
Version Models for Software Con�guration

Management

Reidar Conradi

Norwegian University of Science and Technology, Trondheim

and

Bernhard Westfechtel

Technical University of Aachen

After more than 20 years of research and practice in software con�guration management (SCM),
constructing consistent con�gurations of versioned software products still remains a challenge.
This paper focuses on the version models underlying both commercial systems and research pro-
totypes. It provides an overview and classi�cation of di�erent versioning paradigms. Furthermore,
it de�nes and relates fundamental concepts such as revisions, variants, con�gurations, and changes.
In particular, we focus on intensional versioning, i.e., construction of versions based on con�gura-
tion rules. Finally, we provide an overview of systems which have had signi�cant impact on the
development of the SCM discipline, and classify them according to a detailed taxonomy.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques|
computer-aided software engineering; D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.9 [Software Engineering]: Management|software con�guration management; H.2.3
[Database Management]: Languages|database (persistent) programming languages; H.2.8
[Database Management]: Database applications; I.2.3 [Arti�cial Intelligence]: Deduction
and Theorem Proving|deduction, logic programming

General Terms: Versions, Con�gurations

Additional Key Words and Phrases: Revisions, variants, changes, con�guration rules

This work was partially performed during a sabbatical which the second author spent in August
{ October 1995 in Trondheim. Support from NTNU is gratefully acknowledged.
Detailed addresses: Reidar Conradi, Norwegian University of Science and Technology (NTNU),
N-7034 Trondheim, Norway; Bernhard Westfechtel, Lehrstuhl f�ur Informatik III, RWTH Aachen,
D-52056 Aachen, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � R. Conradi and B. Westfechtel

Contents

1 Introduction 3

2 Product Space 5

2.1 Software Objects . 5
2.2 Relationships . 5
2.3 Representations of the Product Space 6

3 Version space 8

3.1 Versions, Versioned Items, and Deltas 8
3.2 Extensional and Intensional Versioning 10
3.3 Intents of Evolution: Revisions, Variants, and Cooperation 11
3.4 Representations of the Version Space: Version Graphs and Grids . . 11
3.5 State-Based and Change-Based Versioning 14

4 Interplay of Product Space and Version Space 15

4.1 AND/OR Graphs . 16
4.2 Granularity of Versioning . 18
4.3 Deltas . 21
4.4 Relations between Version Model and Data Model 23

5 Intensional Versioning 25

5.1 Problem: Combinability versus Consistency Control and Manage-
ability . 25

5.2 Conceptual Framework for Intensional Versioning 26
5.3 Con�guration Rules . 28
5.4 Con�gurators: Tools for Evaluating Con�guration Rules 30
5.5 Merge Tools . 32

6 Version Models in SCM Systems 34

6.1 Overview . 35
6.2 Taxonomy-Based Classi�cation . 35
6.3 Descriptions of SCM Systems . 40

7 Related Work 49

7.1 Related Work on Version Models . 50
7.2 Related Disciplines . 51

8 Conclusion 52

Version Models for Software Con�guration Management � 3

1. INTRODUCTION

Software con�guration management (SCM) is the discipline of managing the evo-
lution of large and complex software systems [Tichy 1988]. The importance of
SCM has been recognized widely. In particular, this is re
ected in the Capabil-
ity Maturity Model (CMM) developed by the Software Engineering Institute (SEI)
[Humphrey 1989; Paulk et al. 1997]. CMM de�nes levels of maturity in order to as-
sess software development processes in organizations. Here, SCM is seen as one the
key elements for moving from \initial" (unde�ned process) to \repeatable" (project
management, SCM, and quality assurance have come into operation). Furthermore,
SCM plays an important role in achieving ISO 9000 conformance.
SCM serves di�erent needs [Feiler 1991a]:

|As a management support discipline, SCM is concerned with controlling changes
to software products. It is this view of SCM which is addressed in the classical
textbook by Berso� [Berso� et al. 1980] and the IEEE standard [IEEE 1983; IEEE
1988]. According to the latter, SCM covers functionalities such as identi�cation
of product components and their versions, change control by establishing strict
procedures to be followed when performing a change, status accounting (recording
and reporting the status of components and change requests), and audit and
review (quality assurance functions to preserve product consistency). Thus, SCM
is seen as a support discipline for project managers.

|As a development support discipline, SCM provides functions which assist de-
velopers in performing coordinated changes to software products. This view of
SCM is described e.g. in the textbook by Babich [Babich 1986]. To support de-
velopers, SCM is in charge of accurately recording the composition of versioned
software products evolving into many revisions and variants, maintaining consis-
tency between inter-dependent components, reconstructing previously recorded
software con�gurations, building derived objects (compiled code and executables)
from their sources (program text), and constructing new con�gurations based on
descriptions of their properties.

In this paper, SCM is primarily considered a development support discipline. We
provide an overview of version models implemented both in commercial systems
and research prototypes. A version model de�nes the objects to be versioned,
version identi�cation and organization, as well as operations for retrieving existing
versions and constructing new versions. Software objects and their relationships
constitute the product space, their versions are organized in the version space. A
versioned object base combines product and version space. A speci�c version model
is characterized by the way the version space is structured, by the decision which
objects are versioned both externally (from the user's point of view) and internally
(within the versioned object base), by the relationships between version spaces of
di�erent objects, and by the way reconstruction of old and construction of new
versions are supported.
SCM systems express version models in considerably varying ways. Many sys-

tems, including most commercial ones [Rigg et al. 1995], are �le-based and apply
versioning to �les and directories [Rochkind 1975; Tichy 1985; Fowler et al. 1994].
Various language-based approaches have been developed as well, based on modular

4 � R. Conradi and B. Westfechtel

programming languages [Lampson and Schmidt 1983b], module interconnection lan-
guages [Prieto-Diaz and Neighbors 1986], or system modeling languages [Marzullo
and Wiebe 1986]. These languages are typically used to represent versions of mod-
ules and relationships such as imports, include dependencies, etc. Finally, several
SCM systems are founded on databases and manage versions of objects and rela-
tionships stored in the database. Di�erent data models have been used, including
EER [Dittrich et al. 1986; Oquendo et al. 1989], object-oriented [Estublier and
Casallas 1994], and deductive [Zeller and Snelting 1995] ones.

The variety of formalisms makes it di�cult to compare the version models of
di�erent SCM systems with each other. Furthermore, each system comes with its
own terminology. On the other hand, the underlying concepts are often very similar.
In order to reveal these concepts, we introduce a uni�ed terminology. Furthermore,
to describe version models in a uniform, \canonical" formalism, we use graphs at
many places in the paper. A graph consists of nodes and edges representing entities
and (binary) relationships, both of which may be decorated with attributes. Graphs
are well suited to represent the organization of a versioned object base, even if the
corresponding system is not graph-based. For example, SCCS [Rochkind 1975] and
RCS [Tichy 1985] are both �le-based, but the version space of a text �le may be
represented naturally as a version graph. Other formalisms are used as required,
e.g., textual languages for expressing con�guration rules.
The main contribution of this paper is to give de�nitions and to introduce a

taxonomy. Furthermore, it provides a survey of the current state-of-the-art by
describing SCM systems in a uni�ed terminology and classifying them according to
the taxonomy. In this way, it prepares the ground for developing a uniform version
model, i.e., a common framework in which speci�c version models may be expressed.
A uniform model would not only assist developers in constructing SCM systems. In
addition, SCM systems could be tailored more
exibly to the needs of their users.
Multiple paradigms could be supported in parallel, allowing users to switch back
and forth as required. Furthermore, as noted in [Brown et al. 1991], a uniform
model would constitute a common foundation for integrating heterogeneous SCM
systems in a federated architecture.
In the interest of a thorough discussion, we focus on core issues of versioning,

namely the organization of the version space, the interrelations of product space
and version space, and the construction of consistent con�gurations. Other issues
which are considered essential parts of SCM are only discussed brie
y. In particular,
this applies to management of workspaces, construction of derived objects, cooper-
ation, and distribution. All of these issues are related to version management, but
elaborating on them goes beyond the scope of this paper.

This paper is structured as follows: Before introducing versions, the product
space is described in Section 2. Subsequently, we discuss the version space without
making any assumptions with respect to the product space (Section 3). After
having introduced product and version space separately, their interplay is addressed
in Section 4. The next section (Section 5) is devoted to intensional versioning,
i.e., construction of versions based on rules describing consistent combinations.
Section 6 provides an overview of systems which have had signi�cant impact on the
development of the SCM discipline. Related work is discussed in Section 7, and a
short conclusion is given in Section 8.

Version Models for Software Con�guration Management � 5

2. PRODUCT SPACE

The product space describes the structure of a software product without taking
versioning into account (in other words, we assume only one version of a software
product). The product space can be represented by a product graph whose nodes and
edges correspond to software objects and their relationships, respectively. Di�erent
version models vary in their assumptions with respect to the product space. These
di�erences refer to the types of software objects and relationships, to the granularity
of object representations, and to the semantic levels of modeling.

2.1 Software Objects

A software object records the result of a development or maintenance activity. An
SCM system has to manage all kinds of software objects created throughout the
software life cycle. This includes requirements speci�cations, designs, documenta-
tions, program code, test plans, test cases, user manuals, project plans, etc.
Identi�cation is an essential function provided by SCM. Thus, each software

object carries an object identi�er (OID) which serves to identify it uniquely within
a certain context. An external OID is a name assigned by the user, while a system-
generated, unique OID may be used internally.
Software objects are rather coarse-grained units which are structured internally.

For example, a program module is composed of declarations and statements, and
a documentation consists of sections and paragraphs. Thus, a software object is
composed of more �ne-grained units.
The data model used for representing the product space may or may not dis-

tinguish explicitly between coarse-grained and �ne-grained units. For example, �le
systems make this distinction, while many object-oriented data models represent
coarse- and �ne-grained units in a uniform way. Below, we represent the contents
of software objects in long attributes attached to nodes of the product graph.
Software objects may have di�erent representations, depending on the types of

tools operating on them. In tool-kit environments, software objects are stored
as text �les [Rochkind 1975]. In contrast, syntax trees [Habermann and Notkin
1986] or graphs [Nagl 1996] are used in structure-oriented environments. As to be
discussed later, these representations in
uence the functionality of an SCM system.
For example, a diff command for comparing two versions of a program module
returns di�ering text lines in the case of text �les and di�ering syntactic units in
the case of syntax trees, respectively.
Independently of the representation chosen for software objects, we may dis-

tinguish between domain-independent and domain-speci�c models of the product
space. Domain-independent models do not make any assumptions about the types
of software objects to be maintained. All software objects produced throughout
the whole software life cycle project are subject to version control [Tichy 1985].
Domain-speci�c models are tailored towards speci�c types of software objects, e.g.,
abstract data types in algebraic speci�cations [Ehrig et al. 1989].

2.2 Relationships

Software objects are connected by various types of relationships. Composition re-
lationships are used to organize software objects with respect to their granularity.
For example, a software product may be composed of subsystems which in turn

6 � R. Conradi and B. Westfechtel

consist of modules. Objects which are decomposed are called composite objects or
con�gurations. Objects residing at the leaves of the composition hierarchy are de-
noted as atomic objects. Note that an \atomic" software object is still structured
internally, i.e., it has a �ne-grained contents. The root of a composition hierarchy
is called (software) product.
The semantics of composite objects varies signi�cantly across di�erent modeling

approaches. Furthermore, a speci�c approach may support customizable semantics.
As a least common denominator, a composite object is de�ned as an object o which
represents a subgraph of the product graph. All objects which are transitively
reachable from o via composition relationships belong to this subgraph. There may
be structural constraints with respect to the composition hierarchy (trees, DAGs),
and the existence of a component may depend on the existence of its superobject(s).
Furthermore, there may be constraints with respect to long attributes (e.g., long
attributes may only be attached to leaves of the composition hierarchy). Finally, a
composite object may act as a unit with respect to structural operations (e.g., copy
or delete), abstraction (encapsulation of components), concurrency control (locking
of a composite object includes locking of its components), and version control.
Dependency relationships | simply called dependencies below | establish di-

rected connections between objects which are orthogonal to composition relation-
ships. They include e.g. life cycle dependencies between requirements speci�ca-
tions, designs, and module implementations, import or include dependencies be-
tween modules, and build dependencies between compiled code and source code.
The source and the target of a dependency correspond to a dependent and a mas-

ter object, respectively. A dependency implies that the contents of the dependent
must be kept consistent with the contents of the master. Thus, the dependent may
have to be changed when the master is modi�ed.
Software objects are further classi�ed into source objects and derived objects. A

source object is created by a human who is supported by interactive tools, e.g., text
editors or graphical editors. A derived object is created automatically by a tool, e.g.,
a compiler or linker. Note that the classi�cation of a software object as a source
or derived object depends on the tool support which is available. Furthermore,
software objects may partially be derived and partially be constructed manually.
For example, the skeleton of a module body may be created automatically from its
interface and subsequently be �lled in by a programmer.
The process of creating derived objects from source and other derived objects is

called system building. The actions to be performed are speci�ed by build rules. The
build tool has to ensure that build steps corresponding to these rules are executed in
the correct order, i.e., build dependencies must be taken into account. In contrast,
source dependencies represent relationships between source objects (e.g., life cycle
dependencies as mentioned above).

2.3 Representations of the Product Space

Figure 1 illustrates di�erent representations of a sample software product foo which
is implemented in the programming language C. Part a) shows the modules of foo
and their import dependencies. The top-level module main imports from a and
b, which both import from c. foo may be represented in di�erent ways. Some
examples are given in Parts b), c), and d):

Version Models for Software Con�guration Management � 7

compiled code

a

executable

body

b

dependencymodule

module

import

header

main a b c

main

a b

c

system composition relationship

header body compiled code executable

c)

d)

a) b)
main

c

main module

sys main.c main.o main.exe a.h a.c a.o b.h b.c b.o c.h c.c c.o

foo

foo

composition relationship

long attributes:

dependency

directory file

Fig. 1. Di�erent representations of a software product.

8 � R. Conradi and B. Westfechtel

|In Part b), foo is stored in the �le system. Each module is represented by
multiple �les. The su�xes .h, .c, .o, and .exe denote header �les, body �les,
compiled code, and executables, respectively. Dependencies and build steps are
stored in a text �le (the system model sys, e.g., a make �le [Feldman 1979]).

|In Part c), we assume a data model which supports typed objects and relation-
ships (e.g., an EER model as used in PCTE [Oquendo et al. 1989]). As in the �le
system representation, there is still a composition tree whose leaves correspond
to single �les. However, dependencies are not represented in a separate text �le.
Rather, the tree is augmented with relationships re
ecting include dependen-
cies. Build dependencies are not given explicitly because they can be computed
automatically from source dependencies and composition relationships.

|In Part d), there is no longer a spanning tree, and all �les making up a module
are summarized in one object. Furthermore, only a single type of relationship is
used which represents source dependencies between modules1. This organization,
which has been realized e.g. in POEM [Lin and Reiss 1995], corresponds directly
to the logical structure displayed in Part a).

3. VERSION SPACE

A version model de�nes the items to be versioned, the common properties shared by
all versions of an item, and the deltas, i.e., the di�erences between them. Further-
more, it determines the way version sets are organized. To this end, it introduces
dimensions of evolution such as revisions and variants, it de�nes whether a version
is characterized in terms of the state it presents or in terms of some changes relative
to some baseline, it selects a suitable representation for the version set (e.g., version
graphs), and it also provides operations for retrieving old versions and constructing
new versions.
The characterization of version models given in this section is still incomplete.

While the previous section described the product space without taking versioning
into account, the current section conversely focuses on the version space, abstracting
from the product space. Thus, we are not concerned with the kinds of items put
under version control, and we also consider versions of a single item only. However,
a version model needs to address the interplay between product space and version
space as well (Section 4).

3.1 Versions, Versioned Items, and Deltas

A version v represents a state of an evolving item i. v is characterized by a pair
v = (ps; vs), where ps and vs denote a state in the product space and a point in the
version space, respectively. The term item covers anything which may be put under
version control. This includes e.g. �les and directories in �le-based systems, objects
stored in object-oriented databases, entities, relationships, and attributes in EER
databases, etc. Versioning can be applied at any level of granularity, ranging from
a software product down to text lines.
A versioned item is an item which is put under version control. In contrast,

only one state is maintained for an unversioned item, i.e., changes are performed

1This relationship may be annotated by an attribute which distinguishes between include depen-
dencies emanating from header and body, respectively.

Version Models for Software Con�guration Management � 9

v1 v2

�(v1, v2) = (v1 \ v2) � (v2 \ v1)

–�–>(v1, v2) =
op1 ... opm

v1 \ v2 v1 � v2

a) symmetric delta b) directed delta

v2 \ v1

v1

v2

Fig. 2. Deltas.

by overwriting. Versioning requires a sameness criterion, i.e., there must be some
way to decide whether two versions belong to the same item. This decision can be
performed with the help of a unique identi�er, e.g., an OID in the case of software
objects.
Within a versioned item, each version must uniquely be identi�able through a

version identi�er (VID). Many SCM systems automatically generate unique version
numbers and o�er additional symbolic (user-de�ned) names serving as primary
keys. However, a version can also be identi�ed by an expression, which is the
identi�cation scheme used by intensional versioning.
All versions of an item share common properties which are called invariants.

These invariants can be represented e.g. by unversioned attributes or relationships.
Which invariants are shared by versions, depends on the speci�c version model
or the way it is customized to a certain application. At one end of the spectrum,
versions virtually share only a common OID. For example, in systems such as SCCS
and RCS versions of a text �le may di�er in arbitrary ways. At the other end of the
spectrum, versions must share semantic properties. For example, version control
in algebraic speci�cation [Ehrig et al. 1989] enforces that all versions of a module
body realize the shared interface.
Versions di�er with respect to speci�c properties (e.g., represented by versioned

attributes). The di�erence between two versions is called a delta. This term suggests
that di�erences should be small compared to invariants. \Delta" can be de�ned in
two ways (Figure 2):

|A symmetric delta between two versions v1 and v2 consists of properties speci�c
to both v1 and v2 (v1 n v2 and v2 n v1, respectively

2).

|A directed delta, also called a change, is a sequence of (elementary) change oper-
ations op1 : : : opm which, when applied to one version v1, yields another version
v2

3.

In practice, deltas are not necessarily small. In the worst case, the common
part of v1 and v2 may even be empty. In fact, items may undergo major changes,

2The operator n denotes the set di�erence.
3Please note the correspondence to transaction logs in databases.

10 � R. Conradi and B. Westfechtel

and the common properties may become smaller and smaller the more versions are
created. For example, it is usually unrealistic to assume that all versions of module
bodies realize the same interface (this assumption is made e.g. in the algebraic
approach already cited above [Ehrig et al. 1989] and in the Gandalf system [Kaiser
and Habermann 1983]). On the other hand, common properties do have to be
asserted because otherwise it does not make sense to group versions at all.
A way out of this dilemma is multi-level versioning, i.e., a version may have ver-

sions themselves. For example, in Adele [Estublier 1985] a module has multiple
versions of interfaces each of which is realized by a set of body versions. DAMOK-
LES [Dittrich et al. 1986] generalizes this idea and supports recursive versioning,
i.e., any version may be versioned in turn.

