
Object Make: A Tool for Constructing Software Systems from

1. Introduction

Existing Software Components

Yasuhiro Sugiyama

Department of Computer Science

Nihon University

Konyama, Fukushima 963, Japan

e-mail: sugiyam@ce.nihon-u. ac.jp

It is a common practice to build large-scale software

systems as a combination of smaller components.

However, it is quite costly if software developers need to

design and develop the components from scratch for each

software system. It is quite desirable that they build highly

generalized components that can be used in many systems.

However, it is not enough to prepare many reusable

components. A mechanism to combine these components

into a large system in a systematic fashion is quite

essential.

This paper presents a tool, called Object Make, that (i)

helps software developers to build reusable software

components, and (ii) offers a mechanism to combine a large

number of components into a system in a systematic way.

The components of a system built with Object Make can be

easily reused in other systems. The development of Object

Make is motivated by the following background.

Make [2] is a tool that is widely used to automate the

building and re-building processes of software systems. I

have a long experience in using Make. However, I have

noticed several difficulties of Make when I use it for the

development of large-scale software systems. Particularly I

found that it is not easy to reuse the components of a

system that was built with Make. I developed Object Make

This research was in part supported by the Grant-in-Aid for
Scientific Research by the Education Minktry of Japan.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SSR ’95, Seattle, WA, USA
0 1995 ACM 0-89791 -739-1 /95/0004 ...$3.50

to overcome the problems

compatibility with Make.

of Make without loosing the

This paper is organized as follows. The second section

summarizes the problems of Make that I experienced. The

third section describes the mechanism of Object Make to

resolve the problems of Make, as well as the current

implementation of Object Make. The fourth section

explains the theoretical background of Object Make. The

fifth section gives a quantitative evaluation of Object Make

showing that Object Make is more effective than Make to

produce large systems. The last section concludes the paper

with my experience report on using Object Make.

2. Problems of Make

Make is a tool that builds or rebuilds software systems

based upon build rules specified by system designers. Build

rules me stored in files, called description jiles. Make reads

a description file and builds a system based upon the build

rules in the description file. Description files are often

named makefile or Makefile, but they may have any

other names. Typically, each system has its own

description fiie. Build rules of a system state the dependency

that lists the software components to be used to build the

system, as well as the build commund.s to combine and/or

transform the components into the system. A typical

description file includes the build rules of the components

to be used to build the system, in addition to the build rule

of the system itself. This is because Make must build the

components first before it combines the components into

the system.

Figure 1 shows a sample description file, named

makefile, to build a simple compiler. The compiler,

called tree, is produced from three object files: tree.o that

contains a main program, a parser parse.o, and a lexical

analyzer Iex.o. The first line of the description file states

128

tree: tree.o parse.o Iex.o makefile

cc tree.o parse.o lex.o -o tree

tree.o: tree.c makefile
cc tree.c -c -o tree.o

parse.o: parsec makefile

cc parsec -c -o parse.o

parsec: parse.y makefile

yacc parse.y -o parsec

Iex.o: Iex.c makefile

cc Iex.c -c -o Iex.o

Iex.c: Iex.1makefile
Iex Iex.1-o Iex.c

Figure 1: A Sample Description File

that tree depends on the three object files as stated above,

as well as the description file makefile. If tree doesnot
exist or it is older than one of these files, Make executes

the second line, which is a build command to produce tree

by linking the three object files, This description file also

contains the build rules to build the three object files from

their source files. The fifth and sixth lines state that

parse.o is compiled from parsec, and furthermore, the
seventh and eighth lines state that parsec is produced
from parse.y by Yacc, a parsergenerator.The build rules

for other object files are specified in a similar way.

2.1. Large Description Files

One of the problems of Make is that it relies on the

directory structure of the underlying file system to find out

the description file to b used to build a system. When

Make is invoked, Make reads a description file named

Makefile in the current directory as its default. However,

if the current directory includes two or more description

files, Make is no longer able to determine the description

file to be used. Users of Make are required to specify the

description fiie explicitly when they invoke Make.

