
TECHNICAL REPORT
CMU/SEI-99-TR-013

ESC-TR-99-013

Construction and
Deployment Scripts
for COTS-Based,
Open Source Systems

Wilfred J. Hansen
January 2000

Pittsburgh, PA 15213-3890

Construction and
Deployment Scripts
for COTS-Based,
Open Source Systems
CMU/SEI-99-TR-013
ESC-TR-99-013

Wilfred J. Hansen

January 2000

COTS-Based Systems Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-99-TR-013 i

Table of Contents

Abstract vii

1 Introduction 1
1.1 Principles 2
1.2 Tasks of the GEE Construction Scripts 3

2 Concepts and External Tools 5
2.1 Build Tree, Source Archive, and rcs 5
2.2 Make and Imake 9

3 GEE Definitions and Makefile Generation 11
3.1 gee.properties 11
3.2 The imake Template, imake.tmpl 14
3.3 gee.rls 16

3.3.1 gee.rls: Macro Rules for Operations
on Entire Subtrees 17

3.3.2 gee.rls: Installation Rules 18
3.4 Generating the Makefile with imake and

genmake 20

4 Java Challenges 25
4.1 Finding gee.properties; Preprocessing Java

Files 25
4.2 Locations for Java Files 26
4.3 Choosing What to Compile 27
4.4 Compilation and Execution 27
4.5 external/java 29
4.6 Java Version Changes 30
4.7 Javadocs 30
4.8 JAR Files 32

5 Challenges from Other COTS Products 35
5.1 Common Challenges 35
5.2 Oracle Challenges 37
5.3 VisiBroker Challenges 38
5.4 JRun and the Netscape Web Server 42

ii CMU/SEI-99-TR-013

6 Miscellaneous Issues 45
6.1 Security 45
6.2 Cron: Daily Processing 46
6.3 Beginning a New GEE Version 46

7 Conclusion 47

References 49

Appendix A: Properties File: gee.properties 53

Appendix B: Properties File Converter:
Defines.java 57

Appendix C: Macros for Imake: gee.rls 61

Appendix D: The Imake Template: imake.tmpl 73

Appendix E: Top-Level Imakefile 79

Appendix F: Top-Level Amakefile 81

Appendix G: genmake.csh 83

Appendix H: needjc.c 85

CMU/SEI-99-TR-013 iii

List of Figures

Figure 1: Various Build Scenarios 3
Figure 2: Tree of Source Components 6
Figure 3: Build and Archive Directories: Parallel Trees 7

iv CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 v

List of Tables

Table 1: Excerpt from gee.properties 12
Table 2: Defines.java 13
Table 3: Inputs and Outputs of Defines.java 14
Table 4: The imake Template File, imake.tmpl 15
Table 5: The Special Top-Level Imakefile 22
Table 6: Amakefile (The Top-Level Imakefile) 23
Table 7: runsql.csh: Send Commands to Oracle 38
Table 8: Imakefile for a Component Describing a

Service with IDL 39

vi CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 vii

Abstract

Construction/deployment scripts direct the compilation of sources to executables and the in-
stallation of those executables. This report details the construction/deployment scripts devel-
oped at the Software Engineering Institute for the GEE project. GEE, a Generic Enterprise
Ensemble, is a prototypical three-tier information system incorporating a number of commer-
cial off-the-shelf (COTS) products. The scripts for GEE were challenging because we wanted
a self-contained package of scripts and source files from which the system could be built and
deployed either by us at our site or by customers at their sites. The COTS products we used—
Java, an Oracle database, the Visibroker implementation of CORBA (the Common Object
Request Broker Architecture), and the Netscape Web browser and server—added challenges
in installation, version change, process initiation, and communication rendezvous. This report
describes the challenges and how our solutions exploited the principles of “Repeat not” and
“Delay binding.” Lessons learned are reported elsewhere.1

1 Hansen, W. J. "Deployment Descriptions in a World of COTS and Open Source," Ninth International
Symposium on System Configuration Management (SCM-9). Toulouse, France, Sept. 1999.
Heidelberg: Springer Verlag LNCS, 1999. Related source files are available on the WWW <URL:
http://www.sei.cmu.edu/staff/wjh/geebuild.tar>.

viii CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 1

1 Introduction

Before productive use, a software system must be written as a set of source files, built from
these sources, tested, corrected, and finally installed into global directories for access by us-
ers. Together, these steps constitute the “construction and deployment” of the system. Each
step can be initiated manually with a sequence of commands: run a compiler, run a linker,
start a server process, start a client process, copy files from one place to another, and so on.
However, as the size of the system increases, so do the number and complexity of these
commands. The complexity is further compounded as the system is re-targeted to additional
hardware and operating system platforms. It may still be possible for a developer to enter the
commands manually, but it is virtually impossible to document these commands sufficiently
so that their sequence can be repeated by anyone else. Instead, the commands must be encap-
sulated in some sort of script file. Indeed, developers routinely simplify and accelerate devel-
opment by use of such files, which we can call construction/deployment scripts.

Construction of a system as a monolithic whole with all sources under control of the devel-
opers was once the norm, but is no longer. Today commercial off-the-shelf (COTS) products
are organic constituents of systems; they provide databases, interprocess communication,
user interfaces, Web tools, and many other facilities. Incorporating these products into con-
struction/deployment scripts poses a number of new challenges. For instance, the work re-
ported here revealed problems with installing COTS products, accommodating their version
changes, starting their processes, and establishing communication for each with the rest of the
system.

This report describes the nature and details of the construction/deployment scripts developed
at the Software Engineering Institute for the GEE (Generic Enterprise Ensemble) project
[Wallnau 98]. GEE is an enterprise-level information system developed as an ensemble of
COTS products and locally written code. The system was planned for distribution in open-
source form so that developers might study GEE to learn how its collection of COTS prod-
ucts can be used together. Moreover, some generic portions of GEE are designed for direct
incorporation into enterprise systems. In a sense, GEE provides a sort of fill-in-the-blanks
enterprise information system; we call it a “genotype” because, in addition to the functions of
a prototype, it also serves as a framework for building a real-life system. COTS products
used in GEE include Java [Sun 99a], Netscape servers and browsers [Netscape 99], the Visi-
broker CORBA tool [Inprise 99], an Oracle database [Oracle 99], and Live Software’s JRun
tool for Java servlets [Live Software 99].

Some lessons learned from this work have been reported in a technical paper [Hansen 99].
The scripts described here are available on the Web [Hansen 98b].

2 CMU/SEI-99-TR-013

1.1 Principles
Much of the design of the GEE construction scripts is based on this first principle:

Repeat not.

In other words, do not put the same information in two places. This is not laziness; carrying
out this plan in practice is often considerably more work. The point is that build commands
change frequently, especially while creating them, and isolating each aspect to a single point
of change simplifies modification. The key to avoiding repetition is to give a name to an en-
tity, define the name once, and then use the name everywhere else to refer to the entity.

Of course, this first principle is common in computing. It is the basis for the notion of sub-
routines and functions. It is the foundation of the notion of modularity and its modern incar-
nation, object-oriented programming. In each case, the fundamental idea is to define a name
and use the name in place of some value that might change.

Corollary 1. Move commonalties to a central file. It is not enough that nothing be repeated. It
is also necessary that the definition of an entity be easy to find so that the definition can be
revised. The best way to do this is to collect definitions in one central location; not only does
this aid revision, but it also makes it possible to ensure that

• the proper definition will be accessed for each appearance of the name

• when one change is made, the appropriate ancillary changes are also made

• site-dependent information can be collected in one small area

• all changes can be made in a few files rather than making changes to a plethora of files
scattered across the system sources

Avoiding scattered changes reduces the intellectual effort of reading each file and the atten-
dant risk of introducing errors while making the change.

Corollary 2. Site-dependent information should never appear in more than one place. Site-
dependent information is information that is likely to change when the system is moved to
another site. It is bad enough that installation at a new site requires changing any file. The
need to change multiple files is a sure recipe for problems.

Related to the first principle is a second:

Defer binding.

This principle, too, has a long history in software. For command scripts, the meaning is to
avoid inserting into a file some constant where there should be a variable because the infor-
mation may change. Avoid constants for pathnames, database names, URLs, and so on. Any
such constants reduce the flexibility of the software; for instance, pathnames make it impos-
sible to install the software in a different directory location without rebuilding it.

CMU/SEI-99-TR-013 3

1.2 Tasks of the GEE Construction Scripts
To support both local development and eventual distribution, the construction/deployment
scripts had to satisfy several needs:

• Independent testing. Allow each developer to test a newly revised component without
installing it into a full-blown version of the system.

• Partial build. Permit independent work on separate system components.

• Developer full system build as an option. This is used for testing fundamental revisions.

• Full build and install. This is a customer installation option and also permits a nightly
development system rebuild to ensure that the released version is current.

• Multiple versions. Old versions must remain buildable and installed in order to, for
example, check that functionality has not been lost in a revision.