3.2 Extensional and Intensional Versioning

A versioned item is a container for a set V of versions. The functionality of version
control is heavily in
uenced by the way V is de�ned. Extensional versioning means
that V is de�ned by enumerating its members:

V = fv1; : : : ; vng

Extensional versioning supports retrieval of previously constructed versions (which
is a necessary requirement to any version model). All versions are explicit and have
been checked in once before. Each version is typically identi�ed by a unique num-
ber. The user interacting with the SCM system retrieves some version vi, performs
changes to the retrieved version, and �nally submits the changed version as a new
version vi+1. To ensure safe retrieval of previously constructed versions, versions
can be made immutable. In many systems, all versions are made immutable when
they are checked into the object base [Rochkind 1975]; in others, explicit oper-
ations are provided to freeze mutable versions [Westfechtel 1996]. Furthermore,
immutability may be enforced selectively, e.g., by distinguishing between mutable
and immutable attributes [Estublier and Casallas 1995].
Intensional versioning is applied when
exible, automatic construction of consis-

tent versions in a large version space needs to be supported. Instead of enumerating
its members, the version set is de�ned by a predicate:

V = fvjc(v)g

In this case, versions are implicit, and many new combinations are constructed
on demand. The predicate c de�nes the constraints which have to be satis�ed by all
members of V . A speci�c version v is described intensionally by its properties (e.g.,
the Unix version supporting the X11 window system). A version is constructed in
response to some query. For example, such a query may simply consist of a tuple
of attribute values (which may be considered the VID of the version). In this case,
a query corresponds to a (partial or total) function q which creates versions in V

based on attributes ranging over the domains A1 : : : An:

q : A1 � :::�An �! V

Here, the term \attribute" is used in a general way. For example, attributes
may identify variants (e.g., an os attribute determining the operating system) or

Version Models for Software Con�guration Management � 11

changes (e.g., a boolean attribute Fix to indicate whether a certain bug �x should
be included or omitted).
The di�erence between extensional and intensional versioning may be illustrated

by comparing SCCS [Rochkind 1975] and RCS [Tichy 1985] to conditional compila-
tion, as e.g. supported with the C programming language [Kernighan and Ritchie
1978]. SCCS and RCS store and reconstruct versions of text �les (extensional ver-
sioning). The preprocessor used for conditional compilation constructs any source
�le based on the values of preprocessor variables (intensional versioning). All frag-
ments of the source �le are excluded whose conditions evaluate to false.
From SCCS/RCS and conditional compilation, SCM systems have been devel-

oped which di�er signi�cantly in their versioning capabilities. On the other hand,
it must be emphasized that extensional and intensional versioning are by no means
mutually exclusive, but can (and should) be combined into a single SCM system.

3.3 Intents of Evolution: Revisions, Variants, and Cooperation

Versioning is performed with di�erent intents. A version which is intended to
supercede its predecessor is called a revision. Revisions evolve along the time
dimension and may be created for various reasons, e.g., for �xing bugs, enhancing
or extending functionality, adapting to changes in base libraries, etc. Instead of
performing modi�cations by overwriting, old revisions are preserved to support
maintenance of software delivered to customers, to recover from erroneous updates,
etc.
Versions which are intended to coexist are called variants. For example, vari-

ants of data structures may di�er with respect to storage consumption, runtime
e�ciency, and access operations. Furthermore, a software product may support
multiple operating systems or window systems.
Finally, versions may also be maintained to support cooperation. In this case,

multiple developers work in parallel on di�erent versions. Each developer oper-
ates in a workspace [Estublier 1996] which contains the versions created and used.
Cooperation policies regulate when versions are exported from or imported into a
workspace. These issues are closely related to software process management and
will only be discussed in passing below (see also Subsection 7.2).

3.4 Representations of the Version Space: Version Graphs and Grids

Many SCM systems use version graphs for representing version spaces. A version
graph consists of nodes and edges which correspond to (groups of) versions and
their relationships, respectively. Since a version graph assumes an explicitly given
set of versions, it is applied in conjunction with extensional versioning. Despite
their limitations to be discussed below, they are widely used in practice.
Although a rich variety of version graphs is conceivable, the mainstream of SCM

systems are based on a small number of graph types which are discussed below.
In the simplest case (one-level organization), a version graph consists of a set

of versions which are connected by relationships of a single type, which are called
successor relationships. A version graph of this type primarily represents the evo-
lution history of a versioned item. \v2 is a successor of v1" means that v2 has been
derived from v1, e.g., by modifying a copy of v1.
Version graphs may have di�erent shapes (Figure 3). In the most restrictive case,

12 � R. Conradi and B. Westfechtel

v1

v2

v3

a) sequence b) tree c) acyclic graph

v2 v4

v3

v1

v5

v1

v2 v3

v4

Fig. 3. Version graphs (one-level organization).

v1

v2

v3

v4

v1

v2

v3

v1

v2

v3

v1

v2

v3

v4

v5

b1

b2 b3

b4

branch

successor

offspring

merge

Fig. 4. Version graphs (two-level organization).

versions are organized into a sequence of revisions. In a version tree, successors of
non-leaf versions may be created, e.g., in order to maintain old versions which have
already been delivered to a customer. In an acyclic graph, a version may have
multiple predecessors, e.g., in order to express that a bug �x in an old version is
merged with the currently developed version.
Several SCM systems use one of these di�erent kinds of one-level organization,

e.g., sequences in NSE [Adams et al. 1989] and acyclic graphs in PCTE [Oquendo
et al. 1989]. DAMOKLES [Dittrich et al. 1986] supports user-de�ned structural
constraints. The structure of a version graph may be de�ned in the database
schema as a sequence, a tree, or a directed acyclic graph.
In the case of a two-level organization, a version graph is composed of branches

each of which consists of a sequence of revisions. Here, at least two relationship
types are required, which are called successor (within a branch) and o�spring (be-
tween branches) in Figure 4. This organization is applied e.g. in RCS. ClearCase
[Leblang 1994] goes beyond the RCS organization by recordingmerges in the version

Version Models for Software Con�guration Management � 13

version

version clustera) version graph

. . .

(Unix,X11,Oracle) (DOS,Windows,dbase)

os ws db

Unix DOSVMS X11

SunViews

Windows Oracle Informix dbase

b) grid

DOS Unix VMS

Oracle

dbase

Informix
SunViews

X11

Windows
(Unix,X11,Oracle)

os

ws
db

Fig. 5. n-dimensional variant space.

graph. By means of merging, changes performed on one branch can be propagated
to another branch. Essentially, this results in a directed acyclic graph. However,
the branches are not joined; rather, each of them continues to exist.
Version graphs as presented above support management of variants only to a

limited extent. Variants can be represented by branches as long as their number
is small. In the case of multi-dimensional variation, this approach breaks down
because the number of branches explodes combinatorially. Let us assume that
each dimension is modeled by an attribute with domain Ai. Then, the number of
branches b is dominated by the product of the domain cardinalities:

b � jA1j : : : jAnj

To illustrate this, let us assume that that our sample product foo varies with
respect to the operating system (DOS, Unix, VMS), the database system (Oracle,
Informix, dbase), and the window system (X11, SunViews, Windows). In this case,
up to 27 branches would be required.
This problem can be solved in the following ways:

|Version graphs may be generalized in order to support multi-dimensional vari-
ation. In Figure 5a), versions are organized into clusters which are used to
construct classi�cation hierarchies [Dittrich and Lorie 1988].

|Alternatively, versions may be arranged in a grid (Figure 5b), i.e., an n-dimensional
space whose dimensions correspond to variant attributes [Sciore 1994].

Figure 5 only illustrates the variant space, assuming that there is no evolution
along the time axis. Revisions can be represented in the grid by adding a time

14 � R. Conradi and B. Westfechtel

dimension (orthogonal version management [Reichenberger 1994]). In the case of
the version graph, one level may be added at the bottom, and successor relationships
may be introduced to represent histories.

3.5 State-Based and Change-Based Versioning

In Subsection 3.1, a version has been de�ned as a state of an evolving item. Version
models which focus on the states of versioned items are called state-based. In the
case of state-based versioning, versions are described in terms of revisions and
variants.
Changes provide an alternative way of characterizing versions. In change-based

models, a version is described in terms of changes applied to some baseline. To
this end, changes are assigned change identi�ers (CID) and potentially further
attributes to characterize the reasons and the nature of a change. Change-based
versioning provides a nice link to change requests: A change request is implemented
by a (possibly composite) change. Thus, a version may be described in terms of
the change requests which it implements.
\State- versus change-based" is orthogonal to \extensional versus intensional".

State-based extensional versioning is provided e.g. by SCCS and RCS. State-based
intensional versioning can be realized e.g. by conditional compilation. For example,
preprocessor variables can be used to represent variants, and a state may be spec-
i�ed by tuples of values for these variables. However, we have to emphasize that
in general conditional compilation can be used for both state- and change-based
versioning (the latter is done e.g. in the COV system [Gulla et al. 1991]).
Change-based versioning comes in two forms. In the case of change-based exten-

sional versioning, the version set is de�ned explicitly by enumerating its members,
and each version is described by the changes relative to some baseline. Thus,
changes are only used for documentation. The OVUM report about SCM systems
[Rigg et al. 1995] uses the term change package to denote this form of change-based
versioning. Several SCM systems support change packages by annotating versions
in version graphs with change identi�ers (e.g., ClearCase and PCMS).
In the case of change-based intensional versioning, changes are combined freely

to construct new versions as required. Therefore, a change is considered a partial
function c : V �! V , where V denotes the set of all potential versions of some
item. A version v is constructed by applying a sequence of changes c1 : : : cn to a
baseline b:

v = c1 � : : : � cn(b) = cn(: : : c1(b) : : :)

The OVUM report (and also the survey by Feiler [Feiler 1991a]) adopts the
terminology coined by the Aide-de-Camp system [Software Maintenance and De-
velopment Systems 1990] and calls this form of versioning the change set model.
Further examples of systems supporting change-based intensional versioning are the
COV system [Gulla et al. 1991], PIE [Goldstein and Bobrow 1980], DaSC [MacKay
1995], and Asgard [Micallef and Clemm 1996].
The change space (version space structured in terms of changes) can be repre-

sented in di�erent ways. The COV system arranges versions in an n-dimensional
grid called option space. Each change corresponds to a boolean option which is set
to true (false) if the change is applied (omitted). The Aide-de-Camp documenta-

Version Models for Software Con�guration Management � 15

changes

versions

c6c5

v3

c4c3c2c1

v2

v1

b) version graph with explicit changesa) matrix representation

v4

b

c1

c2 c3

c3 c4

v3

c4

v2

c5

c6

v4

v1

Fig. 6. Change space.

tion introduces a matrix representation as shown in Figure 6a). Lines and columns
correspond to versions and changes, respectively. The application of a change is
indicated by a circle at an intersection point. For example, v1 is constructed by
applying c1, c2, and c3 in order.
Figure 6b) illustrates the relations to the version graphs as introduced in Figures 3

and 4, respectively. The versions shown in Part a) are arranged in a graph whose
nodes and edges correspond to versions and changes, respectively. b denotes the
baseline, and intermediate versions are anonymous. For example, the path from b to
v1 again contains the changes c1, c2, and c3. This version graph explicitly expresses
all changes included in a certain version, and therefore provides more information
than the version graphs shown in Figures 3 and 4. In particular, it makes explicit
when certain changes were applied to multiple versions. For example, c4 was used
to construct both v2 and v3. In contrast, state-based versioning does not name the
changes, i.e., the changes are anonymous. As a consequence, the changes applied
to a version must be deduced from the topology of the version graph. This may
become di�cult if merging is applied in extensive and complicated ways (or even
impossible if merges are not recorded at all).

4. INTERPLAY OF PRODUCT SPACE AND VERSION SPACE

In Section 2, the product space was described under the assumption that only one
version of each item is maintained. In Section 3, basic de�nitions for versioning
were given without considering the product space. The current section combines
product space and version space into a versioned object base.
So far, we have considered versioning of a single item only, and we have not

made any assumptions concerning the kinds of items put under version control. As
mentioned earlier, a version model needs to address the interplay between product
space and version space as well. In the following, we discuss those aspects of version
models which are concerned with this interplay. In particular,we investigate which
items are put under version control, at which granularity versioning is applied both
externally and internally, how versions of di�erent items are interrelated, which
models are used for representing versioned object bases, and how the version model

16 � R. Conradi and B. Westfechtel

may be related to the data model.

4.1 AND/OR Graphs

AND/OR graphs [Tichy 1982a] provide a general model for integrating product
space and version space. An AND/OR graph contains two types of nodes, namely
AND nodes and OR nodes. Analogously, a distinction is made between AND and
OR edges which emanate from AND and OR nodes, respectively. An unversioned
product graph can be represented by an AND/OR graph consisting exclusively of
AND nodes/edges. Versioning of the product graph is modeled by introducing OR
nodes. Versioned objects and their versions are represented by OR nodes and AND
nodes, respectively.
Note that the version graph illustrated in Figure 5a) can be regarded as an

AND/OR graph as well: Version clusters and versions correspond to OR nodes and
AND nodes, respectively. However, below we are not concerned with the capabilities
of AND/OR graphs to model the version space of a single object. Rather, we are
interested in the relations between versions of di�erent objects, abstracting for the
moment from the ways in which their version spaces are structured. Therefore,
in the following a versioned object is simply represented by an OR node whose
outgoing edges point to its versions.
AND edges are used to represent both composition and dependency relationships.

A relationship is bound to a speci�c version if the corresponding AND edge ends at
an AND node; otherwise, it is called generic. A con�guration is represented by a
subgraph spanned by all nodes which are transitively reachable from the root node
of the con�guration. If all AND edges belonging to this subgraph are bound, the
con�guration is called bound as well; otherwise, it is called generic. Furthermore,
we may distinguish between partially and totally generic con�gurations. In the
�rst case, there are both bound and generic AND edges; in the latter case, all
AND edges are generic. A bound con�guration can be constructed from a generic
con�guration by eliminating the OR nodes, i.e., by selecting one successor of each
OR node reached during traversal from the root node.
In the following, we take the examples of product graphs given in Figure 1 up

again and compare several approaches to versioning the product graph. Figure 7
shows AND/OR graphs which are all based on Part b) of Figure 14. In Figure 7a),
only atomic software objects are versioned. foo represents a generic con�guration.
In Figure 7b), foo is versioned as well. Each version of foo corresponds to a bound
con�guration. In Figure 7c), references to components are generic, and the versions
of foo therefore represent generic con�gurations.
Using this �gure, we may classify version models according to the selection order

during the con�guration process:

|Product �rst (Part a) means that the product structure is selected �rst; subse-
quently, versions of components are selected. This approach is followed e.g. by
SCCS and RCS. It su�ers from the restriction that structural versioning cannot
be expressed (the product structure is the same for all con�gurations).

4Module versions are identi�ed by numbers. For the sake of simplicity, each module version is
represented by a single node (e.g., no distinction between header �les and bodies).

Version Models for Software Con�guration Management � 17

OR node

AND node
sample selections

AND edge
OR edge

1 2 1 1 1 12 2 2 3

a) product first

b) version first

c) intertwined

1 2 1 1 12 2 2

foo

1

sys main a b c

foo

1 2

sys main a b c

1 2 1 2 2 2

2 3 1 3

2

32

sys main a b c

foo

2 3 1 1 1 3

Fig. 7. Di�erent kinds of AND/OR graphs and selection orders (I).

|Version �rst (Part b) inverts this approach: The product version is selected �rst
and uniquely determines the component versions. Di�erent product versions
may be structured in di�erent ways. For example, a version of component c is
contained only in foo.1 (version 1 of product foo). PCTE [Oquendo et al. 1989]
serves as an example of an SCM system using this organization.

|Intertwined (Part c) means that AND and OR selections are performed in alter-
nating order. The intertwined organization is used e.g. by ClearCase [Leblang
1994], which versions both �les and directories. Again, this selection scheme
supports structural versioning.

Thus, \version �rst" and \intertwined" both take into account that di�erent
versions of an object may vary with respect to their relationships to (versions of)
other objects. This means that in addition to objects, relationships are versioned
as well.
So far, we have applied versioning only to the product graph organization shown

in Part b) of Figure 1. In Figure 8, the alternatives \intertwined" and \version �rst"

18 � R. Conradi and B. Westfechtel

1 2 2’

... ...
3’3

......
2’21’1

2’21

1 2

a

OR node

c

a) intertwined b) version first

c

main

a b

main

1 2

1 2 1 2

1 2 3

AND node
sample selections

AND edge
OR edge

b

Fig. 8. Di�erent kinds of AND/OR graphs and selection orders (II).

are illustrated for the product graph of Figure 1d)5. In contrast to the previous
�gure, AND edges represent dependencies instead of composition relationships.
Intertwined selection is performed e.g. in Adele [Estublier 1985], while \version
�rst" is realized e.g. in POEM [Lin and Reiss 1995].
To illustrate the di�erences between a) and b), let us assume that a bug is �xed

in module c which does not a�ect its interface. A new version c.2 is created which
is to be included into the new release of our sample product foo6. In a), a new
con�guration is constructed in which c.2 is selected instead of c.1. However, in
b) new versions of all modules above c have to be created (versions 2' of a, b, and
main, respectively). This e�ect is called version proliferation. Note that version
proliferation need not involve physical copying (e.g., multiple versions may share
the same source �le through pointers). However, this does not solve the problem at
the logical level (the user is confronted with a combinatorially exploding number
of versions). To get rid of version proliferation at the logical level, we have to
distinguish between versions of modules and versions of con�gurations (in b), the
versions of main play both roles simultaneously).

4.2 Granularity of Versioning

In the examples given above, we have considered versioning only at the coarse-
grained level. This means that we have applied versioning to product graphs as
introduced in Section 2. As already explained earlier, product graphs detail the
product structure only down to the level of software objects such as e.g. interfaces

5To save space, \product �rst" has been omitted.
6The current release | the starting point for the bug �x | is represented in Figure 8 by �lled
nodes.