To avoid complex invocation operation, most users put all

the related files of a system to be built into a single

directory. They also create a single Makefile in the
directory. They put the build rule of the system as well as

the build rules for all the components, which are used to

build the system, into the description file. As a result,

description files tend to be large. Large description files

result in the following difficulties.

(1) Reusing Build Rules

When I reuse a component of a system in other systems, 1[

often wish to reuse its build rule in the system’s description

file. For instance, to reuse a source program, I need to

know the compiler to be used to compile the source

program. I need to know the invocation option to the

compiler. However, Make does not allow me to reuse builcl

rules stmightforwardly. If the description file includes the

build rules of two or more components, first I must

understand how the component is currently used in the

system, and then I need to extract the necessary build rule of

the component from the description fde.

For instance, in Figure 1, assume I am going to reuse only

the parser of the compiler. Before I extract the necessary

build rules for the parser, I need to analyze the description

file and understand that (i) the object file parse.o is
generatedfrom the sourcefile parsec by cc, which is a C
language compiler, and (ii) the source file parsec is
generated from parse.y by Yacc.

In this example, the description file is quite small,,

However, the description files of huge systems are quite

large and complex. Extraction from huge description files is

a quite complex task. As a result, large description files

result in the difficulty of reusing the components of

systems that are built with Make.

(2) Changing Build Rules

During the development of software systems, it often,

happens that changes are made to some of the components,,

but not to others, in order to fix a particular bug or to

include a new design. Changes are not limited to the

changes of the components themselves. Changes in the

description files of the components need to be considered,,

When some of the components or their build rules are,

modified, Make needs to rebuild the components that relate

to the modification before it rebuilds the system. It is not

necessary to rebuild all the components. However, it is not

a rrivial task to find out the components that need to be

rebuilt.

Although Make has an ability to find out the components

to be rebuil~ this mechanism works reasonably only when

the contents of the components are changed. If changes are

made in the build rules of components, Make fails to find

out the components to be rebuilt.

129

maktafila,,,-.-,..-

tree: tree.o parse.o Iex.o makefile
make -f makefile2 # build tree.o

make -f makefile3 # build parse,o

make -f makefile4 # build Iex.o

cc tree.o parse.o Iex.o -o tree

tree.o: tree.c makefile2
cc tree.c -c -o tree.o

makefile3

Iex.c.o: Iex.1makefile3
cc Iex.c -c -o Iex.o

Iex.c: lex.1makefile3
Iex Iex.1-o Iex.c

makefile4h 4
parse.o: parsec makefile4

cc parsec -c -o parse.o
parsec: parse.y makefile4

yacc parse.y -o parsec

Figure 2 Sample Description Files with Recursive

Invocation of Make

Make rebuilds a component only when the build rule of the

component states that the component depends on the

modified components and/or the modit%d description fdes.

However, if the build rules of all the components of a

single system reside in a single description file, all the

components depend on the same description file. As a

result, a change in the build rule of a single component will

result in the reproduction of all the components. In Figure

1, for example, you see that all the components depend on

the same mak efile. Even if only the build rule for

parse .C is modified, Make will remake all the

components. In other words, large description fdes result in

loosing the precise control over the re-building processes of

software systems.

2.2. Chaining of Build Rules

If I divide a huge description file into two or more separate

description files, I can make each description fde smaller. In

Figure 2, for instance, I divided the description file in

Figure 1 into four separate description files. However,

unfortunately, decomposition of a single description file

into multiple description ffles results in a new problem.

Generally speaking, when Make builds a component P

from another component Q, Make must build Q f~st before

it builds P. In other words, in order to build P, it is not

sufficient to evaluate and execute the build rule of P. Mike

must evaluate and execute the build rute of Q f~st, before it

evaluates and executes the build rule of P. This is called the

chaim”ng of the build rules. Unfortunately, Make establishes

the chaining of the build rules only when the build rules of

P and Q are described in the same description file. If the

build rules of P and Q are included in different description

fdes, Make is no longer able to establish the chaining. As a

result, the building process of P will fail if Q does not

exist. If Q exists, the building process will complete.

