
CCC: A Caching Compiler for C

Brian Koehler and R. Nigel Horspool�

Department of Computer Science

University of Victoria, P.O. Box 3055

Victoria, BC, Canada V8W 3P6

14 December 1995

Abstract

C compilers in production environments often have to reprocess the same header

�les. CCC is a caching C compiler which maintains a database of partially processed

header �les so that repetitive work may be eliminated.

Keywords: Compilers, Compilation server, C.

1 Introduction

A large C program is usually composed of many source code �les. Some �les contain im-

plementation code consisting of function declarations and data de�nitions; these �les have

names with a `.c' su�x and are commonly called `.c' �les (pronounced as \dot see �les").

Other �les serve the purpose of de�ning interfaces between program modules or between the

program and previously compiled library functions. These �les normally contain function

prototypes, and data type de�nitions. They have names with a `.h' su�x and are commonly

called header �les or `.h' �les (\dot aitch �les").

A typical `.c' �le contains several #include directives which each specify a header �le.

A #include directive causes the compiler to process the header �le as though the contents

of the �le had been inserted into the `.c' �le instead of that #include line. Amongst other

things, the de�nitions inside header �les allow the compiler to generate code for calls to

functions that are implemented in other `.c' �les.

Compilers, particularly C compilers, perform much redundant work through repeated

processing of the same unchanged �les. We can easily avoid re-compiling an unchanged `.c'

�le by using a tool like make which checks the timestamp associated with the �le. However,

it is much harder to avoid re-processing an unchanged `.h' �le. There are two basic situations

where repeated processing occurs. The �rst situation occurs if we compile two di�erent `.c'

�les that happen to include the same header �le. The compiler will be invoked twice, and

�E-mail: nigelh@csc.uvic.ca

1

these two invocations will repeat the same processing of the text in the header �le. The

second situation occurs when we make a modi�cation to a `.c' �le. When we recompile the

�le after making our change, the chances are that the same header �les will be included as

in earlier compilations of the `.c' �le and that these header �les have not been changed.

A general solution to the problem of avoiding repeated work involves saving the results of

processing the header �le, and re-using the saved result in future compilations. Our approach

uses a compilation server. The server is continuously available and provides a C compilation

service to C compiler clients. The server caches the results from processing a header �le. If

a subsequent compilation request involves the same header �le, then the saved results may

be retrieved from the cache.

In the following sections of the paper, we will describe related work in the area. Then

we will explain our approach, we will discuss its implementation in the CCC compiler, and

we will conclude with some experimental results that show the e�ectiveness of caching.

2 Background and Previous Work

In a typical C compiler, source code passes through various processing stages. The �rst

stage is lexical analysis which tokenizes the source code into its lexical units. The lexical

analysis is intimately coupled with the operation of the C preprocessor which supports simple

macro de�nitions, conditional compilation directives, as well as the #include directive. After

lexical analysis, the compiler performs syntactic analysis, semantic analysis, and object code

generation.

There is no special treatment for header �les. They are subject to the same processing

as `.c' �les. However, although there is no language requirement to do so, header �les

almost always contain only declarations. A header �le's entire e�ect on a compiler may be

summarized as its e�ect on the preprocessor (e.g. by declaring new macros) and its e�ect

on the compiler's symbol table. Figure 1 shows the overall structure of a typical C compiler

as it pertains to our problem.

A variety of approaches for reducing or eliminating unnecessary reprocessing of a header

�le has been reported. We can identify four main schemes, as follows.

1. The compiler can cache a tokenized version of the header �le. In principle, either

the token sequence before pre-processing or the sequence after pre-processing could be

saved. The latter choice, however, eliminates more work in subsequent compilations.

2. The header �le can be viewed as little more than a series of declarations for various

program identi�ers. Litman's approach is to construct and save an index table which

records which symbol is declared where in the header �le [4]. If the same header �le

is subsequently included in another compilation, the index table is used to look up

the locations of identi�ers' declarations. The text of these declarations are lexically

analyzed and reprocessed as needed. Litman's scheme works best if only a small

fraction of the identi�ers declared in a header �le are actually referenced. Such a

situation is very common.

