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To cope with the complexity of very large systems, it is not sufficient to divide them into simple
pieces because the pieces themselves will either be too numerous or too large. A hierarchical
modular structure is the natural solution. In this article we explain how that approach can be
applied to software. Our compilation manager provides a language for specifying where individual
modules fit into a hierarchy and how they are related semantically. We pay particular attention
to the structure of the global name space of program identifiers that are used for module linkage
because any potential for name clashes between otherwise unrelated parts of a program can nega-
tively affect modularity. We discuss the theoretical issues in building software hierarchically, and
we describe our implementation of CM, the compilation manager for Standard ML of New Jersey.
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1. INTRODUCTION

Imagine working on some large software project that consists of a “main” module
along with various other parts of its implementation (see Figure 1). In the course
of development we want to be able to add, refine, and replace components without
causing too much disturbance to the rest of the system. In particular, a modifi-
cation to one module should not require other modifications in parts that are not
conceptually related. The following wish list illustrates the array of problems (some
of which are really the same problem viewed from different angles):

Structural Refinement. The same principles that are used for structuring entire
programs should also be applicable to parts of the program. For example, the
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Fig. 1. Schematic view of a software project.

subsystem newY consists of two parts (Y and oldY), but to the outside it presents
itself as only one module.

Grouping. Conversely, by grouping existing modules together one should be able
to form larger modules. Examples for such “library” modules are lib$$$ or libL.
(Although “structural refinement” and “grouping” really refer to the same under-
lying idea, we prefer to use the former in the case of top-down development and the
latter when constructing programs in a “bottom-up” fashion from existing parts.)

Sharing. In addition to its components Y and oldY, newY makes use of libP, a
library of “primitives,” and libB, the “base” API. But both libP and libB are
also used by other modules. Therefore, groups of modules produced by structural
refinement should not have to be disjoint.

Libraries without Source Code. Suppose we purchase a library such as lib$$$
from a software vendor. It must be possible to use it without having to inspect,
recompile, or modify its constituent parts because the vendor may not want to
provide source code.

Libraries with Imports. Libraries themselves usually rely on other libraries. In
our example, lib$$$ imports from libP and libB. Provided that the exported
interfaces match the import interface of lib$$$, it should be possible to use lib$$$
with any user-supplied version of libP and libB.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.
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Extending Interfaces. Module newY was developed by extending an existing older
version called oldY. We want to be able to directly reuse the original code of oldY
by adding wrapping code in Y. Y may export an interface that is richer (i.e., contains
more definitions) than the one exported by oldY.

Minimizing Dependencies. Moving from oldY to Y only affects the components
Z and—perhaps indirectly—Main. It should not be necessary to recompile, much
less modify, any other module.

Cutoff Recompilation. Certain modifications to the export interface of Y will af-
fect the export interface of Z and therefore also cause Main to be recompiled; others
do not. A compilation unit should have to be recompiled only if its own source
code or its imports have actually changed.

Names in Separate Modules. Internally, the implementation of the library lib$$$
uses the name a for communication between its own modules. Since a does not ap-
pear in the library’s interface, the library’s use of a should never clash with any
other use of a—regardless of whether or not a is the name of a variable, a type, a
module, or even a name space.

Redefinitions. Module oldY exports a to Y, which uses it to form a different a
exported to Z. This can only be done if there are ways to avoid a clash between
these two uses of a.

Name Clashes within One Module. Module Main needs to refer to b from lib$$$
as well as to b exported by libL. We have no authority over the names that lib$$$
exports. Perhaps the same is true for libL, and even if it were not, we might
not want to modify libL for a variety of reasons. To be able to use either b
simultaneously, it should be possible to “rename” one of the definitions at the time
of import.

Multiple Alternative Module Implementations. Experimenting with an implemen-
tation can mean trying out various different approaches for implementing the same
module. In our example, we provide more than one implementation for Y. Replac-
ing one of them (Y1) with another (Y2) should not entail other modifications or
recompilations unless there are changes in the export interface. The versions can
safely differ in how they take advantage of imports that are available to them: Y1
imports f while Y2 does not.

Profiling, etc. Sometimes, we want to have several versions of the same object
(e.g., libP) that are all derived from the same source code. This enables us to
transparently and selectively provide profiling or debugging support. It is important
that if all versions have the same interface there will be no need to modify or
recompile any of libP’s clients. (One of the clients is lib$$$, for which we have
no access to source code.)

Location. Typically, components of a program are stored in some sort of file
system that is provided by the underlying operating system. During development,
files may frequently change their names and locations. For example, it could be
that oldY used to be called Y. The name change itself should not make it necessary
to recompile any of the modules. But this requires that a file name like Y is not
somehow hard-wired into the result of compiling client modules like Z (or, even
worse, the source code of Z).
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Our compilation manager software, “CM,” is able to gracefully handle all of the
situations that we have listed. The group model provides support for structural re-
finement and grouping. It also avoids name clashes and allows for redefinitions when
necessary. Dependency graphs are DAGs and, therefore, permit sharing. Libraries
without source code are supported by the stable library mechanism. Libraries can
import from other libraries, and type-safe linking will ensure consistency. Inter-
faces can be extended using nested groups. A built-in analyzer automatically cal-
culates the dependencies between compilation modules; cutoff recompilation helps
minimize actual recompilation work. Finally, a separation of programming- and
configuration-languages makes it possible to seamlessly relocate or even replace
compilation units as well as entire libraries.

CM is not the first solution to the list of problems we showed, much less the only
one. For example, Feldman’s make [Feldman 1979] and its modern derivatives—
together with tools that explicitly manipulate object files, library archives, and
environments (i.e., symbol tables)—let their expert users achieve many if not all
of the goals that we have outlined. One could also put these manipulations under
control of a sophisticated system like CAPITL [Adams and Solomon 1993]. CM
uses the same techniques internally, but provides a simple declarative specification
language as an interface to these operations.

On the other hand, neither the operation of make nor that of CAPITL in itself
is based on intermodule semantics of their user’s programming language the same
way CM’s operation is based on ML’s intermodule semantics. Instead of requiring
dependencies to be spelled out in full, CAPITL improves on make by using a logical
inference engine to calculate dependencies from a declarative database. It may be
possible to emulate CM’s behavior using CAPITL, but doing so would require to
implement CM’s syntactic and semantic analyses as a CAPITL specification, or,
to put it differently, to implement CM on top of CAPITL. Also, CAPITL’s logic
inferencer has performance problems due to an inefficient search strategy. On the
upside, the use of a persistent database avoids the struggle with native file system
semantics. In this area CM could take some lessons.

Explicit symbol table manipulations provide great power to work around any
conceivable problem related to name resolution. For example, a solution based on
ad hoc link-time renaming of identifiers has been reported for Vulcan, an experi-
mental Modula-2+ programming language environment that was developed as part
of Vesta [Brown and Ellis 1993]. But such power comes at a hefty price: a program
can no longer be understood solely in terms of the programming language that it is
written in. Instead, one must take into account the semantics of the tools that hap-
pen to be used to manipulate the various intermediate objects that emerge in the
process of its compilation. These semantics are often system- or version-dependent,
are rarely documented with the same rigor that should be applied to programming
language definitions, and in their power have far-reaching impact on the mean-
ing of the overall program. This situation is especially dissatisfying if the original
programming language was aiming at semantic clarity and well-foundedness.

To avoid these problems we control the full power of explicit symbol table manip-
ulations by providing what amounts to a programming language extension: Stan-
dard ML becomes SML+CM. Using the new “+CM” part, the programmer can
express any desired grouping of modular components directly without having to
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.
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know about the operations that CM will invoke on his or her behalf. We were
pleased to find that a very modest extension to SML was sufficient to achieve the
desired effect. The result does not have the feel of a completely new programming
language. We also believe that programming with CM is easier than programming
with make and associated tools.

Finally, we can explain CM’s internals in terms of low-level operations on envi-
ronments. Therefore, our work is clearly not restricted to ML-like languages but
can be carried over to others fairly directly.

2. ASPECTS OF MODULARITY AND COMPILATION MANAGEMENT

2.1 Separate Compilation

The need to split programs into smaller pieces and to compile the resulting frag-
ments separately arose from very practical considerations: machines were too small,
and compilers were not efficient enough to handle large bodies of code at once [Par-
nas 1972]. But the so-established physical boundaries—when placed cleverly—can
have a profoundly positive impact on overall program structure. For a long time sep-
arate compilation has been a key element of modern software engineering [Cardelli
1997].