However, the resulting P may not be the right one, because

Q might need to be rebuilt, before it is used, to include

some changes.

In order to avoid this problem, experienced users of Make

often include commands to establish chaining in description

files explicitly. In Figure 2, you see that makefile

contains the commands to invoke Make recursively before

the link operation. The recursive invocation of Make will

assure that makefile2, makefile3, and makefile4 are

evaluated, and tree.o, parse.o, and Iex.o are built before

they are linked together to produce the executable file tree.

If makefile does not include these three lines to invoke

Make recursively, other description files are not evaluated at

all. If one of the object files is missing, the linking process

will fail. If all of them exist, the linking process will

complete. However, the resulting executable file may not

be the right one, because the object files might need to be

rebuilt to include the latest changes made in their source

files.

This method, to describe build rules in multiple description

ffles and invoke Make recursively in the description files to

establish chaining, is commonly used in the description

files of many public domain software systems. However,

recursive invocation of Make is only necessary to remedy

the inappropriate behavior of Make to establish the

chaining of build rules, and is not related to the “real”

production process of the software systems. Moreover,

Make establishes the chaining of build rules when the build

rules are stored in a single description file. It is desirable

that the chaining of build rules is established even if the

build rules are included in two or more separate description

files,

130

3. Object Make

Object Make is a tool that fixes the problems of Make that

I stated in the previous section without loosing the

compatibility with Make. This section shows the way of

Object Make to resolve the problems, I believe, and the

current implementation of Object Make.

3.1. Multiple Description Files

First of all, Object Make assumes that each software

component has its own description file. The standard name

of the description file of a component is given by adding

the extension “make” to the name of the component. For

instance, the description file of tree is named tree.make.

This simple naming mle assures that each component has

its own description file, and Object Make cart uniquely

identify the description fde of a component based upon the

name of the component. Furthermore, since a single

description file contains the build rule of a single

componen~ users of Object Make can reuse the build rule

of the component without extracting it from a huge

description file. They just need to reuse the whole

description file. As a result, components can be easily

reused with their own description files.

Moreover, each description file can include a build rule

stating that the component depends on the description file

itself, but not other description files. As a result, when the

description file is modified, Object Make updates only the

components that relate to the modified description fde, but

it does not update any other components.

Although Object Make allows users to include the build

rules of all the related components in a single description

file like Make, this is only to keep the compatibility with

Make, and is not the way in which Object Make should be

used. The users will suffer from the same problems as they

do when they use Make, if they use Object Make with a

single huge description fde.

In Figure 3, I divided the description file in Figure 1 into

four separate description files to be used with Ob@t Make.

One of the major differences between Figure 2 and Figure 3

is that Figure 3 does not include lines to invoke Object

Make recursively at all, while Figure 2 includes lines to

invoke Make recursively. You also see that the description

files in Figure 3 are named differently from those in Figure

2. The description file of tree is named tree.make, while

the description file of parse.o is named parse.o.make,

tree.make

tree: tree.o parae.o Iex.o tree.make
cc tree.o parse.o Iex.o -o tree

tree.o.make

Itree.o: tree.c tree.o.make
cc tree.c -c -o tree.o

Iex.o.make

Iex.o: Iex.1Iex.o.make
cc Iex,c -c -o Iex.o

Iex.c: Iex.1Iex.o.make
Iex Iex.1-o Iex.c

Figure 3: Description Files for Object Make

and so forth. If I need to reuse the parser, I just need tc)

reuse the source file parse.y and the description file

parse .O .m ake. No extraction is necessary at all.

Furthermore, parse.o depends on parse.o.make but nolt

other description files. As a result, if parse. o.make is

modified, Object Make rebuilds only parsec, parse.o ancl

tree, but it does not rebuild other components.

The command to build a system or a component with

Object Make takes the name of the system or the

component as an invocation parameter to Object Make. The

executable file of Object Make is named omake. For

instance, Object Make will start building the system tree

in Figore 3 by the following command

omake tree

Object Make will look for the description file tree.make

fwst. If the description file is found, Object Make will start

building tree using the build rules in the description file.

