that make solving certain problems easier: Object-oriented languages encapsu-
late state and behavior and support extension by inheritance; logic programming
languages allow programmers to concentrate on describing what a solution is
rather than how to find it; persistent programming languages relieve the pro-
grammer of the burden of saving and restoring data. By combining features from
all three domains, POL provides an environment in which application program-
mers can take advantage of the particular style that best suits the problem at
hand.

POL derives its object-oriented features from C++ (§ 2.2), persistence from
the Exodus database toolkit (§ 2.3), and logic-based features from Congress — a
derivative of Prolog (§ 2.4). POL integrates these components with a shared data
model and a two-way embedding of Congress in C++ and C++ in Congress.
The remainder of this section describes the data model, the three components,
and the interfaces between them.

2.1 Term Space

As in Prolog and LISP, POL uses one data structure for both programs and
data. A term space is a directed graph with labelled nodes and arcs. The label
associated with a node is called its functor* and the label associated with an
arc is called its selector. No two arcs leaving the same node may have the same
selector. A term is the subgraph of the term space reachable from a node, called
the root of the term. We occasionally identify a term with its root node, when
the meaning is clear from context. For example, the “functor of a term” means
the functor of its root node.

4 This unfortunate choice of terminology is inherited from Prolog.



POL is “identity-based”: Two nodes with identical contents are nonetheless
considered to be distinct. Nodes are explicitly created, and updates to a node
do not change the node’s identity. In this way POL differs from “value-based”
Prolog and relational databases, and more closely resembles so-called “object-
oriented” databases.

POL supports multiple versions of the term space called worlds, and uses an
algorithm devised by Driscol et. al. [16] that supports efficient “checkpointing”
of the entire term space. POL has operations to save the current term space
as a world, and to reset its state to any previously saved world. A checkpoint
operation does not copy the entire term space, but only an amount of data
proportional to the changes made since the previous checkpoint.

2.2 CH+

C++ is a strongly typed object-oriented language derived from C. C++ classes
encapsulate both data and operations on that data. C++ allows multiple inher-
itance and supports information hiding via explicit public/private declarations.
Subclasses can override methods of their super-class as well as add new data
fields and operations.

C++ classes are used in POL to provide a concrete realization of term space
nodes and arcs. Data structures used to represent nodes come in a variety of
flavors. Leaf nodes (nodes with no outgoing arcs) are classified according to
the data types of their functors: integers, real numbers, printable strings, byte
strings (arbitrary binary data) or “variables.” (Variables are explained in Sec-
tion 2.4.) An internal node contains a functor (which must be a printable string)
and a table of references to other nodes indexed by distinct printable strings.
Internal nodes are similar to C structs, Pascal records, SNOBOL tables, and
AWK associative arrays. Unlike structs or records, the number and names of
“fields” may vary dynamically, and their contents are restricted to be non-null
pointers to nodes. C++ subclass derivation is used to add additional behavior
and restrictions to classes of internal nodes. We shall return to this point in
Section 3.

2.3 Exodus

Exodus [11] is a toolkit for creating custom database systems. POL uses two com-
ponents of Exodus, a low-level storage subsystem and a persistent programming
language. The Exodus Storage Manager provides efficient access to an arbitrary-
sized persistent chunk of uninterpreted data called a “storage object” through a
unique identifier called an “OID.” The Storage Manager supports concurrency
control through two-phase locking, and a simple transaction facility with full re-
covery from hardware and software failures. The E programming language [43] is
an extension of C++ that supports persistent data — data that retains its state
between runs of a program. E syntax extends C++ with a “db” version of each
primitive type and type constructor (e.g. dbint, dbclass{ ... }, etc.). Instances
of a db type can be allocated from a persistent heap. The E runtime support



library ensures that persistent data structures are securely stored on disk at the
end of a transaction, and are fetched on demand (whenever a pointer to one is
dereferenced). POL implements the term space with persistent data structures.

Throughout this paper, all references to the C++ programming language
should be understood as referring to the E dialect of C++.

2.4 Congress

Congress may be described as a logic programming language, a deductive da-
tabase query language, an embedded query language, or a library of classes for
convenient database access, depending on one’s point of view. Since Congress is
implemented as a library of classes, any C++ program can use Congress as a
“higher level” alternative to or enhancement of the raw C++ term interface.

As a logic-programming language, Congress is a dialect of LOGIN [5], an ex-
tension of Prolog that supports cyclic terms. It provides transparent persistence,
and has an identity-based rather than value-based semantics. The following para-
graphs briefly describe the syntax and semantics of Congress. The reader who is
familiar with logic programming may skim this section.

Congress programs are built from terms in the POL term space. A program
is a set of procedures, a procedure is a sequence of clauses, and a clause is a
sequence of terms. In particular, a clause consists of a single term called its head
and a sequence of zero or more additional terms called its body. The predicate
of a clause is the functor of the root node of its head term. A procedure is a
sequence of clauses with a common predicate, referred to as the name of the
procedure. A program is a set of procedures with distinct names.

The operational behavior of Congress is defined by the same recursive back-
tracking search as in Prolog. A goal (or “query”) consists of a term. It is “called”
(“evaluated,” “proved”) by searching the procedure named by its functor for a
clause whose head “matches” the goal. If a matching clause is found, each term
in its body is called in turn. If no matching clause can be found, the interpreter
backs up by undoing all of its actions since the last “choice point” (the point at
which a clause was chosen to match against a goal) and attempts another match.
The process continues either until all goals and subgoals have been proven, in
which case the original call “succeeds,” or until all alternatives have been ex-
hausted, in which case it “fails”.

The heart of this process is the definition of “matching” between terms, called
unification® Congress uses a variant of unification that supports cyclic terms [5].
The goal of unification is to determine if two terms are isomorphic, or can be
made isomorphic by substituting terms for variables. Two terms unify if their
roots match (have the same functor) and corresponding successors (recursively)
unify. That is, if both roots have arcs with the same selector leaving them, the
nodes reached by these arcs must also unify. As mentioned in § 2.2, some nodes
are designated as wvariables; a variable matches any node. A side effect of a

% Background material on unification can be found in many logic programming texts
and in an excellent survey by Knight [28].



successful unification is an equivalence relation that records which nodes were
matched. The evaluation of a call adds a copy of a clause to the term space and
identifies nodes matched as a result of unifying its head with the query. The
terms of the body are called in this extended term space.