3. The state of the compiler's symbol table is cached immediately after the header �le

is processed. This scheme works easily and reliably only in two situations. The �rst

2

Primary
Input File

Header
Files

Assembler
File

'
&

$
%Preprocessor

'
&

$
%Compiler

@
@
@R ����

-

6

Figure 1: Structure of a Typical C Compiler

situation occurs when the text of the header �le is the only text (other than white

space and comments) to have been processed by the compiler. In other words, only

one header �le can be handled in this manner and the #include directive for the header

�le must be the �rst action in the `.c' �le. The Symantec Think C/C++ compiler on

Macintosh computers uses this scheme. A very large header �le containing declarations

for interfaces to the MacOS operating system is available in a pre-compiled manner [6].

The second situation is a generalization of the �rst. If one compilation saves the

compiler's symbol table after a sequence of #include directives, and if a subsequent

compilation has an identical sequence of #include directives, then the cached symbol

table can be re-used. The Borland C/C++ compiler uses such a scheme.[2]

4. Onodera described a compilation server for the COB language [5]. COB is a C-based

object-oriented programming language. COB source code is provided in three kinds of

�les: `.c' �les, interface �les which contain only class declarations, and declaration �les

which play a role similar to header �les in C. The COB compilation server maintains

an in-memory cache of previously compiled interface �les. COB declaration �les are

not cached.

Our approach in CCC is closer to Onodera's than any of the others.

3 The C Compilation Server

When a user types the command to perform a C compilation, the command runs a small

client program which passes the command-line information onto a C compilation server.

3

#ifdef DEBUG

void debugPrint(char *message);

#define TRACE(m) debugPrint(m);

#undef FAST

#else

#define TRACE(x) (0)

extern double pi;

#endif

extern void solveFermatEquation(int n);

Figure 2: The Header File \example.h"

As with any server daemon, it is permanently alive but is normally in an inactive state

waiting to receive a request for service. When it receives a request, it performs the requested

compilation and returns the result (an object �le) to the client program. Our C compilation

server, CCC, is a modi�ed version of the lcc compiler [3].

When a header �le is processed, that header �le may cause two kinds of changes to the

state of the compiler.

1. There may be changes to the state of the preprocessor. Our compilation server handles

only two kinds of changes: new macro de�nitions and deletions of previously de�ned

macros. If a header �le should have any other e�ect on the state of the preprocessor,

the header �le would not be cached.1

2. There may be changes to the combined state of subsequent compiler phases. Our com-

pilation server handles only changes that take the form of additions to the compiler's

symbol table. If the header �le should cause any other e�ects, the header �le would

again be considered ineligible for caching.2

Our compilation server records information about both kinds of e�ects that a header �le

produces. We will now elaborate on exactly what information is recorded.

3.1 Recording Changes to the Preprocessor State

The information related to the change in state of the preprocessor is easier to describe by

means of an example. Suppose that the `.c' �le contains the lines of text that are shown in

Figure 3. and suppose that the header �le, example.h, contains the text shown in Figure 2.

We further suppose that no identi�ers, other than DEBUG, that are used in example.h have

been de�ned as macros.

For the example.h header �le, the following information is retained in the in-memory

cache after preprocessing.

1For example, one such e�ect occurs if a #ifdef directive appears in the header �le and no matching

#endif directive is provided in the header �le.
2For example, a header �le could contain executable C statements, and these would change the state of

the code generation phase of the compiler.