• Multiple platforms. Support building on different hardware and operating systems.

• Build at a foreign site. Enable a distribution recipient to build and install the system.

• Extension. Enable develpers at a site to augment GEE with additional components.

The first four requirements require distinct build scenarios, as diagramed in Figure 1, while
the last four are met by other provisions. The Source Archive contains all source files that
contribute to the build, including the scripts. In each of the four scenarios, sources are copied
from the archive and compiled into object files. They may be tested as shown by dotted lines
from objects to executions or they may be installed into global directories and executed from
there. In the subset build scenario, the subset objects are augmented with those from an in-
stallation directory to form a complete executable.

Source Archive
copy files

build

copy files

execute

test

Customer
Build

Source copy

Installed

Execution

Objects

Subset Build

⊂ Source

Execution

⊂ Objects

Source copy

Execution

Objects

Installed

Build-Install Sandbox Build

Source copy

Execution

Objects

Figure 1: Various Build Scenarios

4 CMU/SEI-99-TR-013

The customer build scenario on the far right of Figure 1 is the basic process. Both source and
object files are in directories private to the developer or installer. After the build, selected
object files are installed into system directories, from which general users execute them. For
delivery to most user sites, the objects are transmitted to the site and installed in system di-
rectories there.

The build-install scenario at the left is similar to the customer build scenario, but here the
dotted line shows the installer’s option to test the object files by initiating an execution di-
rectly, without installation. At a site where a full build-install has been done, an individual
developer may change a system subset or “component” with a subset build. In this scenario, a
subset of the sources is copied to a subset source directory and then compiled/linked to pro-
duce a subset of the object files. These are then combined with other objects from the in-
stalled version to perform a test execution. This same scenario can be used by a developer at
a customer site to develop new components satisfying local requirements. Other developers
with more extensive or sensitive changes may do a full sandbox build. In this scenario, the
full system is built and tested directly from the object files.2

Some recent research has centered on the installation or “deployment” task and has devel-
oped specific tools in that arena [Hall 97, Hansen 99]. For GEE, it seemed appropriate to
continue the traditional practice of doing installation with the same construction script tools
that are used for system build. Not only does this approach ensure that the build is made to be
up-to-date before any install; it also allowed us to exploit earlier experience since the GEE
script mechanism is loosely based on that of Andrew [Andrew 96], an integrated word proc-
essing and document object system developed at Carnegie Mellon University.

The next chapter describes infrastructure tools used for the GEE source archive and con-
struction. Construction is more specifically described in the third chapter, and later chapters
describe the problems encountered with various COTS products. Since there are many prob-
lems and solutions, the text in this report uses a special form as in

Problem: How can we support the many build scenarios?

Solution: Write construction/deployment scripts in imake and make, as shown below.

Italics in text distinguish command names or file names, where the latter usually have a dot in
them. Directory names are file names with a trailing slash. A sans-serif font has been used for
sample code that would appear in a program or script. Serif text within sample code is a
comment that describes omitted code.

2 Only in exceedingly rare circumstances should installation be done from a subset or sandbox build;
attempts to do so have exhibited a considerable probability of disrupting normal usage.

CMU/SEI-99-TR-013 5

2 Concepts and External Tools

The GEE implementations of the build scenarios of Figure 1 are based on a few pre-existing
tools: rcs, imake, and make. The rcs tools—augmented for GEE—provide for exchanging
files between the Source Archive and a “build tree” of directories for building from the
source. Imake builds a construction/deployment script in a build directory, and make is then
called on to execute the script.

2.1 Build Tree, Source Archive, and rcs
A traditional file organization for building from a set of sources is to devote one directory to
each type of file (Java sources in one, shell scripts in another, and so on). This organization
simplifies the construction scripts for each directory, since every file is treated the same.
However, when a functional change is made to the system, it will often involve files of all
types, thus requiring changes to every build directory. To minimize this sort of disruption,
and for other reasons, we chose a different structure for GEE’s sources.

For building GEE, the sources are arranged in a hierarchical tree of directories, each con-
taining the source for one “component.” A component is a logical subset of the system chosen
at a size that is, more or less, what a developer will create in a week. One objective in defin-
ing a component is that it be separable from the rest of the system; ideally, developers work-
ing on a single component can have confidence that changes to it will not affect or be af-
fected by changes to other components. Similarly, advanced users should be able to develop
system adjuncts as components without having to be concerned with sources in other directo-
ries. As an example of component nesting, consider the build tree in Figure 2. Here, the top-
level GEEBuildTree/ directory, with the abbreviated name BT, has the outermost component,
src, as a subdirectory. Src/ has two components—config/ and compx/—the latter of which
also has two components. Each directory has an Imakefile and other representative files.3

3 In UNIX, file and directory names are arbitrary strings that do not contain slashes, so it is only by
convention that names end with an “extension” of a dot and a few letters. By convention, the names of
Java source files end in .java, and the result of a compilation is a file with the same name but the new
extension .class. A UNIX directory name is separated from a subordinate file or directory name with a
slash. The top-level, or root, directory has the empty string as its name, so absolute pathnames begin
with /.

6 CMU/SEI-99-TR-013

,PDNHILOH

FRQILJ

FRPS[
�����

%7�VUF

���������
	
����
�����

%7�VUF�FRPS[�[VXE�

���������
[VXE�

[VXE�
�����

%7�VUF�FRPS[

,PDNHILOH

JM�VK
�����

%7�VUF�FRQILJ

VUF
�����

%7

,PDNHILOH

UXQ�LGO

GR�MDYD
�����

%7�VUF�FRPS[�[VXE�

Solid arrows show directory enclosure.

Figure 2: Tree of Source Components

Some large documents and files for installation of COTS software were bulky to manage as
regular components and were also infrequently accessed and revised. These files were segre-
gated into separate subtrees of the source. In all, the top level has three subdirectories:

• BT/src/ - the source subtrees for the components

• BT/doc/ - bulky and multi-component documentation

• BT/external/ - COTS software support

Only the first of these, BT/src/, is actively modified and tested by developers. Rebuilding the
system can be accomplished by building and installing from this subtree alone. The BT/doc/
tree is installed every time a full release is made to system directories. The BT/external/ tree
has one subdirectory for each COTS product: Java, Oracle, Visibroker, and JRun. These di-
rectories contain instructions for installing new versions of the product and are used primarily
when a vendor releases a new version.

From the various tools available for source archive and version control, we chose the rcs
tools because we were familiar with them and they are mostly satisfactory. A few problems
were solved by adding to the tools.

CMU/SEI-99-TR-013 7

Problem: Rcs does not support a tree structure of directories, one for each component. In-
deed, the usual approach is that a directory’s archive is in a subdirectory named RCS. This is
unacceptable when the archive is to be shared among a number of programmers.

Solution: The archive is organized as a tree of directories paralleling the source directory
structure. A “symbolic link” named RCS in each source directory is made to refer to the cor-
responding directory in the archives.4

The resulting directory structure is illustrated in Figure 3. Each BT/… directory now has a
symbolic link named RCS, which points to the corresponding directory in the archive, A/.

���
���������
������
���	�
�����

����
�

���
���������
	
����
�����

����
�����	�������

���
���������
�����
�����
�����

����
�����	�

���
���������
�����
�����

����
��������

���
�
�
�����

��

���
���������

���� �
 �����
�����

����
�����	�������

GEEBuildTree Archive

,PDNHILOH�Y
FRQILJ
FRPS[
�����

$�VUF

,PDNHILOH�Y
SU�MDYD�Y
�����

$�VUF�FRPS[�[VXE�

,PDNHILOH�Y
[VXE�
[VXE�
�����

$�VUF�FRPS[

,PDNHILOH�Y
JM�VK�Y
�����

$�VUF�FRQILJ

VUF
�����

$

,PDNHILOH�Y
UXQ�LGO�Y
GR�MDYD�Y
�����

$�VUF�FRPS[�[VXE�

Dotted arrows are symbolic links. The
archived versions of files are in a special
format and have names ending in ,v.

Figure 3: Build and Archive Directories: Parallel Trees

4 This structure with symbolic links called RCS was first developed for the Andrew project by David
Rosenthal in 1984.

8 CMU/SEI-99-TR-013

To extract a build directory tree parallel to a source archive tree, we created a script, rcsco-
tree. The command

rcscotree src

creates a subdirectory of the current directory, calls it ./src/, checks out into it all the files
from A/src/, and repeats the process recursively to copy files from subdirectories of A/src/ to
subdirectories of ./src/.5 To link a single build directory to a source directory, a symbolic link
named RCS can be created with the UNIX ln command or another GEE command, rcslink.

In each subdirectory of the checked-out tree, rcscotree creates a symbolic link called RCS
that refers to the archive directory from which the sources were checked out for that direc-
tory. As a result, every directory in the source tree appears to have a subdirectory named RCS,
which is exactly what the normal rcs tools expect. When a developer wishes to lock a file for
modification, it is checked out and locked with the normal rcs command:

co -l filename

After modification, the file is checked in with a further rcs command:

ci -u filename

Problem: The ci command deletes the source tree copy of a file, unless the -u flag is given,
and developers frequently omit the -u flag.