Congress has a character-string expression language that may be used to
enter or print programs or fragments of programs, or to enter queries from the
keyboard. A term t may be denoted f(s; => t4, ..., sp => tp), where f is
its functor, sy, ..., sp are the selectors of the arcs with £ as their tail, and
ty, ..., ty are textual representations of the terms at the heads of the corre-
sponding arcs. A variable is denoted “@”. A tag (an alphanumeric string starting
with a capital letter) is used to indicate shared subtrees or cycles. For example,

the term
person
guar di an
age
name f at her

29 Elizabeth person

child

may be denoted®

F:person(
name=> "Elizabeth",
age=> 29,
father=> G:person( name => "George", child => F ),
guardian=> G

).
The expression language denotes a clause with head to and body ty, ..., t,
as “tp : — ty, ..., ty.” The expression language also includes “syntactic sugar”

for representing common infix operators such as +, *, -, /, and for Prolog style
lists. For example, the expression [a, b | Tail] denotes the same term as the
expression cons(car => a, cdr => cons(car => b, cdr => Tail)). A miss-
ing selector implies an edge labelled with an integer and occurrences of @ can be
omitted in most cases. For example, f (a,X) is the same as £ (1=>a, 2=>X:0).
With these abbreviations, the Congress expression language becomes a strict
superset, of Prolog. It extends Prolog in two important ways. First, the succes-
sors of a node are indicated by keyword rather than positional notation. This
extension helps avoid programming errors’. For example, the Congress expres-
sion employee (age=>25,salary=>30) is less confusing than the corresponding

6 A functor that contains non-alphanumeric characters or starts with an upper-case
letter must be quoted.

" It also has a rather subtle effect on the definition of unification. See the LOGIN
paper [5] for details.



Prolog expression employee (25,30). Second, while Prolog terms are trees (ex-
cept for identification of multiple occurrences of the same variable), Congress
allows arbitrary graphs, including cycles. Variables serve two purposes in Pro-
log: They represent “wild cards” for pattern matching and they indicate sharing.
The expression language of Congress uses the functor “@” for the first purpose
and tags for the second.

2.5 Embedding

The coupling between C++4 and Congress is a two-way embedding: Each lan-
guage appears to be an embedded sub-language [37] of the other. Each language
retains its own style. The embedding does not alter the syntax or semantics
of either language. Since Congress programs are C++ data structures, a C++
program can construct or modify a program and call the Congress interpreter
to execute it, capturing all output as C++ structures. The embedding is bidi-
rectional: C++ procedures can be declared as external predicates in Congress.
When the interpreter encounters a goal whose functor is an external predicate, it
calls the corresponding C++ procedure, passing it the goal and a description of
the current state of the computation (added nodes and bindings). The procedure
may make any modifications to the environment it deems appropriate (for ex-
ample, adding bindings) and return either a success or failure indication. During
backtracking, the interpreter may call the procedure again, asking whether it
can succeed in other ways. In short, an external predicate is any C++ procedure
that follows the protocol of a Congress procedure.

External predicates have proven extremely useful. They are used to imple-
ment all of the built-in predicates usually found in Prolog implementations, such
as arithmetic operations, as well as other functions that are awkward or impos-
sible to implement directly in Congress, such as file system access or invocation
of other programs. The Congress interpreter is itself an external predicate so
Congress programs can invoke the interpreter recursively.

3 CAPITL Object-base

CAPITL uses the persistent term space of POL to build an object-oriented
database (or object-base for short). All the entities used during the process of
software development — source files, derived binaries, documentation, executable
tools, and descriptions of subsystems — reside in the object-base. Properties
attached to each object describe it and its relationship to other objects. The
object-base is organized into a tree-structured naming hierarchy similar to a
Unix file system (§ 3.1). The object-base can be accessed interactively, from
programs written in C++ or Congress, or through a Unix compatibility feature
(§ 3.3). In the last case, an extension to Unix path-name syntax provides access
to versions of the term space.



3.1 Objects

The fundamental entity in the CAPITL database is the object. An object is a
“heavier weight” term that is guaranteed to have certain selectors with built-
in semantics. Viewed from the Congress language, the term space is simply a
labelled directed graph. Viewed from C++, the nodes of the graph are further
classified into an inheritance hierarchy. As explained in § 2.2, the first level of
the hierarchy separates nodes into leaf nodes (which are further classified as
integers, byte strings, etc.) and internal nodes, which contain pointers to other
nodes. Among internal nodes, CAPITL further designates some as object nodes,
which implement the semantics of CAPITL objects.

A CAPITL object can be viewed as a POL term (i.e. a directed labeled
graph) and it supports the interface of the POL Term class. Nevertheless, a
CAPITL object is best viewed as a set of <name, value> pairs, called attributes,
where the value is a POL term. As C++ class instances, CAPITL objects have
methods for manipulating their associated data. The main methods for manip-
ulating CAPITL objects relate to attributes; the POL term interface for objects
is created using these methods.

CAPITL distinguishes three kinds of attributes: simple, timestamped, and de-
rived. A simple attribute is a pairing of a name with a term and behaves exactly
like a POL term. A timestamped attribute records when its value was last mod-
ified and provides a method to retrieve this timestamp. The value of a derived
attribute is not represented directly as a term, but as a function application.
CAPITL maintains a cache of the most recent value of a derived attribute. The
inputs to a derived attribute are timestamped attributes, so that invalid cached
values can be detected and only recomputed when necessary.

The value of a derived attribute is represented by a special node called a
function node. These nodes replace all the read operations of the term interface
with code that first validates the cached function result and then performs the
requested operation by invoking the corresponding method of that value. Func-
tion nodes are read-only; all write operations of the term interface are overridden
by operations that return a failure indication.

All objects have simple, integer-valued attributes owner, group, permis-
sions, mtime, atime, and ctime, interpreted as in Unix. Objects also have a
directory attribute containing a reference to the directory in which the object
resides. The primary value of an object is stored in the contents attribute whose
representation depends on the kind of object.

Objects are further classified as directories, files, and symbolic links. A direc-
tory object is similar to a Unix file-system directory. Its contents attribute is
a list (constructed of cons nodes) of references to other objects. The directories
create a tree-structured name space similar to the Unix file system.

File objects are further classified as plain, delta, term, and composite. The
contents of a plain file object is a byte-string atom. It has exactly the same
semantics as a Unix “plain” file (§ 3.3). Delta files have additional operations to
“compress” and “uncompress” their contents. Delta files represent consecutive
versions of their contents as delta lists using an algorithm similar to RCS [49].



The contents of a term file is an arbitrary Congress term. A composite file, like
a directory, contains a list of references to other objects, but it does not emulate
all the behavior of a Unix directory, nor is it constrained to be part of a strict
tree structure.

Finally, symbolic link objects exist to support Unix compatibility interface
(§ 3.3). The contents attribute of a symbolic link is a printable-string atom.

3.2 Versions

CAPITL uses the world mechanism of POL to maintain multiple snapshots of
the database. Each operation accessing the CAPITL database is done in the
context of a designated current world, and any changes made by an operation
affect only this world. A world is either modifiable or committed (read-only).
There are mechanisms to choose a current world, commit a world, and spawn a
new world as a child of an existing committed world. The last operation behaves
as if it were making a complete copy of the parent database state, but is much
more efficient. A world can also be unfrozen if it has no children. A modifiable
(leaf) world of the database may be thought of as a “workspace.” A person who
wishes to modify the database generally selects an existing committed world,
creates a modifiable world derived from it, and makes the modifications in the
new world. When the changes have reached a stable state, the new world may be
committed. Policies and mechanisms for mediating shared access to modifiable
worlds are still under study.