3.2. Chaining Build Rules

Object Make can establish the chaining of build rules even

if those rules are included in different description files.

Assume Object Make is about to build a component P

fim another component Q, and the build rules of P and Q

are stored in P.make and Q.make respectively. Object

131

make: Start building ‘/home/sugiyama/Omake/Omakel.7.O/xomk’
ake: ‘Xapp.o’ is up to date.
ake: ‘Semaphore.o’ is up to date.

9CC L09.cc -c
ake: ‘version. o’ is up to date.
lake: ‘util. o’ is up to date.
ake: ‘error. o’ is up to date+

9CC -L/usr\XllR6/l ib List .o Items.o Browser. o Di r.o
make: JJone,

!1“

L Ezl

II
: Target

: xomk Jm

Figure 4: A Sample Session of xomk

Make first analyzes P.make and finds out that it needs Q

to build P. Then it looks for the build rule of Q in

P.make, If the build rule of Q is found in P.make,

Object Make will use the rule in P.make. In this case,

however, I assumed that the build rule of Q is included in

Q.make, but not in P.make. Object Make will look for

Q.make, and will use the build rule in Q.make to build

Q. As a result, the chaining of the build rules is

established. It is not necessary to specify the recursive

invocation of Object Make at all.

In the example of Figure 3, the production of tree requires

the three object files: tree.o, Iex.o, and parse.o. Object

Make will first search for their build rules in tree. make.

In this case, tree.make does not include the build rules for

these object files. Object Make, then, looks for

tree. o.make, parse. o.make, and lex.o.rnake. Since

these description files exis~ Objrzt Make will use the build

rules in these files. Consequently, the chaining from

tree. make to tree. o.make, parse .o. make, and

Iex.o.make is established,

Object Make allows users to specify path names in

description files instead of simple component names.

Object Make assumes that a component and its description

file are located in the same directory. If a path name is

specified, Object Make will look for the corresponding

description file in the directory which the path name

specifies, and will perform the build operation in the

directory. For instance, in the example of Figure 3, assume

the related files of the parser are included in a sub directory

called parser. If I specify parser/parse.o instead of

parse.o in the description file tree. make, Object Make

will look for parse.o.make in the parser sub directory,

and will perform the build operation of parse.o in the sub

directory. This allows users to organize software

components in a hierarchical fashion.

3.3. Implementation and User Interface

Object Make is currently running on SunOS 4.1.3 and

Solaris 2.3, versions of the UNIX operating system that

run on Sun workstations, as well as A/UX, a version of

UNIX that runs on Apple Macintosh computers. Object

Make is implemented as a preprocessor to Make. However,

users are not expected to invoke Make explicitly at all.

From users’ point of view, Object Make is a stand-alone

tool that is upward compatible with Make. Object Make is

able to read existing description files written for Make.

Object Make is a tool that is usually invoked from a

command shell using a keyboard, like Make. However, in

environments with a graphical user interface, like the X-

window system [7], it is desirable that users can operate

Object Make with a mouse instead of the keyboard. Object

Make is accompanied by a tool, called xomk, that offers a

graphical user interface to invoke Object Make. xomk

allows users to invoke Object Make simply by clicking a

mouse. xomk is implemented on X-window version 11

release 5, It can be used with most window managers like

twin, mwm, and olwm.

132

Figure 4 is a picture showing a sample session of xomk

when it is used to build itself. The right window is the

main window to control xomk. When xomk is invoked,

the main window will appear. Users can perform necessary

operations on Object Make within this window. The left

window is a log window to show messages generated by

xomk itself and Object Make. It is possible to make the

log window visible all the time. Usually, however, the log

window appears only when there are messages to be

displayed.

The main window shows the current directory name,

“Omakel .7.0” in the figure, and a list of systems and

components that can be built by Object Make in the

directory. The list often includes the files that do not exist

but can be produced by Object Make, The list also includes

directories so that users can move around in the underlying

file system. Users may specify some condition so that only

the file names that satisfy the condition will be listed.