Version Models for Software Con�guration Management � 19

OR node

AND edge versioned object
OR edge

AND node
externally

b) total versioning c) product versioning

a) component versioning

Fig. 9. External versioning.

and bodies of modules; the �ne-grained contents are represented as long attributes.
However, in Section 3 we have introduced the term \item" in a more general way

to denote anything which can be versioned, including entities, relationships, and
attributes. In particular, versioning can be applied at any level of granularity.
To clarify this issue, let us further elaborate on the notion of granularity. First,

version granularity refers to the size of a version. Second, delta granularity refers to
the size of those units in terms of which deltas are recorded. For example, in RCS
version and delta granularity are at the level of text �les and text lines, respectively.
In this case, the delta granularity is much �ner than the version granularity.
With respect to version granularity, we need to distinguish further between ex-

ternal versioning and internal versioning. An SCM system provides an external
interface to the versioned object base which o�ers versioned items as well as iden-
ti�cation and selection of versions to its users. At the external interface, software
objects are the items which are subject to version control. The internal granularity
may be much smaller (see below).
External versioning may be applied in di�erent ways to the composition hierarchy

of software objects. Component versioning means that only atomic objects are put
under version control. Each object has its own version space, modeled e.g. by a
version graph. Total versioning applies to all levels of the composition hierarchy.
Product versioning di�ers from total versioning by arranging versions of all objects
in a uniform, global version space.
This classi�cation is illustrated in Figure 9, where externally versioned objects

are surrounded by boxes. The AND/OR graph of Part a) was taken over from
Figure 7a), while the graphs shown in Parts b) and c) were both copied from
Figure 7b). Note that the topology of an AND/OR graph only shows which objects
are versioned, but externally and internally versioned objects are not distinguished.
Thus, a given AND/OR graph can be accessed in di�erent ways, depending on the
version model presented to the user. In particular, in the case of product versioning
the user may select versions of non-root objects, but this is done in the version space
attached to the whole product.
Component versioning. In the case of component versioning, the product

20 � R. Conradi and B. Westfechtel

foo

sys main.c a.c b.c c.c

directory version

component of some
consistent configuration

composition relationship

successor relationshipversioned file

Fig. 10. AND/OR graph augmented with successor relationships.

structure is selected �rst. Typically, versions of components are organized into
version graphs (see e.g. RCS [Tichy 1985]). A con�guration is constructed by
assembling versions of components; this is called composition model in [Feiler 1991a].
Note that the granularity of composition is an \atomic" software object (rather than
�ne-grained units such as statements or text lines).
Frequently, the version graphs of di�erent components are only weakly related

to each other. To illustrate this, Figure 10 shows a sample con�guration whose
components are located at di�erent places in the respective version graphs7. The
selection problem can be alleviated by tagging all components of some consistent
con�guration with the same symbolic name (or more generally through con�gura-
tion rules referring to revisions and variants). Thus, a con�guration is represented
implicitly through an attribute value rather than as a �rst-class entity.
Total versioning. Total versioning generalizes component versioning in that

all objects are versioned rather than only the leaves of the composition hierarchy.
In contrast to component versioning, versions of composite objects are represented
explicitly as entities; atomic and composite objects are versioned uniformly. While
component versioning implies that the product structure is selected �rst, total
versioning may be combined with both the \version �rst" and the \intertwined"
selection order and can therefore express structural versioning. For example, PCTE
[Oquendo et al. 1989] supports extensional versioning of composite objects (\ver-
sion �rst"). In contrast, in ClearCase [Leblang 1994] AND/OR selections are in-
tertwined: a version of a directory references a set of versioned �les (or directories)
rather than speci�c versions of these. A single-version view on the versioned �le
system is provided through dynamically evaluated con�guration rules (intensional
versioning with dynamic binding).
Product versioning. Product versioning di�ers from total versioning by ar-

ranging versions of all objects in a uniform, global version space. It may be regarded
as a layer which simpli�es selection against a versioned object base. Product ver-
sioning sets up a transparent, single-version view which hides internally maintained

7AND nodes representing versions are placed inside the OR node representing the versioned
component. Furthermore, the AND/OR graph is augmented with successor relationships.

Version Models for Software Con�guration Management � 21

foo

main

c

b

a
versioned

objects

1 2 3 4 5

Unix

DOS

VMS

revisions

variants

Fig. 11. Product versioning.

versions of objects and relationships from users and tools. Product space and ver-
sion space are orthogonal to each other: a given model of the product space can be
combined with di�erent models of the version space and vice versa. The integra-
tion of product space and version space in the state-based SCM system VOODOO
[Reichenberger 1994] is illustrated in Figure 11, where versioned objects, revisions,
and variants are organized into orthogonal dimensions.
All change-based systems, e.g., the COV system [Gulla et al. 1991], Aide-de-

Camp [Software Maintenance and Development Systems 1990], and DaSC [MacKay
1995], support product versioning to overcome the limitations of component ver-
sioning. In general, a change to a software product may a�ect multiple components.
Since the composition model falls short of recording these cross dependencies, it is
di�cult to incorporate a change into a product version by selecting the respective
component versions. Therefore, in change-based approaches product versions are
described in terms of global changes. Note that combination of changes operates at
a �ner granularity (e.g., text lines) than composition of components.
Product versioning has become more and more popular because of its global

view on the software product. A potential problem consists in lacking modularity
of the version space. All changes, revisions, and variants are global. For example,
if there are two implementation variants of a procedure Sort (e.g., QuickSort and
HeapSort), we must introduce an attribute at the global level in order to enable
choices between these variants. An approach to structure the version space (in the
COV system) is described in [Munch 1996].

4.3 Deltas

To represent versions in the object base, deltas are used both at the coarse-grained
and the �ne-grained level. The selection of an appropriate delta representation is
driven by di�erent requirements to be considered at the physical and logical level,
respectively. Storage and runtime e�ciency have to be achieved at the physical
level. At the logical level, deltas are used to compare versions in such a way
that a user is provided with a high-level description of di�erences. Furthermore,

22 � R. Conradi and B. Westfechtel

intensional versioning relies on deltas as well. By processing the deltas, a version is
constructed which has to meet the requirements stated in its intensional description.
Accordingly, we distinguish between physical and logical deltas. While many SCM
systems use a single delta representation for both purposes [Munch 1993], physical
and logical deltas may also be separated (e.g., syntactic merging of programmodules
stored as text �les [Bu�enbarger 1995]).
The distinction between directed and symmetric deltas, as illustrated in Figure 2,

can directly be transferred to the implementation level. Using directed deltas [Tichy
1982b], a version is constructed by applying a sequence of changes to some base
version. In the case of embedded deltas, all versions are stored in an overlapping
manner so that common fragments are shared. Either each version points to its
fragments [Fraser and Myers 1986], or the fragments are decorated with control
expressions for determining the versions in which they are visible (interleaved deltas
[Rochkind 1975; Leblang and McLean 1985]).
Please note that the internal delta representation is orthogonal to the external

version model. For example, interleaved deltas may be used to realize both exten-
sional and intensional versioning as well as both state- and change-based versioning.
In the following, the di�erent types of delta representations are discussed in turn.
RCS [Tichy 1985], which is based on directed deltas, reconstructs versions of text

�les from the most recent version on the main trunk of the version graph by applying
backward deltas on the main trunk and forward deltas on the branches. While RCS
deltas are �ne-grained, change-based SCM systems such as PIE [Goldstein and
Bobrow 1980] and DaSC [MacKay 1995] employ directed deltas at both the coarse-
grained and the �ne-grained level. In both systems, the modi�cations performed
in a change are stored in a layer. A product version is composed of a sequence of
layers which are stacked on top of each other8.
Since versions are stored in an overlapping manner, AND/OR graphs can be clas-

si�ed as embedded deltas. As described so far, versions can be combined freely to
derive bound con�gurations from some generic con�guration. This \combinability"
can be constrained by control expressions (con�guration rules) stating e.g. that a
certain version can be selected only when con�guring a Unix variant.
Adding control expressions results in an interleaved delta scheme which is realized

e.g. in SCCS [Rochkind 1975] and DSEE [Leblang and McLean 1985]. Note that
both systems implement a version model similar to RCS, which is based on directed
deltas. In SCCS and DSEE, fragments of text lines are tagged with the set of
versions in which they are included.
While SCCS and DSEE support extensional versioning (of text �les), conditional

compilation employs interleaved deltas for intensional versioning. For example, Fig-
ure 12a) illustrates conditional compilation in a source �le varying with respect to
the operating system. Figure 12b) demonstrates that conditional compilation can
be applied at the coarse-grained level as well. The �gure contains a cutout of a
product description written in the Proteus Con�guration Language (PCL [Trygge-
seth et al. 1995]). The selected version of the files component depends on the
value of the os attribute which refers to the operating system. In contrast to con-
ditional compilation (single-source versioning), di�erent versions of this component

8For further details, see the description of PIE in Section 6, in particular Figure 21.

Version Models for Software Con�guration Management � 23

/ * common parts * /
...

/ * dependent on operating system * /
#if (OS == Unix)
...

#elif (OS == VMS)
...
#else
...

#endif
...

family foo
attributes os : (Unix,VMS,DOS);

...
end

parts

root => main;
files =>

if os = Unix then unix_fs
elsif os = VMS then vms_fs

else dos_fs;
...

end

end

a) fine–grained level b) coarse–grained level

Fig. 12. Interleaved deltas.

are stored in separate �les (version segregation) [Mahler 1994].
Version segregation is vulnerable to the multiple maintenance problem [Babich

1986]: A change to a common fragment must be applied to all versions in turn. This
is even the case when the fragment is shared at the physical level (e.g., interleaved
deltas in SCCS). Merge tools may reduce the multiple maintenance problem by
partly automating change propagation. However, single-source versioning is a more
elegant solution since the change needs to be performed only once for all versions9.
On the other hand, editing of source �les cluttered with control expressions may

confuse the user. Multi-version editors overcome this problem by hiding control
expressions (see e.g. P-Edit [Kruskal 1984], MVPE [Sarnak et al. 1988] and COV
[Gulla et al. 1991]). A read �lter selects a single version, removing all control
expressions; a write �lter constrains the set of versions to which the change is
applied. For example, a general change in common parts of the source �le may be
performed by setting up a universal write �lter and selecting some arbitrary version
by the read �lter (e.g., the Unix version). If Unix is also selected for writing, the
control expressions of all changed parts are set up such that all changes are speci�c
to the Unix version.

4.4 Relations between Version Model and Data Model

To conclude this section, we discuss the interplay between product space and version
space in terms of its implications on database management. When designing a
database management system for software engineering, the designer has to decide
how to support versioning. In particular, there are several alternatives concerning
the relations between the data model and the version model.
Version model on top of the data model. In this case, version management

is seen as an ordinary database application. Thus, the version model is represented
by a schema whose underlying data model is not aware of versioning. This solution
has been adopted e.g. by PCTE [Oquendo et al. 1989] and CoMa [Westfechtel

9The change may still have to be tested in multiple versions.

24 � R. Conradi and B. Westfechtel

TYPE Interface IS Object;
COMMON (* shared by all revisions *)

system : {unix, hp, vms};
graphics : {X11, Open_win};

MODIFIABLE (* revision–specific *)
belong–to : Conf;
bug–report : set_of Document;

IMMUTABLE (* update creates new revision *)
header : File;

realization : VERSIONED Realization; (* realization variants *);
END;

Fig. 13. De�nition of a versioned object type.

1996] which are based on an EER and a graph data model, respectively. Its main
advantage is that the data model is kept simple and potentially application-speci�c
extensions are avoided (a uniform version model which is accepted widely does not
exist yet).
However, implementing version management completely on top of a database

management system su�ers from a number of limitations. For example, there is
no support for storing versions e�ciently, the transaction manager does not take
versioning into account, etc. Therefore, several database management systems pro-
vide prede�ned classes for version management (e.g., O2 [GOODSTEP 1995]). In
this case, the data model is still not aware of versioning, but components of the
database management system such as storage and transaction manager are modi�ed
to support version management e�ciently.
Version model built into the data model. If the data model is extended

with versioning, applications can be supported through a data de�nition language
which provides customized constructs for de�ning versioned object types. In addi-
tion, the query language is modi�ed so that queries against a versioned database
can be written in a convenient and natural way. DAMOKLES [Dittrich et al.
1986], EXTRA-V [Sciore 1994], and Adele [Estublier and Casallas 1994] follow this
approach.
If the version model is de�ned on top of the data model, di�erent types are re-

quired for versioned objects and their versions. As argued in [Estublier and Casallas
1994] and [Sciore 1994], this distinction is awkward and complicates both schemata
and queries. Figure 13 illustrates how this problem is solved in Adele. In this ex-
ample, only one object type is de�ned for a versioned interface. Adele distinguishes
between common attributes shared by all revisions, modi�able attributes whose
values are revision-speci�c, and immutable attributes, where each update triggers
the creation of a new revision. Furthermore, the attribute realization is declared
as versioned, meaning that an interface revision may have multiple realization vari-
ants.
Data model on top of the version model. So far, the version model heavily

depends on the data model, being either de�ned on top of or built into the data
model. In a few SCM systems, e.g., ICE [Zeller and Snelting 1995] and COV
[Munch 1996], the version model is completely orthogonal to the data model. This

Version Models for Software Con�guration Management � 25

may be achieved through an instrumentable version engine which provides a basic
delta storage and con�guration rules by means of which speci�c version models
may be expressed [Conradi and Westfechtel 1997]. The version engine is not aware
of the data model and can thus be combined with any data model (e.g., EER,
object-oriented, or simply �les).
Both ICE and COV are based on interleaved deltas, but use di�erent logics for

control expressions. In ICE, versioning is applied to �le-based data. The COV
system applies versioning to an EER data model. To this end, a layer which takes
care of the consistency constraints inherent to the data model is placed on top of
the version engine (e.g., a relationship is visible only when both ends belong to the
currently selected version). Thus, this architecture di�ers considerably from the
architecture of conventional database management systems where version model
and data model are rather entangled.

5. INTENSIONAL VERSIONING

In Subsection 3.2, we have distinguished between extensional and intensional ver-
sioning. Extensional versioning is concerned with the reconstruction of previously
created versions and requires version identi�cation, immutability, and e�cient stor-
age. On the other hand, intensional versioning deals with the construction of new
versions from property-based descriptions. Intensional versioning is very important
for large version spaces, where a software product evolves into many revisions and
variants and many changes have to be combined.
In order to support intensional versioning, an SCM system must provide for both

combinability | any version has to be constructed on demand | and consistency
control | a constructed version must meet certain constraints. The construction
of a version may be viewed as a selection against a versioned object base. The
selection is directed by con�guration rules, which constitute an essential part of a
version model, and is performed both in the product space and the version space.
After having discussed the interplay between product space and version space in
Section 4, we are now ready to elaborate on rule-based version construction | a
topic which could have been addressed only partially in Section 3.

5.1 Problem: Combinability versus Consistency Control and Manageability

Con�guration rules are used to con�gure consistent versions from a versioned object
base. Rules are required to address the combinability problem. The number of
potential versions explodes combinatorially; only a few are actually consistent or
relevant. The combinability problem has to be solved in any version model.
For example, the (state-based) composition model [Feiler 1991a] appplies exten-

sional versioning at the component level, i.e., previously constructed component
versions are reused. Rule-based construction of con�gurations realizes intensional
versioning at the con�guration level, i.e., new combinations of component versions
are assembled into con�gurations. Without any constraints, the number of poten-
tial con�gurations is very large. For a product consisting of m modules existing
in v versions, there exist vm potential con�gurations, i.e., the number of potential
con�gurations grows polynomially in v.
On the one hand, change-based versioning reduces the combinability problem by

grouping logically related modi�cations of multiple components. Thus, we do not

26 � R. Conradi and B. Westfechtel

have worry about which versions of components actually �t together. On the other
hand, the selection problem has not disappeared. Rather, it has been moved from
the product space to the version space [Munch 1996]. In the case of unconstrained
combination of changes (each change may either be applied or skipped), there are 2c

potential con�gurations for c changes, i.e., the number of potential con�gurations
grows exponentially in c.
The challenge of intensional versioning consists in providing for consistency con-

trol while still supporting combinability. The space of all potential versions is much
larger than the space of consistent ones. The problem of consistency control can be
addressed both in the version space and in the product space. In the version space,
con�guration rules are used to eliminate inconsistent combinations; in the product
space, the knowledge about software objects, their contents, and their relationships
is enriched in order to check and ensure product constraints. SCM systems tend
to the solve the problem in the version space because they frequently only have
limited knowledge of the product space (typically, software objects are represented
as text �les).
Even if a sophisticated tool for constructing a version is employed, the user must

be warned if a new version is created that has never been con�gured before. While
old versions can be assigned levels of \con�dentiality" (e.g., tested or released), a
new version cannot be trusted blindly. Therefore, the con�gured version is subject
to quality assurance (e.g., testing). Potentially, changes to the constructed version
need to be performed (correction delta).

5.2 Conceptual Framework for Intensional Versioning

Figure 14 illustrates our conceptual framework for intensional versioning. At �rst,
let us de�ne the central notion of con�guration rule: A con�guration rule guides
or constrains version selection for a certain part of a software product. Thus, a
con�guration rule consists of a product part, which determines its scope in the
product space, and a version part, which performs a selection in the version space
(see Subsection 5.3 for further details).
A versioned object base combines product space and version space and stores

all versions of a software product, relying e.g. on interleaved deltas. The versioned
object base is augmented with a rule base of stored con�guration rules (e.g., control
expressions as shown in Figure 12).
A query consists of a set of submitted con�guration rules, each being composed

of a product part and a version part. A con�gurator is a tool which constructs
a version by evaluating a query against a versioned object base and a rule base.
The constructed version has to satisfy both version constraints (e.g., consistent
selection of the Unix version) and product constraints (e.g., syntactic or semantic
consistency). Con�gurators will be discussed further in Subsections 5.4 and 5.5.
The con�guration process is concerned with binding of generic references. Often,

its result is a bound con�guration, but it may also deliver a con�guration which is
partially generic. The latter results in a multi-stage con�guration process.
Binding can be performed at di�erent points in time. Static binding means that

the con�gurator resolves all unbound references before any component is accessed.
To this end, the con�gurator constructs a table which maps each component name
to a speci�c version. In the case of dynamic binding, each reference is evaluated on

Version Models for Software Con�guration Management � 27

product part

(selection in the product space)

version part

(selection in the version space)

query = submitted configuration rules

rule base

(stored configuration rules)

and product constraints)

version

(satisfying configuration rules

(product space + version space)

configurator

versioned object base

(evaluates query)

Fig. 14. Intensional versioning.

demand only (e.g., when a source �le is read by a compiler).
Binding may even be deferred until runtime. In this case, a program is con�gured

dynamically without stopping its execution. A popular example are Java applets
which are loaded dynamically when they are activated through a web browser.
Dynamic con�guration has been studied in the context of distributed systems (see
[Kramer 1993] for an overview). Up to now, the relations to SCM have not been
investigated thoroughly. Only recently, a few approaches have been proposed which
apply version selection techniques from SCM to dynamic con�guration [Warren and
Sommerville 1995; Schmerl and Marlin 1995]. However, elaborating on this topic
goes beyond the scope of this paper.
To sharpen the focus, we will also refrain from discussing system building [Borison

1989]. Although the conceptual framework illustrated in Figure 14 can be applied
to both source and derived objects, the problems to be considered are di�erent in
the following respect:

|In the case of source version construction, we have a selection problem in both
product and version space. The selection must be performed such that the out-
come of the con�guration process obeys all con�guration rules and product con-
straints. Here, non-determinism may have to be taken into account, and the
con�gurator may have to backtrack from wrong selections.

|When constructing derived versions, we primarily have to consider the e�ciency
and accuracy of the build. Mostly, build rules are deterministic with respect
to the result of building. Non-determinism only deals with the order in which
build steps are executed (the build plan only imposes a partial order on the build
steps). Some authors advertise the advantages of non-deterministic build rules
(e.g., \build some sort program no matter what algorithm and which compiler
is used" [Rich and Solomon 1991]). However, in many situations it is crucial to
control the details of a build without leaving the freedom for non-deterministic

28 � R. Conradi and B. Westfechtel

choices (e.g., even the functional behavior of a program may depend on whether
it is compiled with or without optimization).

Finally, Figure 14 suggests that the rule base is not put under version control.
On the other hand, versioning of the rule base is desirable as well because the
con�guration rules may evolve along with the software product. For example, in
the case of our sample software product foo the set of supported operating systems,
window systems, and database systems may evolve, as may the constraints on
combining these dimensions of variation. Currently, versioning of the rule base is
at best handled in a rudimentary way, e.g., by storing con�guration rules in text
�les which are subject to version control. As argued in [Conradi and Westfechtel
1997], simple, time-stamped revisions of the rule base may su�ce to reconstruct
not only old product versions, but also the con�guration rules valid at that time.
Some further remarks on this topic will follow in Subsection 7.2.