Divide-and-Conquer. Abstraction and modularization are the “divide and con-
quer” of software engineering. The ability to verify partial designs in isolation from
each other enables programmers to operate in teams. When hundreds, or even
thousands, of people work on the same body of code, it is important that indi-
vidual pieces be well separated. Otherwise, the need for communication between
programmers with the purpose of coordinating their individual tasks quickly gets
out of hand.

Modularization is of great help even in single-person projects, because it provides
a way of serializing the work. The programmer can focus efforts on one part without
having to worry about too many possible implications for others.

Type Checking and Interfaces. Type systems are compile-time-decidable formal
systems that can track intermodule dependencies. Type-safe linking is an extension
to ordinary linking (i.e., name/address resolution) that notifies the programmer of
inconsistency between the type at which one module exports an identifier and the
type at which another module imports it. This link-time notification is valuable and
prevents many kinds of run-time bugs. But link-time notification is still later than
necessary: during development it is important to detect problems early, because
then there will be less work that needs to be revised or redone.

Explicit interfaces are a way of writing down where and how modules can depend
on each other. Thus, they can cut the graph of potential dependencies from dense
to sparse. Adherence to the constraints laid out in interface definitions can be
verified at compile time, which saves precious development time.

2.2 Hierarchical Modularity

Modularization and separate compilation are not synonymous, even though in most
cases a compilation unit boundary is also a module boundary. Modern programming
languages tend to adequately support modularization within compilation units.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.
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Fig. 2. Sharing one source file. Only a few programming languages let the programmer control
the interface of one source file to guarantee that it can be shared between several clients. In
C one would declare doprnt as static, because local functions should not be exposed. But the

C programmer has no way to prohibit stdio.c from referring to symbols in system One; these
references might prevent it from being used in system Two.

This article is concerned with those modules that consist of at least one and po-
tentially span more than one compilation unit.

Modular structure, like the one that we assumed for the introductory example
(Figure 1), arises naturally in many engineering tasks. To cope with complexity,
large projects are routinely divided into parts. These parts interoperate according
to interface specifications. Interfaces hide much of the internal complexity of each
part’s implementation from other parts.

In a good modularization, no module should be overly complex, and there should
not be too many modules. This can only be accomplished with a hierarchical struc-
ture, with each module constructed from submodules. Of course, the subdivision
of a part must not be manifest in its interface. Seen from the outside, each part
acts as a single module while internally it can be further structured into smaller
subcomponents. The result is a hierarchy of modules.

Hierarchical modularity is not a new concept—it can be found in most very large
engineering projects. But at least in the case of software systems it has been applied
only informally, since programming languages and compilation management have
not provided active support [Jacobson 1987].

There are many real-world examples that show the need for hierarchical mod-
ularity. Figure 2 depicts a situation where one module (stdio) is shared by two
different projects (One and Two). We would like to administer its interface so that
the compiler can guarantee the absence of unwanted dependencies on either One
or Two. Even that is not fully supported by most programming languages. But
for large-scale programming we need to take this further. It is important to allow
stdio itself to be a group of source files, with a summary interface that controls
such a group’s interface to its various clients (see Figure 3).

Figure 4 illustrates how CM would be used to deal with this situation. The
library stdio is implemented as a CM group, and clients like One and Two must
explicitly list that group as an import to use its services. No client can depend
on implementation details that are not explicitly advertised by the group’s export
interface. Moreover, the subgroup relationship is unidirectional. The stdio group
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.
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Fig. 3. Sharing groups of source files. Often we want a group of sources to act like one module.
An explicit interface placed on stdio.a as a whole (as opposed to its constituent components)
guarantees the absence of undesired dependencies on either One or Two and does not expose

local objects like doprnt. The C language has no mechanisms for expressing either of these
requirements.
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Fig. 4. Controlling sharing using groups. CM can structure the project shown in Figure 3 into
a collection of groups. The export interface on group stdio will make sure that implementation
details, such as the local function doprnt, are not exposed to its clients, One and Two. At the
same time, since stdio is specific in not listing either One or Two in its imports, it cannot depend
on either one of them.

does not (and cannot) mention either One or Two as part of its imports. Even if the
design of a group caters to specific needs of selected clients, subsequent modification
to any one client cannot cause incompatibilities with others if they were compatible
before.

2.3 Semantics versus Dependencies

Compilation management deals with two separate problems. On the one hand, it
must provide a way of describing semantic relationships between separate modules:
how names are resolved across module boundaries and how hierarchies of modules
are formed. On the other hand, it has to determine intermodule compilation de-
pendencies: which subset of sources needs to be compiled or recompiled in what
order. Essentially, this part is an optimization of the compilation process.

There are two ways of going about this: one can start with dependency infor-
mation and derive the resulting semantics of the program, or one can start with a
semantic description and try to infer dependency information.
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For an automatic tool, the first route is more convenient because the tool does
not really care about semantics; it just needs to follow the dependencies, and that
is easy if they are given. Moreover, as exemplified by make, this approach works
in a generic way with almost arbitrary programming languages and tools. The
drawback is that the programmer who wants to know the meaning of a program
must read the descriptions of compilation dependencies annotated with associated
“build” operations (e.g., Unix commands), understand their semantics as well as
the semantics of their interactions, and infer the program’s overall meaning—a
challenging task in many cases.

CM takes the other approach. It first provides a language for describing the
semantics of a system that is divided into separate modules. This is the group
model described in Section 4. It specifies the hierarchy of modules and the scoping
rules to be used for references that span module boundaries. Once the specifica-
tion of semantic aspects is given, CM can then calculate the resulting compilation
dependencies from there.

2.4 Names and Name Spaces

When a module exports one of its definitions, then this definition becomes known to
other modules by some name x. To be able to refer to this x, a second, importing
module cannot use x for some other purpose at the same time. This is not a
problem because the programmer of the second module certainly has to be aware of
x anyway, so he or she can easily avoid a name conflict. Therefore, coordinating the
development of conceptually related components is relatively easy. Name clashes
will be detected early in the development cycle, and the occasional conflict can
be resolved where it occurs. This does not require any modifications to unrelated
components.

It is much more troubling if the names in conceptually unrelated modules must
also be kept apart. If the second module does not import x, then it may easily
happen that its programmer does not even know about the first module’s existence.
In fact, not having to know about unrelated modules is clearly desirable for a
programmer who participates in a large project that has many modules. Preventing
clashes means that some amount of coordination is necessary, making development
of otherwise independent modules more difficult. We will discuss some examples
for this undesirable effect later (see Figures 5, 12, and 13).

Library designers attack this problem by using naming conventions, for example,
by adding some prefix to all exported identifiers. But in reality, such preventive
measures are applied not nearly universally, and even if they were—there is still
no guarantee that the prefixes themselves will not clash. As a result, it sometimes
can be difficult to simultaneously use the libraries sold by two different vendors,
which is especially bothersome if they are not conceptually connected and are used
for different purposes in unrelated parts of the program. Even when the entire
source code for all libraries is available, it can be a challenging problem to resolve
all naming conflicts [Ford et al. 1997, Section 4.7.2].

Most modern languages use block structure to provide many different localized
scopes for nonexternal names. Scoping permits the same name to be used multiple
times independently. To solve the problem with external name clashes, we simply
extend this idea to the global name space. With block structure at the group level,
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.
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we can place unrelated libraries into different scopes and never again need to worry
about name clashes between them.

Related modules should be within the same scope because they need to have
access to each other’s exported identifiers. Unrelated modules should be in different
scopes to avoid potential name clashes. But related modules will be within the same
enclosing group, while unrelated modules will be in different groups. Therefore, to
fully support hierarchical modularity, external scoping must follow the program’s
group structure. Managing the global name space according to this rule is CM’s
most important aspect.

2.5 Programming Language versus Configuration Language

Do we really need another language layer? This question must be asked considering
that many modern languages already have a module layer intended for dealing with
large-scale programming.

Name clashes have been with us ever since the first programming language that
used names, i.e., Church’s λ-calculus [Church 1941; Barendregt 1981], and just as
the λ-calculus uses α-conversion (renaming of bound variables) to work around
name conflicts, any programming language or environment should provide some
mechanism for dealing with this problem. If we cannot avoid name conflicts, then
the only hope is to restrict them in such a way that they do not compromise
modularity.