4

/* preceding lines are omitted */

#define DEBUG

#include "example.h"

/* following lines are omitted */

Figure 3: The Implementation File \example.c"

Exposed (free) identi�ers:

f DEBUG, void, debugPrint, char, message, extern, solveFermatEquation, int, n g

Note that pi, for example, is not an exposed identi�er because it appears only in a

section of the �le that is by-passed by a conditional compilation directive. Further note

that C keywords such as extern are considered to be identi�ers by the preprocessor.3

Deleted macros:

f FAST g

Additional or changed macros:

f < TRACE, 1, debugPrint (@1) > g

Each macro is recorded as a triple composed of the name, the number of parameters,

and the body of the macro. The identi�ers used as formal macro parameters are not

signi�cant. The parameters are therefore replaced by special tokens: @1 represents the

�rst parameter, @2 represents the second, and so on.

The cached information for the example.h header �le should be reusable in another com-

pilation if the DEBUG macro is again de�ned before the header �le is included. However, we

need to be cautious. If, say, the identi�er debugPrint were to be de�ned as a macro in one

compilation and not in the other, then the token sequences produced by the header �le in

the two contexts would be di�erent.

A su�cient condition to guarantee that a cached header �le can be re-used is that all

exposed indenti�ers must have identical de�nitions. Therefore, we attach a list of the de�ni-

tions for the exposed identi�ers to a cached header �le so that we can verify the validity of

the substitution. For each exposed identifer we record whether or not it was de�ned and, if

it was, we record the number of parameters and the body. For our example, the de�nitions

would be as shown below.

f < DEBUG, De�ned, 0, � >,

< void, NotDe�ned >,

< debugPrint, NotDe�ned >,

< char, NotDe�ned >,

...

g

3In principle, one could de�ne extern as a macro. Needless to say, such practice is to be deplored.

5

File types.h:

typedef long time t;

File time.h:

time t clock(time t *arg);

struct usage *getusage(void);

File usage.h:

struct usage f
time t user time, system time;

g;

Figure 4: Dependencies Between Symbol Table Entries

The � symbol denotes an empty macro body.

If the test that exposed identi�ers have identical de�nitions succeeds, we can apply the

changes to the processor state that have been recorded. That is, we add or replace some

macro de�nitions, and we delete some others. Then the cached text of the header �le can

be forwarded to the next phase of the CCC compiler.

3.2 Recording Changes to the Compiler Symbol Table

In addition to eliminating the preprocessing work when we use a cached header �le, we

attempt to eliminate much more work. After preprocessing, a header �le normally contains

only declarations { such as type de�nitions, external declarations of variables, and function

prototypes. Such declarations do not cause the compiler to emit any code; their only e�ect

should be to cause new entries to be added to the compiler's symbol table. We therefore

attempt to cache the symbol table additions that the header �le introduces. If a header �le

should contain a C language construct that causes code to be emitted (such as a declaration

for a variable with an initializer) or that changes the state of the compiler in some manner

other than adding symbol table entries, then symbol table caching is suppressed. We further

require that the #include directive not be nested inside any C language construct (such as

inside a function). This means that only entries at the global scope are added to the symbol

table. (Some de�nitions, such as those for struct types contain nested de�nitions however.)

As a pragmatic issue, there is little point in caching new symbol table entries from a

header �le unless these entries can be added to the compiler's symbol table e�ciently. This

observation has implications for the implementation of the symbol table and for how header

�les should be handled. How should we process symbol table entries which refer to other

symbol table entries? And what if those other symbol table entries were created by other

header �les? An example scenario is shown in Figure 4. In our example, the symbol table

entry for clock will contain a reference to the entry for time t. The handling of the structure

tag usage is interesting. A forward reference to the struct usage type, as exempli�ed in

6

de�nition of
time t

Entries from \types.h"

� � de�nition of
clock

Entries from \time.h"

� �� �. . .

��
?

Figure 5: Symbol Table Structure in the Server's Cache

the \time.h" header �le, is permissible in C. A typical C compiler would add an entry for

the usage structure tag to its symbol table when the getusage declaration is processed.

However, the structure type will be agged as incomplete. Later, when the declaration of

the struct usage type is processed, the incomplete symbol table entry will be accessed and

completed. This causes both forward and backward dependencies between the header �les.