Users can specify the condition by clicking on the “Filter”

button.

In this list, users select a file that they need to build by

clicking on it. Then, a click on the “Make” button invokes

Object Make to build or rebuild the selected file. If the

created file is executable, users may execute the file by

clicking on the “Execute” button in the main window.

3.4. Related Works

Drawbacks of Make are not limited to those that I pointed

out in the second section. A number of other serious

drawbacks have been pointed out, and systems aimed to

overcome the problems have been developed.

Although Make can be used with version conirol tools, like

SCCS [8] or RCS [12], its capability to handle multiple

versions of software components is quite limited. DSEE

[51, Cedar System Modeler [4], and ALS [11] handle

software components with versions more reliably by

integrating their version control mechanism and the build

process support mechanism into a single environment.

Make uses the time stamp of software components to

determine if the components need to be rebuilt. As a result,

it often rebuilds components even if the reproduction is not

necessary. Marvel [3] uses predicates to describe the

scheduling rule of build processes more precisely.

Although these systems focus on the problems in their own

concern, they do not address the issues that I pointed out in

the second section. On the other hand, I need to admit that

Object Make is not designed to fix the problems addressed

by these systems. However, I am currently developing a

process programming environment OPM [10] that is aimed

to fix all the problems in a reasonable fashion. Although it

is out of the scope of this paper to cover OPM in details,

the theory behind OPM, which is the key concept to design

Object Make, will be briefly discussed in the next section.

4. Theory of Object Make

OPM is a process programming environment in which

process programs are designed, executed, and tracked. OPM

is capable of automating and assisting the execution of

software build processes [9], because software build

processes are special cases of software processes.

Furthermore, OPM does not suffer from the problems of

Make that I stated in the second section. Object Make is an

implementation of the software build process support

mechanism of OPM as a UNIX tool in a restricted form.

The theory behind OPM and Object Make is object-oriented

approach. OPM has an object base that stores software

components. In the object base, software components are

treated as objects that are instances of their classes. The

nature of an object is determined by the classes of the

object.

The object-oriented approach is commonly characterized by

(i) encapsulation and (ii) information sharing by inheritance

or delegation [6]. OPM encapsulates build rules of objects

in their ctasses, and shares the encapsulated build rules by

delegation. The build rule of each component is hidden from

the outside of the class. Users of a component do not need

to know how to build the component. They just need to

send a request to the class m build the component.

Delegation shares build rules by forwarding build requests

to the classes that own the build rules. Each class includes

the build rules of the components of the class. The class

does not include the build rules of other components that

are necessary to build the component of the class. When a

class needs some other components to produce its instance,

the class will suspend its building process temporarily, and

will send requests to the classes of the components to

produce the required components. The class resumes its

build process only after all the necessary components are

ready for use.

For instance, Figure 5 illustrates the building process of a

system consisting of two components: A and B that is

133

user’s \
build

request

build
request

useY ,f?---
rlA Y-1

build
use

c

Figure 5: A Build Process in OPM

produced from a third component C. A user of the system

will send a request to the class of the system to build the

system. The class of the system will send requests to the

classes of A and B to build their instances before it starts

producing the system. When the class of A receives the

request, it starts building A. However, the class of B does

not start building B, because C is necessary to build B.

The class of B sends a request to the class of C to build C.

When C is built, the class of B builds B from C. The class

of the system starts building the system only after A and B

me made.

In Object Make, a description file corresponds to a class,

and the software components built by the description file

correspond to the instances of the class. Encapsulation is

implemented in terms of the naming rule, which I stated in

the previous section. The naming rule allows that the

description file of a component can be uniqueIy identifkd,

as the class of an object can be uniquely identified.

Although the contents of description files are not hidden

from the outside, users are allowed to build components

without knowing the details of the build rules.

Delegation is implemented as the chaining of build rules

that allows reuse of software components in multiple

software systems without duplicating the build rules of the

shared components in the multiple systems.