With CM there are two places where name conflicts can still occur. The first is the
programming language itself, but these conflicts are guaranteed to be “modular,”
i.e., of a benign kind. We will later explain the notion of modular conflicts and
show how to deal with them. The second kind of name clash occurs in CM’s
configuration language. The names in that language are actually file names of the
underlying operating system. Therefore, solving these conflicts amounts to moving
files or directories around. Such operations do not require knowledge about the
contents of those files and in our implementation do not incur any recompilations.

2.6 The ML Module System versus CM

CM’s merits in the area of handling files or managing recompilation are clear. But
with its configuration language, albeit simple, it also provides expressive power
that goes beyond that of the underlying ML language alone. The following simple
example (see Figure 5) makes this clear:

Consider a project involving three programmers, Alice, Bob, and Chet. Alice,
who is in charge of the project, knows both Bob and Chet, but Bob and Chet are
each unaware of the other’s existence. Alice asks Bob to write module X ; Chet
is assigned module Y . Both X and Y are large enough so that Bob and Chet
independently subdivide their tasks. As a result, Bob delivers an implementa-
tion of structure X together with a separate auxiliary module implementing some
structure Y that he needed in order to implement X. And as it so happens, Chet
provides an implementation of his structure Y together with an auxiliary module
that implements a helper structure X.

Meanwhile, Alice has written her main module which uses both Bob’s structure
X and Chet’s structure Y. She now faces the problem of putting the source files
into an order that lets him compile the final program. Unfortunately, there is no
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(* Bob’s helper module *)
structure Y = struct
  ...
end

(* Chet’s helper module *)
structure X = struct
  ...
end

(* Bob’s code for X *)
structure X = struct
  ...  Y ...
end

(* Chet’s code for Y *)
structure Y = struct
  ...  X ...
end

structure Z = struct
  ... X ... Y ...
end

(* Alice’s main module *)

Fig. 5. An ordering puzzle. In plain Standard ML there is no ordering for the compilation of the
five source files that would give the correct result. Moreover, the glue code that Alice needs to be
able to make the program work cannot be written without inspecting internal internal details (in
this case: the names of the helper modules) of Bob’s and Chet’s solutions.

possible ordering of ML source files that has the desired effect because Bob’s and
Chet’s helper modules always get into the way and cause name conflicts.

The only possible solution for Alice (short of modifying Bob and Chet’s code) is
to insert glue modules that locally rename one structure so that it does not conflict
with its namesake in the other programmer’s code. To insert this glue code, Alice
needs to know about the internals of Bob’s and Chet’s implementations of X and
Y—something she wanted to avoid.

The analysis of Bob’s and Chet’s source code and the subsequent insertion of
glue modules (or rather, of renaming operations) could be mechanized, but the
ML module system itself does not do that—CM does. Using CM, Bob and Chet
each would deliver a group. These groups would export precisely what Alice asked
for (and nothing else). Alice could then put together the final program without
even having to know anything about the internal structure of her colleagues’ solu-
tions.

The scenario described above may seem simplistic. The danger of name conflicts
in real programs may be relatively low. However, in the end even a small danger is
one more unnecessary detail that the programmer will have to keep in mind. CM’s
group model is really a simple and natural idea, but as such it is very effective at
solving the problem.

2.7 Other Programming Languages

The modules systems of some languages, for example “name spaces” in C++ [El-
lis and Stroustrup 1990] and “packages” in Ada [DoD 1980] or Java [Arnold and
Gosling 1996], provide means for spreading the implementation of a named module
across several compilation units. In the case of our previous example (see Figure 5),
Bob and Chet could each have implemented their respective helper modules without
“leaving” their assigned main module: Bob would implement X and helper module
X.Y while Chet uses the names Y and Y.X.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.
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Does this mean that CM is nothing more than a fix for the badly designed
module system of just one particular language? To see why we answer this question
negatively, one should first notice that the same trick actually works even in ML:
Alice would have told Bob to implement X using helper modules whose names must
all start with X , while Chet could only use auxiliary global names that start with Y .
Thus, we cannot say that ML’s module system is somehow fundamentally weaker.

But more importantly, both the ML “low-tech” approach and the solution in
C++ or Ada require prior agreement between programmers. Both of them will
break down when such prior agreement cannot be obtained—a situation that we
encounter every time a module that already existed is to be integrated into a new
project. In other words, programming language module systems tend to give good
support for top-down program design but fail in the case of bottom-up development.

When it comes to module systems, the approaches taken by most modern lan-
guages all look very similar to each other: some form of bundling of definitions
is used, and the bundle itself appears under a new name—the module name. By
definition, names in different modules cannot clash. However, the module itself has
a name that is outside the module. Consequently, although much less likely, there
is always the potential for top-level module names to cause the same problems they
were supposed to solve by removing other names from the global name space.

SML structure names can clash; C++ name space names can interfere with one
another; and Modula-3 [Cardelli et al. 1988] modules may be in conflict due to an
unfortunate choice of module names. Java package identifiers are designed to be
globally unique, but since clients of a package must name that in their sources, it
now becomes impossible to relink such a client with a different version of the same
conceptual package (perhaps for the purpose of debugging or profiling) without first
modifying and recompiling the client’s source.

3. THE CM SOFTWARE

CM is our compilation manager for Standard ML of New Jersey (SML/NJ for
short) [Appel and MacQueen 1991]. Standard ML [Milner et al. 1990; 1997] enjoys
considerable popularity within the programming language research community but
has yet to make an impact on “real-world programming.” Still, even though CM’s
concrete realization is tightly integrated with ML, the ideas behind its design are
much more broadly applicable to many languages. A “CM for C” or a “CM for
Java” could be built along similar lines. Indeed, work is is progress for such a “CM
for Java” [Bauer et al. 1999]. The main building blocks—tools for linking and for
manipulating symbols tables—already exist and are waiting to be put together.

The purpose of CM is comparable but not equal to that of other compilation and
configuration managers. Examples are make [Feldman 1979], Odin [Clemm 1994],
the System Modelling language of Mesa and Cedar [Mitchell et al. 1979; Lampson
and Schmidt 1983a; 1983b; Swinehart et al. 1985], and Vesta [Levin and McJones
1993; Hanna and Levin 1993; Chiu and Levin 1993]. Group descriptions play the
same role for CM that system models play for Vesta and makefiles play for make.

CM should be viewed as a modest extension of Standard ML. The tight coupling
of SML and CM makes it possible to keep the configuration language simple. CM
is convenient to use because automatic dependency analysis avoids the need for
extensive hand-crafted specifications.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999.
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Of course, these features come at a cost. CM is not a generic compilation man-
agement tool in the spirit of make but is geared specifically to deal with ML. CM’s
extensible toolbox can accomodate a variety of other language processors, but those
are not fully integrated with the sophisticated management of SML code.

CM and SML are tightly coupled at the level of source files and at the level
of object files. At the source level, CM implements automatic dependency anal-
ysis [Blume 1999] and, thus, must understand the programming language it deals
with. At the object level, CM must handle SML/NJ’s own formats for files, symbol
tables, and executables. Neither of these two points has anything to do with the
concept of hierarchical modularity itself. But being based on SML/NJ made the
implementation of CM easier, while automatic dependency analysis made CM more
convenient to use.

CM is predated by the “Incremental Recompilation Manager” [Harper et al.
1994a], which later became known as SC [Harper et al. 1994b]. We developed CM
based on our study of SC, and the availability of SC’s source code was of great help
when we started. IRM and SC were first to take advantage of SML/NJ’s visible
compiler interface with its support for cutoff recompilation. CM improves on SC
by using a group model that implements hierarchical modularity, offers full support
for libraries, and permits the use of explicit export interfaces.

The CM software has become an integral part of the SML/NJ project [Blume
1995]. It has been used to good advantage by the SML/NJ compiler development
team, by many of SML/NJ’s users, and even for teaching [Appel 1998].

3.1 Cutoff Recompilation

Aside from name space management, scoping, and grouping, the main service of-
fered by CM (or any other compilation manager) is a mechanism to establish con-
sistency between sources and derived objects. CM’s most important derived object
is the binfile. Binfiles are the result of compiling SML compilation units. Such com-
pilation units almost always depend on several other compilation units. A binfile
consists of two parts: executable code and a static environment. The static environ-
ment plays the role of a symbol table that records type information for definitions
exported by the compilation unit.

If b.sml depends on a.sml, then the compiler must take into account the static
environment exported by a.sml.bin to be able to produce the binfile b.sml.bin.
Therefore, whenever the static environment exported by a.sml.bin changes, b.sml
must also be recompiled.

