
Modelling Systems with Variability using the
PROTEUS Configuration Language

Eirik Tryggeseth, Bjørn Gulla and Reidar Conradi

Department of Computer Systems and Telematics
Norwegian Institute of Technology (NTH)

N-7034 Trondheim, Norway
{eirik|bjorngu|conradi}@idt.unit.no

Abstract. To respond to environmental changes and customer specific require-
ments, industrial software systems must often incorporate many sources of vari-
ability. Developers use a diverse range of representations and techniques to
achieve this, including structural variability, component version selection, condi-
tional inclusion, and varying derivation processes.
This paper advocates specifyingall potential variability within a system using a
single formalism. PCL, the configuration language defined in the PROTEUS1

project, provides uniform facilities for expressing and controlling variability in
all aspects of a system and its manufacturing process. PCL is supported by a com-
prehensive tool set and is integrated with several design methods. The paper uses
a simple example throughout to illustrate the facilities of PCL and how these are
supported by the tool set.

Keywords: Configuration language, software evolution, software configuration
management.

1 Introduction

The objective of the PROTEUS project is to provide support for system evolution.
The project name is inspired by the mythological Greek sea-god who was capable
of changing his shape at will to adapt to prevailing circumstances. The project has
developed methods and tools for (1) domain analysis, (2) adapting existing design
methods (SDL, HOOD, MD) to support evolving systems, and (3) modelling sys-
tem structure and manufacture. This paper deals with the last issue. PROTEUS is
an application driven project - four industrial companies operate as “users”, i.e.
state requirements, validate specifications and evaluate developed methods and
tools in operational divisions. PROTEUS is nearing completion, and we are now
in the process of evaluating tool and methodological support.

PCL, the PROTEUS Configuration Language, is a formalism for system mod-

1. PROTEUS is project no. 8086 in the European research programme ESPRIT III. PROTEUS
started in May 1992 for a period of three years and has a budget of 9,6 MECUs. Participants are
CAP Gemini Innovation (F), Matra Marconi Space (F), CAP debis SSP (D), SINTEF (N), Lan-
caster University (UK), Intecs (I), CAP Sesa Telecom(F), and Hewlett Packard (F). NTH is a
subcontractor to SINTEF.

elling, configuration definition and system manufacture. As systems evolve, large
numbers of system and component versions with slightly different properties are
created. The objective of PCL is to support product management in a broad sense
throughout the complete system lifetime: manage components and sub-systems,
their interconnections, their variability, their evolution and their potential deriva-
tion processes. PCL covers both software, hardware and documentation parts of
products. We will in this paper focus on aspects of software management.

The paper is organized as follows. Section 2 gives a compressed state of the
art review of work on which PCL is partly based. Section 3 presents the PCL lan-
guage constructs for system modelling with emphasis on how to express variabil-
ity. A working example is used throughout the section. Section 4 provides an
overview of tool support for the PCL language and the current status of the im-
plementation. Section 5 reports some experiences gained so far in the project,
while Section 6 offers some conclusions. Finally, the full PCL source for the ex-
ample used in this article is listed in an Appendix.

2 State of the Art

A system model is a description of the items of a system and the relationships be-
tween them. For such a model to support configuration management, it must
uniquely identify the comprising components, their static structure and derivation
processes. It is a principle in configuration management that the system model
must be explicit, unambiguous, and be managed as the system evolves [17].

Module Interconnection Languages, MILs, is a common approach for express-
ing system models. Sommerville and Dean [13] give an overview of existing mod-
ule interconnection languages and compare these with the capabilities of PCL.
System models are also employed by current SCM systems, although the model
is usually embedded in a tool or in a database. We have extended the comparison
in [13] with more fine-grained criteria and replaced the description of some MILs
with characterization of three SCM systems. Table I presents a summary of the
comparison, which is to some degree influenced by the concrete requirements ex-
pressed by the application partners in PROTEUS. The requirements assessed in the
table can be summarized as

 • Integrated system modelling: Modelling all aspects of the product in one formal-
ism, i.e. incorporate descriptions of and interrelationships between software, hard-
ware and documentation elements.

 • Multiple structural viewpoints: Be able to express and show several viewpoints
of the same system, e.g. its interface, its logical composition and its run-time struc-
ture.

 • Structural variability : The ability to define variability in the logical composition
of a system, in interfaces and in relationships in which an entity participates.

 • Component variability: The ability to represent variability in the concrete system
(e.g. revisions and variants of source files), and to allow intensional version selec-
tion. Versions should be logically characterized, related to the system model.

 • Flexible manufacture support: The details of the system manufacture process
must be controlled from the system model. Definition of generic yet instrumentable
manufacture tasks should be supported. The aggregation of such tasks into a manu-
facture process should be computed from the system model.

 • Object-oriented modelling: The extent to which the language uses the concepts
provided in object-oriented formalisms, such as classification, inheritance and en-
capsulation.

 • User tailorability: Ability to provide an extensible, multi-dimensional classifica-
tion scheme and offer integration with a range of different design methods. User-
defined relations to tailor the modelling capabilities should be supported.

The only two formalisms offering direct support for integrated system modelling
are SySL and PCL. In large-scale system evolution it is essential to capture the
dependency relationships to enable successful change management. Incorporat-
ing non-software items is also necessary for proper modelling of distributed ap-
plications and embedded systems.