5.3 Con�guration Rules

Intensional versioning is driven by con�guration rules which are classi�ed below.
First, built-in rules are hardwired into the respective SCM system and cannot be
changed by the user. For example, a built-in rule may enforce that at most one
version of a software object is contained in any constructed con�guration. On
the other hand, user-de�ned rules are supplied by the user (e.g., \select the latest
version before May, 22nd").
Version parts of con�guration rules. Con�guration rules take on di�erent

forms, depending on the way the version space is structured. Figure 15 provides
some typical examples which refer to the revision, variant, and change space, re-
spectively. Con�guration rules are stated as logical formulas, abstracting from the
actual syntax as implemented in di�erent SCM systems.

revision space
(1) t = max

(2) no = 1.1.1.1

variant space
(3) os = Unix ^ ws = X11 ^ db = Oracle

(4) : (os = DOS ^ ws = X11)

change space
(5) c1 c2 c4

(6) c2) c1

(7) c1
 c2
 c3

Fig. 15. Version parts of con�guration rules.

In the revision space category, con�guration rules refer to the time dimension.
Rule (1) selects the latest revision by the maximal time stamp. Rule (2) refers to
a revision by its number.
In the variant space, con�guration rules refer to values of variant attributes.

Rule (3) identi�es a variant by specifying operating system, window system, and
database system. Rule (4) expresses a constraint on the combination of attribute
values: the X11 window system is not available under the DOS operating system.

Version Models for Software Con�guration Management � 29

In the change space, Rule (5) speci�es a version in terms of the changes to be
applied. Rules (6) and (7) specify further relationships which describe consistent
change combinations. Rule (6) states that inclusion of change c2 implies that c1
be included as well (c2 is based on c1). Rule (7) states that changes c1, c2, and
c3 are mutually exclusive (operator
), i.e., at most one of these changes may be
applied.

(1) a : status = checked out

(2) * : os = Unix ^ ws = X11 ^ db = Oracle

(3) b.DependsOn� : name = alpha release

Fig. 16. Scoping of con�guration rules.

Product parts of con�guration rules. So far, we have only discussed the
version parts of con�guration rules. The product part describes the scope of a
con�guration rule in the product space. In Figure 16, a con�guration rule is written
in the form p : v, where p and v denote product part and version part, respectively.
Rule (1) applies to a single module a (local rule) and selects the version checked out
by the current user. The star in Rule (2) indicates global application to all modules
so that the same variant is selected throughout the whole product. The product
part of Rule (3) denotes all modules which are reachable from b by a re
ective and
transitive closure over relationships of type DependsOn, i.e., the rule applies to b

and to all modules on which b depends transitively.

constraint
(1) * : os = Unix ^ ws = X11 ^ db = Oracle

preference
(2) * : status = checked out

default
(3) * : t = max

Fig. 17. Strictness classes.

Ordering of con�guration rules. Con�guration rules can be ordered in strict-
ness classes. A constraint is a mandatory rule which must be satis�ed. Any viola-
tion of a constraint indicates an inconsistency. For example, Rule (1) in Figure 17
ensures that all selected versions belong to a given variant. A preference is an
optional rule which is only applied when it may be satis�ed. For example, Rule
(2) states that a checked out version is selected provided it is available. Finally, a
default is also an optional rule, but it is weaker than a preference. A default rule is
only applied when otherwise no unique selection could be performed. For example,
Rule (3) selects the most recent version as the default.
Strictness classes determine the order in which con�guration rules are evaluated

(constraints ! preferences ! defaults). In addition, rules may be given priorities.
Rules with high priorities are considered before low-priority rules. A priority may
be assigned explicitly, or it may be de�ned implicitly by textual ordering. Priorities
may be combined with strictness classes, e.g., by assigning priorities to preferences

30 � R. Conradi and B. Westfechtel

[Lavency and Vanhoedenaghe 1988]. However, they can also be used without strict-
ness classes. For example, in ClearCase [Leblang 1994] rules are evaluated according
to their textual order until a (unique) match is found.
Finally, we may distinguish between stored and submitted con�guration rules.

The rules given in Figure 17 would typically be submitted in a query in order to
specify properties requested by the user. Rule (4) in Figure 15 serves as an example
of a stored con�guration rule expressing a constraint which has to be ful�lled by
all con�gured versions.
Relations between version graphs and con�guration rules. To conclude

this section, let us brie
y discuss how version graphs and con�guration rules are
related in di�erent SCM systems:

|Con�guration rules on top of version graphs. This is the classical solution, called
composition model in [Feiler 1991a]. Version graphs are maintained for compo-
nents (extensional versioning), con�gurations are constructed by selecting compo-
nent versions with the help of con�guration rules (intensional versioning). The
composition model is realized e.g. in DSEE [Leblang and McLean 1985] and
ClearCase [Leblang 1994].

|Version graphs on top of con�guration rules. This inverted approach is followed
by a few research prototypes, e.g., ICE [Zeller 1995] and COV [Munch 1996].
Both systems rely on a
exible and powerful base layer providing for delta storage
(interleaved deltas) and con�guration rules. Any desired version model may be
realized on top of con�guration rules. In the case of version graphs, revision
chains and branches may be expressed by implication and mutual exclusion,
respectively (see Rules (6) and (7) in Figure 15).

5.4 Con�gurators: Tools for Evaluating Con�guration Rules

A con�gurator constructs a version by evaluating con�guration rules against a
versioned object base. Construction can be performed in di�erent computational
frameworks. In a functional framework, intensional versioning is modeled by ap-
plying a (potentially partial) function q (query) to its arguments a1 : : : an, i.e., a
version v is constructed by evaluating the expression q(a1; : : : ; an). This approach
assumes that version construction delivers a deterministic result, i.e., version selec-
tion is unique.
In a rule-based framework, version construction is modeled as the evaluation of a

query against a deductive database [Ramamohanarao and Harland 1994; Ramakr-
ishnan and Ullman 1995]. The deductive database consists of a versioned object
base and a rule base which contains stored con�guration rules. Since a query may
not specify the version to be constructed in a unique way, a rule-based con�gurator
has to cope with non-determinism. Ambiguous choices can be resolved either au-
tomatically or interactively. In any case, the con�gurator needs to explore a search
space of potential solutions. To this end, it may use di�erent search strategies, e.g.,
\depth �rst" or \breadth �rst".
Con�gurators may be classi�ed not only with respect to the computational para-

digm (functional, rule-based), but also with respect to the underlying version model
(state- or change-based). This results in four combinations which are described in
turn below.

Version Models for Software Con�guration Management � 31

State-based functional con�gurators. A state-based functional con�gura-
tor operates on a versioned object base typically represented by interleaved deltas.
Conditional compilation in C [Kernighan and Ritchie 1978] and con�guration con-
struction at the coarse-grained level in PCL [Tryggeseth et al. 1995] may be quoted
as examples10. The versioned object base is usually traversed in a \context-free"
manner (e.g., sequences of text lines in conditional compilation and trees of compo-
nents in PCL). Con�guration rules take the form of control expressions as shown e.g.
in Figure 12. The con�gurator is supplied with a tuple of attribute values (a1; :::; an)
and constructs some version v. Control expressions are evaluated against this tuple
to select the relevant components of v. When applied to a composite object co,
expressions may also be used to transform (a1; :::; an) into a new tuple (a0

1; :::; a
0

m
)

which is then employed recursively to con�gure co. This means that attribute val-
ues are transformed and propagated through the composition hierarchy. In this
way, it is possible to enforce certain constraints (e.g., selection of the same variant
throughout the whole con�guration process). However, rule-based con�gurators are
in general more powerful in enforcing constraints or detecting inconsistencies.
State- and rule-based con�gurators. A state- and rule-based con�gurator

supports non-determinism through an appropriate search strategy (e.g., depth �rst
search with backtracking). It typically operates on some AND/OR graph which is
traversed along \context-sensitive" relationships (e.g., dependencies between mod-
ules in Adele [Estublier 1985]; see also Figure 8). For each OR node reached in
the course of the con�guration process, a successor is selected with the help of con-
�guration rules. As version selections are performed, constraints are added which
narrow down further choices. For example, if version uniqueness is required, we
may not select a di�erent successor each time a certain OR node is visited. Variant
selection serves as another example: After having selected a certain variant of an
operating system, we must ensure that this selection is performed consistently for
all further nodes reached in the course of the con�guration process. If this turns
out to be impossible, the con�gurator has to backtrack from the wrong selection.
A simple example is given in Figure 18. Part a) shows an AND/OR graph whose

AND nodes (versions) are annotated with con�guration rules11. For each version, a
triple of attribute values denotes the variants to which it belongs; * stands for any
value. a depends on the window system, b on the database system, and c on the
�le system; main can be used with any variant. Part b) shows a query which leaves
all attribute values unspeci�ed. Below, a sample trace of the con�guration process
is given. After selection of a.1, the os attribute is bound to Unix. Thus, the Unix
version of c is selected. However, selection of b fails and triggers backtracking.
Change-based functional con�gurators. A change-based functional con�g-

urator is supplied with a sequence of changes. Internally, the object base may
be stored using either interleaved or directed deltas (e.g., Aide-de-Camp [Soft-
ware Maintenance and Development Systems 1990] and PIE [Goldstein and Bo-
brow 1980], respectively). Conceptually, the changes are applied in order to some
baseline. Inconsistencies are detected when a change operation fails, e.g., insertion

10Please recall that conditional compilation can be used for change-based versioning as well (see
Subsection 3.5).
11Note that only variants are considered in this example (no revisions).

32 � R. Conradi and B. Westfechtel

ws = *

os = DOS

db = dbase

b

1

ws = *

os = *

db = *

main

1

ws = *

os = Unix

db = *

ws = X11

os = Unix

db = *

ws = Windows

os = DOS

db = *

main.1 ws = *, os = *, db = *

 c.1 ws = X11, os = Unix, db = *

 a.2 ws = Windows, os = DOS, db = *

 c.2 ws = Windows, os = DOS, db = *

 b.1 ws = Windows, os = DOS, db = dbase

 a.1 ws = X11, os = Unix, db = *

selection attribute bindings

trace

ws = *, os = *, db = *

query

{main.1, a.2, c.2, b.1}

result
c

1 2
ws = *

os = DOS

db = *

b) construction of a configuration

a

1 2

a) AND/OR graph with configuration rules

Fig. 18. Rule-based construction of a con�guration.

of a text line at an unde�ned location.
Change- and rule-based con�gurators. A change- and rule-based con�gura-

tor di�ers from its functional counterpart by considering stored con�guration rules
constraining change combinations. Con�guration rules can be used to detect incon-
sistent change combinations; furthermore, they can be employed in a constructive
manner to complete a partial speci�cation. This is done e.g. in the COV system
[Munch 1996]. For example, consider the mutual exclusion rule (7) in Figure 15.
If the user insists on applying both c1 and c2, the con�gurator reports an incon-
sistency. Alternatively, the con�gurator may automatically disable change c2 (and
c3) after c1 has been selected.

5.5 Merge Tools

So far, we have distinguished between state-based and change-based con�gurators.
Although state- and change-based SCM systems may di�er considerably at �rst
glance, the borderline is in fact rather fuzzy12. In particular, state-based SCM
systems often o�er merge tools [Bu�enbarger 1995] to combine versions/changes.
Althoughly mostly used in state-based systems, they have been applied in change-
based systems as well.
Merge tools combine versions or changes. They may be classi�ed as follows

(Figure 19):

|Raw merging simply applies a change in a di�erent context. For example, in

12This was already demonstrated by discussing the relationships between version graphs and
change-based versioning in Section 3 (see Figure 6).

Version Models for Software Con�guration Management � 33

a1

m

a2

a) raw merging

v2

c2

c1

v4

v3

c2

v1

b) 2-way merging c) 3-way merging

c1

a1 a2

c2

m

b

Fig. 19. Types of merging.

Figure 19a) change c2 was originally performed independently of change c1 and
is later combined with c1 to produce version v4. Raw merging is supported e.g.
by SCCS [Rochkind 1975]. Later, it has been generalized in change-based SCM
systems such as Aide-de-Camp [Software Maintenance and Development Systems
1990] and the COV system [Munch et al. 1993].

|A 2-way merge tool (Figure 19b) compares two alternative versions a1 and a2

and merges them into a single version m. To this end, it displays the di�erences
to the user who has to select the appropriate alternative. A 2-way merge tool
can merely detect di�erences, but it cannot resolve them automatically.

|To reduce the number of decisions to be performed by the user, a 3-way merge tool
(Figure 19c) consults a common baseline b if a di�erence is detected. If a change
has been applied in only one version, this change is incorporated automatically.
Otherwise, a con
ict is detected which can be resolved either manually or auto-
matically (the latter of which is not recommended). Notably, the change-based
system Aide-de-Camp o�ers a 3-way merge tool in addition to raw merging.

Comparing raw merging and 3-way merging, we have to distinguish between
inconsistencies and con
icts:

|In the case of raw merging, some change c is applied in a di�erent context. A
change is a sequence of change operations, say op1 : : : opm. If any opi fails (e.g.,
because it is applied to a non-existing object), there is an inconsistency.

|In addition to inconsistencies, 3-way merging can detect con
icts, i.e., contra-
dictory changes. 3-way merging attempts to combine two sequences of change
operations. A con
ict arises if two operations do not commute (e.g., contradic-
tory changes to the name of a procedure). In the case of raw merging, one change
wins, and the other is overridden.

Merge tools can be characterized by the semantic level at which merging is per-
formed (i.e., their knowledge about the product space):

|Textual merging is applied to text �les [Adams et al. 1986]. Almost all commercial
SCM systems support textual merging [Rigg et al. 1995]. Although we only can
expect an arbitrary text �le as the result of the merge (and e.g. not a legal C
program) and only physical con
icts can be detected, textual merging seems to
yield good results in practice [Leblang 1994]. In particular, it works well when

34 � R. Conradi and B. Westfechtel

small, local changes to large, well-structured programs are combined and changes
have been coordinated beforehand so that semantic con
icts are unlikely to occur.

|Syntactic merging exploits the context-free (or even context-sensitive) syntax of
the versions to be merged. Therefore, it can guarantee a syntactically correct
result and can perform more intelligent merge decisions. However, syntactic
merging has merely been realized in a few research prototypes [Bu�enbarger
1995; Westfechtel 1991].

|Semantic merging takes the semantics of programs into account [Berzins 1994;
Berzins 1995; Binkley et al. 1995; Horwitz et al. 1989]. Semantic merge tools per-
form sophisticated analyses in order to detect con
icts between changes. How-
ever, it is a hard problem to come up with a de�nition of semantic con
ict which
is neither too strong nor too weak (and is decidable). Furthermore, the merge
algorithms which have been developed so far are only applicable to simple pro-
gramming languages (e.g., not C or C++). For these reasons, semantic merge
tools have not (yet?) made their way into practice.

Finally, operation-based merging [Lippe and van Oosterom 1992] comes up with a
general algorithm which does not make any assumptions about the product space.
The algorithm takes two sequences of change operations and combines them into a
single sequence, detecting both inconsistencies and con
icts. However, the applica-
tion of this algorithm is complex because a huge search space of potential merged
operation sequences needs to be considered. Because of its generality, the merge
tool cannot rely on any hints which operation should be appended next and where
con
icting operations are positioned in the input sequences.
Note that merge tools try to detect con
icts in the product space (by detecting

non-commuting operations). Alternatively, con
ict detection can be performed in
the version space to some extent. This approach is followed in the COV system
[Munch 1996], where con�guration rules are used to constrain change combinations.
Con
icting merges can be excluded by constraints of the form c1
c2 (mutual exclu-
sion of c1 and c2). Once such a constraint has been set up, attempts to combine c1
and c2 can be detected as erroneous before performing the actual merge. However,
before c1 and c2 are known to con
ict, it is frequently necessary to combine them
(by raw merging) and test the result.

6. VERSION MODELS IN SCM SYSTEMS

After having characterized version models in general, we now take a look at con-
crete systems. We intend to draw a picture of the SCM landscape by describing
the contributions of a representative selection of in
uential SCM systems. These
descriptions are primarily based on the published scienti�c literature. Although
the survey given below does include commercial systems in addition to research
prototypes, we do not intend to provide a comprehensive overview of SCM systems
available in the commercial marketplace (see [Rigg et al. 1995] for such an overview).
Furthermore, our main goal consists in illustrating di�erent version models rather
than in evaluating the functionalities provided by SCM systems.
The survey given below focuses on the core issues of versioning discussed in Sec-

tions 2{5. Further topics such as system building, cooperation support, workspace
management, and distribution are at best mentioned brie
y. As a consequence,

Version Models for Software Con�guration Management � 35

in
uential systems whose main merits lie in these �elds are not included. For
example, Make [Feldman 1979], Odin [Clemm 1995], and CAPITL [Adams and
Solomon 1995] are concerned with system building, and NSE [Adams et al. 1989]
has contributed to workspace management (hierarchy of workspaces) and coopera-
tion support (optimistic concurrency control).

6.1 Overview

We have selected more than 20 SCM systems which vary widely with respect to
their underlying version models. The evolution graph in Figure 20 illustrates the
evolution of SCM since the early 70's. Each node corresponds to a speci�c system
and brie
y describes its original contribution(s). Incoming edges express the most
important in
uences of previous systems.
Before delving into the details, let us make some global remarks:

|Initially, SCM was supported through isolated tools covering speci�c aspects
(e.g., SCCS [Rochkind 1975] for versioning of source objects). Later on, inte-
grated systems were developed which combined the functionalities of individual
tools into a coherent environment (e.g., DSEE [Leblang and McLean 1985] or
ClearCase [Leblang 1994]).

|The pioneers addressed many problems in an ad hoc manner. Subsequent systems
addressed topics such as intensional versioning in a more systematic and general
way (e.g., compare version selection by checkout options to full-
edged logic-
based approaches such as ICE [Zeller 1995]).

|Many fundamental ideas are rather old. For example, although change-based
versioning has been attracting signi�cant attention only recently, the idea can
at least be traced back to the PIE system (change-based versioning of Smalltalk
programs [Goldstein and Bobrow 1980]) which was already developed in the late
70's.

|While early systems/tools were implemented on top of the �le system, more recent
systems are using database technology to an increasing extent. This is demon-
strated e.g. by the Adele system, which evolved from a �le-based system with an
ad hoc, hard-wired data model [Estublier 1985] into an active, object-oriented
database system supporting historical, logical, and cooperative versioning (revi-
sions, variants, and workspaces, respectively) [Estublier and Casallas 1994].

The evolution graph is traversed in chronological order in Subsection 6.3. Instead
of reading all system descriptions sequentially, the reader may focus on speci�c
systems. Furthermore, the edges of the evolution graph may serve as \hypertext
links".
To ease orientation, we have clustered SCM systems into families such as \version

graphs", \conditional compilation", \change-based versioning", and \programming-
in-the-large" (systems for con�guring modular programs). These families should be
viewed just as examples. Neither are they disjoint (e.g., Asgard supports change-
based versioning on top of version graphs), nor do they cover all SCM systems.

6.2 Taxonomy-Based Classi�cation

In this section, we classify SCM systems according to a taxonomy derived from
Sections 2{5. This taxonomy provides a much more detailed and systematic clas-

36 � R. Conradi and B. Westfechtel

SC
C

S
versioned text files
interleaved deltas

IC
E

SC
M

 based on
feature logic

uniform
 version m

odel

versioning of
Sm

alltalk program
s

P
IE

change-based

D
A

M
O

K
L

E
S

versions of
com

posite objects

uniform
 variant

m
anagem

ent

Shape
A

ide-de-C
am

p

file-based tools
versioning for
change-based

sem
antic versioning

Inscape

system
 fam

ilies
A

dele I

rule-based config.