5. A Quantitative Evaluation

Before concluding the paper, I would like to make some

quantitative evaluation of Object Make. I will show how

Object Make can save the effort to design and produce

description files of a single software system compared with

Make, when I reuse some of the components from existing

systems.

I will use the COCOMO model [1] to compute the effort.

Build rules are software written in a shell scripting

language. As a result, the effort to build description files

can be computed as the effort to build software systems is

computed. COCOMO calculates the effort (MM) to build a

software system based upon DSI (the number of Delivered

Source Instructions). Here, I will use the following

COCOMO Semidetached Mode Effort Equation

/ rim \l.12

()MM=3.O =
1000

However, when some of the components are adapted from

existing software, I cannot directly use DSI. To handle the

effects of adapted software, COCOMO calculates an

EDSI (Equivalent number of delivered source instructions)

which is defined as follows:

EDSI = DSI+tid X

where DSI+@d is the DSI of the components that are

adapted from existing software, DSIW is the DSI of the

components to be created from scratch, and .&W (adaptation

adjustment factor) is defined as follows:

A/IF = 0.40DM + 0.30CM + 0.301M

where DM (percentage Design Modified) is the percentage

of the adapted softwan$s design which is modified in order

to adapt it to the new system, CM(percentage Code

Modified) is the percentage of the adapted software’s code

which is modified in order to adapt it to the new system,

and IM (percentage of Integration required for Modified

software) is the percentage of the effort required to integrate

the adapted software into the new system and to test the

resulting product as compared to the normal amount of

integration and test effort for software of comparable size.

In order to show how Object Make reduces the effort

compared with Make, I will compute:

MMti
ratio =

MMomk

where MM& is the effort when I use Make, while

MMod is the effort when I use Object Make. The

subscripts denote the tools in my concern. Notice that

134

.12
ratio

9.(K) r *MM&

MMOmb ()
1

EDSI&

EDSIO&

Therefore, I will compute
EDSI& ~K~L

EDSIOti

Consider a system consisting of n components, among

which p components me adapted from existing systems that

contain k components in total, while the remaining n-p

components are newly built from scratch. Also assume that

the average size of the components is b.

First I will compute EDSIb that is the EDSI when I

use Make. As far as M4~ is concerned, if I adapt the

components as I assumed, I have to examine the description

files of the existing systems that contain the build rules of

k components to write the description file of the new

system. On the other hand, if I build these components

from scratch, I simply need to figure out how to combine

the build rules of p components to form the description file

of the new system. As a result, I obtain:

IM& =
104

kxltM. —
P u

where

p 100U.—x
k

denotes the percentage of the adapted components in the

existing systems. To make the story simple, I assume that

only the extraction from the containing description files,

but no other extra work, is necessary to reuse the build

rules. This implies:

DM&=Oand CMb=O

I obtain:

104 3X103
AAF-=0.4X0 +0.3 XO+0.3X-= —

u u

As a result

EDSlb=pbx~+(n- p)h=~+-&(lOO-f)b

Whele

l=~xloo
-n

denotes the percentage of the adapted components in the

new system.

8.00

7.00

6.00
U=3070

5.00

4.00

3.00

2.00

().()() ~

o 20 40 60 80

t (%)

Figure 5: Effort comparison of Make and Object Make

On the other hand, when I use Object Make, it is reasonable

to assume that

DMO- =Oand CMO&=Oand Ih40ti=0

because no extra work is necessary for adaptation. As a

resul~ I obtain:

EDS104 = (n - p)b = #100- I)b

Tllelefom

Finally I obtain:

ratw =
::==(JL+ll’2

Figure 5 shows ratio as a function of t. From this graph, I

can observe several facts. First, the value of ratio is always

bigger than 1, This implies that Make requires more effort

than Object Make does. When u is fixed, ratio increases as t

increases. This implies that Make requires more effort when

I adapt a large number of components, than it does when I

adapt a small number of components in the new system.