Although MIL75, the original module interconnection language, offered vir-
tually no support for most of our requirements, it did offer limited support for
multiple structural viewpoints. Future work largely ignored this early insight and
still only provided limited support. PCL is the first language to provide good fa-
cilities to model a range of these different structural viewpoints.

Narayanaswamy identified the need for structural variability [11], although
the proposed NuMIL does not contain constructs for expressing it. In SySL some

TABLE I Support offered by MILs and SCM systems for PROTEUS requirements

M
IL

75
 [3

]

C
oo

pr
id

er
’s

M
IL

 [2
]

IN
T

E
R

C
O

L
[1

5]

Ja
sm

in
e

[1
0]

S
yS

L
[1

4]

C
le

ar
C

as
e

[8
]

A
de

le
 [5

]

P
C

L
[1

2]

Integrated system
modelling

None None None Good None None Good

Multiple structural
viewpoints

Limited None None None None Limited Good

Structural variability None None None Limited Limited Good Good

Component variabil-
ity

None Limited Limited None Good Good Good

Flexible manufac-
ture support

None None Limited Limited Good Good Good

Object-oriented
modelling

None Limited Limited Good None Good Good

User tailorability None None None Limited Good Good Good

variability may be expressed using cardinality on the composition relation. Clear-
Case supports limited structural variability by allowing directories to be ver-
sioned. PCL allows structural variability to be explicitly declared, i.e. stating
which parts of the system are stable and which parts vary by using conditional ex-
pressions in the system model. It also recognizes that variance can occur within
any of the structural viewpoints, and supports reconciliation across a complete
model.

Cooprider was the first to incorporate component variability into the MIL
framework. INTERCOL allows structuring this information within the notion of
a family, and supports version selection, i.e. allowing the system to determine
which version to use in a configuration. More advanced SCM systems offer inten-
sional configuration descriptions, consisting of a product part and a version part.
Such descriptions serve as partially bound system descriptions, and must be ex-
panded into fully bound configurations (extensional lists) by exploiting stored
product and versioning information. The sequence of product and version binding
varies. MILs usually first perform product elaboration into relevant product fam-
ilies, and then version binding for each atomic family. In Adele, an intertwined
binding process over the product is used, exploiting preferences and constraint
rules. Yet other systems, such as ClearCase and EPOS [9], first perform version
binding, allowing transparent access to a uni-version view.

Automated support for system manufacture was introduced by Feldman [6]
with the Make system. ClearCase provides more accurate and optimized re-gen-
eration by managing ‘configuration records’ for derived objects. In Adele manu-
facture support may be implemented by triggers. PCL advocates user control of
re-compilation, using automatically generated makefiles tailored to the selected
product configuration.

Object-oriented modelling has recently gained popularity in the software en-
gineering community. Some of the principles behind the object-oriented para-
digm, such as information hiding and grouping have been supported in previous
languages. Only SySL, Adele and PCL offer extensive object-oriented facilities
in their modelling languages.

User tailorability is an important requirement for enabling seamless integra-
tion with a diverse set of design methods. Different design methods often need
specific types and relations for expressing their architectures, and rather than try-
ing to include all possible ones in one language, an extensible framework should
be offered. PCL does just that. Adele allows user-defined object and relationship
types, and roles of these.

3 System Modelling and Variability

The aim of PCL is to provide a notation in which all aspects of a system family
may be modelled. This includes software, hardware, documentation, possible
configurations, how these configurations are instantiated into a system, and final-
ly how the software parts of an instantiated system are processed into executable

programs.

PCL [12] defines six distinct entity types for modelling families of systems,
as defined in Table II. An entity description is organized in sections, each con-

sisting of a sequence of named slots. These entity types are related to each other
by a set of language-defined relations as shown in Figure1. The remainder of this
section explains how these concepts and relations are used to support comprehen-
sive modelling of system families.

3.1 Composition Structure

The basic assumption of PCL is that a system can be organized as a layered com-
position structure at the logical level. This means that one component may be a
part of another component, and may itself have sub-components.

The family entity is the core entity in PCL. All logical components and their

TABLE II PCL entity types and sections

Entity type Sections

family classification, attributes, interface, parts, physical, relationships

version description attributes, parts

tool inputs, outputs, attributes, scripts

relation domain, range

class physical, tool

attribute type enumeration

attribute_type

tool

version

relation

inherits

inherits

parts
relation

inherits

domain

range

inherits

of

parts classed_as

class

family

(user-def)

1

11

1

1

Fig. 1. Language-defined relations

1

inherits

output

input

structure are defined by a set of family entities.

Logical Structure

In the remainder of the paper we will use a calculator program as a small, but yet
complete example for exemplifying the constructs in PCL. The complete PCL
source for the example is given in an Appendix. The basic composition structure
in the calculator program can graphically be illustrated as in Figure2. In PCL this
logical system structure is expressed as:
(i)

family CalcProg
parts

calc => Calculator;
math => mathlib;

end
end

family Calculator
end

family mathlib
end

The logical composition structure of a system is specified in the parts section.
Note the use ofslots (named ‘calc’ and ‘math’ in the parts section) in which the
actual references to the sub-families are declared. Since PCL supports entity re-
finement through inheritance, slots are used to distinguish between items in a sec-
tion, allowing selective addition, redefinition or removal of information.