In CCC, the compilation server maintains a large symbol table that combines the symbol

entries generated by all the cached header �les. The entries are threaded in order of their

declaration in particular compilations,4 and entries may refer to each other (such as when

the clock entry contains a reference to the time t entry.) Symbol table entries generated by

a particular header �le will form a consecutive block of entries in a thread. After processing

the header �les of Figure 4, the server's symbol table will have the structure that is sketched

in Figure 5.

When a new compilation is started, CCC will start a new thread of symbol table entries.

If a header �le such as \time.h" in our example is to be included in the new compilation and

if the checks for validity are satis�ed, we would like to transfer the block of symbol table

entries from CCC's cache to the current symbol table thread. This involves no more than

breaking the link from the �rst symbol table entry in the \time.h" block to its predecessor,

and replacing it with a pointer to what had been the latest entry in the current compilation

thread.5 However, the cross-reference from the clock entry to the time t entry represents

a danger. Perhaps the current compilation is not using the same de�nition for time t?

Perhaps the program is erroneous and there is no de�nition for time t at all?

To avoid all such problems, we impose a context requirement on the re-use of symbol

table entries. For each header �le, we record which other header �les it directly depends

on. That is, if a symbol table entry created by a declaration in header �le \A.h" contains

a reference to an entry created by header �le \B.h", then \A.h" directly depends on \B.h".

We will use the cached symbol table entries for a header �le \A.h" only if valid cached blocks

of symbol table entries for all header �les that \A.h" depends on have also been included in

the current compilation. A cached block for a header �le \B.h" is valid only if the references

in \A.h" to entries created for declarations in \B.h" are to symbol table entries in the same

block as were previously included in the current compilation.

4In fact, there are many threads because we use hashing to speed look-ups, and each hash bucket has its

own thread. We ignore this detail to simplify the explanation.
5Our hash table implementation may actually require us to replace several links.

7

Although it is easy to construct examples where our restrictions are unnecessarily strin-

gent, our restrictions are easy to implement. Any form of restriction that requires elaborate

compile-time checking would diminish the bene�ts of caching. If our checks fail, and the

cached symbol table entries for a header �le cannot be re-used, the cached preprocessed text

of the header �le is simply forwarded to the compiler for analysis.

At the end of compilation, any groups of symbol tables entries for header �les (or versions

of header �les) are de-linked from the symbol table and linked into the server's cached symbol

table.

3.3 Cache Management

The compilation server maintains all its information in memory. Even if the operating system

implements virtual memory, there is a clear bene�t to be obtained from purging information

for rarely used or superseded versions of header �les. Our compiler uses a simple strategy of

caching a �xed number of header �les. When a new header �le is a candidate for caching,

the least recently used cached header �le is discarded. With this strategy, only frequently

used header �les are retained in the cache.

4 Lazy Declaration Checking

If the program being compiled is erroneous, there may be duplicate or inconsistent declara-

tions in the header �le. In the CCC compiler, the cached symbol table entries for a header �le

are simply appended to the symbol table for the current compilation without any individual

checking.

It would be possible to validate each symbol table entry after loading a block of entries

from the cache.6 However, we have instead chosen to defer such checking until the latest

possible moment { in the hope that many of these checks do not need to be performed.

Our new symbol table entries are agged to indicate that they require validation. When

a symbol table entry is subsequently looked up for the �rst time, the ag will cause the entry

to be validated (and the ag is cleared).

Our lazy strategy does mean that some errors can go undetected. As a simple example,

suppose that a `.c' �le includes both of the header �les \a.h" and \b.h". Now suppose that

\a.h" contains a declaration

struct foo {

float a;

};

and suppose that \b.h" contains the conicting declaration

struct foo {

int b;

};

6A compiler option to force this full and immediate validation should probably be provided.

8

If symbol table entries for \b.h" are obtained from the cache, the conict will not be imme-

diately detected. If the program being compiled turns out to contain no uses of the struct

foo datatype, the error will never be discovered.