C
edar

system
m

odeling

G
andalf

M
IL

-based SC
M

for an integrated
progr. environm

ent

for com
posite objects

P
C

L

log. and phys. variants

cond. com
pilation

of C
 program

s
intensional versioning

cond. com
pilation

C
learC

ase
virtual file system
distributed SC

M

C
oM

a
SC

M
 based on

graph rew
riting

P
O

E
M

SC
M

 in term
s of

m
odules

P
-E

dit/M
V

P
E

m
ulti-version

editing

P
C

T
E

com
posite objects

versions of

R
C

S
versioned text files

directed deltas

SIO
deductive database

for SC
M

D
SE

E
com

position
m

odel

C
O

V

versioning for E
E

R
change-based

rules for changes

A
dele II

active O
O

 database
3-dim

ensional vers.
A

sgard
change-based vers.
on version graphs

1990

1995

1985

1980

1975

1970

version graphs

conditional

com
pilation

change-based

versioning

program
m

ing-in-the-large

orthogonal
version m

anagem
ent

V
O

O
D

O
O

3

4

6

7
8

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
9

2
3

2
4

2
0

2
1

2

1

5

1
8

9

2
2

Fig. 20. Evolution graph of SCM systems.

Version Models for Software Con�guration Management � 37

si�cation than the categories introduced in the previous subsection. Furthermore,
we claim that this classi�cation is orthogonal. Indeed, an important contribution
of this paper is to distinguish between di�erent aspects which used to be mingled
together.
For example, according to our de�nition change-based versioning just means that

versions are described in terms of changes relative to some baseline. On the other
hand, the term has other connotations, resulting from the models actually realized
in change-based systems:

|Intensional versioning: As explained in Subsection 3.5, change-based versioning is
not necessarily intensional (see the discussion of change packages). The converse
is also not true (see e.g. the classical composition model, which is state-based).

|Product versioning: Although all change-based systems happen to support global
changes, there is no inherent reason why change-based versioning could not be
applied at the component level. Conversely, there are state-based systems |
e.g., VOODOO [Reichenberger 1994] | which maintain versions at the product
level.

SCM systems are classi�ed in Tables 1 and 2. These tables may be cross-
referenced while reading the system descriptions in the next subsection. For each
system, there is a corresponding row in the table. The columns are organized in
a 3-level hierarchy. The �rst level de�nes categories (\general", \product space",
etc.). Each category serves to group multiple features each of which corresponds to
one dimension of the classi�cation scheme (\environment", \object management",
etc.).
A feature may have values from some enumeration type (e.g., \tool-kit", \language-

based", \structure-oriented"). Each feature is either single- or multi-valued. In the
�rst case, the feature is annotated with
, and its value is indicated by a x sign in
the respective column. In the second case, we use * to annotate the feature and a
+ for each of its values.
Some features are de�ned only partially, i.e., they are not applicable to all SCM

systems. For example, \selection order" is only meaningful for systems based on
AND/OR graphs, and not all systems support intensional versioning. Unde�ned
values are indicated by hatched entries.
The tables are explained brie
y below, ordered by categories.
General. Following [Dart et al. 1987], we distinguish between tool-kit, language-

based, and structure-oriented environments; most SCM systems belong to the �rst
class. For object management of the versioned object base, a �le system or a
database system may be used.
Product space. The domain is speci�c if the SCM system deals with speci�c

types of software objects; otherwise, it is general. All systems classi�ed as speci�c
deal with certain kinds of programs; however, the underlying concepts may still
be fairly general (e.g., conditional compilation). Concerning granularity, there are
some systems which do not deal with the �ne-grained level (e.g., PCTE), and a
few ones which do not consider the coarse-grained level (e.g., the multi-version text
editor MVPE). The latter have unde�ned entries for coarse-grained relationships.
All other systems support composition relationships, but some of them do not take
dependencies into account.

38 � R. Conradi and B. Westfechtel

general
product space

version space
e

n
viro

n
m

e
n

t �
o

b
je

ct
m

a
n

a
g

e
m

e
n

t �
d

o
m

a
in

 �
g

ra
n

u
la

rity *
(co

a
rse

 g
r.)

re
la

tio
n

sh
ip

s *
stru

ctu
re

 *
ve

rsio
n

 se
t *

ve
rsio

n
sp

e
cifica

tio
n

 *
to

o
l

kit
la

n
g

.
b

a
se

d
stru

ct.
o
ri-

e
n

te
d

file
syste

m
d

a
ta

b

a
se

syste
m

sp
e
-

cific
g
e
n
-

e
ra

l
co

a
rse

fin
e

co
m

-
p

o
si-

tio
n

d
e

p
e

n-
d
e
n
-

cie
s

ve
rsio

n
g

ra
p

h
g

rid
e

xte
n-

sio
n

a
l

in
te

n
-

sio
n

a
l

sta
te

-
b

a
se

d
ch

a
n

g
e

-
b

a
se

d
1

cond. com
p.

x

x

x

+

É
É
É
É
É

+

+

+
+

2
S

C
C

S
x

x

x

+
+

+
+

+

+

 3

P
IE

x

x

x

+

+
+

+

+
+

+

+
4

R
C

S
x

x

x

+
+

+
+

+

+
+

 5

G
andalf

x

x
x

+

+
+

+
+

+
+

+
+

6

D
S

E
E

x

x

x
+

+
+

+
+

+

+
+

7

P
 E

dit/M
V

P
E

x

x

x

+

É
É
É
É
É

É
É
É
É
É

+

+

+
+

 8
C

edar

x

x

x

+

+
+

+
+

+
9

A
dele I

x

x

x

+

+

+
+

+
+

+
+

 10

D
A

M
O

K
LE

S

x

x

x

+
+

+
+

+

+

+

11
P

C
T

E
x

x

x

+

+
+

+

+

+

12
S

hape
x

x

x

+
+

+
+

+

+
+

+

13
A

ide de C
am

p
x

x

x

+
+

+
+

+

+
+

+

14
C

O
V

x

x

x
+

+
+

+

+
+

+
+

+
15

S
IO

x
x

x
+

+
+

+
+

+
+

 16
Inscape

x

x

x

+

+
+

+
+

+

+
 17

P
O

E
M

x

x
x

+

+

+
+

+

+

 18

C
oM

a

x

x

x

+
+

+
+

+

+

+

19
C

learC
ase

x

x

x
+

+
+

+
+

+

+
+

20

P
C

L
x

x

x

+

+

+

+
+

+

21
V

O
O

D
O

O
x

x
x

+
+

+
+

+
+

22
A

dele II
x

x

x

+
+

+
+

+
+

+
+

+

23
A

sgard
x

x
x

+
+

+
+

+
+

+
+

24
IC

E
x

x

x
+

+
+

+
+

+
+

+
+

Table 1. Classi�cation of SCM systems (I).

Version Models for Software Con�guration Management � 39

interplay of product and version space
intensional versioning

se
le

ctio
n

 o
rd

e
r

in
 A

N
D

/O
R

 g
ra

p
h

s *
e

xte
rn

a
l g

ra
n

u
la

rity
o

f ve
rsio

n
in

g
 �

(fin
e

–
g

ra
in

e
d

)
d

e
lta

s �
co

m
p

u
ta

tio
n

a
l

p
a

ra
d

ig
m

 �
cla

sse
s o

f
co

n
fig

u
ra

tio
n

 ru
le

s *
co

n
fig

u
ra

to
r *

p
ro

d
u

ct
first

ve
rsio

n
first

in
te

r-
tw

in
e

d
p

ro
d

u
ct

co
m

p
o-

n
e

n
t

to
ta

l
e

m
b

e
d-

d
e

d
d

ire
cte

d
fu

n
ctio

-
n

a
l

ru
le

-
b

a
se

d
co

n
-

stra
in

t
p
re

fe
-

re
n

ce
d

e
fa

u
lt

a
u

to
m

a-
tic

in
te

ra
c-

tive
1

cond. com
p.

É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É

x

x

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

2

S
C

C
S

+

x

x

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

 3
P

IE

É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É

x

x
x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

4

R
C

S
+

x

x

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

 5

G
andalf

+

x

É
É
É
É
É
É
É

É
É
É
É
É
É
É

x

+
+

+
+

6

D
S

E
E

+

x

x

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

7

P
 E

dit/M
V

P
E

É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É

x

x

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

 8

C
edar

+
x

É
É
É
É
É
É
É

É
É
É
É
É
É
É É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

9
A

dele I

+

x

É
É
É
É
É
É
É

É
É
É
É
É
É
É

x

+
+

+
+

+
 10

D
A

M
O

K
LE

S
+

+
+

x
x

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

11
P

C
T

E

+

x
É
É
É
É
É
É
É

É
É
É
É
É
É
É É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

12
S

hape

+

x

x

x

+
+

+

13
A

ide de C
am

p

É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É

x

x

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

14

C
O

V

É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É

x

x

x
+

+
+

+
+

15
S

IO
+

x

É
É
É
É
É
É
É

É
É
É
É
É
É
É

x
+

+
+

16
Inscape

+

x

É
É
É
É
É
É
É

É
É
É
É
É
É
É É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

 17
P

O
E

M

+

x

É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

 18
C

oM
a

+

x

x

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

 19
C

learC
ase

+

x

x

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

20

P
C

L

É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É

x

É
É
É
É
É
É
É

É
É
É
É
É
É
É

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+

+
21

V
O

O
D

O
O

É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É

x
x

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É
É

22
A

dele II
+

+
+

x

x
x

+
+

+
+

+
23

A
sgard

+
x

É
É
É
É
É
É
É

É
É
É
É
É
É
É

x

É
É
É
É
É
É
É
É
É
É

É
É
É
É
É
É
É
É
É
É

+
24

IC
E

É
É
É
É
É
É
É
É
É

x
x

x

+
+

+

+

Table 2. Classi�cation of SCM systems (II).

40 � R. Conradi and B. Westfechtel

Version space. The structure feature refers to the way the version space is
modeled. In some cases (e.g., Gandalf), both version graphs and grids are suitable
for representing the version space. Similarly, extensional and intensional versioning
are non-exclusive (version set). Virtually all systems support extensional version-
ing, i.e., reconstruction of old versions (conditional compilation being a remarkable
exception), but some do not consider intensional versioning. Finally, most SCM
systems are state- rather than change-based (version speci�cation). A few systems
provide base mechanisms for both paradigms (e.g., ICE and COV).
Interplay of product and version space. The selection order (during the

con�guration process) can be applied only to SCM systems based on AND/OR
graphs; in particular, it is not applied to systems derived from conditional compi-
lation. Note that the selection order follows from the topology of AND/OR graphs
which can be de�ned freely in some systems (e.g., DAMOKLES). The external
granularity is classi�ed into product, component, and total versioning. Finally, the
deltas feature refers to the e�cient representation of atomic software objects only,
i.e., sharing at the coarse-grained level is not considered.
Intensional versioning.13 With respect to the underlying computational para-

digm, we distinguish between functional con�gurators (e.g., conditional compila-
tion) and rule-based con�gurators (e.g., DSEE or ClearCase). Classes of con�g-
uration rules refers to the strictness classes constraints, preferences, and defaults
and is applied only if the SCM system distinguishes between di�erent strictness
classes. Finally, all SCM systems supporting intensional versioning (have to) pro-
vide automatic con�gurators. In some systems, the con�gurator may also be used
in interactive mode (e.g., ICE or Adele).

6.3 Descriptions of SCM Systems

In the following, each system is described brie
y in turn. The system descriptions
are not organized according to the tables presented in the previous subsection (pro-
ceeding through the table entries would be rather boring). Instead, we focus on the
speci�c contributions of each system and its relations to other systems.

6.3.1 Conditional compilation. Conditional compilation supports intensional ver-
sioning at the �ne-grained level and has become popular particularly in conjunction
with the C programming language [Kernighan and Ritchie 1978]. Although it has
originally been developed for a speci�c domain, the underlying idea is fairly gen-
eral. The source text is interspersed with preprocessor directives which refer to the
values of preprocessor variables (see Figure 12). Thus, conditional compilation uses
interleaved deltas with visible control expressions. A speci�c source version is con-
structed by the preprocessor by �ltering out all fragments whose control expressions
evaluate to false. Source version construction follows a functional paradigm (no
non-determinism/backtracking). Note that conditional compilation is a low-level
and general mechanism on top of which di�erent version models can be implemented
(both state- and change-based ones).

13Note that merge tools (Subsection 5.5) were not taken into account here.

Version Models for Software Con�guration Management � 41

m2m1

c

m3

c

m2

m3

c

c

m1 m2

resulting configuration

layer C

layer B

layer A

context

search direction

Fig. 21. Layers and contexts in PIE.

6.3.2 SCCS. SCCS [Rochkind 1975] manages versions of text �les14. Versions are
arranged in a tree. To work on a version, it is physically copied into a workspace
(directory). When the user is done with his (her) changes, the modi�ed version is
checked back into the SCCS repository. SCCS uses interleaved deltas to store ver-
sions in a space-e�cient manner. However, in contrast to conditional compilation,
this data structure is hidden. Thus, there are interleaved deltas at two levels when
a C �le with preprocessor directives is stored under SCCS control. Although SCCS
primarily supports state-based versioning, it does provide some low-level commands
for controlling delta applications (and even �xing deltas) in a change-based fashion.

6.3.3 PIE. An early approach to change-based versioning has been developed
at XEROX PARC [Goldstein and Bobrow 1980]. PIE manages con�gurations of
Smalltalk programs which are internally represented by graph-like data structures.
Changes are considered global and may a�ect multiple components of a software
product (product versioning). Each change is placed in a layer. Layers are ag-
gregated into contexts which act as search paths through the layers15. This is
illustrated in Figure 21, where layers contain di�erent implementations of methods
m1, m2, m3 exported by some class c.
When constructing a context, there are two degrees of freedom: First, each layer

may either be included or omitted; second, the included layers can be arranged in
any sequential order. PIE provides relationships to document conditions for the
combination of layers. For example, A depends on B implies that each context
containing A should include B, as well. However, PIE does not enforce any con-
straints. Rather, the documented relationships are merely used to warn the user of
possible inconsistencies.

6.3.4 RCS. RCS [Tichy 1982b; Tichy 1985] di�ers from its predecessor SCCS in
several ways. RCS stores versions of text �les using directed deltas. The latest revi-

14Binaries can also be stored, but delta storage is not supported.
15DaSC [MacKay 1995] is based on a similar approach.

42 � R. Conradi and B. Westfechtel

system model

configurator

configuration

thread

bound

configuration

thread

builder

source

objects

source object

repository

version

identifiers

executable

objects

derived

derived

object cache

Fig. 22. DSEE.

sion on the main trunk can be accessed directly (and therefore e�ciently), while all
other revisions are reconstructed by applying backward and forward deltas. Fur-
thermore, RCS provides a set of built-in attributes, including e.g. version status and
symbolic name. In particular, symbolic names may be attached to all components
belonging to a consistent con�guration. In this way, symbolic names de�ne threads
through the version graphs and make reconstruction of con�gurations easier (see
Figure 10). However, support for intensional versioning is rather limited (options
of checkout commands referring to version attributes); in particular, the product
structure is selected �rst so that structural versioning cannot be modeled.

6.3.5 Gandalf. The Gandalf project [Habermann and Notkin 1986] was dedicated
to the generation of structure-oriented software development environments which
are based on abstract syntax trees. Gandalf C is an environment instance which
supports C at the programming-in-the-small level. Programming-in-the-large and
version control are handled by the SVCE subsystem [Kaiser and Habermann 1983]
which is based on the Intercol module interconnection language [Tichy 1979]. Each
module has a unique and immutable interface and potentially multiple realization
variants each of which evolves into a sequence of revisions. Thus, revisions and
variants are separated rather than intermixed (SCCS, RCS). A realization of an
interface can either be provided by writing C code, or it can be composed of other
modules which jointly provide the resources listed in the export interface (compo-
sitions). Gandalf enforces syntactic consistency of all interfaces and realizations
which are deposited into the public database. Therefore, it can guarantee syntactic
consistency of all constructed con�gurations.
Gandalf supports intensional construction of source con�gurations through a

con�gurator which performs intertwined AND/OR selections. The con�gurator
is driven by simple con�guration rules which are classi�ed into constraints, prefer-
ences, and defaults. Constraints and preferences are attached to imports or com-
positions and select speci�c variants/revisions. If no selection rules are given, the
standard variant/revision is selected by default.

6.3.6 DSEE. DSEE [Leblang andMcLean 1985; Leblang and Chase 1984; Leblang
et al. 1988] integrates functions which were previously provided independently by

Version Models for Software Con�guration Management � 43

db

dbase

Oracle

Informix

Informix

...

ws

Windows

X11

SunViews

X11

...

os

DOS

Unix

Unix
Unix

...

os

Unix

db

*

ws

*

os

Unix

db

Informix

ws

X11

versions edit set

view

Fig. 23. MVPE.

tools such as Make and SCCS/RCS. Furthermore, DSEE supports rule-based con-
struction of source con�gurations and improves system building by maintaining a
cache of derived objects, using more accurate di�erence predicates than Make and
parallelizing builds over a network of workstations.
Source code versions are arranged in version graphs as shown in Figure 4. A

con�guration is speci�ed by a system model and a thread through the version
graphs of components (Figure 22). The system model describes a software system
in terms of source objects and their relationships; furthermore, it also contains build
rules. Versions are not referenced in the system model. Rather, they are selected
by con�guration rules in the con�guration thread. Rules are ordered sequentially
according to their priorities. The DSEE con�gurator selects the product structure
�rst16, which is described in the system model, and adds version bindings, resulting
in a bound con�guration thread which is used for system building.

6.3.7 P-Edit/MVPE. P-Edit [Kruskal 1984] and its successor MVPE [Sarnak
et al. 1988] support simultaneous editing of multiple versions of a text �le. A text
�le is composed of fragments (sequences of words). As in conditional compilation,
control expressions are used to determine the visibilities of fragments. Unlike condi-
tional compilation, P-Edit and MVPE hide these control expressions when the text
�le is displayed. Furthermore, control expressions are maintained automatically. A
write �lter (edit set) controls which versions will be a�ected by a change, a read
�lter (view) selects a single version to be displayed to the user. The version space
is modeled as a grid.
In Figure 23, the table on the left-hand side lists all versions determined by the

attributes os, ws, and db. A view corresponds to a single row of the table, and an
edit set is speci�ed in a query-by-example style with the help of regular expressions
(e.g., the edit set in Figure 23 denotes all Unix versions). When displaying a view,
the editor highlights fragments belonging to all versions in the edit set (a change
should be con�ned to these fragments).

6.3.8 Cedar. The Cedar environment [Teitelman 1984] supports programming in
Cedar, a modular language which has been developed at XEROX PARC. Mod-
ules of Cedar programs contain generic references to other modules. Notably, a
client module may use multiple realization versions of an imported interface simul-

16However, it should be noted that the system model itself is version controlled. Thus, a version
of the system model is selected in an initial step not shown in Figure 22.