Physical Structure

Parallel to the logical structure is the physical structure of the system, i.e. which
tangible objects and computer files constitute the system and how these are orga-
nized. A logical component may be represented by none, one or several physical
components. This information is given in the physical section. The calculator ex-
ample can be extended with (omitting the parts section):
(ii)

family CalcProg
attributes

HOME : stringdefault “/home/ask/proteus/test”;
workspace := HOME ++ “/calc/src/”; // string concatenation
repository := “calc/”;

end
physical

main => “main.C”;
defs => “defs.h”;
exe => “calc.x”attributes workspace := HOME ++ “/calc/bin”;end

classificationsstatus := standard.derived;end; // This is not a primary object
end

end

CalcProg

Calculator mathlib

Fig. 2. Logical structure of
the calculator program

family Calculator
attributes

workspace := ‘workspace ++ “Calculator/”;
repository := ‘repository ++ “Calculator/”;

end
physical

calc => (“Calculator.C”, “Calculator.h”);
expr => (“expr.C”, “expr.h”);

end
end

family mathlib
attributes

workspace := ‘workspace ++ “mathlib/”;
repository := ‘repository ++ “mathlib/”;

end
physical

files => (
“math_plus.c”,
“math_minus.c”,
“math_mult.c”,
“math_div.c”,
“math_sqrt.c”,
“mathlib.h”);

lib => “libmath.a”classifications status := standard.derived;end;
end

end

For software a physical object is a file in a certain directory on the user’s disk.
The directory where a file is located is called the workspace for the file. Typically
the files associated with one logical component tend to have the same workspace.
Because of this PCL has defined a special attributeworkspace which can be set
in the attributes section of a PCL entity. The value of this will by default be the
workspace of all files defined in the physical section. It is possible to override
this, e.g. as for “calc.x” in CalcProg.

PCL allows propagation of attribute values along the composition hierarchy to
achieve compact and easily manageable models. This is convenient for example
when an application is moved from one directory to another. In mathlib we see
that the workspace attribute is extended with the string “mathlib/” compared to
the CalcProg’s value. The notation ‘<attribute_name> means to use the value of
this attribute closest above in the composition hierarchy.

3.2 Entity Attributes

PCL supports annotation of entities with attributes of two different kinds,infor-
mation attributes to provide stable information about an entity, andvariability
control attributes which are determined during system instantiation. Syntactical-
ly they are distinguished by using the ‘=’ assignment operator for entity at-
tributes, while ‘:=’ (or no assignment) is used for variability control attributes.

Entity Information Attributes

Entities may be annotated with a number of attributes of type string, integer, or
user-defined enumerations. There is a pre-defined enumeration type, boolean,
whose members are true and false. We can elaborate the calculator example with
attributes for the CalcProg entity:
(iii)

family CalcProg
attributes

created_by = “Marius Kintel”;
created : string = “94/08/12”;
contract_no: integer = 1643256;

end
end

Since string is the default attribute type, including the attribute type string is not
necessary (e.g. for created_by).

Variability Control Attributes

A family in principle represents a set of potential logical components. The differ-
ences between the individual members of the family is declared by the use ofvari-
ability control attributes. A specific member is produced by binding values to
these.

On the logical or architectural level, the breakdown of functionality may be
different according to what situation the entity is used in, and at the physical lev-
el, the mapping from logical structure to files may differ, and finally each file may
exist in different versions. An example of a variability control attribute is the ‘sta-
tus’ attribute in the example below.
(iv)

family CalcProg
attributes

...
status: status_typeexported default initiated;

end
end

The ‘status’ attribute is of an enumeration type. An enumerated attribute type can
be declared as:
(v)

attribute_type status_type
enumeration initiated, module-tested, system-testedend

end

This attribute is not assigned a value as the other attributes in the example, but is
rather given adefault value. The default value may be overridden by a new value,
taken from aversion description, during system instantiation. See Section 3.7 for
an explanation of the ‘exported’ qualifier.

3.3 Expressing Variability

The parts section in a family entity defines what parts the entity consists of. Each
subpart in a family is declared in a slot which syntactically is on the form:

<slot> => <family-entity>

| <conditional-expr> // eventually referencing family-entities

The types of variability we want to show here are (1) variability in the logical
composition structure of a system family, (2) variability in the mapping from the
logical composition to the physical objects, and (3) variability in attribute assign-
ments.

Structural Variability

Variability in the logical composition structure of a system family is expressed
by associating a conditional expression to the assignment of a parts slot. Consider
again the calculator example. We will extend the example to optionally include a
graphical user interface. The original structure of the program is shown in
Figure2. Figure3 illustrates the modified structure of the CalcProg entity:
(vi)

family CalcProg
attributes

...
xgui : boolean default false;

end
parts

ui => if xgui = truethen XGUI endif;
calc => Calculator;
math => mathlib;

end
end

PCL also features entity refinement through inheritance. Inheritance might also
be used for expressing variability between family entities. Inheritance is however
mainly used for achieving economy of description by allowing extraction of com-
mon information for a set of family entities. This information can then be declared
once in a generic family from which the other families inherit.

Providing these two constructs for expressing variability on the structural lev-
el allows declaring variability at different levels as needed.