Although the failure to discover such errors violates the ANSI standard for C compilers [1],

we consider that conicts involving unused symbol table entries are benign. Should, for

example, the following statement be reported as an error?

if (0) { int k = 1 / 0; }

Division by zero is an error, but the expression that performs the division is never evaluated.

We feel that the error with the declaration of the struct foo type above has a similar

nature.

As suggested above, lazy checking could be disabled by a compilation option if strict

checking for conformance to ANSI C standards is desired. The cost for strict checking is a

little loss in performance.

5 Experimental Results

The CCC compiler was evaluated using a variety of C source code �les from a variety

of programs, which included a C preprocessor, the lcc C compiler, the Emacs editor, the

Gnuplot plotting package, an image display utility and two ight simulator programs. There

were 253 `.c' �les in total.

A basic premise of our caching approach is that many more identi�ers are declared

than are actually used. Our measurements have validated this assumption. We discovered

that the proportion of macro identi�ers which were subsequently used was only 7%. Of

the other identi�ers (variable names, etc.), we discovered that 12% were used. This latter

�gure is arti�cially high because many identi�ers were used only in the declarations of other

identi�ers, which were themselves unused.

The use of caching imposes an overhead on the compilation time when a header �le is

processed for the �rst time. In our CCC implementation, the time required for preprocessing

increased by 2%, and compilation time (excluding preprocessing) increased by 10%. Overall,

there is a 5% increase in execution time.

If a `.c' �le is compiled twice in a row (a common occurrence during the development

and debugging of a program), the second compilation requires only 38% of the time of the

�rst compilation, on average. The amount saved depends, of course, on the nature of the C

source �le being compiled. Figure 6 shows a histogram which displays the execution time

savings when each of our 253 `.c' �les was compiled a second time.

If a single large program is being compiled, many of the constituent `.c' �les will include

the same header �les. This observation is particularly true of X-windows application pro-

grams where many large X header �les are typically used. When all the �les in a program are

compiled in one large batch, the CCC compiler requires 59% of the execution time needed

when caching is disabled. Again, di�erent programs yield di�erent savings. Figure 7 shows

a histogram displaying the execution time usage.

9

0

10

20

30

40

50

60

70

0 50 100 150 200

Processing Time as % of Original Processing Time

N
o
.
o
f
C
o
m
p
il
a
ti
o
n
U
n
it
s

Average: 38%

Figure 6: Execution Time Usage for Repetitive Compilation

0

10

20

30

40

50

60

70

0 50 100 150 200

Processing Time as % of Original Processing Time

N
o
.
o
f
C
o
m
p
il
a
ti
o
n
U
n
it
s

Average: 59%

Figure 7: Execution Time Usage for Massive Compilation

10

6 Conclusions

We believe that we have proved the viability of the compilation server approach for C com-

pilers. More work would be required, however, before CCC could be released as a production

compiler. In particular, CCC should handle multiple users. This raises several issues, the

most important being protection. Header �les belonging to one user should not be accessible

to other users unless permitted by the access permissions associated with the �les.

Acknowledgement

Financial support for this work was provided by the Natural Sciences and Engineering Re-

search Council of Canada.

References

[1] American National Standard for Information Systems { Programming Language { C,

X3.159-1989.

[2] Borland International, Borland C++ User's Guide, Scotts Valley, CA, 1993.

[3] C.W. Fraser and D.R. Hanson, A Retargetable C Compiler: Design and Implementation,

Benjamin-Cummings, 1995.

[4] A. Litman, \An Implementation of Precompiled Headers", Software{Practice and Ex-

perience, 23,5 (1993), pp. 341-350.

[5] T. Onodera, \Reducing Compilation Time by a Compilation Server", Software{Practice

and Experience, 23, 3 (1993), pp. 477-485.

[6] Symantec Corporation, THINK C User's Guide, Cupertino, CA, 1994.

11