44 � R. Conradi and B. Westfechtel

taneously. The Cedar System Modeler [Lampson and Schmidt 1983b; Lampson
and Schmidt 1983a] takes care of compiling and linking Cedar programs. A system
model in Cedar di�ers considerably from what is also called system model in DSEE.
In particular, a Cedar system model binds generic references to speci�c versions.
System models describe con�guration versions in terms of immutable source �les
and therefore roughly correspond to bound con�guration threads in DSEE (exten-
sional versioning, \version �rst" selection).

6.3.9 Adele I. In contrast to Gandalf, Adele I [Estublier 1985; Belkhatir and Es-
tublier 1986] was developed in the mid 80's for tool-kit environments (a posteriori
integration of �le-based tools). Adele generalizes Gandalf's approach to con�guring
modular programs in several ways. While each Gandalf module has a unique in-
terface, an Adele family may have multiple versions of its interface. Each interface
version and its realization variants and revisions correspond to a module in Gandalf.
Like Gandalf, Adele explicitly distinguishes three di�erent classes of rules, namely
constraints, preferences, and defaults. However, the con�guration rules are more
sophisticated and allow for attribute-based version selection. Using these rules,
short intensional descriptions can be given for large and complex con�gurations.

6.3.10 DAMOKLES. DAMOKLES [Dittrich et al. 1986; Gotthard 1988] was
among the �rst systems applying database technology to SCM. DAMOKLES is
based on an EER data model featuring composite objects, structural inheritance
at both type and instance level, versioning, and database hierarchies. Composite
objects may overlap at the instance level (acyclic graphs), and they may be de�ned
recursively at the type level. Objects may carry both short and long attributes,
and the smallest granularity (leaves of the composition hierarchy) may be chosen
as desired (e.g., coarse-grained objects such as modules or �ne-grained objects such
as statements).
The version model, which is built into the data model rather than de�ned on top

of it, is partly in
uenced by SCCS/RCS. Versions of one object are arranged in a
version graph which may be de�ned as a sequence, tree, or DAG in the database
schema (see also Figure 3). Any object type may be de�ned as versioned (i.e.,
total versioning of objects at all levels of the composition hierarchy). Versions
may even have versions themselves (recursive versioning). Any structure of an
AND/OR graph may be represented (product �rst, version �rst, intertwined). A
version inherits from its generic object all attributes and components (delegation).

6.3.11 PCTE. PCTE [Wakeman and Jowett 1993] is a standard for open repos-
itories which provides an interface for implementing software engineering tools.
PCTE is based on a data model which combines concepts from the EER model
and the Unix �le system. Each object may have at most one long attribute for
which Unix-like �le operations are provided. Links between objects are classi�ed
into prede�ned categories, including composition links for representing composite
objects.
PCTE o�ers basic versioning facilities [Oquendo et al. 1989]. Unlike DAMOK-

LES, the version model is de�ned on top of the data model. Versions of composite
objects represent bound con�gurations (\version �rst" selection). A new version
is created by recursively copying the whole composition hierarchy and establishing

Version Models for Software Con�guration Management � 45

successor relationships between all components. Incoming and outgoing links are
copied selectively (depending on link categories and cardinalities).

6.3.12 Shape. Shape [Lampen and Mahler 1988; Mahler and Lampen 1988] is
an SCM system which combines ideas drawn from Make, DSEE, and RCS. An at-
tributed �le system stores versioned �les using directed deltas [Obst 1987]. A Shape
�le consists of both version selection rules and build rules and roughly corresponds
to a Make �le plus a DSEE con�guration thread. Derived objects are stored in a
cache.
The original contribution of Shape lies in its uniform variant management [Mahler

1994]. Variant attributes are used in version selection rules. Furthermore, a set of
bindings is attached to each variant. Each binding associates the name of an at-
tribute with a value. Bindings control in which order directories are searched for
source objects (variant segregation), which set of �les is passed to a compiler or
linker (structural variation), which options are passed to a preprocessor (single-
source variation, conditional compilation), and which
ags are passed to a compiler
or linker (derivation variations). In this way, Shape integrates a blend of heteroge-
neous mechanisms which were previously handled separately from each other.

6.3.13 Aide-de-Camp. Aide-de-Camp [Cronk 1992; Software Maintenance and
Development Systems 1990] describes versions of products in terms of change sets
relative to a baseline. A change set describes logically related, global changes which
may a�ect multiple �les. The �nest grain of change is a text line. In contrast to
layers in PIE, change sets are totally ordered according to their creation times. If
change set c1 was created before c2, c1 will be applied before c2 when both change
sets are included in some product version. In the case of overlaps, c2 overrides the
changes in c1.
Each change set may be viewed as a switch which can either be turned on or o�

(see Figure 6). Aide-de-Camp detects inconsistencies when reconstructing a product
version from a baseline and a sequence of change sets (e.g., modi�cations to non-
existing text lines). Furthermore, Aide-de-Camp provides a 3-way merge tool for
con
ict detection. Unlike PIE, Aide-de-Camp does not support relationships which
can be used to detect inconsistent combinations of change sets.

6.3.14 COV. COV [Lie et al. 1989; Munch et al. 1993] denotes the version model
underlying the SCM subsystem of the EPOS software engineering environment
[Conradi et al. 1994]. EPOS is based on an EER data model, where �les are repre-
sented by entities with long attributes. A versioned database consists of fragments
corresponding e.g. to groups of attributes or sequences of text lines. Similarly
to conditional compilation, each fragment is annotated with a control expression
called visibility. Visibilities refer to global, boolean options which constitute an n-
dimensional version grid. Like MVPE, COV distinguishes between read and write
�lters which are called ambition and choice, respectively. A choice is a complete
set of option bindings (single version). An ambition contains a subset of the option
bindings of the choice and corresponds to some region of the version space. The
ambition de�nes the versions which will be a�ected by a change, and the choice
determines the version presented to the user.
COV stands for change-oriented versioning, which suggests a speci�c interpreta-

46 � R. Conradi and B. Westfechtel

tion of options: Each option corresponds to a global change which can be either
included or omitted when con�guring a product version. In fact, both state- and
change-based version models can be expressed with options [Conradi and Westfech-
tel 1997]. For example, version graphs may be represented with the help of con�g-
uration rules [Gulla et al. 1991] which constrain delta application (e.g., implication
for revision chains and mutual exclusion for branches). In particular, these con�g-
uration rules distinguish COV from change-based systems such as Aide-de-Camp
or PIE which provide little support for excluding inconsistent change combinations
[Conradi and Westfechtel 1996].
In COV, con�guration rules are not only used passively for detecting inconsistent

selections. In [Munch 1996], a version selection tool is presented which actively
supports the user in setting up consistent ambitions and choices by automatically
deducing option bindings from con�guration rules.

6.3.15 SIO. SIO [Bernard et al. 1987; Lavency and Vanhoedenaghe 1988] ex-
tends relational database technology with deductive rules for version selection. In
SIO, a software product consists of a set of modules each of which is represented
by a relation. Each tuple of a relation corresponds to a single version which is
characterized by a set of attributes used for version selection.
Con�gurations are described in an SQL-like manner. Con�guration rules in

queries are classi�ed into constraints and preferences, the latter of which can be
ordered sequentially. Preferences act as �lters which are only applied if the result-
ing set of versions is not empty.
In addition, the rule base contains constraints which are speci�ed by compatibil-

ity rules. A compatibility rule is an assertion in a restricted �rst order predicate
calculus. The conditions under which two versions from di�erent modules are com-
patible are stated in terms of version attributes. Due to the restricted form of
constraints, SIO can e�ciently check for contradictions between them.

6.3.16 Inscape. Inscape [Perry 1989] goes beyond Gandalf and Adele by address-
ing semantic rather than syntactic consistency. Operations exported by a module
are annotated with Hoare-like pre- and postconditions. The Inscape environment
assists the user in constructing semantically consistent programs in various ways
(inference of pre- and postconditions from the implementation of an operation,
detection of unsatis�ed preconditions at call sites of operations, etc.).
Version control [Perry 1987] is performed at a semantic level and addresses sub-

stitutability of operation versions. To this end, Inscape de�nes (and checks) various
compatibility predicates (between versions v1 and v2) which ensure either global
or local substitutability. In the global case, v1 can be substituted for v2 without
having to inspect the call sites. In contrast, local substitutability refers to speci�c
call sites.

6.3.17 POEM. POEM [Lin and Reiss 1995; Lin and Reiss 1996] is an environ-
ment for programming in C/C++ which strives for simplifying SCM at the user
interface. To this end, SCM is provided in terms of modules, i.e., SCM matches
the logical abstractions made by programmers. All components of a module (in-
cluding source code, object code, and documentation) are aggregated into a single
object called a software unit. Software units are connected by relationships which

Version Models for Software Con�guration Management � 47

represent dependencies between source objects (see Figure 1d).

For each software unit, a set of operations is provided for editing, building, and
version control. Versions of one software unit are arranged in a version tree. A
version of a software unit uniquely determines all versions of units on which it
depends (\version �rst" selection, see Figure 8b).

6.3.18 CoMa. CoMa [Westfechtel 1994; Westfechtel 1996] manages con�gura-
tions of engineering design documents and has been applied to both software en-
gineering and mechanical engineering. The CoMa model integrates composition
hierarchies, dependencies, and versions into a coherent framework based on a small
set of concepts. Con�gurations are versioned objects whose components are con-
nected by dependencies. Version graphs are maintained for both documents and
con�gurations.

CoMa is based on attributed graphs. The underlying model was de�ned by a
programmed graph rewriting system using the PROGRES speci�cation language
[Sch�urr et al. 1995]. At the implementation level, the database system GRAS
[Kiesel et al. 1995] is used which o�ers primitives for version control (graph deltas)
but does not introduce a version model (this is done on top of the data model).

Finally, for software engineering applications a structure-oriented merge tool
[Westfechtel 1991] provides for 3-way merging of versions of software documents
(e.g., requirements de�nitions, software architectures, module implementations)
which are internally represented as abstract syntax graphs. The merge tool pre-
serves context-free correctness and detects certain kinds of context-sensitive con-

icts by analyzing bindings of identi�ers to their declarations.

6.3.19 ClearCase. ClearCase [Leblang 1994] di�ers from its predecessor DSEE in
several aspects. While DSEE only versions �les, ClearCase manages versions of di-
rectories as well. All kinds of versioned objects are uniformly denoted as elements.
The versioned �le system may be accessed through a single-version view (con�gu-
ration thread) which is de�ned by a con�guration description. The view is a �lter
which provides tools with the illusion of working in a single-version environment
(virtual �le system).

In contrast to DSEE, generic references to elements are only bound dynamically
when an element is accessed (there is no pre-computed version map). Furthermore,
in ClearCase the system model is accessed in the same way as any other element
(while in DSEE it is used for constructing a bound con�guration thread, see also
Figure 22).

Con�guration rules are similar to those o�ered by DSEE. They are used to es-
tablish workspaces for developers and to control change propagation between these
workspaces. A stable work environment may be set up by static rules (referring
to speci�c versions). Dynamic rules are used to see recent changes performed by
other developers.

To support distributed SCM, ClearCase assigns ownerships to branches in version
graphs [Allen et al. 1995]. Each site appends revisions to its allocated branch. After
having imported new revisions from another site, 3-way merging is used to combine
local and remote changes.

48 � R. Conradi and B. Westfechtel

6.3.20 PCL. PCL [Tryggeseth et al. 1995] is the con�guration language devel-
oped in the PROTEUS project. PCL is in
uenced by conditional compilation and
module interconnection languages (in particular SySL [Sommerville and Thomson
1989]). PCL is designed to manage di�erent types of variants at the coarse-grained
level. Variation of the logical structure refers to the decomposition of a system into
logical components (an example was given in Figure 12b). Variation of the phys-
ical structure means that a logical component may be mapped in di�erent ways
into physical components (�les residing in directories). Finally, variation of system
building occurs when a source object is compiled in di�erent ways with di�erent
compilation switches.
All kinds of variations are controlled with a single mechanism, namely attributes.

In a con�guration description, some of these attributes are assigned speci�c values.
The con�guration process then proceeds top-down, resolving logical and physical
variation by means of attributes (functional con�gurator). When all physical com-
ponents have been determined, a Make �le is generated as a �nal step.

6.3.21 VOODOO. VOODOO [Reichenberger 1994; Reichenberger 1995] is a �le-
based SCM system which supports orthogonal version management. Similarly to
Gandalf and Adele, revisions and variants are separated from each other rather
than intermixed in version graphs. However, VOODOO inverts the selection order
and selects the revision �rst. Furthermore, versioning is applied at the product
level rather than the component level. Through a carefully designed user interface,
VOODOO tries to make version management as simple as possible.
For a given revision, software objects are organized hierarchically in a project tree

whose leaves represent versioned components. A set of globally de�ned variants is
associated to each version. Based on the 3-dimensional model shown in Figure 11,
VOODOO provides di�erent views on a software product. For example, when the
user �rst selects a product revision and then a variant, a project tree is displayed
which is purged from all components not belonging to this variant.

6.3.22 Adele II. Adele II, the current version of Adele [Estublier and Casallas
1994; Estublier and Casallas 1995; Estublier 1996], di�ers considerably from the
initial version which was described earlier in this subsection. In particular, the
data modeling capabilities have been improved and generalized. Now, Adele may
be viewed as an active, object-oriented database system with general facilities for
composite objects, versioning, workspaces, and process management. On top of
these, dedicated SCM tools may be built (e.g., the Adele con�gurator described
earlier).
Adele distinguishes between three orthogonal dimensions of versioning [Estublier

and Casallas 1995]. Historical versioning refers to the time dimension and intro-
duces temporal database support. A versioned object evolves linearly along the
time axis. Attributes are divided into three classes: common attributes shared by
all versions, version-speci�c, mutable attributes, and version-speci�c, immutable
attributes (see also Figure 13). Updates to immutable attributes result in creat-
ing a new version. Logical versioning (variants) is supported through set-valued
attributes (e.g., a module may have multiple realization variants co-existing at a
given time). Cooperative versioning is realized with the help of typed workspaces
[Estublier 1996]. A workspace type de�nes the types of objects and relationships it

Version Models for Software Con�guration Management � 49

contains, as well as propagation policies for exchange of versions between neighbors
(both vertically and horizontally).

6.3.23 Asgard. Asgard [Micallef and Clemm 1996], which has been realized on
top of ClearCase, provides change-based versioning on top of version graphs. Thus,
it inverts the approach followed by COV, where version graphs may be introduced
on top of change-based versioning by de�ning constraints on the combination of
changes. In Asgard, these constraints are derived from the version graphs of com-
ponents.
Each component version is tagged with the name of the activity (Asgard's term for

change) which created it. A workspace is de�ned by a baseline and a set of activities
A one of which is designated as the current activity. If a version was created by
some activity a 2 A, all versions on the path from the baseline must have been
created by some other activity a0 2 A (complete selection). Furthermore, there
must be a unique maximal element (unique selection). In the case of a selection
error, the user must either add further activities to A or apply a merge tool to
resolve an ambiguity.

6.3.24 ICE. Like COV, ICE [Zeller and Snelting 1995] is derived from conditional
compilation and represents a versioned object base as a set of fragments which
are tagged with control expressions. COV and ICE di�er with respect to their
underlying logic calculus. ICE is based on feature logic: A feature corresponds to
an attribute whose value is de�ned by a feature term. For example, [ws : X11]

means that the ws feature has the value X11. In general, a feature term denotes a
set of potential values and may be composed by a wide range of operators such as
uni�cation, subsumption, negation, etc. [Zeller 1996]. Probably, the most important
one is uni�cation which is used to compose con�gurations (the feature terms of
component versions are uni�ed). A con�guration is inconsistent if uni�cation fails
(empty intersection of value sets as e.g. in [ws : X11] u [ws : Windows]).
Feature logic may be employed as a base mechanism on top of which di�erent

version models may be realized (uniform version model). In [Zeller 1995; Zeller
and Snelting 1997], feature logic is used to realize the checkout/checkin model,
the composition model, the long transaction model, and the change set model as
introduced by Feiler ([Feiler 1991a], see also Subsection 7.1).
Like COV, ICE supports multi-version editing. However, there is no distinction

between read and write �lters. Rather, ICE presents all versions to be edited to
the user, using the syntax of conditional compilation. To this end, feature terms
are mapped onto preprocessor directives [Zeller 1996]. Partial evaluation is used
to remove all fragments whose feature terms cannot be uni�ed with the submitted
query. Like ClearCase, ICE supports a virtual �le system to enable smooth tool
integration.

7. RELATED WORK

We have given a comprehensive description of the current state-of-the-art of ver-
sion models for SCM. We have mainly focused on the organization of the version
space and the
exible construction of consistent con�gurations from intensional
speci�cations. Furthermore, we have described and classi�ed a signi�cant num-
ber of representative SCM systems. In Subsection 7.1, we discuss related surveys

50 � R. Conradi and B. Westfechtel

which were conducted earlier (1988{1991). Subsequently, we point out how the
work presented here is related to other disciplines.

7.1 Related Work on Version Models

Two overviews were presented in 1988 at the �rst SCM workshop [Winkler 1988],
which has launched a (still ongoing) series of follow-ups [Tichy 1989; Feiler 1991b;
Feldman 1993; Estublier 1995; Sommerville 1996; Conradi 1997]. Tichy's paper
[Tichy 1988] introduces basic notions such as software object, source and derived
object, etc., and discusses version graphs, system building, and version selection
based on AND/OR graphs. Furthermore, the paper attempts to unify the terminol-
ogy in the SCM �eld by means of a glossary. Estublier [Estublier 1988] complements
Tichy's presentation by focusing on the construction of consistent con�gurations.
In combination, these papers re
ect the state-of-the-art as of 1988.
The Software Engineering Institute (SEI) has published several recognized papers

which review and survey the state-of-the-art in SCM [Brown et al. 1991; Dart 1991;
Dart 1992b]. Perhaps, the most in
uential of these was written in 1991 by Feiler
[Feiler 1991a], who classi�ed the models underlying SCM systems into four cate-
gories. These categories correspond to di�erent ways in which a user interacts with
an SCM system. In the checkout/checkin model, component versions are transferred
individually between repository and workspace. The composition model supports
version selection through rules and assists the user in selecting consistent combina-
tions of component versions (\product �rst"). In the long transaction model, a user
connects to a long transaction and operates on a con�guration version (\version
�rst"). Finally, in the change set model a con�guration is described in terms of
change sets each of which aggregates all modi�cations performed in response to
some change request.
The classi�cation proposed by Feiler helps in understanding di�erent paradigms

underlying SCM systems. Furthermore, the models are evaluated by discussing
their merits and shortcomings. Unfortunately, the classi�cation is not orthogonal.
The composition model and the checkout/checkin model are no alternatives; rather,
the former is built on top of the latter. Furthermore, long transactions can be used
in combination with any approach to specifying a con�guration.
In 1990, Katz [Katz 1990] surveyed version models for engineering databases.