Variability in Mapping

In (iii) we defined the Calculator entity to have four files, where two are related
to expression parsing (“expr.c” and “expr.h”). PCL can express that the mapping
from the logical component Calculator into files contains variability. This is ex-
pressed by introducing conditions on the slot assignment in the physical section.
In the following example we express that the binding of files to the expression
slot is dependent on the ‘expression’ attribute. In this case we want to distinguish
between infix and reverse polish notation expression parsing.

CalcProg

Calculator mathlibXGUI

Fig. 3. Extending the structure
of the calculator program

(vii)
family Calculator

attributes
...
expression : expr_typedefault infix;

end
physical

calc => (“Calculator.C”, “Calculator.h”);
expr =>if expression = infixthen

(“expr.C”, “expr.h”)
elsif expression = reverse_polishthen

(“rpn_expr.C”, “rpn_expr.h”)
endif;

end
end

This allows straight forward and elegant treatment of collapsing, splitting, delet-
ing, and moving files during system evolution. Many traditional configuration
management systems have problems with handling this properly.

Attribute Assignment Variability (Constraints)

The last form of variability we present here may be used to represent simple con-
straints among attribute assignments. I.e. an attribute may take a special value
only if another attribute (or a combination) takes a particular value like the
CCFLAGS attribute in the following example:
(viii)

attribute_type os_type
enumeration sun, vaxend

end
family CalcProg

attributes
...
expression : expr_type default infix;
debug : booleandefault false;
os: os_type;
DEBUG := if debug = truethen “-g -Ddebug “endif;
INCL : string := ““;
CCFLAGS : string :=

if os = sunthen
if expression = infixthen DEBUG ++ “-Dsun4 ”
elsif expression = reverse_polishthen DEBUG ++ “-O2 ”
endif

elsif os = vaxthen DEBUG ++ “-C -Dvax ”
endif;

end
end

3.4 System Instantiation

A system family described using PCL defines a set of possible system instances.
System instantiation is the process of removing all (1) structural variability, and

(2) physical mapping variability, and assigning correct attribute values to the at-
tributes throughout the instantiated system. We call this processbinding.

A system is bound in an iterative way, in which the three following activities
are performed interleaved: (a) Application of a version description on a family
entity. (b) Evaluation of attribute expressions. (c) Propagation of attribute values
along the composition hierarchy.

A variability control attribute may have its value propagated from another en-
tity in the composition structure. This is a feature which is particular convenient
for resolving logical and physical variability to build a consistent configuration.
We declare an attribute to take its value fromthe nearest entity above in the log-
ical composition hierarchy which has a value assigned for the particular attribute
name. We may extend the Calculator entity with the attributes:
(ix)

attributes
status : status_type := ‘status;
number :integer := ‘X + 3 default 10;

end

Since declarations of the first form are used in most occasions, we allow the short-
hand declaration below to mean the same.
(x)

attributes
status : status_type;

end

The specification of version descriptors in PCL is intensional, i.e. defined in
terms of the desired properties of the final system rather than explicitly enumer-
ating the particular instances for each component. An example illustrates this:
(xi)

version my-versionof CalcProg
attributes

os := sun;
xgui := true;

end
end

When this version descriptor is applied to the family entity CalcProg in (viii), the
following happens during Bind:

 • Most attributes are bound to their default values, e.g. expression is bound to ‘infix’.
 • The os and xgui attributes are bound to sun and to true.
 • The expressions for the DEBUG and CCFLAGS attributes are evaluated to ““ and

to “-Dsun4 ”.
 • The structural variability on the ui slot assignment is resolved, so the CalcProg en-

tity in (vi) is composed of the XGUI, Calculator and mathlib parts.

Thus the CalcProg entity, after instantiation by applying the my-version version
description, looks like:
(xii)

family CalcProg

attributes
HOME : string := “/home/ask/proteus/test”;
workspace : string := “/home/ask/proteus/test/calc/src/”;
repository : string := “calc/”;
created_by : string = “Marius Kintel”;
created : string = “94/08/12”;
contract_no: integer = 1643256;
status: status_typeexported := initiated;
xgui : boolean := true;
expression : expr_type := infix;
debug : boolean:= false;
os: os_type := sun;
DEBUG : string := “” ;
INCL : string := ““;
CCFLAGS : string := “-Dsun4 ”;

end
parts

ui => XGUI
calc => Calculator;
math => mathlib;

end
end

Assume that both XGUI, Calculator and mathlib declare the attribute INCL :=
‘INCL;. By default, the value assigned to the INCL attribute in this case is the
value of the attribute in the nearest ancestor in the composition structure. Now,
for some reason, during system instantiation, it is discovered that the INCL at-
tribute needs to have a different value for the XGUI entity. This is achieved by
declaring a “sub” version descriptor specifying the particular bindings for XGUI.
Figure4 shows how this is visualized in the PCL tool set.
(xiii)

version my-versionof CalcProg
attributes

os := sun;
xgui := true;

end
parts

ui => ui-version;
end

end

version ui-versionof XGUI
attributes

INCL := “-I/local/X11R5/include ”;
end

end

Now, when the bind operation is fixing the attribute values for the XGUI entity,
it uses the values applied on the entity from the ui-version version descriptor. This
has higher priority than the values propagated along the composition hierarchy,
which are used e.g. for Calculator and mathlib.