The approach taken by make safely approximates this by recompiling b.sml
every time a.sml gets recompiled. However, this can be overly pessimistic. Deep
dependency graphs, which occur frequently in SML programs, lead to many unnec-
essary recompilations. As long as the static environment in a.sml.bin stays the
same, recompiling a.sml does not require subsequent recompilation of b.sml. Cut-
off recompilation [Adams et al. 1994]—the strategy used by CM—takes advantage
of this observation. For efficiency, instead of comparing entire static environments,
CM only compares relatively small fingerprints [Gunter 1996]. The fingerprinting
method is based on CRC polynomials [Broder 1993].

Fingerprinting means that there exists a possibility, although extremely unlikely,
that two interfaces are erroneously found to match when they really do not match.
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With our 128-bit fingerprints the probability for such a mistake is somewhere on
the order of 2−100 which is much smaller than the probability of a hardware failure.
Still, it may be considered an imperfection, and we have chosen to live with it.

3.2 Groups

A group consists of a list of “exports” and a list of “members.” Exports are simply
ML symbols; a member can either be an ML source file or another group. The
group description file has the following general format:

Group export-symbol . . . is member . . .

For convenience, the programmer can choose to leave the list of export symbols
empty. In this case CM will provide a suitable default. A “library” is a special kind
of group whose constituent modules become part of the main program only if the
main program directly or indirectly refers to them. Library descriptions look like
group descriptions with the keyword Group replaced by Library. Moreover, the
export list of a library cannot be left empty.

Probably the simplest example for a group is one that has an empty export list
and no subgroups (i.e., no members that are groups):

Group is
main.sml (* the application code *)
table.sig (* interface to ‘table’ abstraction *)
table.sml (* implementation of ‘table’ abstraction *)

Once the group description file is in place, CM can then analyze the dependencies
among components of the system, determine a feasible ordering of (re-)compilation
steps, and carry them out as necessary.

3.3 Hierarchies

As we have explained, large programs should be broken into multiple groups, and
the groups should then be arranged into a hierarchy. This makes it easier to manage
large systems because related sources are kept together, while unrelated sources are
kept apart. Software reuse is promoted by consolidating generally useful compo-
nents into libraries. Multiple definitions for the same name are not allowed within
the same group, but no such restriction exists for definitions in different groups.

Cycles. Definitions in SML cannot form cycles across module boundaries. In
particular, structure A from a.sml cannot refer to structure B in b.sml, if at the
same time structure B refers to structure A. This rule is checked and enforced by
CM. In languages that permit cycles between modules, we believe that it would be
reasonable to allow cycles within the same group, but we have not investigated this
idea in depth.

Groups and Subgroups. As shown in Figure 6, a group A that is mentioned in
the description of some other group B is called a subgroup of B. We say B itself is
a client of A because it imports A.

Sources of the client can refer freely to any of the symbols defined within and
exported by the subgroup. However, the client can also provide new definitions for
any of the subgroup’s symbols, thereby masking the subgroup’s definition.
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Librarysmlnj-lib.cm

array2-sig.sml
...

...

array2.sml

    signature ARRAY

    structure Array2
...

is
    array2-sig.sml

    array2.sml
...

/usr/sml/lib/

sources.cm

main.sml

local-stuff.sml

GraphApp/ Group
    structure GraphApp

is
    main.sml
    local-stuff.sml

    /usr/sml/lib/smlnj-lib.cm

pgl/

draw.sml

sources.cm

shapes.sml

...

util-exports.sml

Library
    structure Draw

is
    draw.sml
    shapes.sml
    ...
    util-exports.sml

    structure PGLUtil

    structure PGLUtil

    structure Shapes

    ...

    signature GRAPHAPP

    pgl/sources.cm

Fig. 6. CM group description files. This figure shows a sketch of a program, its group descriptions,
and a sample directory hierarchy to hold the associated files. Directory GraphApp contains source
files (main.sml, local-stuff.sml) and the description (sources.cm). The application exports
symbols structure GraphApp, signature GRAPHAPP, and structure PGLUtil. PGLUtil itself is
imported from the graphics library “PGL” described by pgl/sources.cm. Furthermore, there
are imports from the SML/NJ library, which was installed in a central location by the system
administrator. (Relative path names in description files refer to files in the directory that contains
the description.)

sources.cm util/sources.cm

Group is

a.sml

b.sml

util/sources.cm

Group is

c.sml

d.sml

a.sml

b.sml

c.sml

sources.cmutil/ Group is
    c.sml
    d.sml

d.sml

sources.cm Group is
    a.sml
    b.sml

    util/sources.cm

MyPgm/

Fig. 7. A simple group hierarchy. Suppose a.sml and b.sml are sources of a group that needs
to refer to a subgroup containing util/c.sml and util/d.sml. In this case one could create two
description files, and one of them will then refer to the other.
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Group

structure Table

signature TABLE

structure Main

functor A

funsig A

is

main.sml

a/fct.sml

a/fsig.sml

table/sources.cm

RCS/parser.grm,v

sources.cm

table/sources.cm

structure Table
signature TABLE

a/fct.sml
main.sml

structure Table
signature TABLE
structure Main
functor A
funsig A

. . .

. . .

. . .

RCS/parser.grm,v

a/fsig.sml

structure TUtil

Fig. 8. A group with an export list. Notice how the outer group may export some (but not
necessarily all) of the definitions that are exported by the inner group.

Usually, CM will automatically identify description files in its member list by
their names. Those that end in .cm are treated as names of other group description
files. Relative file names are resolved with respect to the directory that contains
the description file (see Figure 7).

Auxiliary Tools. Some members are neither SML sources nor group descriptions.
They require special processing before CM’s analyzer can understand them. This
is done by “tools.” For example, an ML-Yacc source file parser.grm will be fed to
ml-yacc, which produces two SML files: parser.grm.sig and parser.grm.sml.

CM applies tools in cascades where necessary. For example, in place of the gram-
mar file parser.grm, one can use the corresponding RCS archive parser.grm,v.
CM’s RCS tool will first run the co command to “check out” a copy of parser.grm,
and then the ML-Yacc tool will take over to produce parser.grm.sig and
parser.grm.sml, which are finally processed by CM directly.

The built-in toolbox of CM is extensible. It allows for seamless addition of new
tools to the existing set of predefined ones by writing a few lines of Standard ML.

Export Lists. Every group has an export list. The list, which consists of ML
symbols, restricts (“filters”) the set of definitions that are exported. If the export
list for a group is given explicitly, then the group will export definitions for precisely
the symbols listed, regardless of whether they are defined in the group itself or in
one of its subgroups. If the programmer does not provide an explicit export list,
then CM supplies a default.

Export lists are useful for adding an interface to an entire set of source files. The
interface governs what outside clients can see; the members of the group themselves
can still freely refer to each other’s exports. Section 4 discusses how such summary
interfaces can improve separation between software components.

The list of symbols that makes up an export list appears between the keyword
Group (or Library) and the keyword is. Since in SML we distinguish between
symbols of different name spaces, we must write structure struct-sym for a struc-
ture symbol, signature sig-sym for a signature symbol, functor fct-sym for a
functor symbol, and funsig fsig-sym for a functor-signature symbol.
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Therefore, a group description with export list could look like the one in Figure 8.

Libraries. A library is a special kind of group. The differences between libraries
and ordinary groups are small and mainly concern the notion of implicit export
interfaces. First, a library itself cannot use an empty export list. The programmer
must provide the list of exported symbols explicitly. With this choice we intend
to enforce some discipline when creating libraries. And second, the library’s ex-
ports will not be reexported by an importing group if that group uses an implicit
export interface. The idea here is that an incidental member of a library will not
accidentally pollute the export list of a client.

Preprocessor. At the time it reads a description file, CM applies a simple, C-like
preprocessor that allows for conditional linking, such as

Group is
a.sml

# if (SMLNJ VERSION < 110)
# error This version of SML/NJ is too old.
# elif (defined (OS UNIX))

b-unix.sml
# else

b-nonunix.sml
# endif

3.4 The Role of Dependency Analysis

CM provides a language for specifying the semantic structure of large programs
that consist of many separately compiled modules by arranging these modules into
a hierarchy of groups and libraries. The hierarchy more or less directly reveals
dependencies between groups, while dependencies between individual source files
within each group are not given explicitly. Here CM’s dependency analysis main-
tains the illusion of unordered source collections.