Solution: Many techniques have evolved for dealing with this idiosyncrasy of ci. Editors
have been modified to run co automatically, and construction scripts have had rules added to
do automatic checkout. The fault is best fixed by providing an alternative to ci, one that also
solves the next problem.

Problem: Developers fail to note and check all changes to files that they check in.

Solution: We developed save as the alternative to ci. The command

save filename

first displays the differences between the previously archived version and the new version.
The developer checks these changes while creating the log entry for the new version. Next
save does a ci command and automatically inserts the -u flag so the file remains in the source
tree to support future builds. The programmer enters the change log entries as prompted by
ci.

Problem: Some files in the archive are binary (like Microsoft Word files) and do not have the
ASCII line structure assumed by the rcs tools.

Solution: Binary files are stored in the archive directly, without using any rcs tools; their
names lack the trailing “,v” which is the hallmark of RCS archive files. Upon checkout with
rcscotree, these files are directly copied to the source tree. This mechanism is less than ade-
quate; when such a file has been modified, it must be copied into the archive directory and no

5 The current directory when a command is executed has the name “.” (dot), and its superordinate
directory can be referred to as “..” (dot dot).

CMU/SEI-99-TR-013 9

version control is done. This lack is partially offset by Microsoft Word’s rudimentary form of
version control.

2.2 Make and Imake
Before use, each GEE component must be built, tested, and installed. These operations could
be distributed to separate shell scripts, but these would add to the already large number of
files to manage and would lack the automatic determination—provided by make [Feldman
86]—of the minimal set of actions needed to perform a task. For these reasons and because of
its wide availability and familiarity, make was chosen for GEE.

In make, all operations are described in a file called ‘Makefile.’ Each segment of this file de-
notes a dependency and its actions:

target-file: source-file(s)
actions to build target from source-file(s)

When make is invoked, the target file is checked to see if it is non-existent or older than at
least one of the listed source file(s). In either case, the actions (which are on subsequent in-
dented lines) are executed and are assumed to produce a newer version of target file. The ac-
tions are passed to a shell, so there is no limit on what can be done. In GEE many actions are
simple shell commands, while others are C programs or scripts for sh, csh, awk, or sed. We
did not use Java for scripts because of the high overhead for starting a Java program.

Allowing any program to execute for a make action is undeniably powerful, but is not with-
out its limitations. The majority of actions can be carried out by calling standard UNIX pro-
grams, but in most major systems constructed atop UNIX some actions are best described by
writing little “helper” programs. The difficulty is that each such helper must be individually
created, source managed, built, and sometimes installed. Thus, the construction/deployment
task is made more complex. There is also a possibility of conflict between the names chosen
for the helpers of one system and those of another. The need for helpers could be eliminated
if suitable commands could be conveniently written directly in the Makefile.

One obvious candidate for an action that make ought to provide is that of installing a file. In
addition to copying the file, it may also be necessary to delete an old version and set the per-
missions and ownership of the new file. There is a small UNIX program that does an install;
however, in typical UNIX fashion, there are two such programs, both called install, but dif-
fering in command line syntax. To deal with this surfeit, the location of the install command
is in imake.tmpl and can be overridden from site.mcr.

Problem, part 1: It may be necessary to specify different variants of the actions depending on
the target hardware or software platform. This was especially the case when developing with
C and C++; the languages were standard, but the details of library calls varied widely across
UNIX variants.

10 CMU/SEI-99-TR-013

Problem, part 2: There may be a great deal of repetition when the same or similar actions are
required for multiple target files.

Solution: Several solutions have evolved for these problems. We cover three in subsequent
paragraphs.

The Free Software Foundation’s configure program [MacKenzie 98] generates a Makefile
tailored to the capabilities of the hardware and operating system platform for the build and
install. It does this by executing test code and building a definitions file based on the result;
programs include this file so that they can be written in a platform-independent dialect. Con-
figure does not solve the problem of repetition in Makefiles, nor was it appropriate for GEE
because it is mainly aimed at C, whereas GEE uses Java.

The qed/qef system from IPT Corp. [Tilbrook 96] generates Makefile-like control files by
macro processing. It also provides a macroprocessor/text-processor as part of the capabilities
for actions to be performed. This would eliminate most of the scripts and small programs that
GEE executes as actions. It is a disadvantage that qed/qef is a proprietary product, but the real
reason we did not explore it for GEE was our familiarity with the next option and the belief
(incorrect) that that option could be implemented with trivial effort.

The option we did choose was the imake processor that accompanies the X Windows System
[Fulton 89, Dubois 96]. This system was designed precisely to solve the two problems of
platform variability and repetition. At heart, the imake command itself does nothing more
than invoke the C preprocessor6 on a specified template file. At appropriate places, this tem-
plate has instructions to copy into its text

• GEE-specific definition files

• a macro definition file

• a directory-specific file called Imakefile

For each source file or collection of similar source files, the Imakefile invokes one of the de-
fined macros, which then expands to an entire make rule including target file, source file(s),
and actions. The resulting file is a Makefile. It may have repetitions and platform dependen-
cies, but all arise from macro expansions. In general, an Imakefile is a small fraction of the
size of the corresponding Makefile. Imake solves the platform dependencies problem by
having alternate versions of the definition files for each platform.

When there are subordinate component directories, the Imakefile in the parent directory con-
tains instructions that perform recursive makes of all subordinate components. A subset build
is accomplished by using rcscotree to make a mirror of some subset of the Source Archive
tree instead of the whole tree. Thus, a developer could have a directory anywhere with a
symbolic link to (say) A/src/compA/.

6 The C preprocessor scans a file for lines beginning with #include, #define, or #if and for each,
respectively, incorporates and scans another source file, defines a variable, or chooses whether to
incorporate and scan subsequent lines.

CMU/SEI-99-TR-013 11

3 GEE Definitions and Makefile Generation

In GEE, construction/deployment scripts are Makefiles that are processed by make. However,
Gee Makefiles are not among the sources in the archive, but are instead generated from a
stored Imakefile by running imake, as described below. Most Imakefiles are quite short like
this one for a directory containing only a Java program in the default package:

JavaPackage(.)
InstallJavaPackage(., ${GEECLASSESDIR})

The first line specifies compilation of all Java source files in “.”, the current directory. The
second line specifies that the resulting .class files are to be installed in the directory where all
GEE class files are installed.

For another example, the directory GEEBuildTree/src/GenoServlet/public_html/ installs Web
pages. Its Imakefile reads

ExpandGeeProperties(GeeLogin.h, GeeLogin.html)
ExpandGeeProperties(CstQTrack.h, CstQTrack.html)
MkdirTarget(${GEEHTMLDIR}/GenoServlet)
InstallDataFiles(ALLFILES.html, ${GEEHTMLDIR}/GenoServlet)

The first two lines process .h files to replace property names with values and produce .html
files; the third line ensures the existence of a directory in the destination tree; and the fourth
line installs the processed files into that directory.

In addition to the Imakefile, creation of a Makefile uses these definition files:

• gee.properties, global definitions for Java: defines gee.destination.directory, names for
COTS products directories, and other properties

• gee.rls, macro definitions: defines JavaPackage and other macros

• imake.tmpl, the template Makefile: defines GEECLASSESDIR, GEEHTMLDIR, and
other values

• site.mcr, a site-specific set of make definitions

These files are all in the GEEBuildTree/src/config/ directory and are described in the next
three sections.

3.1 gee.properties
To support building GEE on multiple platforms, at foreign sites, or with different parameters,
all environmental dependencies are segregated in a small number of files that are referenced

12 CMU/SEI-99-TR-013

from everywhere else in the system. The first of these, gee.properties, is a Java “properties”
file; each entry consists of a property name, an equal sign, and a string giving the value for
the property. See Table 1 for an excerpt from the gee.properties file.

In the table, the first three properties are for GEE as a whole. When the fourth—for the loca-
tion of the certificate file—is fetched, the string ${gee.destination.directory} is replaced
with the proper value from the first property. All instances of ${…} are similarly replaced
with the value named by the contents. Each COTS product has a section like those shown for
Oracle and Java. There is at least a property naming the directory where the COTS product is
installed. Among other properties, Java has the one shown for the classpath. Via various
tricks, this one classpath list is used at every point where Java files are compiled or executed.

Overall GEE properties
gee.destination.directory =\

/usr/local/gee/dest
gee.version = 03
gee.web.host = gc.sei.cmu.edu

#root of GEE installation

current GEE version
host for gee web site

Certificate file access
gee.keystore = ${gee.destination.directory}\

/etc/oscStore-v${gee.version}
gee.password.for.keystore = 08j06a96s

keystore file location

keystore password

Oracle database
gee.oracle.base = /u01/app/oracle
gee.oracle.home = ${gee.oracle.base}/\

product/8.0.3

root of all Oracle files

Oracle version in use

JAVA
gee.java.home = /usr/local/jdk1.2
gee.java.classpath =\

${gee.destination.directory}/classes:\
${gee.oracle.base}/product/8.0.3/\

jdbc/lib/classes111.zip:\
${gee.java.home}/lib/jsdk.jar:\
${gee.java.home}/lib/classes.zip

#where Java is installed

directories with .class,
.jar, and .zip files

Comments are in italics; in actuality, comments must occupy lines of their own.