Each world has a unique wversion ID, which is a non-empty sequence of pos-
itive integers. The root world has ID “0”. The ID of the first child of a world
W is formed by incrementing the final component of W’s id. Sibling worlds are
formed by appending zeros to W’s ID. For example, the children of world 1.3.2
would be labeled 1.3.3, 1.3.2.0, 1.3.2.0.0, etc. This numbering is similar to the
scheme used by RCS and SCCS, and seems more natural than “Dewey decimal”
numbering in the common case of long sequences of single-child worlds. For ex-
ample, a sequence of consecutive derivations from 1.3.2 would yield 1.3.3, 1.3.4,
1.3.5, etc. This numbering scheme can, however, become quite confusing when
multiple worlds are derived from the same parent. We expect that worlds will
normally be selected by symbolic name or other attributes stored in an index
structure (itself stored in the database) rather than by version ID. (This part of
the database is still under development.)

In general no changes are permitted in a committed world. However, the
value of a derived attribute may be safely deleted and replaced by the special
atom “not available.” Switching the state of a derived attribute between available
and not available is considered a “benign” modification of the database and is
permitted in committed worlds.

3.3 Accessing a CAPITL database

A CAPITL database can be accessed and manipulated in several ways:



— Directly, through programs written in C++ or Congress.
— Through an interactive X-based browser.
— Through a Unix-compatible interface called EFS.

CAPITL is written in POL, so all of its structures can be accessed as data
structures in C++. For example, nodes are all instances of the class Term, which
exports such methods (member functions) as

boolean IsLeaf();
which enquires whether the term is a leaf, and
Term *Edge(char *selector);

which returns the term referenced by a particular selector (if one exists). Class
Integer is a subclass of Term with an IntVal() method that returns its integer
value, and so on. Documentation for this interface is currently being written [3].

Browser. An interactive browsing interface has been written on top of the X
Window System using the InterViews [34] toolkit. The browser supports visiting
any object or directory in the object-base and uses type-sensitive displays to
depict the contents attribute of an object; other attributes are displayed using
the Congress expression language (§ 2.4). For example, the contents attribute
of a source file object is displayed using a text viewer in the Viewing box and
any other attributes in the Term View box (see Figure 1). The current focus can
be moved to a neighboring object in the naming hierarchy by double clicking
an object named in the Object Path or Object Siblings box. The focus can also
be changed by typing a path name in the Location Selector box. “Time travel”
is accomplished by typing a version ID in the Current World box. Menus exist
for creating and destroying objects, invoking the Congress interpreter, and for
creating and committing worlds. Multiple simultaneous windows on a database
are kept consistent with changes made from any of them.

EFS. The CAPITL object-base can be considered an enhanced version of the
Unix file system: More types of objects are supported, the set of attributes of
an object is extensible, complex relationships among objects can be represented
directly, and versioning of the entire database is efficiently supported. However,
the differences between the CAPITL object base and the Unix file system inter-
fere with using existing tools. Consider, for example, the problem of compiling
a C source file stored in CAPITL. One approach is to copy the contents of
the source object into an ordinary Unix file, invoke the compiler, and copy the
resulting object module back into CAPITL. A second approach is to store in
CAPITL “stub” objects that contain pointers (path names) to Unix files. A
third approach is to modify the compiler (perhaps by linking it with alternative
versions of the Unix library functions open, read, seek, etc.) so that it can read
and modify CAPITL objects. None of these approaches is entirely satisfactory.
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The Emulated File System (EFS) allows programs to access CAPITL objects
as if they were Unix files. It is based on the Network File System (NFS) facility
[44], which is included in most versions of Unix. NFS was originally designed
to support transparent access to remote files. A version of the mount command
associates a remote file system with a name, called a mount point in the local
file system. System calls that request operations on files below this mount point
are forwarded to an NFS server. Normally, the server is the Unix kernel on the
remote system, which executes the requests on its local disk. The remote file
system thus appears to be grafted into the local name space as a subtree of the
mount point. It is possible, however, to designate a user-level process as an NFS
server (Figure 2).

Browser
Exodus client library

NFS Client Local

Unix Kernel

Disk Driver

Fig. 2. CAPITL Process Architecture

The EFS daemon efsd emulates a Unix file system on a CAPITL database.
Once a CAPITL database is mounted, its objects can be manipulated by stan-
dard system calls (open, read, write, seek, link, stat, etc.) as if they were
actual Unix files, directories, and symbolic links. Neither client programs nor the



Unix kernel need be modified in any way.

Not all features of the CAPITL database are accessible through EFS. For
example, a composite or term object appears to be an empty file from EFS (it
behaves like /dev/null). However, EFS does allow access to alternative worlds
through an extension of Unix path name syntax. A version ID followed by a
colon is interpreted as a request to resolve a path name in a designated world of
the database. Path names without version ID’s are resolved in a current world
analogous to the current working directory. For example,

diff 3.3:prog.c prog.c
compares version 3.3 of prog.c with the current version, and
(echo -n "updates done "; date) >> 3.5:log

adds a line to version 3.5 of log.

As in Unix, a path name that does not start with “/” is interpreted relative
to the current directory (and world). Since the Unix kernel uses the same mech-
anism to resolve chdir requests as open, the shell’s cd command can be used to
navigate among worlds. For example,

cd 3.2.1:

sets 3.2.1 as the default world for subsequent file-system requests. The path
name supplied in a mount request is interpreted in the same way, so a default
world can be specified at mount time, as in

efs_mount /3.4:0hostname project.old
efs_mount /3.5:@hostname project.new.
cd project.new/include

vi defs.h

Although EFS was created for CAPITL, it can be used by any C++ system
that needs to provide a Unix-compatible interface. It is packaged as a driver
program and a set of abstract C++ classes that encapsulate that NFS model.
Application-specific classes inherit from these classes. For example, the CAPITL
Directory class is derived from both Term and EFSdir. Class EFSdir declares
methods to add, delete, and lookup directory entries, but supplies no imple-
mentation (they are “pure virtual member functions” in C++ terminology).
The CAPITL Directory class implements these functions by manipulating the
list stored in the contents attribute of the term. More details about the EFS
package will be contained in a forthcoming report [46].

4 Software Configuration Management in CAPITL

CAPITL provides assistance for constructing and maintaining software prod-
ucts. A product is the output of a series of tools applied to a set of objects.
The goal is to produce a “correct” version of a product as efficiently as possible.



Correctness is a fuzzy concept that has possibly different meanings in different
situations. Therefore, CAPITL supports a powerful constraint language (POL)
allowing system designers to describe attributes and integrity constraints as ap-
propriate to each application. CAPITL guarantees that all derived objects are
correctly created by applying tools to inputs in accordance with these specifica-
tions. In addition, CAPITL ensures that all products are current (that is, none
of the objects used to create the product has changed since the product was
constructed). When building (or rebuilding) a product CAPITL speeds up the
process by reusing previous work when possible.

CAPITL software objects are classified as source or derived. A source object
is created by a human being or by some other process outside the control of
CAPITL. A derived object is created by applying a tool object to an input
object. Each tool has exactly one input, which can be a set or list of other
objects. (Construction of such composite objects is described more fully below.)
The tools as well as inputs can be either source or derived. Each derived object
can be viewed as the value of a derivation — an expression tree whose leaves are
source objects and whose interior nodes represent, occurrences of a built-in apply
operator. Objects are all represented in CAPITL as POL terms, and thus can
have a variety of attributes. Some of these attributes constrain the set of well-
formed derivation expressions (§ 4.1). In particular, each tool object has an in
attribute that must match the object to which it is applied, and an out attribute
that constrains the attributes of the result. Since the attributes are terms that
can contain variables, an object can be partially specified. An incomplete object
can be more fully specified by replacing occurrences of variables with other
terms®. An object with an unspecified contents is called an abstract object.