This balancing act—explicit dependencies between groups but implicit depen-
dencies within groups—is important. One must impose certain restrictions on the
source language to be able to make dependency analysis tractable [Blume 1999].1

However, some of these restrictions should not be used indiscriminately for the en-
tire program but only within groups. As we have seen, this is particularly true for
the requirement of disjointness of exported names.

Dependency analysis within groups significantly simplifies the task of writing
group descriptions. It makes CM easier to use and therefore more attractive as a
tool.

Most other compilation and configuration management tools do not provide au-
tomatic dependency analysis but require the programmer to specify dependencies
explicitly. Since dependency information is usually coded in some specification lan-

1As discussed in the paper we cite here, there are many possible ways to restrict the language.
For CM we chose the following two: one cannot export definitions for the same name from two
or more different sources of the same group, and the use of ML’s open construct is prohibited at
the top level.
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guage, one can imagine adding dependency analysis using an auxiliary program that
calculates and generates specifications. Examples are the imake and makedepend
tools that generate input for make from C source code [DuBois 1996].

3.5 Caches, Files, and Stable Groups

CM uses a variety of caches to speed up its analysis and recompilation steps. In-
core caches provide fast access to information as long as the CM session is kept
running. The ambient file system provides a second level of caches. It is used to
remember the results of expensive operations from one session to the next.

The most important kind of cache is the binfile. It plays the role of the binary
object file and enables CM to avoid compiling sources over and over. CM not only
stores compilation results in binfiles but also keeps them in main memory. This
often reduces file system traffic in ongoing edit-compile-debug sessions because data
is readily available in main memory and does not need to be reloaded from auxiliary
storage.

Dependency analysis is much less expensive than compilation, but it still has its
cost because the analyzer must parse all SML source files. However, only very little
of the information from each source file is actually necessary to drive the analysis
process. Therefore, CM extracts the important small part and caches it (both
in main memory and in the file system). Files used for this purpose are called
dependency files. Sizes tend to be around 2–5% of that of their corresponding
source files. (In our implementation it was convenient to create one dependency
file for each source file.)

The existence of cached information often means that CM does not even need
to consult the original source file. However, this is not always the case, since the
result of compiling one source file does not only depend on that source but also on
the environment in effect. This environment is the result of compiling the source’s
predecessors in the dependency graph. Modifications to any of them may require
the source to be recompiled as well.

We can guarantee that a source does not need to be consulted if we ensure that
all ancestors in the dependency graph stay fixed. This leads to CM’s notion of
stable groups, which are groups explicitly designated to remain unaltered for the
foreseeable future. Examples of stable groups are central libraries that are installed
and maintained by the system administrator. The process of stabilization creates
a special version of a dependency file called the stablefile. It acts as an archive,
summarizing all individual depedency files and binfiles.

Much less file system activity is required when dealing with stable groups because
fewer files must be opened and read. On computers with comparatively slow access
to the file system, this can improve performance considerably. On many systems it
will make no difference.

4. THE GROUP MODEL

Linking separately compiled modules associates the imports of each module with
the corresponding exports of other modules. This association is mediated by a
global name space in which linking takes place.

If the global name space is not sufficiently structured, then problems for modular-
ity arise. The exact nature of these problems depends on the structure of the name
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1

2X

X

Fig. 9. Direct relation. Two program fragments X1 and X2 are directly related if X2 explicitly
refers to a definition that is exported from X1.

1X 2X

Fig. 10. Indirect relation. Two program fragments X1 and X2 are indirectly related if there is a
third fragment that explicitly imports from both.

space. We will analyze two examples, C and ML. These cases are not strawman
examples: all commonly used programming languages that the authors are aware
of suffer from these or from similar problems.

In the following discussion we will first introduce the notion of directly or indi-
rectly related modules. It will enable us to state the conditions on naming-related
conflicts that we consider acceptable for modularity. These conditions are satisfied
by CM’s group model, as we will demonstrate when we formally develop a simple
calculus for linking.

4.1 Relationships between Modules

Name conflicts are especially troublesome when the interfering parts of the program
are unaware of each other’s existence. It seems obvious that modules that are
conceptually related will have to know about each other anyway. Therefore, we are
interested in avoiding naming conflicts precisely in those cases where there is no
such conceptual link. Of course, “conceptual link” is not precise language. We will
strengthen this idea and define what we mean by unrelated modules.

Definition 1. Two groups are said to be directly related if one explicitly imports
from the other. They are indirectly related if a third group imports definitions from
both. In any other case we call them unrelated (see Figures 9 and 10).

As shown in Figure 11, this relationship between modules is not transitive.
Definitions are said to interfere if they can cause name conflicts in parts of the

program that are unrelated. Name conflicts between related modules are acceptable
because—as we will see later—they can be resolved by simple local modifications
that affect only the part of the program where they occur. We will call such conflicts
modular.
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2X 2X X3

X1

3X

1X

1X 2X X3

Fig. 11. Module relationship is not transitive. In all three examples, modules X1 and X3 are
unrelated even though X2 is related to each. This nontransitivity means that the potential for a
name clash in one part of the system does not easily spread throughout the entire program.

Definition 2. A name conflict (and its associated restriction on name usage)
is called modular if it affects only related parts of the program (i.e., parts that
according to Definition 1 are either directly or indirectly related).

4.2 Definability and Availability: The Cases of C and ML

C [Kernighan and Ritchie 1988] is a language where the potential for naming con-
flicts causes restrictions on definability of names. While this is avoided in ML, there
still is a potential for conflicts—causing restrictions on the availability of definitions.

Definability. A name n is definable at a given program p point if adding a defi-
nition for n at p will not cause a name conflict with another definition in the same
program.

Availability. A definition d is available at a given program point p if the name
defined by d can be used at p and refers to the meaning that was assigned by d.

A C program cannot use certain identifiers because they are potentially taken
by libraries or other parts of the program, even if those are unrelated. Thus,
these identifiers are no longer definable (see Figure 12). An ML program can
have arbitrarily many definitions for the same name. Although this eliminates
restrictions on definability, it creates new restrictions on availability. Parts of a
larger program may not be able to see an early definition for variable x because
there is a different, intervening definition for x inhibiting access to the one that was
intended (see Figure 13).

Examples and Discussion. Because of the global name space’s lack of structure,
definitions that are conceptually local to a small group of sources are often promoted
to be globally visible. For example, many implementations of the C standard library
export a function doprnt, but the only purpose of this function is to be called by
other functions (printf, sprintf, . . .) that are exported from the same library. The
application program is not supposed to refer to doprnt directly, which is indicated
by the presence of the leading underscore in its name. But “magic” names like
this are an inelegant and clumsy solution to the more general problem. It cannot
give guarantees of nonabuse, but such guarantees are sometimes necessary when
the programming environment is trying to promote safety and security. Of course,
one could make doprnt static, but this would require that printf, sprintf, and
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GL Win32 API

glfoo

XLib

X Toolkit Intrinsics (Xt)

Motif

Graphics Application

C Standard Library (libc)

"portable" Graphics API ("PGL")

Xm

Xt

X

foo

foo

foo

foo

Win32 API
identifiers

... ???

Fig. 12. Restrictions on definability inhibit modularity. Imagine a “portable graphics library”
(PGL) that provides a uniform API implemented on top of either X/Motif, Silicon Graphics’s
GL, or Win32. The programmer of this graphics application in C, who ideally would like PGL as
a black box, must be careful not to interfere with any of the various libraries upon which PGL
might be implemented. Entire classes of identifiers must be avoided: Xmxxx, Xtxxx, and so forth
because of X Windows, glxxx to avoid conflicts with GL, scores of symbols to account for Win32,
but also many names that the creators of new library designs might choose for their purpose in
the future.

fun g (x) = f (f (x))

val g = 9.81

val s = (g * t * t) / 2.0

Fig. 13. Restrictions on availability inhibit modularity. In this SML program a value for s was
meant to be calculated in terms of the gravitational constant g that was defined earlier. But
a third, conceptually unrelated compilation unit redefines g, so the original definition becomes
unavailable. In this case the resulting program does not even type-check, and the problem can be
detected at compile time. In other cases the program might produce an unintended result.
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so forth, all be implemented in the same compilation unit. Neither this approach
nor the use of magic names scales well.