Table 1: Excerpt from gee.properties

Some values from gee.properties are also needed in programs or files written in other lan-
guages, such as HTML, C, or the shell language for csh or sh. To provide access, a small tool
called Defines.java was written to read gee.properties and produce two other files, gee.h and
gee.sed. The resulting gee.h is a C includes file having a definition like

#define property-name value

CMU/SEI-99-TR-013 13

for each property. Similarly, gee.sed is a control file for sed and will replace each property
name with its expanded value. (Original versions of sed cannot limit replacements to whole
words; for this reason, no property name can be a substring of any other property name.)

The main loop of Defines.java, shown in Table 2, iterates through the properties and for each
property writes one line to each of the two output files. The property names are converted to
upper case and have their periods replaced with underlines. Values are processed with the
expand function to recursively replace all instances of ${xyz...} with the value of the prop-
erty named xyz.... (This same function is called by the GEE properties access class,
GeeProperties, to expand property values before they are used in Java programs.) For sed.h,
the chooseDelim function chooses a graphic character that does not appear in the property
value. Sample input and output files are shown in Table 3.

// Process gee.properties; create gee.h & gee.sed

java.util.Properties props = new java.util.Properties();
java.io.BufferedWriter hFile = <gee.h>;
java.io.BufferedWriter sedFile = <gee.sed>;
props.load(<gee.properties>);
java.util.Enumeration pe = props.keys();
while (pe.hasMoreElements()) {

String key = (String)pe.nextElement();
String keyOut = key.replace(’.’, ’_’)

.toUpperCase();
String value = expand((String)props.get(key), 0);
char delim = chooseDelim(keyOut+value);
hFile.write("#define " + keyOut + " " + value);
hFile.newline();
sedFile.write("s" + delim + keyOut

+ delim + value + delim + "g");
sedFile.newline();

}

// gee.h output file
// gee.sed output file
// the input file
// iterate thru properties

// get property name
// period -> underline

// expand property value
// choose delim for sed
// write line to gee.h

// write line to gee.sed

Table 2: Defines.java

It is a violation of the principle of “Defer binding” to use values from gee.properties via the
C preprocessor or sed. This violation means that a system rebuild is necessary when these
environment values change, as may happen when trying to move the installed files to a dif-
ferent directory. One alternative would be a runtime table-lookup every time a value is used
from gee.properties. This would make the system bulkier, slower, and more complex. Since
many of the affected files are ASCII text—HTML or shell scripts—a second alternative is to
write a program to revise these files when the system is relocated. The most accurate ap-
proach would be to generate a list of files during system build and then process them for re-
location. We have not explored these alternatives.

14 CMU/SEI-99-TR-013

gee.properties – input

gee.destination.directory =/usr/gee/dest
gee.version = 03

gee.h – output

#define GEE_DESTINATION_DIRECTORY /usr/gee/dest
#define GEE_VERSION 03

gee.sed – output

s:GEE_DESTINATION_DIRECTORY:/usr/gee/dest:g
s/GEE_VERSION/03/g

The input lines shown for gee.properties are transformed by Defines.java into those shown for
gee.h and gee.sed. Note that two different delimiters, colon and slash, are used in the output for
gee.sed.

Table 3: Inputs and Outputs of Defines.java

3.2 The imake Template, imake.tmpl
Imake invokes the C preprocessor on a template file; for GEE an abstract of that file, called
imake.tmpl, is shown as Table 4. Variables defined with an equal sign are make variables and
are later referenced with the syntax ${makevar} as in ${TOUCH}. Other capital letter vari-
ables like GEE_DESTINATION_DIRECTORY are #defined in gee.h as a result of being
defined in gee.properties. The template defines the make variables GEEBINDIR,
GEECLASSESDIR, and others for use as the destination in InstallXxxx macro calls; these
variables also provide an additional level of indirection so each class of files can be inde-
pendently stored in a separate location.

The #include lines incorporate the various GEE definition files. The lines with double colons
ensure that the principal build and install targets are always defined, even if nothing needs to
be done in this directory. The convention is that the capitalized make targets such as Com-
piles and Installs are recursive and perform their function in this and subordinate directories;
lower case targets operate only in the current directory. Note that making the target Install
will do install in each directory and the latter will first make compile; consequently, all com-
pilations are up-to-date for each Install.

Problem: After developing the build system, it failed its first tests by others. The problem
was that some developers have non-standard command environments: their own aliases for
commands, strange paths with command variants, and other anomalies. It is also a problem
that some UNIX systems have different commands for certain functions.

Solution: To provide for adaptation to UNIX system differences, the template defines a make
variable for each UNIX command, and these variables are used in “actions to build target
from source-file(s).” For example, the value from SED=/bin/sed is used in the macro to con-
vert files with gee.sed:

CMU/SEI-99-TR-013 15

${SED} –f gee.sed infile > outfile

To avoid command aliases defined in developer environments, the commands are specified in
the definitions with their full pathnames. The inclusion of “site.mcr” lets a site define vari-
ables for make without defining them in gee.properties. (Note that definitions in site.mcr
must be in Makefile syntax and cannot be used in any other type of file. Many gee.properties
lines define directory locations; these could be moved to site.mcr. At present, they remain
where they originally were placed.)

#include <gee.h>

/* variables for GEE destination directories */
 GEEBINDIR = GEE_DESTINATION_DIRECTORY/bin
 GEECLASSESDIR = GEE_DESTINATION_DIRECTORY/classes
 …

/* Variables as names for the UNIX commands */
 AWK = /bin/awk
 CAT = /bin/cat
 TOUCH = /bin/touch
 …
#include "gee.rls"
#include "site.mcr"

/* Define universal targets in case Imakefile does not */
all:: compile
Compiles:: compile
compile::
Installs:: install
install:: compile install.time
…

/* incorporate the directory specific Imakefile */
#include INCLUDE_IMAKEFILE

install.time::
 ${TOUCH} install.time

Note that this template file #includes gee.h, gee.rls, site.mcr, and INCLUDE_IMAKEFILE.
The last of these is defined to the macro preprocessor so it refers to the Imakefile in the current
directory.

Table 4: The imake Template File, imake.tmpl

16 CMU/SEI-99-TR-013

3.3 gee.rls
The gee.rls file defines the macros invoked by Imakefiles. For instance, the Imakefile line

MkdirTarget(${GEELIBDIR}/images)

invokes the following definition:

#define MkdirTarget(dirs)
install.time:: makedirs
makedirs::

for i in dirs; do \
${CONFIGDIR}/geemkdirs $$i;\

done;

When the invocation is expanded according to this definition, the resulting Makefile will be
something like

install.time:: makedirs
makedirs::

for i in ${GEELIBDIR}/images; do \
${CONFIGDIR}/geemkdirs $$i;\

done;

Both GEELIBDIR and CONFIGDIR are given values in imake.tmpl. The geemkdirs com-
mand is installed from the GEEBuildTree/config/ directory; it creates a directory and any par-
ent directories that do not yet exist.

In the above example and throughout the body of this report, macro parameter names are
italicized and the following aspects have been omitted from macro definitions:

• the first line of each definition, which shows in the Makefile an image of the invoking
macro from the Imakefile

• the special end-of-line delimiters @@\ , which hide line breaks in the macro definition,
but become line breaks in the Makefile

• lines that merely print messages in the log file of the build

• rules and rule fragments dealing with deletion of files for the make target ‘clean’

• features dealing with error handling: @(...), NOSHERRORS, SHVERBOSE, || exit 1

• commands for building GEE, which does a build and install of everything

• the make variable MFLAGS, which passes command line flags to subordinate makes

None of these omissions have been made in Appendix C, which can be consulted for details.

Reading gee.rls, you will find the curious definition

#define ALLFILES *

CMU/SEI-99-TR-013 17

This and other similar definitions avoid various restrictions. ALLFILES, for instance, is used
in rules where an asterisk would be written after a slash, as in “dirx/*.java.”7 Otherwise, a
bald “/*” in the string would signal the start of a comment to the C preprocessor, and every-
thing up to the next */ would be omitted from the generated Makefile.

The rule to use gee.sed to expand property names is ExpandGeeProperties:

#define ExpandGeeProperties(infile, outfile)
compile:: outfile
outfile: infile

${SED} -f ${CONFIGDIR}/gee.sed infile > outfile

Thus ExpandGeeProperties(genmake.csh, genmake) will produce a rule that—when-
ever genmake is non-existent or older than genmake.csh—will run sed to process gen-
make.csh using the gee.sed script and producing genmake. In particular, this will replace the
value of GEE_DESTINATION_DIRECTORY in genmake.csh with its actual value from
gee.properties.