A user requests the derivation of a new object by constructing an abstract
goal object and invoking the planner (§ 4.4) and the builder (§ 4.5) which are
Congress programs supplied with CAPITL. The planner determines how to cre-
ate objects and supplies them with code attributes, while the builder creates the
contents of planned objects by evaluating expressions in their code attribute.
The code attribute of an object is a list of alternative build expressions, each of
which contains references to a tool object and an input object. When asked to
plan an object without a code attribute, the planner searches the database for
tools and matching inputs such that the result of applying the tool to the input
yields the desired goal. It then recursively plans the tool and the input.

The planner can infer the need to construct new derived objects. If it finds
a tool capable of creating a desired goal object but no corresponding input, it
tentatively creates an abstract object representing the input and plans it. If the
input is a composite object (for example, a list of inputs to the linkage editor),
the planner searches for a template (§ 4.2) that describes potential collections.
The planner can also create new tool objects. A tool description (§ 4.3) contains
an input/output description of a potential tool. If the planner fails to find a tool
that can create a goal object but discovers an appropriate tool description, it

8 A consequence of the definition of unification in § 2.4 is that the absence of an
attribute is equivalent to an attribute whose value is a variable.



will instantiate the description as a new tool object and attempt to plan it. For
example, the planner may fail to find a cross-compiler capable of building an
object module for a particular machine architecture, but a tool description may
suggest that such a compiler can be built from existing sources.

The builder completes the process of making an abstract goal concrete by
executing one of the build expressions in its code attribute. If the build is suc-
cessful, the result is placed in the contents, and a record of the specific tool
and input used to create it is placed in the provenance attribute of the derived
object. If it is unsuccessful (for example, if the tool is a compiler that discovers
an error in its input), the build expression is marked as “failed,” the planner is
invoked to find other alternatives, and another build expression is tried.

4.1 Object Descriptions

The attributes code, contents, provenance, form, functionality, and ref-
erences are used by CAPITL for the purpose of planning and building. The
first three of these have been briefly described above. The attributes form and
functionality jointly describe the “type” of an object. These attributes control
the matching of tools to inputs and outputs. The references attribute is used
to record extra dependencies among objects.

Form. The form of an object is its type when used as an argument to a tool.
In the simplest case the form attribute is a simple atom with an application-
defined meaning, such as c_source or object_code. More detailed information
can be specified by more complicated terms. For example, the form attribute of
an object module might be specified as

object_code( opt => no, debug_symbols => yes)

Since forms are terms, the partial order induced by unification can be used to
express subtype relationships. For example, this term is compatible with (unifies
with) object_code. The planner interprets two values for the form attribute as
having special meaning: The value bag(T) is interpreted as a homogeneous multi-
set of type T, and the value record(T;, ... , Tp) as a heterogeneous collection of
types Ty through Ty. All other values are interpreted as non-structured (atomic)

types.

Functionality. The functionality attribute of an object is a description of
what the object does. For tool objects, the functionality attribute is the type
signature of the tool and describes its behavior via an in/out pattern. For ex-
ample, the functionality of a C compiler might be specified by the term

func(in => obj(form => c_source, functiomnality => F),
out => obj(form => object_code, functionality => F)),

which states that the input must be C source code, the output will be object
code, and the functionality (semantics) of the module is preserved.



Contents, Provenance, and Code. For atomic objects the contents at-
tribute is uninterpreted by CAPITL. For composite objects the contents is the
set of sub-objects that comprise the object. The provenance of a derived object
specifies the tool and input used to create the contents. Since the provenance
names specific objects (by their OID), it is completely synonymous with the
contents, in the sense that the same contents could be recreated by rerunning
the same tool on the same input. The code attribute is a set of expressions,
each of which is type-compatible with the object and is thus a potential recipe
for generating the contents; it represents a non-deterministic program for cre-
ating the contents. The code, provenance, and contents are in some sense
all manifestations of the same value where the code is the least specific and the
contents the most specific.

References. The references attribute identifies objects that are referred to
inside an atomic object’s contents. It can be an assertion from the specification
writer or the output of some language-specific tool. For example, suppose a C
source file has many “#include” preprocessor directives. If the C compiler and
preprocessor are being modelled as one tool, the references attribute would
represent the set of include files required to run the compiler/preprocessor tool.
These dependencies are needed for maintaining consistency after changes. Ref-
erences are used in checking whether derived objects are up-to-date. They are
also useful for browsing source objects.

When describing an object, a specification writer has two ways to refer to
other objects. A generic reference is a pattern that matches other objects in the
object-base. For example, the term

obj (functionality =>
func(in => obj(form => c_source, functionality => F),
out => obj(form => object_code, functionality => F))

)

represents a generic reference to any C compiler. If the environment contained
two C compilers, such as “cc” and “gec,” either could match. A specific refer-
ence defines a unique object. A specific reference can be created from a generic
reference by adding enough other attributes to make the reference unique or by
using the object’s identity. Because it is difficult to guarantee that a set of at-
tributes always identifies exactly one object, the identity of an object is preferred
for specific references. For example, the provenance of an object module might
contain tool => Gcc where Gece is a tag for a specific compiler object.

4.2 Templates

A system is a collection of objects that when combined form a meaningful
“chunk”. Systems are described in CAPITL by specially formed objects called
templates. (Such descriptions are often referred to as system models.) A tem-
plate consists of a set of generic references, specifying (at least) the functionality



of each sub-object, and a set of constraints. The constraints are used to spe-
cialize the generic references prior to instantiating the template. Templates are
instantiated by making a copy of the template, calling all the predicates listed in
the constraints, and then resolving each generic reference via a database lookup.
The result is an object that unifies with the template, but has all the generic
references in its contents resolved into specific references. Because template
instantiations are objects, they can be used as the sub-parts of other template
instantiations. Thus, system descriptions in CAPITL can be composed.

4.3 Tool Descriptions

CAPITL uses separate tool descriptions to specify the available set of tools. Tool
behavior (as opposed to tool objects) is described via specially formed Congress
rules stored in a separate rule-base that can be imported into a Congress pro-
gram. Tool descriptions serve two purposes. First, the presence of a tool de-
scription alerts the planner that it is possible to build a tool with a particular
functionality. Hence tool generators can be modelled in CAPITL. Second, tool
descriptions allow more complicated descriptions of tool behavior than is possible
with simple input/output signature patterns. Section 5.2 contains an example
that illustrates this feature.

4.4 Planning

Planning is the process of finding a set of source objects and tool applications
needed to satisfy a request. The planner makes use of three kinds of data: existing
planned objects, template objects, and tool descriptions. The planner searches
the space of all possible “well formed” tool and object combinations for expres-
sions whose results match the goal and that only contain references to atomic
objects or fully specified composite objects. These expressions are stored in the
code attribute of an object and represent a potential recipe for constructing the
contents of that object — the planner does not guarantee that an expression
will succeed when evaluated. During planning, templates are instantiated and
any constraints attached to objects are checked ensuring that all objects used
to build a system conform to the constraints specified in the description of the
system. Such constraints can easily encode certain kinds of semantic correctness
such as “use all debugging versions,” by forcing the appropriate sub-types to
be used for derived objects (and hence forcing the use of tools that produce
debugging information).