Modularity suffers if the programmer who uses a “portable” API of graphics rou-
tines, like the fictitious PGL in Figure 12, has to worry about how it is implemented.
With only one single global name space the programmer must be careful not to use
any of the symbols taken by, for example, the X Windows libraries [Scheifler et al.
1988], if the program later has to be linked with those. That alone excludes hun-
dreds of identifiers, but the argument extends to all other basis libraries that may
also serve as an implementation platform for PGL. To write completely portable
code, one would even have to foresee any future development that leads to alterna-
tive implementations. This, of course, is impossible.

The client of PGL in Figure 12 cannot use certain identifiers because they are
potentially taken by the libraries that represent PGL. With CM, one would im-
plement PGL as a group whose export list mentions only those identifiers that are
supposed to be accessible by its clients. Consequently, the application programmer
could not even tell how PGL is implemented; the application code will be truly
independent of the libraries underlying PGL’s concrete realization.

A CM group implementing the equivalent of the C standard library would not
list doprnt in its export list. No client of that library could then accidentally
or voluntarily access the corresponding routine. This matches one’s intention of
doprnt being local to the library’s implementation.

4.3 Environments and Linking

Cardelli [1997] presents an excellent discussion of the problems that arise with
modules and separate compilation. His notion of a linkset is used as a framework
for describing and reasoning about consistent, type-safe linking. Type-safe linking,
for example provided by SML/NJ’s “visible compiler” [Appel and MacQueen 1994],
is a prerequisite of our analysis of the linking problem, but not the focus. In place of
Cardelli’s linksets our notation uses functions to express operations on environments
and equations for describing their properties. They directly correspond to actual
operations on real symbol tables and reflect the implementation of CM.

Environments. During separate compilation, individual sources are always com-
piled with respect to some environment that represents the definitions exported
from other compilation units.

Formally, an environment ρ is a partial mapping from long identifiers Ide+ to
denotations D. Long identifiers are nonempty sequences of simple identifiers. They
are used to express access to members of a structure by means of a “dot notation” as
can be found in many programming languages. The notation Y.z stands for a long
identifier 〈id1, . . . , idk, z〉 where the last component z ∈ Ide is a simple identifier
and where Y = 〈id1, . . . , idk〉.

Hd(I) is the head component of a long identifier:

Hd : Ide+ → Ide
Hd(〈id1, . . .〉) = id1

The domain D of denotations depends on the programming language. In SML it
would correspond to the compilation unit’s static and dynamic semantics. In C,
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compile linklib.h
mod.c

mod.o exported
symbols

imported
symbols

Details Abstraction

ML

C
source exports

imports

def

compilemod.sml

context
environment

exported
–environment

Fig. 14. Compiling, linking, context. A C source file is first compiled and subsequently linked
with respect to a table of imported definitions. In the case of SML, compiling and linking are
combined into one step, but, again, there is a context environment representing definitions that

are imported from other compilation units. We abstract from language-specific differences and
uniformly use the def operator as a model for compiling (and linking) a source with respect to
some context.

on the other hand, external identifiers stand for machine addresses. In this case
D would be a domain of locations. To abstract from such language-dependent is-
sues, we instead use a domain of labels l ∈ Lab. These labels uniquely identify
each definition of a given program. Thus, we can always distinguish between dif-
ferent bindings for the same identifier without having to consider the meaning of
an identifier according to the semantics of the language.

D = Lab
ρ ∈ U = Ide+ → D

The domain dom(ρ) ⊂ Ide+ of an environment ρ is the set of identifiers that are
bound there. We call {Hd(x) | x ∈ dom(ρ)} the head domain domH(ρ) ⊂ Ide of ρ.
∅U is the environment with an empty domain.

All prefixes of long identifiers that are bound by an environment must also be
bound by the same environment:

Y.z ∈ dom(ρ)⇒ Y ∈ dom(ρ)

Environments can be combined using the n operator:

n : U × U → U

ρ1 n ρ2 = λx.

{
ρ1(x); Hd(x) ∈ domH(ρ1)
ρ2(x); otherwise (1)

The operator n is associative, but is not commutative if dom(ρ1) ∩ dom(ρ2) 6= ∅.

Compiling and Linking. We use the def operator (see Figure 14) as an abstraction
of compiler and linker. It calculates an incremental delta environment containing
just the bindings corresponding to definitions that are explicit in the compilation
unit:

def : Source× U → U
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S1

S2

Sn

def

def

def

0

Fig. 15. Compilation environments for SML. In SML the context environment that is used for
compiling a source is built incrementally by layering the exports of sources that were compiled
earlier on top of the initial basis environment ρ0.

S1

S2

Sn

0

def

def

def

Fig. 16. Compilation environments for C. Conceptually, every source of a C program is compiled
with respect to the same global environment, which itself is constructed by layering the exports
from all sources on top of some initial basis environment ρ0. Implementations resolve the circu-
larity at link-time; but at compile time the compiler takes information from header files and uses
it as an approximation of the global environment.

Programming languages differ in how they calculate the input environment for def .
Consider a program consisting of sources s1, . . . , sn written in SML. The export
environment ρi of source si is

ρi = def (si, ρi−1 n · · ·n ρ1 n ρ0)

where ρ0 is the initial basis environment. This situation is depicted in Figure 15.
In C, on the other hand, every source file is linked in the context of the same global

environment. The global environment is constructed by combining the exports of
all sources (see Figure 16):

ρi = def (si, ρ); ∀i ∈ {1, . . . , n}
ρ = ρn n · · · ρ1 n ρ0
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def

def

def

S4

S1

S7

multidefC

0

defS2

Fig. 17. Linking subsets of C sources. The multidefC operator is the C-specific extension of
def . It calculates the export environment for a given subset of sources. multidefC returns an
incremental delta environment that binds only those symbols explicitly defined in that subset of

sources. This is consistent with the way def works for single sources.

The process of linking corresponds to solving the system of simultaneous equations.
In C none of the identifiers can be bound by more than one environment ρi:

i 6= j ⇒ dom(ρi) ∩ dom(ρj) = ∅

Because of the resulting commutativity of n, linking is order-independent and be-
comes straightforward. However, with each source, the programmer must provide
header files containing the information necessary to construct an incomplete version
of ρ that is suitable for compiling the source, because the full ρ only becomes avail-
able after all sources have been compiled. This is sometimes rather cumbersome,
but unlike SML it allows for mutual recursion across compilation units.

Linking Subsets of Sources. We define

multideflang : 2Source × U → U

to be the language-dependent extension of def to sets of sources.

C. Every global definition is visible in the entire program. Therefore, the multidefC
operator passes its context argument (which in fact is the global environment) to
all individual calls to def for each of the constituent sources. The resulting delta
environments are combined using n, thus yielding a delta environment for the entire
subset (see Figure 17):

multidefC({s1, . . . , sn}, ρ) = def (s1, ρ)n · · ·n def (sn, ρ)

SML. multidefSML must first use a dependency analyzer A to turn the set of
sources into a sequence [Blume 1999]:

A : 2Source × U → Source∗
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def

def

def

S1

S2

Sn

multidefSML

(context)

incremental
exports

Fig. 18. Compiling (ordered) sets of SML sources. The multidefSML operator extends def to
sets of SML sources. Individual exports are incrementally layered on top of an initially empty
environment. The result is a delta environment only containing bindings for identifiers defined in
{s1, . . . , sn}, which is analogous to the behavior of def .

The step function then incrementally builds the resulting export environment ρ′.
Intermediate values for ρ′ are layered on top of the initial context ρ to serve as the
context needed for compiling individual sources of the set:

step(〈〉, ρ, ρ′) = ρ′

step(〈si, si+1, . . .〉, ρ, ρ′) = step(〈si+1, . . .〉, ρ, def (si, ρ′ n ρ)n ρ′)
multidefSML(S, ρ) = step(A(S, ρ), ρ, ∅U ) (2)

Exports from each source are combined to eventually form the exports of the entire
sequence; a second layering operation per source is necessary to form the corre-
sponding compilation context (see Figure 18). This explains why there are two
occurrences of n in the definition for step.

SML, Using Partial Orders. If si occurs to the left of sj in A({s1, . . . , sn}, ρ),
then intuitively this means that sj “depends” on si. To be able to optimize recom-
pilation, we may want to capture the idea that two sources do not depend on each
other. Total orders contain “too many” relations, so we will consider partial orders
instead.