Other portions of gee.rls will be described in subsequent sections.

3.3.1 gee.rls: Macro Rules for Operations on Entire Subtrees
To build an entire subtree, Makefiles in parent directories have rules for performing makes on
their subordinate directories. There is a convention for this: an Imakefile defines the make
variable SUBDIRS to be a list of the subdirectories and then includes an invocation of the
RecursiveMakes rule. At the top level, this looks like the following:

SUBDIRS = config gee rdbms security naming busLog appclient
RecursiveMakes(${SUBDIRS})

Because SUBDIRS is defined, its definition can be overridden when initiating a make. The
following shell command makes the Compiles target in the current directory and each of the
three named subdirectories:

make Compiles SUBDIRS=’config gee rdbms’

The definition of RecursiveMakes directly calls five other macros:

#define RecursiveMakes(subdirs)
CompileSubdirs(subdirs)
InstallSubdirs(subdirs)
JavalistSubdirs(subdirs)
GEESubdirs(subdirs)
SystemInstallSubdirs(subdirs)

7 An asterisk in a file name for the shell matches any sequence of characters other than slash. The
string “/*” is treated specially by imake because it is the C comment delimiter, and imake uses the C
preprocessor.

18 CMU/SEI-99-TR-013

Thus RecursiveMakes passes its subdirs list to each of five macros, four of which are de-
fined something like this:

#define CompileSubdirs(dirs)
SubdirTarget(dirs,Compiles,“compiling“)

In other words, it invokes the SubdirTarget macro, passing along the directory and introduc-
ing the target to be built (and a comment string for the build log). The latter macro is defined
like this:

#define SubdirTarget(dirs, mktag, string)
mktag::

for i in dirs; do \
(cd $$i; ${MAKE} CONFIGDIR=${CONFIGDIR} mktag); \

done

For CompileSubdirs, the expansion of SubdirTarget will define the target Compile. The
action for this target is to iterate through the list dirs of subdirectories and make the Compile
target with each as the current directory. Note that the value of CONFIGDIR is passed along
to the subordinate make; this is explained in Section 3.4.

Since make needs a Makefile, the above approach cannot generate Makefiles throughout a
tree. Instead, the system uses a more intricate mechanism involving the GEESubdirs() rule;
see Section 3.4 for the details.

3.3.2 gee.rls: Installation Rules
Installation of files from each component is specified in its Imakefile. For instance, these
lines appear in GEEBuildTree/src/busLog/Imakefile:

InstallJavaPackage(., ${GEECLASSESDIR})
InstallIDLSource(Genotype.idl, ${GEELIBDIR}/idl)
InstallIDLModule(Genotype, ${GEECLASSESDIR})
InstallJavaPackage(Genotype/UserFactoryPackage, ${GEECLASSESDIR})

Most of the InstallXxxx macros are defined like this one for InstallDataFiles:

#define InstallDataFiles(files, dest)
InstallFiles(files, ${INSTDATAFLAGS}, dest)

with each having different INSTxxxxFLAGS. These flags are defined in imake.tmpl and set
the modes of the installed file—read-only or not, executable or not. The internal macro In-
stallFiles is defined this way:

#define InstallFiles(files, mode, dest)
install.time:: files

for i in ‘${ECHO} ’$?’‘; do \

${INSTALL} mode $$i dest/$$i; done

This specifies that when the target install.time is older than one or more of the files, each
younger file will be the subject of a ${INSTALL} command using INSTxxxxFLAGS as the

CMU/SEI-99-TR-013 19

mode and installing the file under its own name into the given destination directory. The cu-
rious ‘echo ‘$?’‘ deals with cases where a filename contains a dollar sign.8 With $? alone,

a dollar sign in the value is interpreted by the shell to be a reference to a (probably undefined)
shell variable. The inner apostrophe quotes protect the dollar signs from treatment as a shell
variable but also make the value a single shell “word.” The invocation of echo causes that
word to be expanded back into a space-delimited list of file names.

The usual mode of operation with make is to have a target file depend on some source files
and, if a source is newer, to execute an action; presumably, the action generates that target file
from the sources. The approach can be made to work for file installation: the target file would
be the destination file, the source would be the file to be installed, and the action would copy
source to target. GEE installation differs; in GEE the target for installation is a “dummy” file
called install.time. Every installation macro generates a rule dependent on install.time. This
rule performs the installation if install.time is non-existent or is older than one of the files to
be installed. Near the end of imake.tmpl is a rule for install.time that touches the dummy file
if all prior install actions have succeeded. This scheme has the advantage of not requiring one
rule per file and of permitting a reinstallation by deleting all instances of install.time.

There are, however, a number of disadvantages to dummy files. They are often given names
with leading periods. Since such files do not normally appear in directory listings, it is easy to
miss seeing one that should be manually deleted, inserted, or modified. The action can be
triggered only by deleting the dummy file; in the case of install.time, if the target file is de-
leted it will not be reinstalled as long as install.time is unchanged. When installations are oc-
curring from multiple build trees by multiple developers, the dummy files may exist in one
tree and not in another, again causing incorrect results. In a future effort, GEE’s install
mechanism should be redesigned.

GEE already provides a rule where the installation depends on the date stamps of the two
files. It is defined thus:

#define InstallFileAsNeeded(file, mode, dest)
install::dest
dest: file

${INSTALL} mode file dest

If dest is older than file, the installation is done. (Note that because dest must appear at the
beginning of a line, it is not acceptable to have spaces after the second comma in an invoca-
tion of InstallFileAsNeeded.)

8 In this report, grave accents (‘, which appear on American computers as little-6 single-quotation
marks and are sometimes called backwards apostrophes) are emphasized to distinguish them from
apostrophes (’, which appear as little-9 single-quotation marks). When interpreting a text command,
the shell treats each pair of grave accents as containing a subordinate command. The subordinate is
executed, and its output replaces the grave accents and their contents.

20 CMU/SEI-99-TR-013

An important special case of InstallFileAsNeeded is for installation of files in system di-
rectories. In this case, the installation is usually done as the privileged, “root” user because
only that user has write access to the necessary directories. However, if care is not taken, the
root user will be the owner of the installed file. In most cases, it is more appropriate that the
owner be the same as the owner of the destination directory. The SystemInstallFileAs-
Needed macro achieves this ownership as shown here:

#define SystemInstallFileAsNeeded(file, mode, dest)
systeminstall:: dest/file
dest/file: file

${INSTALL} mode file dest
(df=dest/file; \
cmd=‘${LSLD} dest | ${AWK} ’/^d/\

{print "${CHOWN} " $$3 " ’"$$df"’;";\
 print "${CHGRP} " $$4 " ’"$$df"’"}’‘;\

${SH} -c "$$cmd")

After using the install command to install the file, this macro changes its group and owner-
ship to that of the directory into which the file is installed. This second operation occupies all
of the last five lines of the macro and is especially intricate because the C preprocessor, make,
the shells, and awk have overlapping quote characters and different meanings for ‘$’. The
first of these lines defines df as a shell variable having the destination filename as its value. It
is invoked in the third and fourth lines as ‘$$df’ using the shell variable syntax; the two dol-
lar signs are converted to one by make before passing the command to the shell. The line be-
ginning cmd=... runs ‘ls -ld’ on the destination directory and pipes the output through awk to
generate a shell command that is executed by the last line. The ‘$$3’ and ‘$$4’ references
are in awk syntax and select the third and fourth entries from the result of the ‘ls –ld’. It may
be instructional to check for yourself that each and every quote mark and dollar sign is es-
sential.

In most cases in GEE, installation actions could be specified in the rule that creates the file.
For instance, many GEE Imakefiles have these two lines:

JavaPackage(.)
InstallJavaPackage(., ${GEECLASSESDIR})

Since every package is installed in GEECLASSESDIR, the installation rule could be part of
the rule for JavaPackage. That it was not so done is primarily a vestige of the generality of
the Andrew script mechanisms.

3.4 Generating the Makefile with imake and genmake
To build in a directory, the Imakefile must be macro-expanded into a Makefile, using the vari-
ous definition files described above. In the build tree, these files are in GEEBuild-
Tree/src/config/, but they are also needed in an installed system to support the subset build
option of Figure 1. For this purpose, let us suppose that GEE has been installed into the di-
rectory given by shell variable GEEDIR. As part of that installation, the GEEBuild-

CMU/SEI-99-TR-013 21

Tree/src/config/ files are copied into $GEEDIR/config/, and a command called genmake is
installed in $GEEDIR/bin/.