To assist the system instantiation process for large configurations, the PCL

tools provide:

 • Partial binding to iteratively remove parts of the variability in a system model. This
is useful for scrutinizing a model covering only a limited set of all possible system
configurations.

 • Interactive binding to aid the process by allowing the user to interactively choose
between possible attribute bindings whenever Bind cannot compute a value. This is
convenient for large and unfamiliar models, where it might be hard to know which
attributes exist and which may or must be assigned a value. Automatic constructions
of correct composite version descriptors is provided by the PCL tools to be able to
re-instantiate the particular instance made during an interactive bind session.

3.5 Entity Classification

PCL provides a framework for classifying family entities and physical objects.
Classifications are also used for defining the domain and range for user-defined
relations. Requirements from the partners in the PROTEUS project have shown
that entity classification is a complex task. Therefore PCL provides an extensible
framework from which users can define their own classification hierarchies. PCL
basically allows classification along four different dimensions, distinguished by
different slot names:

 • abstraction: Used to classify the entity according to its level of abstraction. The
possible abstractions aresystem, process andcomponent.

 • type: Used to classify the entity as eitherhardware, software or anamalgam (plat-
form). Processor is a sub-class of hardware, used for entities which can execute
software processes.Platform is used for entities which are logically considered as a
single entity and which include one or more processors and associated software. Ap-
plication software is installed on a platform.

 • category: Used to specify whether the entity is a documentation or a representation
produced during the system development process. Possible categories aredocument
andprogram.

 • status: Used to specify whether the entity can be automatically derived. Possible
status assignments areprimary or derived.

In addition the user may define new classification dimensions, or introduce sub-
classes of the pre-defined classes. Default values for classification assignment for

Fig. 4. Visual presentation of a composite version descriptor

family entities are type => software, abstraction => component, category => pro-
gram and status => primary.

Classification for Relation Definitions

In structural models of application systems there may be different kinds of rela-
tionships between the system entities. Some, such as the part-of relation, is direct-
ly provided by the parts construct in PCL. Others are specific to a particular sys-
tem or a design method used in conjunction with PCL. We allow these relation-
ships to be documented by offering users mechanisms to define binary
relationships between family entities in a model. Relationships may be restricted
to connect only certain types of entities by declaring the legal domain and range
in the relation definition. Only entities defined with classifications matching the
classifications specified as domain and range may participate.

Some relations are pre-defined in PCL, such as ‘requires’, ‘implemented-by’
and ‘installed-on’.

Classification for System Manufacture

Classifications are particularly important for system building, as this process is
basically to find a relationship between a physical object and a tool that is able to
transform the physical object into a new form.

In the calculator example we have
(xiv)

physical
files => (“Calculator.C”, “Calculator.h”);

end

To be able to find a tool that may compile the file “Calculator.C”, we must be sure
that the file and the input expected by the tool is of the same type.

For the calculator example, a number of sub-classes of software are defined.
(xv)

class text inherits standard.software
end

class source-codeinherits text
end

class cpp-sourceinherits source-code
tools CCend
physical

name ++ “.C”;
end

end

From this example, we see that the file “Calculator.C” matches the classification
‘cpp-source’. Figure5 shows a part of the full classification hierarchy.

The next paragraph explains how we use this classification information to sup-
port system manufacture.

3.6 System Manufacture (Building)

Borison [1] defines software manufacture to be the process by which a software
product is derived, through an often complex sequence of steps, from the primi-
tive components of a system. PCL provides constructs to define customizable
tasks in software system manufacturing. The PCL tools use such descriptions to
find the correct steps needed in a particular system manufacture process to build
e.g. an executable program.

Section 3.4 describes how variability is removed in a PCL model. This step
identifies the system configuration as a set of family members at the logical level.
Variability is also removed as physical objects are mapped to file version groups
and further to specific versions as described in Section 3.7. The configuration is
then completely defined, with all variability removed.

From such a configuration description the system manufacture process may
begin. Thetool entity in PCL defines the signature and behavior of software tools
which can transform a representation from one form to another, or more general-
ly, transform a set of input representations to a set of output representations. A
C++ compiler may be modelled in the following way using the tool entity:
(xvi)

tool CC
inputs

 InSrc => cpp-source;
end
outputs

OutObj => obj-code;
end
attributes

CC : stringdefault “CC “;
CCFLAGS : stringdefault “-c ”;
INCL: stringdefault ““;

end
scripts

build := CC ++ CCFLAGS ++ INCL ++ “-o “ ++ OutObj ++ “-c “ ++ InSrc;

Fig. 5. Extract from the PCL classification hierarchy

ar

end
end

The inputs section specifies that the CC tool can transform a physical object clas-
sified ascpp-source into a physical object classified asobj-code as specified in
the outputs section. This constitutes one step in the system manufacture process.
The behavior of this step is defined in thescripts section, where two pre-defined
script slots may be given an expression.

1. Thebuild script specifies how the actual tool invocation on the command line is for-
matted. This is a catenated string expression. The CC tool entity declares three at-
tributes which are used in the string expression. The values of these attributes are
propagated from the physical object which the tool transforms. If no value is found
there, the value defined for the enclosing family entity is used, or a recursive search
along the system composition structure is initiated until a value is found. This facil-
itates customization of every manufacture step. As an example, the file Calcula-
tor.C, if the enclosing family is bound with the version descriptor in (xiii), is trans-
formed by the following command line:

CC -Dsun4 -o Calculator.o -c Calculator.C

Since attribute INCL in entity XGUI is bound to another value, the C++ file in that
entity would be derived with

CC -Dsun4 -I/local/X11R5/include -o ui.o -c ui.C

2. Thedepend script, not used in the CC tool description, specifies the command line
for (source-level) dependency extraction for the tool. The form of this script is sim-
ilar to the build script.