The planner avoids repeating work by keeping track of the current state of
an object’s plan with an additional plan_state attribute. When the planner
creates a new object to represent an intermediate result, its state is attempted. If
a build expression is found, the state changes to successful, otherwise it changes
to failed. Using this attribute the planner can avoid attempting to plan an object
that has already failed and avoid derivation loops, which occur if an object is
needed in order to derive its own contents.



Planning may be computationally expensive because it exhaustively searches
a potentially exponential space. To speed the planning process we are experi-
menting with lazy generation of expressions and better search strategies. Instead
of deriving all equivalent expressions, our prototype stops as soon as a single
expression is found. (A “replan” request is available to search for additional
expressions.) Currently, the planner uses a blind depth-first search. By ranking
choices, perhaps by using approximate tool costs, a branch-and-bound strategy
could be used to improve performance.

4.5 Building

Given a reference to a derived object, the job of the builder is to make the
contents, provenance, and code attributes consistent. They are consistent if
the provenance is one of the expressions in the code and it evaluates to the
contents.

The builder traverses the expression graph defined by the code and proven-
ance attributes. Depending on the state of an object there are three cases that
arise:

1. The object does not have a provenance or contents attribute. The builder
evaluates the first untried expression in the code. If the expression is suc-
cessful, the builder stores that expression as the provenance of the object. If
the expression fails (perhaps due to a syntax error in a source program), the
builder annotates that expression as unsuccessful and invokes the planner,
which attempts to find a different expression for the object. If the planner
is successful, the build continues.

2. The object has a contents (and hence a provenance). In this case the
builder must determine if the contents is still valid. In a committed world,
the contents must be the value of the expression stored in the provenance,
S0 no reconstruction is necessary. In a mutable world, objects referenced by
the provenance may have changed since it was last evaluated. To determine
if the contents is still up to date, the builder uses timestamps. The mtime
attribute of an object records the time its contents was last modified. Asso-
ciated with the provenance of a derived object is a provenance_timestamp
that records the timestamps of the tool and argument. If the timestamps
match, the contents is still valid. Otherwise, the provenance is re-evaluated.
A more precise notion of validity that relies on semantic properties of the
objects involved could be used, potentially allowing fewer expressions to be
evaluated [51].

3. The object has a provenance but no contents, indicating that a user con-
served space by deleting the contents. The contents can be regenerated
by simply evaluating the provenance.

4.6 Discussion

Separating the planning and building phases has several advantages. The decom-
position of a system into sub-systems tends to change slowly, allowing the output



of the planner to be used many times. Hence the cost of planning is amortized
over many builds. Moreover, the separation simplifies the builder: It is only con-
cerned with equivalence between a functional expression and a “cached” copy of
the result of that expression; the planner does all the work of selecting objects
and tools.

One can view the planner as a code generator and the builder as a code eval-
uator. To increase the speed of building a separate optimize phase could be used
after planning to perform traditional compiler optimizations such as strength
reduction and elimination of intermediate values. These optimized expressions
would then be saved in the provenance for future use. For example, the expres-
sions produced by the planner uses an object to hold the result of every tool
application. A linear sequence of tool applications in which the intermediate re-
sults were not specifically requested could be compressed into a single pipeline
invocation.

CAPITL worlds provide a means to group objects with similar semantic prop-
erties. This version mechanism assists planning by limiting the search needed to
construct a product. Because only one version of an object is visible in a given
world, the planner does not need to choose among the (potentially large) set of
versions of each source object. Hence the combinatorial explosion associated with
combining components represented as version sets is avoided during planning.

5 Examples

To illustrate the concepts of the previous section, we present two examples of
simple subsystems. The first example illustrates how an executable program is
built from sources in a variety of languages. The second example is drawn from
the domain of document processing.

5.1 A Pascal Program Analyzer

The first example is a simple program analyzer that translates Pascal source files
into abstract syntax trees (AST’s). Such an analyzer might be a component of a
compiler or other larger system. We assume that four source objects are available:
a Lex [32] specification of tokens, a YACC [22] specification of a grammar, a
driver program written in C, and a common file of declarations included by all
three sources. These objects are shown in Figure 3. Common is the file of common
declarations. It has only two attributes, a format (source for the C preprocessor)
and the actual text contents. Main is the main program. Its format is C source,
it depends on Common, and its functionality (semantics) is described by the atom
“Cast_driver.” The Lex and YACC source objects are similar. The references
attributes might be supplied manually by the author of the program or it might
be deduced by a tool such as the Unix makedepend utility. The functionality
attributes would be supplied manually by the designer of the analyzer package.

Pascal_Analyzer describes the functionality of the desired tool: It should
translate a Pascal source object into an abstract syntax tree preserving its func-



Common : objj (

form => cpp-include,

contents => "#include <stdio.h>; ..."
).
Main:obj(

functionality => ast_driver,

form => c_source,

contents => "main(int argc, char *argv[]) ...

references => [ Common ]

).
Scanner:obj(
functionality => pascal_scanner,
form => lex_source,
contents => "..."
references => [ Common ]
).
Grammar :obj (
functionality => pascal parser,
form => yacc_source,
contents => "..."
references => [ Common ]
).
Pascal_Analyzer:func(
in => obj(form => pascal_source, functionality => F),
out => obj(form => ast, functionality => F))
).
Analyzer _Spec:obj(
functionality => Pascal_Analyzer,
form => bag(type => T),
contents => [
Cl:obj(functionality => ast._driver, form => T)],
C2:0bj(functionality => pascal_scanner, form => T),
C3:0bj(functionality => pascal_parser, form => T),
constraints => [ debug.level(C1), debug level(C2), debug.level(C3) ]

Fig. 3. Source Objects

tionality. Analyzer_Spec is a template that specifies how the component func-
tionalities ast_driver, pascal_parser, and pascal_scanner can be assem-
bled to produce a tool that translates Pascal source into abstract syntax trees.
Analyzer_Spec may be thought of as a “tool” that produces a composite object
(a package of objects) from components. This specification conveys three pieces
of information: First, that the functionality Pascal_Analyzer is the sum of
the functionalities ast_driver, pascal_parser, and pascal_scanner; second,
that resulting object has form bag(T), where T is the form of each component;
and third, that all the components should have a property called debug_level.
For example, if it desired that all object files have the debugging property, the
debug_level predicate would be defined as

debug_level(obj(form => F:object_code)) :-
!, F = object_code(debug_symbols => yes).
% object modules must have debugging information
debug_level(obj). % all other objects pass the test vacuously



Figure 4 shows a variety of tool specifications. The tool specification Lex_Spec

Lex_Spec:tool(
functionality => Lex_Func:
func(in => obj(form => lex_source, functionality => F),
out=> obj(form => c_source, functionality => F))
).
Lex:obj(
form => executable,
functionality => Lex_Func,
contents => "..." % the actual executable code
).
Yacc:obj(
form => executable,
functionality =>
func(in => obj(form => yacc_source, functionality => F),
out=> obj(form => c_source, functionality => F)),

contents => "..."