One can represent such a partial order as a DAG of sources given by the “pre-
decessor” function P : Source→ 2Source. The dependency analyzer must calculate
P :

A :
(

2Source × U
)
→
(

Source→ 2Source
)

Now multidefSML must be revised accordingly. If we compile a source set S with
respect to ρ, then we must express the result def P(s, ρ) of compiling a source s ∈ S
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in terms of the base environment ρ, s itself, and the exports of its predecessors
s′ ∈ P(s)2:

def P(s, ρ) = def (s, (
n∑

s′∈P(s)

def P(s′, ρ))n ρ)

multidefSML(S, ρ) =
n∑
s∈S

def A(S,ρ)(s, ρ)

In general, the summations in these equations still require a total order imposed
on the set of sources. This problem is resolved if we ensure that export domains
of individual sources are disjoint. It turns out that such a restriction is necessary
anyway because otherwise dependency analysis becomes intractable [Blume 1999].
Therefore, CM enforces this rule within each group—but not globally! (If we were to
impose such a restriction globally, then it would cause restrictions on definability.)

As an important aspect of our group model we also require that each name
x imported by a source s ∈ S (i.e., x free in s) and exported by another source
s′ ∈ S will be resolved to the definition in s′. In other words, definitions within
S always take precedence over definitions for the same name that come from the
context environment ρ. Formally, this can be expressed by the following invariant
on P = A(S, ρ):

∀s, s′ ∈ S : ∀x ∈ Ide+ : (x free in s ∧ x ∈ dom(def P(s′, ρ)) ∧ s 6= s′)⇒ s′ ∈ P(s)

4.4 Definability and Availability Revisited

Definability. Formally, the definability of a name in C can be determined accord-
ing to the following rule:

x definable in si iff ∀j : j 6= i⇒ x 6∈ dom(ρj)

Thus, in C a definition in one source file affects definability and availability in the
entire program. This creates an unfortunate implicit coupling between compilation
units that is not modular because it means that the programmer has to be aware
of every identifier in every part of the entire program, including all of the program
libraries that it could be linked with.

4.4.0.1 Availability. The treatment of SML code requires a well-defined ordering
among the sources; s1 will be compiled before s2, and so on. Unlike in C, every
identifier is definable everywhere,3 but a definition in source si that binds x is
available in sj only if i < j and there is no other definition for x in one of the
sources “between” si and sj :

definition for x from si available in sj iff
∀k : (i < k) ∧ (k < j)⇒ Hd(x) 6∈ domH(ρk)

2The summation
n∑

is based on the binary operation n.
3This is a slight oversimplification, because the declaration val y = x does not provide a new
definition for y if y is currently a constructor tag for some datatype.
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Thus, in SML, unlike the situation in C, definitions do not interfere with the defin-
ability of names. But their impact on availability is still nonlocal: the programmer
has to be aware of all the definitions exported from earlier sources. Again, the
resulting implicit coupling inhibits modularity.

4.5 Groups

Groups localize the effects of definitions. The group model is constructed in such
a way that names in unrelated groups do not interfere. Only if a source in group
g2 refers to a definition exported from another group g1, then the description of g2

must name g1 explicitly as one of its imports. This establishes a direct relationship
and makes conflicts between the two groups modular.

Formally, a group g : Grp is a triple (S, I, E). Here, S is the set of sources; I is
the set of imported groups; and E is a set of identifiers that is used for thinning
the group’s export interface.

Grp ⊂ 2Source × 2Grp × 2Ide

Given a set of groups G ⊂ Grp let I(G) be the import set of G.

I(G) = {g | ∃(S, I, E) ∈ G : g ∈ I}

The cumulative import set I∗(G) is the transitive closure of the import set. The
graph of direct dependencies must be acyclic. Therefore, no group can be in its
own cumulative import set.

Thinning, which is a reduction of the number of definitions that are exported by
a group, can be understood as a filter operation F applied to an environment. The
filter retains bindings to only those long names that start with a simple identifier
in E; the filtered environment F(ρ,E) is ρ with its head domain restricted to E.

F : U × 2Ide → U

domH(F(ρ,E)) = domH(ρ) ∩ E
Hd(x) ∈ E ⇒ F(ρ,E)(x) = ρ(x)

For example, the C standard library would list printf, sprintf, and so forth in
its export list, but doprnt would be omitted.

Let ρ0 be the initial basis (the “standard library”). C(I) is the context environ-
ment that is used when compiling the set of sources S of a group (S, I, E). It is
defined in terms of the group’s imports I.

C : 2Grp → U

C(I) = (
n∑
i∈I
E(i))n ρ0 (3)

E(g) is the export environment of group g:

E : Grp→ U

E(S, I, E) = F(multidefSML(S, C(I))n C(I), E) (4)
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A group (S, I, E) can reexport part of its own context C(I). For this, the definition
to be reexported must be named in E and cannot be redefined by any of the sources
s ∈ S.

We have chosen to consider unordered sets of imported groups. But the sum-
mation in Eq. (3) is order-independent only if the domains of the imported envi-
ronments are disjoint. Therefore, we require that indirectly related groups do not
export definitions for the same identifier.

∀(S, I, E) ∈ Grp : ({i1, i2} ⊂ I ⇒
dom(E(i1)) ∩ dom(E(i2)) = ∅ (5)

4.6 How Modular Conflicts Can Be Resolved

In our formalism, the equivalent of a name conflict is the case where two environ-
ments whose domains are not disjoint participate in the same n operation. In the
group model, no such operation ever applies to export environments of unrelated
modules. Therefore, all possible conflicts are in fact modular (see Definition 2).

To be practical, it is very important for the group model that those remaining
modular conflicts can always be resolved locally by modifying only the group where
they cause a problem. Three situations can arise:

(1) The export environments for two sources in the same group contain definitions
for the same identifier. These environments are joined using n according to
Eq. (2), which defines multidefSML.

(2) A source provides a definition for an identifier that is also defined by one of the
imported groups.

(3) In violation of Eq. (5) two imported groups independently provide definitions
for the same identifier.

Interferences of the first kind can always be removed by locally changing one of
the offending sources.

The second kind, a clash between a definition obtained from one of the imported
groups and a definition in one of the sources, is legal and has a well-defined meaning.
Definition from the group’s sources override imported definitions (see Eqs. (2)–(4)).
Sometimes, when this is not what was intended and the situation still cannot be
resolved by a simple change to one of the group’s sources, it becomes necessary
to rename at the point of import the identifier that is used to access a particular
binding from an imported group. This technique does not require changes to the
exporting group, and it can also be used to resolve clashes of the third kind.

Renaming can be expressed as yet another operation on environments. First, we
show how to rename a long identifier:

R : Ide+ × Ide× Ide→ Ide+

R(Y.z, x, y) = R(Y, x, y).z
R(〈x〉, x, y) = 〈y〉
R(〈z〉, x, y) = 〈z〉; x 6= z
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Renaming in environments can then be defined in terms of identifier renaming. If
ρ′ is obtained from ρ by renaming x to y, then looking up y in ρ′ is the same as
looking up x in in ρ. Thus, R and R take their arguments x and y in opposite
order (Eq. (6)).

R : U × Ide× Ide→ U

R(ρ, x, y)(z) = ρ(R(z, y, x)) (6)

In general, to formally describe renaming one must extend the notion of groups.
Imported groups (see domain Eq. (7)) are described by regular groups and an
arbitrary number of identifier pairs. The pairs specify renaming operations (see
Eq. (8)).

Imp = Grp + (Imp× Ide× Ide) (7)

Grp = 2Source × 2Imp × 2Ide

C(I) = (
n∑
i∈I
E ′(i))n ρ0

E(S, I, E) = F(multidefSML(S, C(I))n C(I), E)
E ′(g) = E(g)

E ′(i, x, y) = R(E ′(i), x, y) (8)

In the special case when dealing with a language like ML, renaming does not have
to be built into the compilation manager explicitly but can be obtained by using
“administrative” groups. Thus, CM currently only implements the original model
without renaming.

An administrative group imports a binding under one name and exports it under
a different one. This is possible because renaming in ML can be expressed in source
language (see Figure 19). A definition of the form val y = x or structure B = A
establishes y to be an alias of x and B to mean the same as A.

This behavior of ML exhibits limitations to our approach of abstracting deno-
tations as labels. To deal with this case correctly, we could have introduced an
explicit equivalence relation on labels. However, it seemed unnecessary to further
complicate our calculus just to be able to handle this minor, language-specific point.