As physical objects are transformed to new representations, which again may be
further transformed, the system derivation graph is built. This information is
emitted to a makefile which can be utilized by the Make program [6]. The make-
file generation process can be customized in different ways, as shown in Figure6.

Fig. 6. Menu for customizing makefile generation.

The system derivation graph for the calc program is shown in Figure7.

3.7 Repository Management

A PCL model refers ultimately to a set of physical objects. For elements classified
as software, a physical object corresponds to afile. These files are typically ver-
sioned, since they evolve over time and may exist in several variants. Real sys-
tems contain a large number of files, and over time there will be a vast number of
file versions with subtle differences. If all file versions and their particular char-
acteristics were represented inside the PCL model, the model would soon become
impractically large. In PROTEUS we have therefore chosen a two-tier approach,
in which file versions and their properties are managed by a special component
library called the Repository.

Version selection is the process of determining a consistent set of versions for
all elements in a configuration. Basically, this process consists of finding a
unique version identifier for each element, so that the resulting configuration is
consistent and possesses the desired properties. PCL supports intensional version
selection, adopted from the Adele system [4].

Version selection is done by theSelect operation. It transforms a bound PCL
model to a selected model by adding explicit version identifiers to the description
of each physical object stored in the Repository. For example, the following PCL
fragment:
(xvii)

family CalcProg
physical

main => “main.C”;
defs => “defs.h”;
...

might be transformed into:
(xviii)

family CalcProg
physical

main => “main.C”attributes repository_version := “5.14.2.4”;end;
defs => “defs.h”attributes repository_version := “4.22”;end;
...

The intensional, attribute-based version selection works as follows. For each

Fig. 7. Derivation graph for the calc example

ar

Derivation Graph

physical object referenced in the model, the classifications are used to determine
if it is supposed to exist in the Repository (i.e. classified assoftware andprima-
ry). If so, Select queries the Repository for the best matching version for the ob-
ject. The submitted query includes all attributes defined in the family which are
declared with theexported qualifier. If successful, a unique version identifiers is
returned.

The following example illustrates some of the available operations when stat-
ing version selection queries over attributes:
(xix)

version Calc_testof CalcProg
attributes

status >= module-tested;
time := max; // Thelatestversion
author <> “bj.*”; // Note the use of regular expression
// Thetime andauthor attributes are automatically inserted
// for any version when checking it into the Repository.

end
end

This descriptor will select the latest file versions which has reached at least status
module-tested and are not entered by a user having a name starting with “bj”. The
Repository resolves such queries by investigating the properties of all versions of
a component. Version properties are expressed as attributes, i.e. user-defined
name-value pairs. A user typically associates attributes to characterize a version
when checking it into the Repository, or after having tested configurations in
which the version occurs. It is the responsibility of the user to choose appropriate
attributes which discriminate between versions.

Upon a successful Select, the resulting selected PCL model may be further
used to check out the configuration from the Repository and possibly build the
configuration. A selected PCL model ensures reproducibility, i.e. it uniquely de-
fines a system instance which may be re-created.

To summarize, the following Repository operations are available for a PCL
model:

 • Select: invoke intensional version selection.
 • Check In: check in all changed files of a configuration, and optionally attach a set

of attributes to each new version.
 • Check Out: establish or update a workspace by checking out all files of a specific

configuration.

4 Tool Support

A comprehensive tool set to support the creation and use of PCL models has been
developed. It includes a graphical structural editor for entering and browsing PCL
models, an interactive PCL compiler, and a graphical browser for inspecting and
manipulating the contents of the Repository. PCL models are organized in librar-
ies with explicit prefixing for inter-library entity referencing. The PCL compiler

supports parsing of textual PCL descriptions, binding of models, version selec-
tion, and makefile generation. Figure8 presents an overview of the core PCL tool
set. In addition comes a simple reverse engineering tool for constructing a rudi-

mentary PCL description for existing software products. Figure9 shows the user
interface for the PCL compiler and the Repository browser.

The tool set is implemented in C++ using X11 and the OSF/MotifTM toolkit.
The core tool set is about 60 KLOC. It is currently available for Sun and HP work-
stations. BMS, a selective multicast package provided by CAP Gemini, is used
for tool integration, both of the PCL tool set itself and for integration with exter-
nal design tools. The Repository is currently implemented on top of RCS [16].

5 Preliminary Experiences

PCL and its tool set is currently being validated at four different partners in the
PROTEUS project, on applications ranging from telecommunications software to
system development tools. Reported benefits include (see also [7]):

 • Increased systemvisibility, i.e. recording and formalizing knowledge previously
distributed and unavailable (person dependent). This system documentation is es-
sential for controlling the system evolution (impact analysis of changes), but has in
addition proved valuable for internal communication and training.