).
Cc_debug:obj(
form => executable,
functionality =>
func(in => obj(form => c_source, functionality => F),
out=> obj(form => object_code(dbg_sym => yes, opt => no),
functionality => F)),
contents => "..."
).
Cc_opt:obj(
form => executable,
functionality =>
func(in => obj(form => c_source, functionality => F),
out=> obj(form => object_code(dbg_sym => no, opt => yes),
functionality => F)),
contents => "..."
).
Ld:obj(
form => executable,
functionality =>
func(in => obj(form => bag(type => object_code),
functionality => F),
out=> obj(form => executable, functionality => F)),
contents => "..."

Fig. 4. Tool Objects

describes the functionality of a Lex processor — it transforms a lex_source input
into c_source preserving semantics. The object Lex is an executable program
that conforms to this specification. Similarly, each of other tools would have a
corresponding tool description. Since each tool description is identical to the
input/output signature of the corresponding tool, we omit the remaining de-
scriptions. We have chosen to model the debugging and optimizing versions of
the C compiler as two distinct tools.

Calling the planner with the goal

obj( form => executable, functionality => Pascal_Analyzer )



will create a partial object with the desired functionality and form. If planning
is successful, the object will contain a build expression in its code attribute that
can be used to create its contents. The planner will also create partial objects
for intermediate objects as shown in Figure 5. At this point, the builder may be

Goal:obj(

functionality => Pascal_Analyzer,

form => executable,

code => [ build_expr(expr => apply(Ld, Object_Modules, Goal)) ]
).
Object_Modules:obj(

functionality => Pascal_Analyzer,

form => bag(type => object_code),

contents => [ ScannerObj, ParserObj, MainObjl
).
Scanner0Obj:obj(

functionality => pascal_scanner,

form => object_code(debug_symbols => yes, opt => no),

code => [ build_expr(expr => apply(Cc_debug, ScannerC, Scanner(Obj)) 1
).
ScannerC:obj (

functionality => pascal_scanner,

form => c_source,

code => [ build_expr(expr => apply(Lex, Scanner, ScannerC)) ]
).
Parser0bj:obj (

functionality => pascal_parser,

form => object_code(debug_symbols => yes, opt => no),

code => [ build_expr(expr => apply(Cc_debug, ParserC, Parser0Obj)) ]
).
ParserC:obj(

functionality => pascal_parser,

form => c_source,

code => [ build_expr(expr => apply(Yacc, Grammar, ParserC)) ]
).
MainQObj:obj(

functionality => ast_driver,

form => object_code(debug_symbols => yes, opt => no),

code => [ build_expr(expr => apply(Cc_debug, Main, MainObj)) ]

Fig. 5. Derived Objects After Planning

invoked on the object Goal. Assuming there were no errors, the builder would
fill in the contents and provenance attributes of each object in Figure 5.

Suppose the state of the system is frozen by committing the current world
and a new one is created. Consider two different kinds of modifications to the
system:

1. The only action in the new world is to modify the contents of Scanner. In
this scenario, the same plan can be reused (in fact calling the planner will
result in no changes), and the builder will reuse ParserObj and MainObj,
rebuilding only ScannerC, Scanner0bj, and Goal.



2. No sources are modified, but an optimized version of the analyzer is desired.
The definition of the Congress predicate debug_level is changed to

debug_level(obj(form => F:object_code)) :-
!, F = object_code(opt => yes).
debug_level(obj).

There are two choices for where to store the new version: in a new object
distinct from the existing debugging version or in the existing analyzer object
(replacing the debugging version in this world). In the latter case, the code
attribute would need to be cleared before planning (if not, the object would
fail the current set of constraints and would fail to be used). In either case
the planner would be re-invoked on the appropriate goal object. The existing
object Object_Modules would not be used because its constraints fail with
the current definition of debug_level. Instead, the planner would create
a new composite object from the Analyzer_Spec template that uses the
output of Cc_opt rather than Cc_debug. The derived objects ParserC and
ScannerC from the previous world would be used without modification.

5.2 Document Processing

The Unix troff document processing system includes a variety of special-purpose
preprocessors. If a document does not use a particular feature, the correspond-
ing preprocessor need not be applied. For example, egn only needs to be run
on documents that contain mathematical equations, while tbl is only required
for documents containing tables. We could model these tools by defining a va-
riety of types as in the previous example, defining egn to be a translator from
troff_with_eqnto troff, etc. However, this approach would require a different
type for each subset of the features. A better approach defines one form, troff,
with subtypes for different sets of required features. For example a document
with equations and tables would have form troff (features => [eqn, tbl]).
The tool description for eqgn would then be

tool(functionality => func(
in => obj(form => troff (features => L1), functionality => F),
out=> obj(form => troff (features => L2), functionality => F)))
:- delete_feature(feature => eqn, in => L1, out => L2) ,

where the predicate delete_feature searches list L1 for an occurrence of eqn
and removes it. If a document does not use egn the body of this rule will fail
and the planner will not consider it applicable. A more sophisticated version of
delete_feature can encode the requirement that some processors have to be
run before others. As with the references attribute, the features of a troff
document could be added manually or by a processor that analyzes a document.

6 Related Work

Many of the ideas in the design of CAPITL are present in other systems.
CAPITL’s main distinguishing feature is tight integration of a process program-



ming language (Congress) with an underlying versioned, object-oriented data-
base. A software object is not just described by a Congress expression, it s a
Congress expression. Congress is declarative rather than procedural; it allows
system designers to concentrate on the properties of objects and subsystems
rather than on procedures to manipulate them.

All of the following systems provide good support for building; they differ
primarily in how systems are specified, how version selection is accomplished,
and what kinds of consistency are guaranteed.

The related work in this section is organized into three sections: build tools,
environments that integrate building, versioning, and other aspects of software
development, and work that uses logic as the basis for SCM or building.

6.1 Build Tools

Many successors to Make [20] have been built that keep the basic idea of a
Makefile for describing systems. Each of the newer systems addresses deficiencies
in Make and adds new features that make it easier to use. There are many
variations of these so-called “super makes” and we describe only a sample here.
Tools that are comparable to Make are included here as well.

GNU Make. The Make utility from the Free Software Foundation [47] en-
hances the original Make in several ways. (The authors give credit for these to
System V Make, Andrew Hume’s mk, and other unnamed sources.) The major
improvements include transitive closure of the dependency graph and implicit
intermediate files (rule chaining). An éinclude facility and conditional execution
based on the C preprocessor language eases the maintenance of makefiles since
common definitions and machine dependent parts can be stored separately and
dynamically chosen. GNU Make extends the syntax for implicit rules to allow
simple patterns.

Dmake. Dmake [52] has many of the same extensions as GNU Make such as
transitive closure of the derivation graph (rule chaining), an include mechanism,
and better rule definition syntax. Dmake further extends Make by supporting
parallel construction of a target’s prerequisites. The syntax for targets is ex-
tended to force sequential construction when desired. The greatest enhancement
that Dmake provides is that it saves the state of a Makefile (e.g. macro expan-
sions, tools used, tool flags, etc.) with each target so it can detect out-of-date
targets due to changes to a Makefile.