C and Scheme are examples for languages where administrative groups do not
work because there is no general way of defining one name to be an alias for another.
A variable definition in these languages creates a new, unique meaning. This means
that a CM-like compilation manager would have to implement renaming directly.
It should also be noted that even in Standard ML one cannot always create aliases
that are truly indistinguishable from their original. For example, variable y in
val y = x will not have the status of a constructor even if x was a constructor.
However, right now this is not an issue because CM does not deal with type or value
definitions at the top level. Only structures, signatures, and functors are tracked.
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l2: structure X = ...

l1: structure X = ...

l1X
l2X

l3: structure Y = X

l2: structure X = ...

l1: structure X = ...

X Y

l2X

l2 (or l3)l1

Fig. 19. Administrative groups. In SML one can achieve the effect of renaming upon import by
administrative groups because the source language provides facilities of defining one identifier to
be a proper alias of another. Many other languages, including C and Scheme, lack such a language
feature. For those languages it is necessary to build renaming into the group model.

4.7 Implicit Export Interfaces

We have already mentioned that group descriptions for nonlibraries may leave their
export list empty. In this case CM provides a default. The group then exports
everything defined by its own sources and everything that is imported from other
nonlibrary subgroups. Formally, let (S, I, ·) be a group and IL ⊆ I be the set of
imported groups that are libraries. The export list Ê provided by CM is calculated
as

Ê = dom(multidefSML(S, C(I)) n
n∑

i∈I\IL

E(i)). (9)

4.8 Back to ML

We can provide a more self-contained explanation for the meaning of a program
managed under CM by providing a translation back to Standard ML. This trans-
lation will also provide the dynamic part of CM’s semantics (link-time execution
and state). So far we had only dealt with the static part.

The translation will turn the entire program consisting of many individual com-
pilation units into one single piece of ML source code. As such, it is not meant as
a practical way of implementing CM but merely as a means of gaining insight into
CM’s semantics. See Figure 20 for an example.

The translation will embed the code contained in each individual compilation
unit into one single skeleton of glue code. The glue code will play the role of
the global environment, providing import bindings for each compilation unit and
remembering the resulting export bindings. The final result of the translation is
a concatenation of source fragments where the fragments themselves are obtained
from the original sources by the following method.

We start with the full dependency graph of the program. This graph is directed
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structure X = struct
  val a = 1
end structure X = struct

  val b = 2
end

structure Y = X

structure Z = struct
  val c = Y.a + X.b
end

local

in
  structure Fresh_1 = X
end
local
  structure X = Fresh_1

in
  structure Fresh_2 = Y
end
local

in
  structure Fresh_3 = X
end
local
  structure Y = Fresh_2
  structure X = Fresh_3

in
  structure Fresh_4 = Z
end

  structure X = struct
    val a = 1
  end

  structure Y = X

  structure X = struct
    val b = 2
  end

  structure Z = struct
    val c = Y.a + X.b
  end

Fig. 20. Back to ML. The left-hand side of this figure schematically shows the CM group structure
of a simple program. Solid boxes are Standard ML source files; dotted boxes symbolize grouping.
The right-hand side shows the source of an equivalent single-source Standard ML program. In

this program there are explicit renaming operations where CM would normally have handled them
automatically.

and acyclic. First we pick a postorder traversal of that graph. The code fragments
generated from the original sources will be concatenated in that order. Postorder
guarantees that each source appears after the sources it depends on.

We have left some nondeterminism in our description because we have not spec-
ified the actual traversal. This leaves some freedom in how the order of link-time
side effects is chosen. One could eliminate the uncertainty, which perhaps would
be undesirable from the purist’s point of view, by prescribing an ordering among
sibling nodes of the dependency graph and by requiring a particular kind of traver-
sal. In our actual implementation we have not done that because so far it has not
been a problem in practice. As a workaround it is always possible for the pro-
grammer to create artifical static dependencies which serve to enforce the desired
ordering. (Another way of making this aspect of the semantics more predictable
would be to have the programmer supply a total ordering of the sources in each
group—thereby losing one of main features that makes CM so convenient to use.
A practical advantage of such a design would be that dependency analysis becomes
nearly trivial.)

A code fragment S′ is obtained from its source S by embedding S into a set of
pre- and postdefinitions. The postdefinitions map bindings exported by S to fresh
identifiers, while the predefinitions provide bindings for the free identifiers of S by
referring to those auxiliary identifiers that are bound by the postdefinitions of the
predecessors of S.

We use our environment formalism to obtain the correct set of pre- and postdefi-
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nitions. Therefore, we change the domain for environments to be the set of program
identifiers: D = Ide. In other words, the compilation environment ρ for a source S
maps the source’s free identifiers to other identifiers: ρ : Ide→ Ide.

The code of S′ first establishes the free identifiers of S as aliases of their corre-
sponding names in ρ. Let x1 . . . xn be the free identifiers of S. Then there will be a
definition for each i that equates xi with ρ(xi). The precise syntax of that definition
in Standard ML depends on what name space xi belongs to. In particular, we use

namespace(xi) xi = ρ(xi)

where namespace(x) is either structure, functor, signature, or funsig.
Finally, let y1 . . . ym be the names bound and exported by S. We generate

fresh names z1 . . . zm, bind them to those exports, and let the export environment
def (S, ρ) map each yj to the corresponding zj. By keeping the xi and yj in local
scopes we can be sure that there are no name clashes, since the zj are all chosen
fresh. Thus, the fragment S′ derived from S looks as follows:

local
namespace(x1) x1 = ρ(x1)
...
namespace(xn) xn = ρ(xn)
S

in
namespace(y1) z1 = y1

...
namespace(ym) zm = ym

end

5. CONCLUSIONS

The group model employed by SML/NJ’s compilation manager enables modular
large-scale programming. Traditionally, this has been difficult because the potential
for naming conflicts creates nonmodular dependencies between otherwise unrelated
parts of a program. In the cases that we have examined, these problems manifested
themselves as restrictions on definability of names or availability of definitions.

CM’s group model arranges sources into a hierarchical structure. Export envi-
ronments are combined only when necessary, thereby avoiding most name clashes.
Although it cannot eliminate all clashes, it controls them in such a way that they
do no longer compromise modularity because local modifications suffice to resolve
them.

CM can be seen as extending the language ML, augmenting it with hierarchical
coarse-grain modularity where separately compiled source files are the basic building
blocks. But this extension is rather modest. The group model is intuitive; CM’s
configuration language is surprisingly small and simple; and an automatic analysis
frees the programmer from the tedious task of having to keep track of intermodule
(but intragroup) dependencies.

How viable are our approaches if we tried to apply them to languages other than
ML? This question should be asked in two parts. First, is it possible to implement
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hierarchical modularity and automatic dependency analysis for other programming
languages? And second, if so, can the solution be made as elegant as CM?

Certainly, the answer to the first part must be “yes.” We have demonstrated
how hierarchical modularity—the group model—can be implemented in terms of
simple operations on environments: layering, filtering, and renaming. It is not a
great challenge to implement the same operations for other systems, for example
for the symbol tables in Unix object files. Efficient calculation of dependencies for
Standard ML proved to be unusually difficult. For many languages this will in fact
be easier.

The answer to the second part of the question, the question of whether a solution
would be as elegant as CM, is much less clear. We do not have a measure for
elegance, and even if we did, we could only speculate. But we can say that ML,
and SML/NJ in particular, made it especially pleasant and rewarding to create a
compilation manager for it.

In part this is due to the fact that ML is particularly well suited to the implemen-
tation of compilers and—it turns out—compilation management tools. SML/NJ
provides the “visible compiler” interface, which made it easy to implement type-safe
linking as well as cutoff recompilation.

Even more importantly, ML is a good target for a compilation management tool.
It is a very elegant language with a module system widely regarded as being one of
the most sophisticated and expressive in existence. CM did not have to add much
to support hierarchical modularity. That made it possible to keep the configuration
language simple.

Aside from the many positive aspects of ML, there have been some that proved
difficult to deal with. These cases mostly concern automatic dependency analysis
and have been described separately [Blume 1999].

The simplicity of CM’s model benefited from being built upon and integrated
with one—and only one—very expressive and elegant programming language. One
should expect similar tools for similar languages to be comparably elegant. General-
purpose compilation managers cannot define themselves as extensions of only one
language. They may be more versatile, but they are also more complicated because
for different languages many language-specific details must be taken care of differ-
ently. Without a fixed base language, they also need a significantly richer notation
for expressing dependencies.
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