 • Integrating the system manufacture process into the system configuration support

Bind

MakeGen

Select

Repository

makefile(s)

bound

selected

version
description

PCL model

PCL
editor

Repository
browser

Fig. 8. Tool overview

PCL Compile

model

model

has been acknowledged by several of our partners. Manual maintenance of make-
files and shell scripts for each system variant is avoided.

 • People outside the development team may specify and build a release, based on de-
sired properties expressed by customers.

 • The test space, i.e. the set of configurations which must be tested after changes, is
made explicit.

As a system evolves, structural changes need to be reflected in the PCL model. In
order to ease the creation and maintenance of PCL system models, different strat-
egies have been chosen. For one partner, a CASE tool has been tightly integrated
with the PCL tool set, providing automatic propagation of changes. For file-base
software systems, the PCL Reverse tool is able to both generate an initial PCL
model and to check consistency between a system model and an actual system
version in a workspace.

6 Conclusions

In this paper we have presented the PROTEUS Configuration Language and its
supporting tool set. PCL supports comprehensive system modelling and provides
expression of variability in the logical system model, in the mapping from the log-
ical model to files, in the version selection, and finally in the system manufacture
process. Intensional system configuration using attribute assignment accommo-
dates configuration binding and system building in a concise and reproducible
manner.

We have illustrated the important concepts in PCL on a small, but complete

Fig. 9. PCL compile main window and Repository browser.

PCL TOOLSET V2.6 January 1995

example. The example has been illustrated with screen dumps from the PCL tools.

Experience shows that it requires some effort to build a comprehensive system
model, especially if trying to incorporate all potential variability in an industrial
product. However, the benefits in terms of improved system visibility and auto-
mation are significant.

The PCL tool set will be made available by the PROTEUS consortium. Further
information about the PROTEUS project, PCL and its tool set is available at http:/
/www.comp.lancs.ac.uk/computing/research/soft_eng/projects/PROTEUS/.

Acknowledgment

We would like to thank the anonymous reviewers, Richard Sanders and Joe Gor-
man (SINTEF) for their constructive comments on earlier versions of this paper.

The work reported has been supported by the European Commission’s ESPRIT
programme. We would like to acknowledge the other members of the PCL devel-
opment and tools implementation teams, namely Ian Sommerville, Graham Dean
(Lancaster University), Björn Grönquist, Ariane Suisse, Gilbert Rondeau, Sergio
Calabretta (Cap Gemini Innovation, Grenoble).

References

1. E. Borison: A Model of Software Manufacture. In Reidar Conradi et.al., editors,
Proceedings of the International Workshop on Advanced Programming Environ-
ments, Trondheim, Norway, June 16-18, 1986, LNCS no. 244, Springer-Verlag,
Berlin, pp. 197-220.

2. L. W. Cooprider: The Representation of Families of Software Systems. PhD thesis,
Carnegie-Mellon University, Computer Science Department, April 1979.

3. F. DeRemer and H. H. Kron: Programming-in-the-large Versus Programming-in-
the-small,IEEE Transactions on Software Engineering, SE-2(2), June 1976, pp. 80-
86.

4. J. Estublier: A configuration manager: The Adele data base of programs. InWork-
shop on Software Engineering Environments for Programming-in-the-Large, Har-
wichport, Massachusetts, June 1985, pp. 140-147.

5. J. Estublier and R. Casallas: The Adele Configuration Manager. In W. F. Tichy,
Configuration Management, John Wiley & Sons Ltd., Chichester, 1994, ISBN 0-
471-94245-6, pp. 99-133.

6. S. I. Feldman: Make, a Program for Maintaining Computer Programs,Software -
Practice and Experience, 9(4), April 1979, pp. 255-265.

7. B. Gulla and J. Gorman: Supporting evolution with a configuration language: indus-
trial experience, 11 pages. Submitted for publication.

8. D. L. Leblang: The CM Challenge: Configuration Management that Works. In W.
F. Tichy,Configuration Management, John Wiley & Sons Ltd., Chichester, 1994,
ISBN 0-471-94245-6, pp. 1-37.

9. A. Lie, R. Conradi, T. M. Didriksen, E.-A. Karlsson, S. O. Hallsteinsen and P.

Holager: Change Oriented Versioning in a Software Engineering Database. In W.
F. Tichy, editor,Proceedings of the Second International Workshop on Software
Configuration Management, pp. 56-65, Princeton, NJ, October 25-27, 1989. ACM
SIGSOFT Software Engineering Notes 17(7), November 1989.

10.K. Marzullo and D. Wiebe: Jasmine: A Software System Modelling Facility. In P.
B. Henderson,Proceedings of the 2nd ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, Palo Alto,
CA, December 9-11, 1986.ACM SIGPLAN Notices, 22(1), January 1987, pp. 121-
130.

11.K. Narayanaswamy and W. Scacchi: Maintaining Configurations of Evolving Soft-
ware Systems,IEEE Transactions on Software Engineering, SE-13(3), March 1987,
pp. 324-334.

12.PROTEUS consortium: PCL-V2 Reference Manual, Technical Report P-DEL-
3.4.D-1.9, September 1994, 85 pages.

13.I. Sommerville and G. Dean: PCL: A configuration language for modelling evolv-
ing system architectures, 21 pages. Submitted for publication.

14.R. Thomson and I. Sommerville: An Approach to the Support of Software Evolu-
tion, Computer Journal, 32(5), October 1989, pp. 386-396.