Imake. Imake [10] is a tool for generating Makefiles. It compiles application de-
pendency information along with architecture descriptions to create Makefiles,
which are then interpreted by standard Make. The C preprocessor macro lan-
guage is used to describe systems. Changes to a description require regenerating
the Makefiles. Careful use of directories is needed to avoid inconsistent systems
(e.g. mixing sparc and mips object files).



Odin. Odin [14] is a system for integrating existing tools into a single environ-
ment. Tools are described declaratively and then linked into a derivation graph
that summarizes all the “type correct” derivations possible using the current set
of tools. Given a request for a particular object, the derivation graph is used
to infer build steps. As with Make, the programmer must specify all the depen-
dencies of a configuration. Version selection is not integrated into the system,
but Odin supports annotations on targets to perform variant (e.g debug versus
optimized) selection. Odin uses a separate directory for each tool invocation and
creates a derived object cache that associates the provenance with each object
so that requests for a different variant are correctly handled.

6.2 Environments

The systems described in this section support more than building software. They
include assistance for describing software and they store meta-data about com-
ponents in addition to their contents. This meta-data is used for configuration
management, version selection, and history management. All of the following sys-
tems provide good support for building; they differ primarily in how systems are
specified, how version selection is accomplished, and what kinds of consistency
are guaranteed.

DSEE. DSEE [30, 31] is a commercial environment that manages software in
a network of distributed (Apollo) workstations. It supports a notion of “time
travel” by compactly storing versions of source files and providing a tool, the
History Manager, that associates symbolic attributes with particular versions. A
separate tool, the Release Manager, maintains groups of consistent files. DSEE
configurations start with a user-supplied dependency relation called the system
model. Version selection rules are used to bind object references in the system
model to specific versions in the file system. DSEE supports many other features
needed in a distributed environment such as transparent access to remote files.

ClearCase. ClearCase [7] is a new product from the original DSEE develop-
ers that provides many of the same features on a variety of Unix platforms.
ClearCase tightly integrates build management and version selection. As with
DSEE, source components are versioned and version selection is accomplished
with rules. ClearCase extends the versioning model to include directories and
modifies the Unix filesystem to create dynamic views based on the current se-
lection criteria (their filesystem is called a Versioned Object Base). ClearCase
decouples building from configuration management, allowing any build tool to
be used. They provide a Make utility called ClearMake that does “build audit-
ing” to automatically record exact dependencies during a build by tracking file
system open calls. Derived objects are shared between different developers au-
tomatically. ClearCase supports parallel builds using a network of workstations.
The repository can be replicated and distributed; changes made to each site are
merged on a periodic basis.



Vesta. The Vesta system [33, 13, 21, 9] developed at DEC SRC is a reposi-
tory and SCM language that uses a functional model. All source components
are immutable. Changes are made using a tool that builds a new configura-
tion object from a previous version by replacing new or modified components.
The immutability of components (including configuration objects) means that
rebuilding a derived object that was erased is easy and is guaranteed to create
the same value as before. Derived objects are treated as accelerators for func-
tional expressions and are cached using an algorithm that generates an almost
perfect hash of an arbitrary stream of bytes. The functional system models and
component immutability are borrowed from Cedar/SML [29].

CaseWare. CaseWare [12] is a commercial SCM system that manages sources,
documentation, and derived information. It uses an object-oriented repository
that supports extensible attributes. Software systems consist of component hier-
archies and CaseWare has graphical tools to create and modify them. An adapt-
able process model is tightly integrated with the environment and it provides
support for life-cycle management, change management, and problem tracking.
The environment performs transparent builds and generates Makefiles on de-
mand to support incremental building. Each object is versioned and rules, similar
to DSEE, perform version selection of the components in an system.

Shape. Shape [35, 36] integrates Make with a version control system similar to
RCS. Shape is backwards compatible with Make and adds version selection rules
comparable to those in DSEE. These rules use regular expressions to specify
an ordered list of version preferences, such as “use the newest version of all
components I am working on”, and “use the newest stable version of all other
components.” The default selection rule is to use the most recent version of all
components as in Make. Shape stores source objects in an attributed file system
and can distinguish different versions of objects by using “version attributes.”
Shape’s use of Makefiles is convenient, but such files contain a static description
of the system, and maintaining that description becomes more and more difficult
as the system grows larger. Like DSEE, Shape relies on an external tool for
checking that a configuration is consistent.

Jason. Jason is a generic software configuration system [53] that constructs a
software environment from a given set of parameters. These parameters include
class definitions (object schemas), consistency constraints, and build plans (de-
pendency relations). Created environments can later be extended, but because
of the “compiled” nature of generated environments, such extensions are limited
to additions and refinements. This limitation prevents Jason from supporting
certain kinds of evolution (such as re-organizing a two-component system into a
three-component system). Jason uses a powerful constraint language (full first-
order predicate calculus) and compiles the given constraints into procedures that
check the consistency of configurations. A rigorous algebraic model provides Ja-
son with a strong theoretical foundation not present in most other systems.



Adele/Nomade. Adele [17, 18] (and its successor Nomade [19]) is a constraint-
based environment for SCM. An attributed filesystem is used to store infor-
mation about components. Constraints are quantifier-free boolean expressions
whose domain is the attribute values. System architects describe systems using
constraints and Adele uses them to infer consistent configurations, including the
dependency relation between components. Recent work has extended Adele to
include process support based on events and triggers [8].

SMILE /Marvel. SMILE and Marvel [23, 24, 25] are two rule based environ-
ments that emphasize support for the edit/debug/build cycle. Their goal is to
provide a “fileless” environment for programmers by making the environment
responsible for invisibly maintaining derived objects. Their rules use Hoare-style
pre and post conditions to trigger actions; they can be used for either forward-
chaining or backward-chaining inferences. Forward-chaining corresponds to op-
portunistic computation and backward-chaining corresponds to the method em-
ployed by traditional build tools such as Make. Recent work [26] has extended
Marvel to include rule-based process support.

6.3 Logic-based Approaches

The similarity between the rules and dependency statements in a makefile and
a logic programming language has been noted by others. Logic and logic-pro-
gramming languages have been used as description languages and as the basis
for build tools like Make. All these systems share the desire to use the power of
logic languages for consistency checking and make good use of the richer data
model provided by terms.

Feature Logic. The NORA [55] system describes components and configura-
tions using feature logic. Feature logic has as its data model terms which are
similar to POL terms (both data models are derived from work by Ait-Kaci
[4]). The operations of feature logic are selection, complement, intersection, and
union of feature terms. Unification in full feature logic is not as easy as in POL
since it includes both negation and disjunction. NORA uses feature logic to rep-
resent both revisions (changes made to a component that are intended to replace
the existing component) and variants (changes in the behavior of a component),
providing a uniform representation for these traditionally separate concepts. A
subset of feature logic is mapped into the C preprocessor language and used for
their prototype editor. Using this editor, programmers interactively pick values
for feature terms. The editor supports incremental selection of features and dy-
namic sensitivity to existing features. In the future they plan to implement a
build tool based on feature logic.