A Makefile can always be derived from an Imakefile with the imake command, but this in-
volves getting a lengthy set of parameters correct, especially the location of the definition
files, either GEEBuildTree/src/config/ or $GEEDIR/config/. To reduce typing and its poten-
tial for errors, various shortcut alternatives to imake are provided, depending on how far
along the GEE installation has progressed. In all cases, the trick is for the command to deter-
mine the location of the correct config/ files. Inside the Makefile, this location will be the
value of the make variable CONFIGDIR. There are four cases:

Case 1. A Makefile already exists, but a new one is needed because the Imakefile has
changed. To do the reconstruction, the command is

make Makefile

This command invokes the shell command in ${IMAKE_CMD}, which has this value:

imake -Timake.tmpl -I. -I${CONFIGDIR} \
-DCONFIGDIRDEFN=${CONFIGDIR}

This action runs imake specifying that the template file is imake.tmpl, the include directories
are . and ${CONFIGDIR}, and the value of CONFIGDIRDEFN is ${CONFIGDIR}. In this
case, the value of CONFIGDIR from the current Makefile is passed along and will become
the value in the new Makefile because imake.tmpl has these early lines:

CONFIGDIR = CONFIGDIRDEFN
#undef CONFIGDIRDEFN

Since CONFIGDIRDEFN has a value known to the preprocessor, its instance is replaced in
the generated Makefile with the value from the command line, which was the value in the
original Makefile.

Case 2. A Makefile exists and Makefiles are needed for all subordinate directories. The com-
mand is

make Makefiles

(note the trailing “s”.) This command invokes a rule where the target Makefiles depends on
making the target subMakefiles. The rule for subMakefiles does not depend on anything, so
its actions are always executed; it iterates through the SUBDIRS list (Section 3.3.1), sets $$i
to the name of each subdirectory in turn, and for each executes two make commands:

make subdirMakefile CONFIGDIR=${CONFIGDIR} MAKE_SUBDIR=$$i
(cd $$i; make CONFIGDIR=${CONFIGDIR} subMakefiles)

The first command makes the target subdirMakefile, which creates a Makefile in the subor-
dinate directory by using the same ${IMAKE_CMD} as in Case 1. The second command
changes directory to the subordinate and makes subMakefiles again to recursively generate
subsub…Makefiles. In either case, the actual creation of a Makefile is done in the rule for
subdirMakefile; since it uses the ${IMAKE_CMD}, the value of CONFIGDIR from the pre-

22 CMU/SEI-99-TR-013

sent Makefile is passed along to become the value in the new Makefile (by virtue of the
−DCONFIGDIRDEFN in ${IMAKE_CMD}).

Case 3. No Makefile exists, but GEE has been installed. Part of that installation, we noted
earlier, was installation of the genmake command and installation of copies of the definition
files in $GEEDIR/config/. In any directory where there is an Imakefile, the command

genmake

will create a Makefile. As shown in Appendix G, genmake essentially executes the command

imake -T imake.tmpl -I${TARGET} -I${TARGET}/config \
-DCONFIGDIRDEFN=${TARGET}/config

where TARGET has been given the value of $GEEDIR (or a value from the command line).
Note the CONFIGDIRDEFN is set to the config/ directory used for the expansion, and that
directory will be the value for CONFIGDIR in the created Makefile.

Case 4. Neither a Makefile nor genmake exists. When the src/... tree is first copied out from
the source archive, there are no Makefiles and one must be created in the GEEBuildTree/src/
directory. This is done using make, but passing it GEEBuildTree/src/Imakefile. Thereafter,
Case 2 can be used to generate Makefiles in the rest of the tree. In all, the bootstrap process in
directory src/ is these two commands:

make -f Imakefile
make Makefiles

The file GEEBuildTree/src/Imakefile, as shown in Table 5, is special in that it can be used as
both an Imakefile and a Makefile. It can do so because it contains no macros to be expanded
by imake. The real Imakefile is GEEBuildTree/src/Amakefile, as shown in Table 6.

all:: config/gee.h config/gee.sed Amakefile config/imake.tmpl \
config/site.mcr config/gee.rls config/geemkdirs

imake -I. -I./config -Timake.tmpl -f Amakefile \
-DCONFIGDIRDEFN=‘pwd‘ /config

config/geemkdirs:
cc -o config/geemkdirs config/geemkdirs.c

config/gee.h config/gee.sed: config/gee.properties config/Defines.java
javac config/Defines.java
java -classpath config:$$CLASSPATH Defines config/gee.properties

Table 5: The Special Top-Level Imakefile

The first rule of Table 5 runs imake and specifies with the -f switch that the Amakefile is to be
read instead of an Imakefile. Most of the files on which dependencies are declared are pre-
existing files whose change will trigger a rebuild; however, the first three listed depend on
files that are created by the make process according to the second and third rules. The second
rule creates geemkdirs, a small program that creates a directory and any absent superordinate
directories. The third rule compiles Defines.java and runs it to create gee.h and gee.sed. Note

CMU/SEI-99-TR-013 23

that a C compiler and a Java environment must be accessible from the developer’s path be-
fore using the command. Otherwise, all GEE development is independent of the developer’s
path.

/* create destination directories */
DIRS = GEE_DESTINATION_DIRECTORY ${GEEBINDIR} ${GEELIBDIR} \

GEE_DESTINATION_DIRECTORY/config ${GEECLASSESDIR} \
${GEEETCDIR} ${GEEDOCDIR} ${GEEHTMLDIR} ${GEELIBDIR}/idl

MkdirTarget(${DIRS})

/* make all subdirectories */
SUBDIRS = config gee rdbms security naming busLog appclient
RecursiveMakes(${SUBDIRS})

/* build descriptions for all classes */
Javadocs:: install.time javadoc/index.html

${RM} -rf ${GEEHTMLDIR}/javadoc
${TAR} cf - ./javadoc | (cd ${GEEHTMLDIR}; tar xf -)

Table 6: Amakefile (The Top-Level Imakefile)

The effective top-level Imakefile in Table 6 creates destination directories, provides for recur-
sive makes of all subcomponent directories, and installs Java class documentation in the des-
tination when Javadocs is made.

Problem: Some users are accustomed to X Windows and use its xmkmf command to start
building the system.

Solution: The top-level Imakefile works as an Imakefile for xmkmf and invokes the same
steps as when it is used as a Makefile.

24 CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 25

4 Java Challenges

Java is a significant advance in programming languages not because it introduced remarkable
new features, but because it carefully selected and combined the most useful features from
other languages. Similar care has produced the many Java application programmer interfaces
from available concepts. It is therefore disappointing that no such simplification has occurred
for Java construction and deployment. The Java developers themselves use the gnumake ver-
sion of make [Sun 99b]. Various Java development environments are marketed, but they are
limited in their capabilities when the system incorporates non-Java source files and COTS
products.

Java poses a number of challenges for traditional development tools like make and imake.
These were compounded for GEE development, which took place during the transition of
Java from version 1.1 to 1.2.

4.1 Finding gee.properties; Preprocessing Java Files
Since premature binding of values to identifiers limits the flexibility of a system, GEE uses
the gee.properties file to defer binding until as late as execution time. The GeeProperties
class implements access to this file for all Java classes.9 This mechanism avoids one of the
reasons that justifies preprocessing for C files. However, there is still a need to preprocess
one .java source file:

Problem: How does GEE find gee.properties?

Solution: The recommended Java solution for finding an initial properties file is to pass its
location as a parameter on the command that invokes the system. This seemed to us a burden
for most users. The usual solutions for UNIX and Windows are to bind a name to the location
in the environment or the registry, respectively. However, Java programs cannot readily ac-
cess such values. The GEE solution is to preprocess the source code of GeeProperties.java so
it contains the location of the GEE installation directory. In practice, the source file GeeProp-
erties.j is preprocessed with ExpandGeeProperties to replace GEE_DESTINATION_DI-
RECTORY with the value from gee.properties. This produces the file GeeProperties.java,
which is then compiled and installed like any other Java source file.

The above “solution” solves nothing if the GEE objects are moved to a directory other than
the one specified in the build-time gee.properties. After such a move, either GeeProperties

9 Source files that are preprocessed with gee.sed (Section 3.1) are bound at build time. Most of these
could be converted to runtime lookups, but this would complicate the source code.

26 CMU/SEI-99-TR-013

must be rebuilt and re-installed, or the location must be specified on the command line after
all.

4.2 Locations for Java Files
A Java “package” is a set of classes that together implement some subsystem; typically a
GEE component has sources for one or more Java packages. Where should they be placed?
For components written in C and C++, the source and object files are in the component’s
principal directory. This scheme fails for Java packages due to various conventions. First, the
source files of a package each contain the name of the package as a name segmented with
dots as in “edu.cmu.sei.gee.” Second, by convention, Java source files are stored in a di-
rectory whose pathname ends with the package name, except that dots are replaced with
slashes: edu/cmu/sei/gee; we call this the “slashed package name.” Third, the Java compiler
places the generated .class files for a package into a directory whose pathname also ends with
the slashed package name. These naming conventions conflict with the GEE component di-
rectory structure. After study, we decided that when GEE sources include a Java package, the
component’s directory has a subdirectory with the slashed package name as its path, and both
the Java sources and objects are stored in this directory.