When tisfried,ratio increases as u decreases. This implies

that Make requires more effort when I adapt components

135

from large systems, than it does when I adapt components

from small systems.

6. Conclusion

Currently, I am using Object Make and xom k in my
research lab and my courses for programming in the C and

C++ languages. Object Make is now quite popular among

the students, and it is one of their indispensable tools now.

The students found that Object Make is quite handy to

promote the reuse of classes when they use object-oriented

programming languages, such as C++. One of the

advantages of classes is that the students can reuse classes

without knowing how the classes are implemented by

virtue of encapsulation. Object Make allows them to reuse

classes even if they don’t know how to compile the source

code of the classes. This was also quite effective for me to

teach the concept of encapsulation to the students.

They also found that Object Make is handy to debug and

test software components. They typically link a component

with a main program that includes a test driver for a unit

test, while they link the same component with other

components in the system for an integration test. Please

note that this is a special form of reuse of the components.

Students reuse a single component in different subsystems.

If they use Make, they need to write description files that

are slightly different whenever they test the component in

different combinations. However, with Object Make, they

can use the same description file of the component for

various tests.

I believe that, from the observation above, I can conclude

that Object Make is a quite effective tool to reuse software

components. Although Object Make is a fairly complete

tool, I am still improving xom k to offer better user

interface. The mechanisms that I am currentJy developing

include an edit mechanism that allows users to create and

modify their description files without leaving xomk, and a

mechanism to show the relationship among components

that allows users to see the whole structure of systems in a

graphical notation.

References

[1] Boehm, B, W. Software Engineering Economics,
Prentice Hall, Englewood Cliffs, New Jersey, 1981.

[2] Feldman, S. I. MAKE - A Program for Maintaining
Computer Programs. Sofrware-Practice and
Experience, VO1.9,pages 255-265, 1979.

[31

[4]

[5]

[61

PI

[8]

[9]

[10]

[11]

[12]

Kaiser, G. E, and P. H. Feiler. An Architecture for
Intelligent Assistance in Software Development. in
Proceedings of the 9th International Conference on
Software Engineering, pages 180-188, Monterey,
California, ACM-IEEE, March, 1987.

Lampson, B. W. and E. E. Schmidt. Organizing
Software in a Distributed Environment, in Proceedings
of the ACM SIGPLAN 83 Symposium on
Programming Language Issues in Sofware Systems,
pages 1-13, ACM, 1983.

Lebkmg, D. B., R. P. Chase Jr. and G. D. McLean Jr.
The DOMAIN Software Engineering Environment for
Large Scale Software Development Efforts. in
Proceedings of the IEEE Conference on Workstatwns,
pages 266-280, San Jose, California, IEEE,
November, 1985.

Lieberman, H. Using Prototypical Objects to
Implement Shared Behavior in Object Oriented
Systems. in Proceedings of the ACM Symposium on
Object-Oriented Programming Systems, Languages
and Applications, pages 214-223, Portland, Oregon,
ACM, September, 1986.

Quercia, V. and T. OReilly. X Window System
User’s Guide. Ol?eilly & Associates, 1993.

Rochkind, M. J. The Source Code Control System.
lEEE Transactions on Software Engineering, vol.SE-
1, no.4, pages 364-370, December, 1975.

Sugiyama, Y. Producing and Managing Software
Objects in the Process Programming Environment
OPM. in Proceedings of the First Asian Pacific
Software Engineering Conference, pages 268-277,
Tokyo, Japan, IEEE and IPSJ, December, 1994.

Sugiyama, Y. and E. Horowitz. OPM An Object
Process Modeling Environment. in Proceedings of the
5th International Software Process Workshop, pages
134-136, Kennebunkport, Maine, ACM-IEEE,
October, 1989.

Than, R. M. Large-Scale Software Development with
the Ada Language System. in Proceedings of the
ACM Computer Science Conference, pages 55-67,
Orlando, Florida, ACM, February, 1983.

Tichy, W. F. RCS - A system for Version Control.
Software - Practice and Experience, vol. 15, no.7,
pages 637-654, July, 1985.

136