Katz primarily considers electrical and mechanical engineering (CAD) and only
mentions a few software engineering approaches. Although both domains have
evolved nearly independently for a long time, many parallels do exist [Dart 1992a].
Katz introduces the following concepts: organizing the version set (histories), dy-
namic con�guration mechanisms (binding of generic references), hierarchical com-
positions (versions of composite objects), version-grouping mechanisms (to repre-
sent variants), instances vs. de�nitions (instances of component versions may have
properties which depend on the respective contexts in con�gurations), change noti�-
cation and propagation (when and where to propagate changes), and object sharing
mechanisms (workspaces).
In several aspects, our view of version models goes beyond the work presented

by Katz. His paper focuses on approaches which are based on version graphs and
are restricted to extensional versioning at the component level. Intensional version-
ing is only provided at the con�guration level, resulting in the composition model

Version Models for Software Con�guration Management � 51

introduced by Feiler. As we have shown, there are radically di�erent approaches
such as e.g. conditional compilation which are not based on version graphs at all.
Furthermore, Katz primarily discusses state-based versioning. In contrast, this pa-
per covers change-based versioning as well, and it investigates the relations between
these complementary approaches. Finally, con�guration rules and the consistency
problems of intensional versioning are only discussed brie
y by Katz.

7.2 Related Disciplines

Version management is related to many other disciplines of computer science. In
the following, these relations are described brie
y. A major challenge of future
research consists in clarifying the relations to these disciplines.
Temporal databases [Tansel et al. 1993; Snodgrass 1992] record the evolution

history of data such that previous states can be retrieved in addition to the current
state. Temporal databases focus solely on the time dimension and cover neither
variants nor change-based versioning. Furthermore, they often distinguish between
valid time (time in the real world) and transaction time (time of recording a fact
in the database). This distinction is not relevant for SCM because software objects
do not represent real-world objects existing independently of the database.
Di�erent approaches have been developed to accommodate changes to the database

schema. In the case of schema evolution, only the current version of the schema is
valid, and all data must be converted (in lazy or eager mode) in order to maintain
the consistency of the database. In contrast, schema versioning [Roddick 1995]
makes it possible to view the data under di�erent versions of the schema. In SCM
systems, versioning of the schema (and other meta data such as con�guration rules)
is rarely considered seriously. On the other hand, schema versioning often does not
take the versioning of instance data into account.
Deductive databases [Das 1992; Ramamohanarao and Harland 1994; Ramakr-

ishnan and Ullman 1995] provide for persistent storage of facts and rules and are
usually based on a Prolog-like data model. Deductive capabilities are urgently
needed for intensional versioning. On the other hand, deductive databases have
been employed only rarely in SCM [Zeller 1995; Bernard et al. 1987; Lavency and
Vanhoedenaghe 1988]. Rather, many SCM systems incorporate home-grown de-
ductive components which have been developed in an ad hoc manner.
It has been recognized for a long time that the ACID principle cannot be trans-

ferred from short to long transactions [Barghouti and Kaiser 1991; Kaiser 1995;
Feiler 1991a]. Rather, pre-commit cooperation is required in order to coordinate
long-lasting development and maintenance tasks. Customizable policies have been
developed to control cooperation. Many approaches to long transactions do not
take versioning into account [Barghouti and Kaiser 1991]. This is a severe restric-
tion since versions play a crucial role in cooperation control [Estublier and Casallas
1995]. So far, only a few SCM systems support long transactions [Conradi and
Malm 1991; Godart et al. 1995]. Many others merely provide workspaces and
mechanisms for controlling change propagation between them [Estublier 1996].
Software process modeling [Finkelstein et al. 1994; Curtis et al. 1992; Rombach

and Verlage 1995] is concerned with the de�nition, analysis, and enactment of mod-
els of real-world software processes. Many di�erent paradigms have been applied
to process modeling [Conradi et al. 1991], including active databases [Estublier and

52 � R. Conradi and B. Westfechtel

Casallas 1994], rules [Kaiser et al. 1988; Peuschel and Sch�afer 1992], nets [Deiters
and Gruhn 1990; Bandinelli et al. 1993; Jaccheri and Conradi 1993; Heimann et al.
1996], imperative programming [Sutton et al. 1995], and hybrids of these. In order
to integrate SCM and process modeling, functional overlap has to be considered
(e.g., between build tools and rule-based process engines such as Marvel [Kaiser
et al. 1988]). Furthermore, the de�nition of \product space" has to be widened and
must cover process models as well. Finally, dynamic interactions between prod-
uct and process need to be taken into account (e.g., replanning of task nets after
changes to the product structure [Liu and Conradi 1993]).
Tool integration [Wasserman 1990] is provided by SCM systems through workspa-

ces which hide versioning from the tools. Workspaces can be separated physically
from the versioned database [Rochkind 1975], or they are realized as updatable
database views (virtual workspaces, e.g., virtual �le systems [Leblang 1994; Fowler
et al. 1994]). Current SCM systems focus on integration of �le-based tools and o�er
poor support for integrating tools operating on databases (e.g., CASE tools [Wall-
nau 1992]). The problem of integrating heterogeneous database systems without
sacri�cing their autonomy is addressed by federated database systems [Sheth and
Larson 1990] and data warehouses [Hammer et al. 1995]. Furthermore, di�erent
kinds of platforms or frameworks o�er plug-in interfaces for tool integration, e.g.,
broadcast message servers [Reiss 1990] and object request brokers [Soley and Kent
1995]. Future generations of SCM systems need to interface with these frameworks.
Current SCM systems are severely limited with respect to managing dependen-

cies between software objects. First, they are mainly concerned with dependencies
between source code modules rather than with dependencies between any kinds of
software objects produced in the software life cycle. Second, they are not capable
of representing �ne-grained dependencies, which is crucial to provide for detailed
traceability throughout the whole lifecycle. These problems can partly be addressed
by applying the concepts of hypertext systems [Conklin 1987] to the software engi-
neering domain.
The emerging discipline of software architectures [Shaw and Garlan 1996] stresses

the importance of a high-level description of software products above the source
code level. The software architecture acts as a central document for impact analysis,
planning of development and maintenance activities, division of labor, understand-
ing the interfaces between di�erent components, etc. [Nagl 1990]. SCM may bene�t
from software architectures in two ways. First, SCM systems primarily focus on
source code and represent the product structure by rather low-level system models
which are mainly used to drive system building. Architecture-oriented SCM will
improve the software process through a high-level product description. Second, the
architecture of the SCM system is a major research challenge as well. In order to
design an appropriate architecture, a clear understanding of the relations between
an SCM system and other software components (e.g., process management systems,
broadcast message servers, object request brokers) needs to be developed.

8. CONCLUSION

Over the past 20 years, many approaches to versioning have been developed. Now,
we have gained a su�cient level of understanding to classify these approaches.
Initial attempts in developing a uniform model have been undertaken [Zeller 1995;

Version Models for Software Con�guration Management � 53

Zeller and Snelting 1997]. Furthermore, the recent evolution of SCM systems shows
that their underlying version models converge to an increasing extent. For example,
change-based versioning has been realized on top of version graphs and vice versa.
Based on the material presented in this paper, we believe that a version model

can be developed which integrates extensional and intensional versioning, state-
based and change-based versioning, revisions and variants, construction of source
and derived versions, as well as workspaces and long transactions into a coherent
framework [Conradi and Westfechtel 1997]. This framework is not expected to
provide \the" model; rather, it must be customizable to suit the needs of a speci�c
application.
In the future, we expect that more and more SCM systems will be built with

the help of database technology. Having gained a better understanding of version
models, versioning can be pulled out of SCM systems and moved into database
systems. In particular, intensional versioning will bene�t from the powerful facilities
of an underlying deductive database system.

ACKNOWLEDGMENTS

Many thanks go to the EPOS team in Trondheim and to the IPSEN team in Aachen.
Furthermore, we would like to acknowledge the competent and comprehensive com-
ments of the unknown reviewers. Finally, the references were partly prepared using
the bibliography of Hal Render, University of Colorado at Boulder.

REFERENCES

Adams, E., Gramlich, W., Muchnick, S., and Tirfing, S. 1986. SunPro: Engineering
a practical program development environment. In R. Conradi, T. M. Didriksen, and

D. H. Wanvik Eds., Proceedings of the International Workshop on Advanced Programming
Environments, LNCS 244 (Trondheim, June 1986), pp. 86{96. Springer-Verlag.

Adams, E. W., Honda, M., and Miller, T. C. 1989. Object management in a CASE
environment. In Proceedings of the 11th International Conference on Software Engineering
(Pittsburgh, Pennsylvania, May 1989), pp. 154{163. IEEE Computer Society Press.

Adams, P. and Solomon, M. 1995. An overview of the CAPITL software development
environment. In J. Estublier Ed., Software Con�guration Management: Selected Papers
SCM-4 and SCM-5 , LNCS 1005 (Seattle, Washington, April 1995), pp. 1{34. Springer-
Verlag.

Allen, L., Fernandez, G., Kane, K., Leblang, D., Minard, D., and Posner, J. 1995.
ClearCase MultiSite: Supporting geographically-distributed software development. In
J. Estublier Ed., Software Con�guration Management: Selected Papers SCM-4 and SCM-
5 , LNCS 1005 (Seattle, Washington, April 1995), pp. 194{214. Springer-Verlag.

Babich, W. A. 1986. Software Con�guration Management. Addison-Wesley, Reading, Mas-
sachusetts.

Bandinelli, S. C., Fuggetta, A., and Ghezzi, C. 1993. Software process model evolution
in the SPADE environment. Transactions on Software Engineering 19, 12 (Dec.), 1128{
1144.

Barghouti, N. S. and Kaiser, G. E. 1991. Concurrency control in advanced database
applications. ACM Computing Surveys 23, 3 (Sept.), 269{317.

Belkhatir, N. and Estublier, J. 1986. Experience with a data base of programs. In Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, ACM SIGPLAN Notices 22(1) (Palo Alto, Califor-
nia, Dec. 1986), pp. 84{91.

Bernard, Y., Lacroix, M., Lavency, P., and Vanhoedenaghe, M. 1987. Con�guration

54 � R. Conradi and B. Westfechtel

management in an open environment. In G. Goos and J. Hartmanis Eds., Proceedings

of the 1st European Software Engineering Conference, LNCS 289 (Stra�burg, Sept. 1987),
pp. 35{43. Springer-Verlag.

Bersoff, E. H., Henderson, V. D., and Siegel, S. G. 1980. Software Con�guration
Management: An Investment in Product Integrity. Prentice-Hall, Englewood Cli�s, New
Jersey.

Berzins, V. 1994. Software merge: Semantics of combining changes to programs. ACM
Transactions on Programming Languages and Systems 16, 6 (Nov.), 1875{1903.

Berzins, V. Ed. 1995. Software Merging and Slicing. IEEE Computer Society Press, Los
Alamitos, California.

Binkley, D., Horwitz, S., and Reps, T. 1995. Program integration for languages with
procedure calls. ACM Transactions on Software Engineering and Methodology 4, 1 (Jan.),
3{35.

Borison, E. A. 1989. Program changes and the cost of selective recompilation. Technical
Report CMU-CS-89-205 (July), Department of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania.

Brown, A., Dart, S., Feiler, P., and Wallnau, K. 1991. The state of automated con-
�guration management. Technical Report ATR92 (Sept.), Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Buffenbarger, J. 1995. Syntactic software merging. In J. Estublier Ed., Software Con-
�guration Management: Selected Papers SCM-4 and SCM-5 , LNCS 1005 (Seattle, Wash-
ington, April 1995), pp. 153{172. Springer-Verlag.

Clemm, G. 1995. The Odin system. In J. Estublier Ed., Software Con�guration Manage-
ment: Selected Papers SCM-4 and SCM-5 , LNCS 1005 (Seattle, Washington, April 1995),
pp. 241{262. Springer-Verlag.

Conklin, J. 1987. Hypertext: An introduction and survey. IEEE Computer 20, 9 (Sept.),
17{41.

Conradi, R. Ed. 1997. Software Con�guration Management: ICSE`97 SCM-7 Workshop,
LNCS 1235 (Boston, Massachusetts, May 1997). Springer-Verlag.

Conradi, R. et al. 1994. EPOS: Object-oriented and cooperative process modelling. In
A. Finkelstein, J. Kramer, and B. Nuseibeh Eds., Software Process Modelling and
Technology, Advanced Software Development Series (Chichester, UK, 1994), pp. 33{70.
Research Studies Press (John Wiley).

Conradi, R., Liu, C., and Jaccheri, M. L. 1991. Process modeling paradigms: An eval-
uation. In Proceedings of the 7th International Software Process Workshop (Yountville,
California, Oct. 1991), pp. 51{54. IEEE Computer Society Press.

Conradi, R. and Malm, C. 1991. Cooperating transactions and workspaces in EPOS: De-
sign and preliminary implementation. In R. Andersen, J. A. Bubenko, and A. Solvberg
Eds., Proceedings of the Third International Conference on Advanced Information Sys-
tems Engineering (CAISE `91), LNCS 498 (Trondheim, May 1991), pp. 375{392. Springer-
Verlag.

Conradi, R. and Westfechtel, B. 1996. Con�guring versioned software products. In
I. Sommerville Ed., Software Con�guration Management: ICSE`96 SCM-6 Workshop,
LNCS 1167 (Berlin, Germany, March 1996), pp. 88{109. Springer-Verlag.

Conradi, R. and Westfechtel, B. 1997. Towards a uniform version model for soft-

ware con�guration management. In R. Conradi Ed., Software Con�guration Management:
ICSE`97 SCM-7 Workshop, LNCS 1235 (Boston, Massachusetts, May 1997), pp. 1{17.
Springer-Verlag.

Cronk, R. D. 1992. Tributaries and deltas. BYTE 17, 1 (Jan.), 177{186.

Curtis, B., Kellner, M. I., and Over, J. 1992. Process modeling. Communications of
the ACM 35, 9 (Sept.), 75{90.

Dart, S. 1991. Concepts in con�guration management systems. In P. H. Feiler Ed.,
Proceedings of the 3rd International Workshop on Software Con�guration Management
(Trondheim, Norway, June 1991), pp. 1{18. ACM Press.

Version Models for Software Con�guration Management � 55

Dart, S. A. 1992a. Parallels in computer-aided design frameworks and software develop-

ment environments e�orts. IFIP Transactions A 16, 175{189.

Dart, S. A. 1992b. The past, present, and future of con�guration management. Technical
Report CMU/SEI-92-TR-8 (July), Software Engineering Institute, Carnegie-Mellon Uni-
versity, Pittsburgh, Pennsylvania.

Dart, S. A., Ellison, R. J., Feiler, P. H., and Habermann, A. N. 1987. Software
development environments. IEEE Computer 20, 11 (Nov.), 18{28.

Das, S. K. 1992. Deductive Databases and Logic Programming. Addison-Wesley, Reading,
Massachusetts.

Deiters, W. and Gruhn, V. 1990. Managing software processes in the environment MEL-
MAC. In R. Taylor Ed., Proceedings Fourth ACM SIGSOFT Symposium on Practical
Software Development Environments, ACM SIGSOFT Software Engineering Notes 15 (6)
(Irvine, CA, Dec. 1990), pp. 193{205.

Dittrich, K., Gotthard, W., and Lockemann, P. 1986. DAMOKLES, a database sys-
tem for software engineering environments. In R. Conradi, T. M. Didriksen, and D. H.

Wanvik Eds., Proceedings on the International Workshop on Advanced Programming En-
vironments, LNCS 244 (Trondheim, June 1986), pp. 353{371. Springer-Verlag.

Dittrich, K. R. and Lorie, R. A. 1988. Version support for engineering database systems.
IEEE Transactions on Software Engineering 14, 4 (April), 429{437.

Ehrig, H., Fey, W., Hansen, H., L�owe, M., and Jacobs, D. 1989. Algebraic software
development concepts for module and con�guration families. In V. Madhavan Ed., Pro-
ceedings of the 9th Conference on Foundation of Software Technology and Theoretical
Computer Science, LNCS 405 (Bangalore, India, Dec. 1989), pp. 181{192. Springer-Verlag.

Estublier, J. 1985. A con�guration manager: The Adele data base of programs. In Pro-
ceedings of the Workshop on Software Engineering Environments for Programming-in-the-
Large (Harwichport, Massachusetts, June 1985), pp. 140{147.

Estublier, J. 1988. Con�guration management: The notion and the tools. In J. F. H.

Winkler Ed., Proceedings of the International Workshop on Software Version and Con-
�guration Control (Grassau, Germany, 1988), pp. 38{61. Teubner Verlag.

Estublier, J. Ed. 1995. Software Con�guration Management: Selected Papers SCM-4 and
SCM-5, LNCS 1005 (Seattle, Washington, April 1995). Springer-Verlag.

Estublier, J. 1996. Workspace management in software engineering environments. In
I. Sommerville Ed., Software Con�guration Management: ICSE`96 SCM-6 Workshop,
LNCS 1167 (Berlin, Germany, March 1996). Springer-Verlag.

Estublier, J. and Casallas, R. 1994. The Adele con�guration manager. In W. F. Tichy

Ed., Con�guration Management, Volume 2 of Trends in Software (New York, 1994), pp.
99{134. John Wiley and Sons.

Estublier, J. and Casallas, R. 1995. Three dimensional versioning. In J. Estublier

Ed., Software Con�guration Management: Selected Papers SCM-4 and SCM-5 , LNCS
1005 (Seattle, Washington, April 1995), pp. 118{135. Springer-Verlag.

Feiler, P. H. 1991a. Con�guration management models in commercial environments. Tech-
nical Report CMU/SEI-91-TR-7 (March), Software Engineering Institute, Carnegie-Mellon
University, Pittsburgh, Pennsylvania.

Feiler, P. H. Ed. 1991b. Proceedings of the 3rd International Workshop on Software Con-
�guration Management (Trondheim, Norway, June 1991). ACM Press.

Feldman, S. Ed. 1993. Proceedings of the 4th International Workshop on Software Con-
�guration Management (Preprint) (Baltimore, Maryland, May 1993).

Feldman, S. I. 1979. Make | A program for maintaining computer programs. Software{
Practice and Experience 9, 4 (April), 255{265.

Finkelstein, A., Kramer, J., and Nuseibeh, B. Eds. 1994. Software Process Modelling
and Technology. Advanced Software Development Series. Research Studies Press (John
Wiley), Chichester, UK.

Fowler, G., Korn, D., and Rao, H. 1994. n-DFS: The multiple dimensional �le system.
In W. F. Tichy Ed., Con�guration Management , Volume 2 of Trends in Software (New

56 � R. Conradi and B. Westfechtel

York, 1994), pp. 135{154. John Wiley and Sons.

Fraser, C. and Myers, E. 1986. An editor for revision control. ACM Transactions on
Programming Languages and Systems 9, 2 (April), 277{295.

Godart, C., Canals, G., Charoy, F., and Molli, P. 1995. About some relationships
between con�guration management, software process, and cooperative work: The COO
environment. In J. Estublier Ed., Software Con�guration Management: Selected Papers
SCM-4 and SCM-5 , LNCS 1005 (Seattle, Washington, April 1995), pp. 173{178. Springer-
Verlag.

Goldstein, I. P. and Bobrow, D. G. 1980. A layered approach to software design. Tech-
nical Report CSL-80-5, XEROX PARC, Palo Alto, California.

GOODSTEP. 1995. The GOODSTEP Project | Final Report. GOODSTEP ESPRIT
Project 6115.

Gotthard, W. 1988. Datenbanksysteme f�ur Software-Produktionsumgebungen. IFB 193.
Springer-Verlag, Berlin.

Gulla, B., Karlsson, E.-A., and Yeh, D. 1991. Change-oriented version descriptions in
EPOS. Software Engineering Journal 6, 6 (Nov.), 378{386.

Habermann, N. and Notkin, D. 1986. Gandalf: Software development environments.
IEEE Transactions on Software Engineering 12, 12 (Dec.), 1117{1127.

Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., and Zhuge, Y. 1995. The
Stanford data warehousing project. Data Engineering Bulletin 18, 2, 41{48.

Heimann, P., Joeris, G., Krapp, C.-A., and Westfechtel, B. 1996. DYNAMITE: Dy-
namic task nets for software process management. In Proceedings of the 18th International
Conference on Software Engineering (Berlin, March 1996), pp. 331{341. IEEE Computer
Society Press.

Horwitz, S., Prins, J., and Reps, T. 1989. Integrating non-interfering versions of pro-
grams. ACM Transactions on Programming Languages and Systems 11, 3 (July), 345{387.

Humphrey, W. S. 1989. Managing the Software Process. SEI Series in Software Engineer-
ing. Addison-Wesley, Reading, Massachusetts.

IEEE. 1983. IEEE Standard for Software Con�guration Management Plans: ANSI/IEEE
Std 828-1983. New York, New York: IEEE.

IEEE. 1988. IEEE Guide to Software Con�guration Management: ANSI/IEEE Std 1042-
1987. New York, New York: IEEE.

Jaccheri, M. L. and Conradi, R. 1993. Techniques for process model evolution in EPOS.
IEEE Transactions on Software Engineering 19, 12 (Dec.), 1145{1156.

Kaiser, G., Feiler, P., and Popovich, S. 1988. Intelligent assistance for software devel-
opment and maintenance. IEEE Software 5, 3 (May), 40{49.

Kaiser, G. E. 1995. Cooperative transactions for multiuser environments. In W. Kim Ed.,
Modern Database Systems (Reading, Massachusetts, 1995), pp. 409{433. Addison Wesley.

Kaiser, G. E. and Habermann, A. N. 1983. An environment for system version control.
In Digest of Papers of Spring CompCon '83 , pp. 415{420. IEEE Computer Society Press.

Katz, R. H. 1990. Toward a uni�ed framework for version modeling in engineering
databases. ACM Computing Surveys 22, 4 (Dec.), 375{408.

Kernighan, B. W. and Ritchie, D. M. 1978. The C Programming Language. Prentice
Hall, Englewood Cli�s, New Jersey.

Kiesel, N., Sch�urr, A., and Westfechtel, B. 1995. GRAS, a graph-oriented software

engineering database system. Information Systems 20, 1 (Jan.), 21{51.

Kim, W. Ed. 1995. Modern Database Systems. Addison Wesley, Reading, Massachusetts.

Kramer, J. 1993. Special issue on con�gurable distributed systems. Software Engineering
Journal 8, 2 (March), 51{52.

Kruskal, V. 1984. Managing multi-version programs with an editor. IBM Journal of Re-
search and Development 28, 1, 74{81.

Lampen, A. and Mahler, A. 1988. Shape { A software con�guration management tool.
In J. F. H. Winkler Ed., Proceedings of the International Workshop on Software Version
and Con�guration Control (Grassau, Germany, 1988), pp. 228{243. Teubner Verlag.

Version Models for Software Con�guration Management � 57

Lampson, B. W. and Schmidt, E. E. 1983a. Organizing software in a distributed environ-

ment. In ACM Symposium on Programming Language Issues in Software Systems, ACM
SIGPLAN Notices 18(6) (June 1983), pp. 1{13.

Lampson, B. W. and Schmidt, E. E. 1983b. Practical use of a practical polymorphic
applicative language. In Tenth Annual ACM Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices 18(1) (Austin, Texas, Jan. 1983), pp. 237{255.

Lavency, P. and Vanhoedenaghe, M. 1988. Knowledge based con�guration management.
In B. Shriver Ed., Proceedings of the 21st Annual Hawaii International Conference on
System Sciences (Hawaii, Jan. 1988), pp. 83{92. IEEE Computer Society Press.

Leblang, D. 1994. The CM challenge: Con�guration management that works. In W. F.

Tichy Ed., Con�guration Management , Volume 2 of Trends in Software (New York, 1994),
pp. 1{38. John Wiley and Sons.

Leblang, D. B. and Chase, R. P. 1984. Computer-aided software engineering in a dis-
tributed workstation environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments, ACM
SIGPLAN Notices 19(5) (May 1984), pp. 104{112.

Leblang, D. B., Chase Jr., R. P., and Spilke, H. 1988. Increasing productivity with a
parallel con�guration manager. In J. F. H. Winkler Ed., Proceedings of the International
Workshop on Software Version and Con�guration Control (Grassau, Germany, 1988), pp.
21{37. Teubner Verlag.

Leblang, D. B. and McLean, G. D. 1985. Con�guration management for large-scale soft-
ware development e�orts. In Proceedings of the Workshop on Software Engineering En-
vironments for Programming-in-the-Large (Harwichport, Massachusetts, June 1985), pp.
122{127.

Lie, A., Conradi, R., Didriksen, T., Karlsson, E., Hallsteinsen, S. O., and Holager, P.

1989. Change oriented versioning. In C. Ghezzi and J. A. McDermid Eds., Proceedings
of the 2nd European Software Engineering Conference, LNCS 387 (Coventry, UK, Sept.
1989), pp. 191{202. Springer-Verlag.

Lin, Y.-J. and Reiss, S. P. 1995. Con�guration management in terms of modules. In
J. Estublier Ed., Software Con�guration Management: Selected Papers SCM-4 and SCM-
5 , LNCS 1005 (Seattle, Washington, April 1995), pp. 101{117. Springer-Verlag.

Lin, Y.-J. and Reiss, S. P. 1996. Con�guration management with logical structures. In
Proceedings of the 18th International Conference on Software Engineering (Berlin, March
1996), pp. 298{307. IEEE Computer Society Press.

Lippe, E. and van Oosterom, N. 1992. Operation-based merging. In Proceedings of ACM
SIGSOFT '92: Fifth Symposium on Software Development Environments (SDE5), ACM
SIGSOFT Software Engineering Notes 17(5) (Tyson's Corner, Virginia, Dec. 1992), pp.
78{87.

Liu, C. and Conradi, R. 1993. Automatic replanning of task networks for supporting
process model evolution in EPOS. In I. Sommerville and M. Paul Eds., Proceedings of
the European Software Engineering Conference '93 , LNCS 717 (Garmisch-Partenkirchen,

Sept. 1993), pp. 434{450. Springer-Verlag.

MacKay, S. A. 1995. The state-of-the-art in concurrent, distributed con�guration manage-
ment. In J. Estublier Ed., Software Con�guration Management: Selected Papers SCM-4
and SCM-5 , LNCS 1005 (Seattle, Washington, April 1995), pp. 180{194. Springer-Verlag.

Mahler, A. 1994. Variants: Keeping things together and telling them apart. In W. F.

Tichy Ed., Con�guration Management , Volume 2 of Trends in Software (New York, 1994),
pp. 73{98. John Wiley and Sons.

Mahler, A. and Lampen, A. 1988. An integrated toolset for engineering software con�g-
urations. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments, ACM Software Engineering Notes
13(5) (Boston, Massachusetts, Nov. 1988), pp. 191{200.

Marzullo, K. and Wiebe, D. 1986. Jasmine: A software system modelling facility. In Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

58 � R. Conradi and B. Westfechtel

Software Development Environments, ACM SIGPLAN Notices 22(1) (Palo Alto, Califor-

nia, Dec. 1986), pp. 121{130.

Micallef, J. and Clemm, G. 1996. The Asgard system: Activity-based con�guration man-
agement. In I. Sommerville Ed., Software Con�guration Management: ICSE`96 SCM-6
Workshop, LNCS 1167 (Berlin, Germany, March 1996), pp. 175{186. Springer-Verlag.

Munch, B. 1996. HiCOV: Managing the version space. In I. Sommerville Ed., Software
Con�guration Management: ICSE`96 SCM-6 Workshop, LNCS 1167 (Berlin, Germany,
March 1996), pp. 110{126. Springer-Verlag.

Munch, B. P. 1993. Versioning in a software engineering database | the change oriented
way. Ph. D. thesis, NTNU Trondheim, Norway.

Munch, B. P., Larsen, J.-O., Gulla, B., Conradi, R., and Karlsson, E.-A. 1993. Uni-
form versioning: The change-oriented model. In S. Feldman Ed., Proceedings of the 4th
International Workshop on Software Con�guration Management (Preprint) (Baltimore,
Maryland, May 1993), pp. 188{196.

Nagl, M. 1990. Softwaretechnik: Methodisches Programmieren-im-Gro�en. Springer-
Verlag, Berlin.

Nagl, M. Ed. 1996. Building Tightly-Integrated Software Development Environments: The
IPSEN Approach. LNCS 1170. Springer-Verlag, Berlin.

Obst, W. 1987. Delta technique and string-to-string correction. In G. Goos and J. Hart-
manis Eds., Proceedings of the 1st European Software Engineering Conference, LNCS 289
(Stra�burg, Sept. 1987), pp. 64{68. Springer-Verlag.

Oquendo, F., Berrado, K., Gallo, F., Minot, R., and Thomas, I. 1989. Version man-
agement in the PACT integrated software engineering environment. In C. Ghezzi and

J. A. McDermid Eds., Proceedings of the 2nd European Software Engineering Conference,
LNCS 387 (Coventry, UK, Sept. 1989), pp. 222{242. Springer-Verlag.

Paulk, M. C., Weber, C. V., Curtis, B., and Chrissis, M. B. 1997. The Capability Ma-
turity Model | Guidelines for Improving the Software Process. Addison-Wesley, Reading,
MA.

Perry, D. 1989. The Inscape environment. In Proceedings of the 11th International Con-
ference on Software Engineering (Pittsburgh, Pennsylvania, May 1989), pp. 2{12. IEEE
Computer Society Press.

Perry, D. E. 1987. Version control in the Inscape environment. In Proceedings of the 9th
International Conference on Software Engineering (Monterey, California, March 1987), pp.
142{149. IEEE Computer Society Press.

Peuschel, B. and Sch�afer, W. 1992. Concepts and implementation of a rule-based pro-
cess engine. In Proceedings of the 14th International Conference on Software Engineering
(Melbourne, Australia, May 1992), pp. 262{279. IEEE Computer Society Press.

Prieto-Diaz, R. and Neighbors, J. 1986. Module interconnection languages. Journal of
Systems and Software 6, 4 (Nov.), 307{334.

Ramakrishnan, R. and Ullman, J. D. 1995. A survey of deductive database systems. The
Journal of Logic Programming 23, 2 (May), 125{149.

Ramamohanarao, K. and Harland, J. 1994. An introduction to deductive database lan-
guages and systems. The VLDB Journal 3, 2 (April), 107{122.

Reichenberger, C. 1994. Concepts and techniques for software version control. Software
| Concepts and Tools 15, 3 (July), 97{104.

Reichenberger, C. 1995. VOODOO | a tool for orthogonal version management. In
J. Estublier Ed., Software Con�guration Management: Selected Papers SCM-4 and SCM-
5 , LNCS 1005 (Seattle, Washington, April 1995), pp. 61{79. Springer-Verlag.

Reiss, S. 1990. Interacting with the FIELD environment. Software Practice and Experi-
ence 20, S1 (June), 89{115.

Rich, A. and Solomon, M. 1991. A logic-based approach to system modelling. In P. H.

Feiler Ed., Proceedings of the 3rd International Workshop on Software Con�guration
Management (Trondheim, Norway, June 1991), pp. 84{93. ACM Press.

Version Models for Software Con�guration Management � 59

Rigg, W., Burrows, C., and Ingram, P. 1995. Con�guration Management Tools. Ovum

Ltd., London.

Rochkind, M. J. 1975. The source code control system. IEEE Transactions on Software
Engineering 1, 4 (Dec.), 364{370.

Roddick, J. F. 1995. A survey of schema versioning issues for database systems. Informa-
tion Software and Technology 37, 7 (July), 383{393.

Rombach, H. D. and Verlage, M. 1995. Directions in software process research. In M. V.

Zelkowitz Ed., Advances in Computers, Volume 41, pp. 1{63. San Diego, California:
Academic Press.

Sarnak, N., Bernstein, R., and Kruskal, V. 1988. Creation and maintenance of multiple
versions. In J. F. H. Winkler Ed., Proceedings of the International Workshop on Soft-
ware Version and Con�guration Control (Grassau, Germany, 1988), pp. 264{275. Teubner
Verlag.

Schmerl, B. R. and Marlin, C. D. 1995. Designing con�guration management facilities
for dynamically bound systems. In J. Estublier Ed., Software Con�guration Management:
Selected Papers SCM-4 and SCM-5 , LNCS 1005 (Seattle, Washington, April 1995), pp. 88{
100. Springer-Verlag.

Sch�urr, A., Winter, A., and Z�undorf, A. 1995. Graph grammar engineering with PRO-
GRES. In W. Sch�afer and P. Botella Eds., Proceedings of the European Software En-
gineering Conference (ESEC `95), LNCS 989 (Barcelona, Spain, Sept. 1995), pp. 219{234.
Springer Verlag.

Sciore, E. 1994. Version and con�guration management in an object-oriented data model.
VLDB Journal 3, 1 (Jan.), 77{106.

Shaw, M. and Garlan, D. 1996. Software Architecture | Perspectives on an Emerging
Discipline. Prentice Hall, Englewood Cli�s, New Jersey.

Sheth, A. P. and Larson, J. A. 1990. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys 22, 3
(Sept.), 183{236.

Snodgrass, R. T. 1992. Temporal databases. In A. Frank, I.Campari, and U. Formen-

tini Eds., Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, LNCS
639 (Pisa, Italy, Sept. 1992), pp. 22{64. Springer Verlag.

Software Maintenance and Development Systems. 1990. Aide-de-Camp Product Overview.
Concord, Massachusetts: Software Maintenance and Development Systems.

Soley, R. M. and Kent, W. 1995. The OMG object model. In W. Kim Ed., Modern
Database Systems (Reading, Massachusetts, 1995), pp. 18{41. Addison Wesley.

Sommerville, I. Ed. 1996. Software Con�guration Management: ICSE`96 SCM-6 Work-
shop, LNCS 1167 (Berlin, Germany, March 1996). Springer-Verlag.

Sommerville, I. and Thomson, R. 1989. An approach to the support of software evolution.
The Computer Journal 32, 5 (Dec.), 386{398.

Sutton, S. M., Heimbigner, D., and Osterweil, L. J. 1995. APPL/A: A language for
software process programming. ACM Transactions on Software Engineering and Method-
ology 4, 3 (July), 221{286.

Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R. 1993.
Temporal Databases | Theory, Design, and Implementation. Benjamin/Cummings, Red-
wood City, California.

Teitelman, W. 1984. A tour through Cedar. In Proceedings of the 7th International Con-
ference on Software Engineering (Orlando, Florida, March 1984), pp. 181{195. IEEE Com-
puter Society Press.

Tichy, W. F. 1979. Software development control based on module interconnection. In Pro-
ceedings of the IEEE 4th International Conference on Software Engineering (Pittsburgh,
PA, Sept. 1979), pp. 29{41. IEEE Computer Society Press.

Tichy, W. F. 1982a. A data model for programming support environments. In Proceedings
of the IFIP WG 8.1 Working Conference on Automated Tools for Information System
Design and Development (New Orleans, Louisiana, Jan. 1982), pp. 31{48. North-Holland.

60 � R. Conradi and B. Westfechtel

Tichy, W. F. 1982b. Design, implementation, and evaluation of a revision control system.

In Proceedings of the 6th International Conference on Software Engineering (Tokyo, Japan,
Sept. 1982), pp. 58{67. IEEE Computer Society Press.

Tichy, W. F. 1985. RCS { A system for version control. Software{Practice and Experi-
ence 15, 7 (July), 637{654.

Tichy, W. F. 1988. Tools for software con�guration management. In J. F. H. Winkler

Ed., Proceedings of the International Workshop on Software Version and Con�guration
Control (Grassau, Germany, 1988), pp. 1{20. Teubner Verlag.

Tichy, W. F. Ed. 1989. Proceedings of the 2nd International Workshop on Software Con-
�guration Management, ACM Software Engineering Notes 14(7) (Princeton, New Jersey,
Nov. 1989).

Tichy, W. F. Ed. 1994. Con�guration Management, Volume 2 of Trends in Software. John
Wiley and Sons, New York.

Tryggeseth, E., Gulla, B., and Conradi, R. 1995. Modelling systems with variability
using the PROTEUS con�guration language. In J. Estublier Ed., Software Con�guration
Management: Selected Papers SCM-4 and SCM-5 , LNCS 1005 (Seattle, Washington, April
1995), pp. 216{240. Springer-Verlag.

Wakeman, L. and Jowett, J. 1993. PCTE | The Standard for Open Repositories. Pren-
tice Hall, Englewood Cli�s, New Jersey.

Wallnau, K. C. 1992. Issues and techniques of CASE integration with con�guration man-
agement. Technical Report CMU/SEI-92-TR-5 (March), Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Warren, I. and Sommerville, I. 1995. Dynamic con�guration abstraction. InW. Sch�afer

and P. Botella Eds., Proceedings of the European Software Engineering Conference
(ESEC `95), LNCS 989 (Barcelona, Spain, Sept. 1995), pp. 173{190. Springer Verlag.

Wasserman, A. 1990. Tool integration in software engineering environments. In F. Long

Ed., Proceedings of the 2nd International Workshop on Software Engineering Environ-
ments, LNCS 467 (Chinon, France, Sept. 1990), pp. 137{149. Springer-Verlag.

Westfechtel, B. 1991. Structure-oriented merging of revisions of software documents. In
P. H. Feiler Ed., Proceedings of the 3rd International Workshop on Software Con�gura-
tion Management (Trondheim, Norway, June 1991), pp. 68{79. ACM Press.

Westfechtel, B. 1994. Using programmed graph rewriting for the formal speci�cation of

a con�guration management system. In E. Mayr, G. Schmidt, and G. Tinhofer Eds.,
Proceedings WG `94 Workshop on Graph-Theoretic Concepts in Computer Science, LNCS
903 (Herrsching, Germany, June 1994), pp. 164{179. Springer-Verlag.

Westfechtel, B. 1996. A graph-based system for managing con�gurations of engineering
design documents. International Journal of Software Engineering and Knowledge Engi-
neering 6, 4 (Dec.), 549{583.

Winkler, J. F. H. Ed. 1988. Proceedings of the International Workshop on Software Ver-
sion and Con�guration Control (Grassau, Germany, 1988). Teubner Verlag.

Zeller, A. 1995. A uni�ed version model for con�guration management. In Proceedings of
the ACM SIGSOFT '95 Symposium on the Foundations of Software Engineering, ACM
Software Engineering Notes 20(4) (Washington, Oct. 1995), pp. 151{160.

Zeller, A. 1996. Smooth operations with square operators | the version set model in ICE.
In I. Sommerville Ed., Software Con�guration Management: ICSE`96 SCM-6 Workshop,
LNCS 1167 (Berlin, Germany, March 1996). Springer-Verlag.

Zeller, A. and Snelting, G. 1995. Handling version sets through feature logic. In
W. Sch�afer and P. Botella Eds., Proceedings 5th European Software Engineering Con-
ference, LNCS 989 (Barcelona, Spain, Sept. 1995), pp. 191{204. Springer-Verlag.

Zeller, A. and Snelting, G. 1997. Uni�ed versioning through feature logic. ACM Trans-
actions on Software Engineering and Methodology 6, 4 (Oct.), 397{440.