A number of other options for storing Java source and object files were considered. For in-
stance, it might have been preferable to have the source files directly in the component di-
rectory. This would have worked with the Java compiler, but it conflicted with conventions
expected by some other Java tools. Another option was to separate the Java sources into a
separate package-based directory tree, thus losing the management advantages of compo-
nents. Various other tricks using symbolic links were rejected to avoid complexity.

Chapter 3 gave examples of invocations of the JavaPackage and InstallJavaPackage rules
using a single dot as the first argument. This dot corresponds to compiling the “default” Java
package—that is, source files that do not specify themselves as part of any package. When
source files are in a package, the slashed package name must appear as the first argument to
the macros. For the package edu.cmu.sei.gee, complete calls would appear in the Imakefile
as

JavaPackage(edu/cmu/sei/gee)
InstallJavaPackage(edu/cmu/sei/gee, ${GEECLASSESDIR})

The definitions of the rules invoked by these macro calls are provided in the next section.

In passing, note that the Java package and class naming conventions violate the second prin-
ciple, Defer Binding. Since a portion of the filename appears within the file, the binding is
made at the moment of birth. Changing a package name means changing both the file con-
tents and its location. Indeed, yoking name and location has proven troublesome in cases
where a package name must change; all files importing that package must be modified to re-
fer to the package by its new name.

CMU/SEI-99-TR-013 27

4.3 Choosing What to Compile
The first conflict between Java and make is in the area of choosing what source files need to
be compiled. The standard make dependency scheme checks whether a source file is newer
than the corresponding compiler output and, if so, recompiles the source file. The compiler is
invoked separately for each changed source file. Unfortunately, mutual dependencies be-
tween Java classes can mean that no sequence of separate compilations can successfully
compile a Java package. In view of this, the Java compiler permits multiple simultaneous
compilations, which not only solves the dependencies problem but is also considerably faster
because it avoids the high overhead of starting the compiler.

Problem: How do we generate a list of Java source files that need to be recompiled?

Solution: One solution would be to recompile every source file for every build, but this
would be onerous for small changes. For GEE we implemented a small C program, needjc
(Appendix H), which checks a list of Java class files and determines which corresponding
source files need to be recompiled. A third solution would use a dummy file like “.compiled”
that retains the date of the last compilation. By having this dummy as the target and the list of
.java files as sources, a make rule could remake only those files changed since the time of
.compiled. This approach suffers all the disadvantages of dummy files noted in Section 3.2.2.

Problem: When a package changes, any other package that imports it may have to be
changed as well. How can make determine what needs to be recompiled due to changes in
packages?

Solution: There is no simple solution. A Java source file may declare what packages it uses,
but fully qualified names may be used instead; moreover, no qualification is needed to refer
to another class in the same package. These provisions mean that the source must be fully
parsed—including name resolution—to locate interpackage calls; this is a processing effort
far beyond the simple timestamp processing of make. Fortunately, when package sources are
changed in a way that requires recompilation, the signature of method calls will have
changed, and source files that call the package should also be changed. If they are changed,
they will be recompiled by a make; if not, a runtime Java error occurs. When this has hap-
pened and after the sources are appropriately revised, it is usually safest to do a complete re-
build of the system. (A new installation from source will have a complete recompilation, so
the runtime error cannot occur in this case.)

4.4 Compilation and Execution
Java executions need access to the files containing the compiled .class files for all packages
used. Since these files may be scattered throughout the file system, the Java executor expects
to find the directories listed either on its command line or in an environment variable called
CLASSPATH. This same list of files and directories is also necessary for compilation so the
Java compiler can check calls to external packages.

28 CMU/SEI-99-TR-013

For simple Java programs, there is little difficulty in creating a CLASSPATH value. GEE,
however, uses a considerable variety of external packages, including one for each COTS
product, and some effort was needed to determine what and where they were. This effort was
recorded in gee.java.classpath of gee.properties from which it is available throughout GEE.
Its value is this:

gee.java.classpath =\
${gee.destination.directory}/classes:\
${gee.oracle.home}/jdbc/lib/classes111.zip:\
${gee.java.home}/lib/jsdk.jar:\
${gee.java.home}/lib/classes.zip

Problem: How can the CLASSPATH from gee.properties be used for Java executions initi-
ated by shell commands instead of with make? The problem is exacerbated by the fact that
different developers each have their own scripts for establishing access to Java, and these
may differ in their CLASSPATHs and may not include some GEE libraries.

Solution: For GEE, special Java invocation commands were installed: gjc for Java compila-
tion and gj for initiating a Java program. As these commands are installed, they are preproc-
essed from gee.properties and have the full and correct GEE CLASSPATH. Developers can
augment this CLASSPATH by setting a CLASSPATH in the environment before running gj
or gjc. The script for gjc is this:

#!/bin/sh
cp=${CLASSPATH:-}${CLASSPATH:+:}GEE_JAVA_CLASSPATH
GEE_JAVA_HOME/bin/javac \

-bootclasspath GEE_JAVA_BOOTCLASSPATH \
-classpath ${cp} ${GJCOPTIONS} $*

The two instances of CLASSPATH check for its existence and, if it exists, they insert the
value and a colon. The javac compiler is invoked with its full pathname and is passed both a
classpath and a bootclasspath (for which, see the discussion of VisiBroker in Section 5.3).

Problem: Developers usually have a CLASSPATH that is more extensive than is needed to
augment the GEE CLASSPATH.

Solution: None. The result is that the CLASSPATH is much bigger than needed, but this
does not bother Java. It seemed best not to use a separate shell variable for augmenting the
CLASSPATH to gj and gjc because that would require additional developer training.

Problem: When constructing GEE from sources in a sandbox, it is usually desirable to use
.class files from sibling directories in the sandbox rather than those from the regular
CLASSPATH of installed .class files.

Solution: An additional make variable, EXTRACLASSES, is incorporated into the
CLASSPATH when Java is invoked from an Imakefile. This appears as the first line of the
second Imakefile example in Chapter 3:

CMU/SEI-99-TR-013 29

EXTRACLASSES = ../gee:../rdbms:../security:../naming

In this case, the .class files from four sibling directories are used and will supersede the same
classes that may exist in installed libraries.

In addition to EXTRACLASSES, a site may want to incorporate libraries without modifying
gee.properties. These can be defined in site.mcr as the value of the make variable
SITE_CLASSES. Given these and the above, here is the definition of the Java compilation
command as it appears in imake.tmpl:

CLASSES = .:${EXTRACLASSES}:${SITE_CLASSES}
JAVACOMPILE = CLASSPATH=${CLASSES} ${CONFIGDIR}/gjc

This command is invoked in the fifth line of this gee.rls macro for building a Java package:

#define JavaPackage(pkgname)
compile::

jfiles=‘${CONFIGDIR}/needjc pkgname/ALLFILES.java‘; \

if ["X$${jfiles}X" != "XX"] ; then \
${JAVACOMPILE} $${jfiles}; \

fi

Here we see that needjc is called to find out which .java files are newer than their .class file,
and the resulting list is stored as the shell value named jfiles. If jfiles is not the empty string,
then ${JAVACOMPILE} is executed for that list of files.

GEE packages are installed by invocation of this macro:

#define InstallJavaPackage(package,dir)
MkdirTarget(dir/package)
InstallFiles(package/ALLFILES.class, ${INSTCLASSFLAGS}, dir)

When called, the dir value is the slashed package name, so the installation directory is a pos-
sibly non-existent subdirectory of the installation directory passed as the second argument.
The first line of the macro body creates the destination directory, and the second line installs
the files. For GEE, the installation directory is always ${GEECLASSESDIR}.

4.5 external/java
The source subtree GeeBuildTree/external/ contains subdirectories for each COTS product.
Since a Java compilation and execution environment must exist before the installation of
GEE (for Defines.java), Java is not installed from the external/ subtree. Nonetheless, there is
a GeeBuildTree/external/java/ directory containing a class library fetched from the Net for
jsdk, the Java Servlet Development Kit. This library is installed into the Java library directory
where it is expected by gee.properties.

30 CMU/SEI-99-TR-013

4.6 Java Version Changes
Initial GEE development occurred during the latter stages of development of Java 2, the
stages where there was roughly one new distribution per month. Two of these were down-
loaded and used. Because the location of Java and the CLASSPATH value were both in
gee.properties, it was possible to do most of the transition to a new version of Java with
minimal effort. The commands in GEEBuildTree/external/java/ were used to update the new
Java installations to incorporate jsdk.

Unfortunately, new versions of Java changed the locations and names of some vendor-
provided packages. It was easy to incorporate the new libraries into the CLASSPATH with
the aid of gee.properties, but existing GEE source files referred to those packages by their old
names. There was no easy repair for this: all such source files had to be changed by hand.