15.W. F. Tichy: Software Development Control Based on Module Interconnection. In
Proceedings of the 4th International Conference on Software Engineering, IEEE,
September 1979, pp. 29-41.

16.W. F. Tichy: RCS - A System for Version Control,Software - Practice and Experi-
ence, 15(7), July 1985, pp. 637-654.

17.D. Whitgift: Methods and Tools for Software Configuration Management,John
Wiley & Sons Ltd., Chichester, 1991. ISBN 0-471-92940-9

Appendix: The Calculator Example

Below follows the complete PCL description for calculator example. Note that the
latter half of this description is independent of the actual example system, allow-
ing it to be shared among different models.

version my-versionof CalcProg
attributesos := sun;

xgui := true;
end
parts ui => ui-version;end

end

version ui-versionof XGUI
attributes INCL := “-I/local/X11R5/include ”;end

end

family CalcProg
attributescreated_by= “Marius Kintel”;

created: string= “94/08/12”;
contract_no: integer = 1643256;

HOME : stringdefault “/home/ask/proteus/test”;
workspace:= HOME ++ “/calc/src/”;
repository:= “calc/”;
status : status_typeexported default initiated;
xgui : booleandefault false;
expression: expr_typedefault infix;
debug : booleandefault false;
os : os_type;
DEBUG:= if debug = truethen “-g -Ddebug “ endif;
INCL : string := ““;
CCFLAGS: string :=

if os = sunthen
if expression = infixthen DEBUG ++ “-c -Dsun4 “
elsif expression = reverse_polish then DEBUG++“-c -O2“
endif

elsif os = vaxthen DEBUG ++ “-C -c -Dvax “
endif;

end
parts ui => if xgui = truethen XGUI endif;

calc => Calculator;
math => mathlib;

end
physical main => “main.C”;

defs => “defs.h”;
exe => “calc.x”attributes workspace := HOME ++ “/calc/bin”;end

classifications status => standard.derived;end;
end

end

family XGUI
attributes INC := ‘INCL; end
physical files => “ui.C”; end

end

family Calculator
attributesworkspace := ‘workspace ++ “Calculator/”;

repository := ‘repository ++ “Calculator/”;
expression : expr_type := ‘expressiondefault infix;
status : status_type := ‘status;
INCL := ‘INCL;

end
physical calc => (“Calculator.C”, “Calculator.h”);

expr =>if expression = infixthen
(“expr.C”, “expr.h”)
elsif expression = reverse_polishthen
(“rpn_expr.C”, “rpn_expr.h”)
endif;

end
end

family mathlib
attributes workspace := ‘workspace ++ “mathlib/”;

repository := ‘repository ++ “mathlib/”;
INCL := ‘INCL;

end
physical files => (“math_plus.c”,“math_minus.c”,“math_mult.c”, “math_div.c”, “math_sqrt.c”,

“mathlib.h”);
lib=> “libmath.a” classifications status => standard.derived;end;

end
end

attribute_type status_type
enumeration initiated, module-tested, system-testedend

end

attribute_type os_type
enumerationsun, vaxend

end

attribute_type expr_type
enumeration infix, reverse_polishend

end

tool CC
attributesCC : stringdefault “CC “;

CCFLAGS : stringdefault “ “;
INCL: stringdefault ““;

end
inputs InSrc => cpp-source;end
outputs OutObj => obj-code;end
scripts build := CC ++ CCFLAGS ++ INCL ++ “-o “ ++ OutObj ++ “-c “ ++ InSrc;end

end

tool cc
attributescc : stringdefault “cc “;

CFLAGS : stringdefault “ “;
INCL : stringdefault “ “;

end
inputs InSrc => c-source;end
outputs OutObj => obj-code;end
scripts build := cc ++ CFLAGS ++ INCL ++ “ -o “ ++ OutObj ++ “-c “ ++ InSrc;end

end

tool ar
attributesAR : stringdefault “ar “;

ARFLAGS : stringdefault “rv “;
RANLIB : stringdefault “ranlib “;

end
inputs InObj : multi => obj-code;end
outputs OutLib => library;end
scripts build := AR ++ ARFLAGS ++ OutLib ++ “ “ ++ InObj ++ ”\n” ++ RANLIB ++ OutLib;
end

end

tool ld
attributes LD : stringdefault “CC “;

LDFLAGS : stringdefault “ “;
LIBS : stringdefault “-lm “; end

inputs InObj : multi => obj-code;
InLib : multi => library;end

outputs OutExe => exe-file;end
scripts build := LD ++ LDFLAGS ++ “ -o “ ++ OutExe ++ “ “ ++ InObj ++ “ “ ++ “‘fixlib “

++ InLib ++ “‘ “ ++ LIBS; end
end

class text inherits standard.softwareend
class source-codeinherits textend
class binaryinherits standard.softwareend

class cpp-sourceinherits source-code
tools CCend
physicalname ++ “.C”; end

end

class c-headerinherits source-code
physicalname ++ “.h”; end

end

class c-sourceinherits source-code
tools ccend
physicalname ++ “.c”; end

end

class library inherits binary
tools ld end
physical “lib” ++ name ++ “.a”; end

end

class obj-codeinherits binary
tools ar, ld end
physicalname ++ “.o”; end

end

class exe-fileinherits binary
physicalname ++ “.x”; end

end