Deductive Databases. Asirelli and Inverardi [6] describe how a deductive
database could be used to assist configuration management and software con-
struction. Their system (EDBLOG) is a deductive database consisting of three



elements: facts, rules and integrity constraints. They implement a Make-like tool
by using facts to represent information about components such as their names
and last-modified-dates. Rules are used to define implicit and explicit dependen-
cies and to define the “out of date” relationship. Integrity constraints are used
to represent transactions, which correspond to invoking the traditional Make
command. Concepts like the “history of a component” are defined by rules and
enforced by integrity constraints. Their design only covers building; they did not
extend their ideas to configuration or version management.

Prolog-based Make. PROM [27] is a Make tool implemented in Prolog. It
defines a small language for writing the equivalent of makefiles. Prolog terms are
used to represent information, so the data model is an improvement over Make’s
character string model. In addition logical variables can be used to implement
implicit derivation rules. The initial knowledge base is constructed from the
“prom-files” and timestamp information of the files constituting an application.

7 Status and Future Plans

A prototype of CAPITL has been implemented that includes all the basic com-
ponents: the object-base, worlds, EFS, the Congress interpreter, a browser, a
planner and a builder. The planner and builder subsume the functionality of
Make. We have tested them on small, but complicated examples that have about
10 source objects and 20 tool descriptions. They have been successfully used to
construct CAPITL itself, which consists of about 32,000 lines of C++ code and
5,000 lines of Congress code. The planner correctly generates plans, the builder
constructs executable binaries (running tools such as the C compiler with the
aid of EFS), and the resulting programs can be invoked through the interactive
user interface. After changes to only the contents attribute of source objects, the
planner quickly verifies the existing expressions and the builder is able to rebuild
targets taking advantage of unchanged sources and intermediate objects.

Logic-based construction has many advantages. Complex systems are de-
scribed compactly and precisely easing maintenance costs. Consistency can be
guaranteed and programmers freed from having to worry about how to gener-
ate a particular variant of a system. Knowledge about tools is shared so not
every programmer must be a tool expert. Types and sub-types are easily repre-
sented using POL terms. Abstraction using logical variables and constraints is
a powerful method of specifying software.

Several areas need more attention before CAPITL can be successfully used
in large-scale development.

7.1 Performance

The planner and builder are currently an order of magnitude slower than Make.
Although the incremental algorithms reduce this overhead, it is still a significant
problem when a version of a system is initially planned. Experiments with the



planner showed that for a given project the order in which tools were considered
affected performance either upwards or downwards by over fifty percent. Because
most projects are use a small set of tools, simple heuristics such as “try the last
successfully used tool” should limit the variation due to fixed tool orderings.
An estimate of tool costs would enable the planner to use better heuristics for
finding an initial plan such as a branch-and-bound strategy.

The performance of the builder is dominated by the cost of applying tools to
components. EFS is considerably slower than native or NFS file system access,
particularly for updating files, so tool invocations (such as compiling) are severely
degraded. The main source of the problem appears to be inappropriate timeouts
and buffering strategies in the NFS client code in the Unix kernel. A successor
to Exodus, called Shore [15], is being developed by a separate project; one of the
goals of Shore is to provide a facility similar to EFS with higher performance.

7.2 User Interface

Several enhancements to the user interface are needed to make CAPITL usable
by system architects and developers. From these higher-level interfaces, CAPITL
would generate Congress code, effectively using Congress as an “assembly code”
of system descriptions.

Syntactic Sugar. Currently, source objects, tool descriptions, templates and
goals are all created “by hand” as Congress expressions. Forms-based interfaces
would help to streamline this process and eliminate the need for developers to
learn about logic programming. The browser understands a few attributes and
has special displays for them (for example, the contents attribute of a plain file
object is displayed in a text window), but most attributes are simply displayed
using the Congress expression language. More special-case displays would help.

Idioms. Common terms such as frequently used forms and functionalities (such
as the subterm Lex_Func in Figure 4 could be collected in libraries and displayed
by the graphical interface as icons for pasting into new descriptions. Such terms
could be abstractions (i.e. contain free variables) from the project domain. For
example, the behavior of a generic translator that preserved functionality might
have parameters for the source and target languages and could be represented
by the term

Translator : function(
in => object( form => Source, functionality => Func )
out => object( form => Target, functionality => Func)).

They can also serve as the basis for creating new types through subtyping.

Worlds. Currently, a user must set the default world either by navigating the
tree of worlds, or by explicitly typing version ID’s as sequences of integers. Worlds



could be represented explicitly in the object-base as special “world objects”
so that mnemonic names and other attributes can be associated with them.
Congress could then be used as a query language for the collection of worlds.

Flexibility. The graphical interface of CAPITL uses different views based on
the C++ class of the object being visited. The compiled nature of the interface
limits the possibilities for customizing the view of an object based on its dynamic
type (form and functionality attributes). A CAPITL object is self-describing.
Descriptions of its representation, behavior, and relationships are contained in its
associated attributes. This description could be extended to include a graphical
view as well. Interfaces based on embedded interpreters such as TCL/TK [38, 39]
or a binding of Congress with X windows intrinsics could be used to implement
this extension.

7.3 Additional Functionality

The user interface enhancements suggested above are all fairly straightforward.
Other usability enhancements require more fundamental research.

Version Management. Versioned worlds are simple to understand, but policies
for managing them need to be explored. CAPITL contains no provisions for
mediating access to mutable worlds except that provided by Exodus, which only
serializes simple updates; more sophisticated kinds of long-term locks are needed.
Mechanisms for selecting worlds and maintaining their internal consistency need
to be developed. Tools are needed to support an “algebra” of modifications
that allow modifications to be added and subtracted. An example of “addition”
is reconciling and merging concurrent updates that created sibling worlds. An
example of “subtraction” arises when two updates were applied in sequence, and
it is desirable to generate the world that would have arisen if the second update
were applied but not the first.

Cache Management. A derived attribute is one whose value is an immutable
function of other attributes. Derived attributes can be elided or recomputed even
in a committed world. Currently, a derived value must be deleted by hand. A
useful tool would be one that selectively flushes cached values based on their
size, time since last use, and cost of reconstruction. More generally, all derived
objects may be thought of as a residing in a cache. In some cases there may be
more than one equivalent way to build a product. For example, an executable
program might be rebuilt from its sources or reconstituted from a compressed
version. Thus cache maintenance is intimately tied to the larger issue of planning,.

7.4 Other Possibilities

In addition to software development activities related to the construction of
software, there are two areas where CAPITL could help. Both of these areas have



the potential to reduce the cost of develop software and increase the reliability
of the final product.

Reuse. Considerable attention is now being given to reusing software in order
to lower the cost of writing new software [1, 2]. Any reuse system must provide a
way of storing and locating components. CAPITL would be a good foundation for
such environments because of its rich data model, flexible policies, and extendible
attributes. In addition Congress is well suited as an ad-hoc query language for
locating components for reuse.

Process Support. Most of the effort in CAPITL has been spent on making the
job of the software developer and architect easier. In large projects, the majority
of time is spent on managing these developers and on communication costs
[40, 54]. Support for such activities is called process programming or process
modeling. The requirements for effective process support is an active research
area. Nonetheless, there is agreement that in order to support, as well as control,
human activities, flexibility is needed. CAPITL has a good data model and
language on which to build process support.

7.5 Additional Functionality
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