When GEE changed from version 0.1 to 0.2, we wanted to leave the sources of GEE v0.1
unchanged. We could not because it had been built using “…/jdk1.2/” as the location of the
Java installation, and the new Java had that same name. It was necessary to retain both in-
stallations of Java, renaming the older from jdk1.2 to its full name of jdk1.2beta4. Adapting
the v0.1 sources was then a simple matter of changing its gee.properties to refer to
jdk1.2beta4. Meanwhile, gee.properties for GEE v0.2 was able to use the latest version of
Java under the name jdk1.2.

4.7 Javadocs
Java’s javadoc command produces an outstanding set of Web pages describing the interfaces
to packages. One tricky part of using javadoc for GEE was to figure out how to provide rules
in the construction scripts so the Javadoc Web pages could be built for any subtree of the
sources, whether for the developer of a single component or as documentation of the entire
tree. In our solution, the command

make javadoc

creates subdirectory javadoc/ in the current component directory and builds there the Web
pages for the Java packages in that single directory. The command

make Javadocs

with a capital “J” and a plural creates the same subdirectory, but puts into it the Web pages
for the entire subtree rooted at the current directory. In the top-level src/ directory, making
Javadocs also installs the result into the destination directory tree, again in a subdirectory
called javadoc/.

The input to javadoc is a list of pathnames of .java files to be included. To be able to build
both local and full subtree versions of the Web pages, it was necessary to generate the list of
files in a separate step before running javadoc. For Javadocs, this step must recur through
the directory subtree. Initial attempts to generate the list with make rules having no source
files failed because the actions associated with such rules are performed for every make exe-

CMU/SEI-99-TR-013 31

cution. Therefore the Makefile entries to generate the list of .java files had to have actual files
as their sources, and these files had to be created by other rules. The process we finally ar-
rived at begins with a rule in imake.tmpl that causes both javadoc and Javdocs to depend
upon existence of two files:

Javadocs javadoc:: javadoc/,javafiles javadoc/index.html

The first of the two source files is the generated list of .java files, while the second is a file
that is guaranteed to exist after running javadoc. Subsequent rules for creating the list have
javadoc/,javafiles as their target. There are three such rules in imake.tmpl (and therefore in
every Makefile):

javadoc/,javafiles::
${RM} -rf javadoc
-${MKDIR} javadoc
${TOUCH} javadoc/,javafiles

javadoc/,javafiles:: javalist
javalist::

The first of these rules removes any pre-existing ./javadoc/ subdirectory and creates a new
one having as its contents an empty file named ,javafiles. The second says that to create the
,javafiles file, it is necessary to make the target javalist. The third is a dummy rule that guar-
antees that there will be a rule for javalist in every Makefile; it does nothing. Actual insertion
of names into ,javafiles is done by an additional dependency in the rule for JavaPackage:

javalist::
(cd ${JAVADOCTOP}; \
${LS} -1 ${JAVADOCLIMB}/pkgname/ALLFILES.java) \

>> ${JAVADOCTOP}/javadoc/,javafiles

This command changes the directory to JAVADOCTOP, the directory containing the java-
doc/,javafiles, to be augmented and runs the ls command to list the contents of the directory
JAVADOCLIMB, which is the subdirectory of JAVADOCTOP containing packages to be
included.

Problem: Get values for the make variables JAVADOCTOP and JAVADOCLIMB.

Solution: When creating javadoc/,javafiles, in a single component directory, both JAVA-
DOCxxx variables can be “.” and these values are established with the following two lines
early in imake.tmpl:

JAVADOCLIMB = .
JAVADOCTOP = .

When ,javafiles are being collected for an entire subtree, the line

JavalistSubdirs(dirs)

of the RecursiveMakes macro comes into play. It is expanded by the rule for SubdirTarget,
which was abbreviated in Section 3.3.2 where the lines for passing JAVADOCTOP and
JAVADOCLIMB were omitted. The recursive call on make actually looks more like this:

32 CMU/SEI-99-TR-013

${MAKE} CONFIGDIR=${CONFIGDIR} \
JAVADOCLIMB=${JAVADOCLIMB}/$$i \
JAVADOCTOP=../${JAVADOCTOP} \
mktag

Thus JAVADOCTOP is always a relative path to the directory with javadoc/,javafiles and
JAVADOCLIMB is the path from there to the sub…subdirectory currently being traversed in
walking the subtree.

Once the javadoc/,javafiles is completed, including any recursive makes, the rule for java-
doc/index.html can fire. It is in imake.html and reads as follows:

javadoc/index.html:: javadoc/,javafiles
${JAVADOC} -d javadoc ‘sort -n javadoc/,javafiles‘
${RM} javadoc/,javafiles

This command sorts javadoc/,javafiles (numerically, in case any filename begins with digits)
and passes the result as the list of files to ${JAVADOC}. The -d javadoc directs the result to
the javadoc subdirectory. Lastly, the ,javafiles list is deleted. The only remaining task is to
arrange to install the newly generated documentation into the destination tree when Java-
docs or GEE is made from the top-level src/ directory. This is accomplished by the follow-
ing rule in the top-level Amakefile:

GEE Javadocs:: install.time javadoc/index.html
${RM} -rf ${GEEHTMLDIR}/javadoc
${TAR} cf - ./javadoc | (cd ${GEEHTMLDIR}; tar xf -)

This command deletes a pre-existing javadoc subdirectory in the destination tree and copies
the new one by creating a tar file of it and extracting from that tar file into the destination
directory.

4.8 JAR Files
The Java developers have introduced the jar command to supersede the older and proprie-
tary-to-someone-else tar and zip commands. In essence, jar compresses copies of a set of
files and creates from them a .jar file. In most cases it is sufficient to collect all the .class
files and put them in the .jar file. The GEE developers, however, wanted only a subset of the
.class files, so it was necessary to create the .jar file from a list of files.

Problem: Some of the filenames to be included in the list contain dollar signs.

Solution: In the macro InstallFiles (Section 3.3.2), the list of names was generated with a
wild-card expression:

package/ALLFILES.class

Since we wanted only a subset of this list, however, we needed an explicit list of names in the
Imakefile. After some fumbling, we eventually discovered that using four dollar signs ($$$$)
in names in the Imakefile was the only way to represent a single dollar sign in a filename!

CMU/SEI-99-TR-013 33

Problem: The list of files on which the .jar file depends is not in the right form as an argu-
ment to the jar command.

Solution: The input list to jar needs to have the directory name separate from the filename.
That is, files a/b/t.class and a/b/u.class have to be in the list as

-C a/b/ t.class u.class

This problem was solved by writing a small C program, gjardirs, which does appropriate
string processing to render the list of files into the list demanded by jar.

Given the above solutions, the rule for creating a .jar file is

#define JarFile(name, files)
compile:: name
name: files

(filelist=‘${ECHO} ’files’‘; \

${JAR} cf name \
‘${CONFIGDIR}/gjardirs $$filelist‘)

Here the ‘echo ‘files’‘ trick protects against dollar signs, and the filelist is processed by

gjardirs before being passed as an argument to jar.

34 CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 35

5 Challenges from Other COTS Products

For many years, even non-COTS projects have used COTS compilers and libraries. The usual
experience is that these COTS products remain stable throughout the life of the project or, at
the least, that changes are upwardly compatible and do not affect the project. This experience
does not hold in the current COTS environment; on average, a system with six COTS prod-
ucts having annual upgrade cycles will encounter a release every other month, and the major-
ity of releases will be disruptive.

For GEE, the principal tool for dealing with new releases of a COTS product, say xxx, was to
incorporate the reinstallation activity into a construction script in the GEEBuild-
Tree/external/xxx/ directory. This script is also a tool for communicating to customer sites the
activities that they must undergo to upgrade their COTS products to the version required by
GEE. During the four months of initial GEE development, new releases were received for
Java, JRun, and VisiBroker. All were readily incorporated by doing a make in the appropriate
external/xxx/ directory.

Imakefiles are used in the external/ tree and are constructed with genmake. This means that a
new installation of GEE must first build and install the src/config/ directory, then do appro-
priate system upgrades as described by the external/ directories, and finally go back to build
and install the rest of the src/ directory.

Each COTS product added its own unique challenges to the construction/deployment task. In
general, these were in the areas of

• installing the product

• adapting to new versions

• initiating servers that would respond to GEE

• establishing communication with GEE

5.1 Common Challenges
Enough problems occurred with two or more of the COTS products that it is useful to devote
this section to them.

An early decision was whether to retain a copy of each COTS product release in the source
archive. If the product is viable, its Web site will remain active, so the release could be re-
fetched. However, in order to document our work fully and present a complete package to
customers, we store the distribution binaries in the archive, usually as a single compressed,

36 CMU/SEI-99-TR-013

distribution-archived file. Ideally, of course, the Imakefile would contain instructions to re-
fetch the installation from the Web site as needed, but the necessary tools and infrastructure
are not yet in place.

Make rules in the external/ subtrees were designed so the distribution would be unpacked and
installed only once. Initially this scheme failed because timestamps on unpacked files reflect
the time they were last changed before being packed, so they appear older than the archive
and cause an unnecessary (and lengthy) repeat of the unpack/install step. This problem was
resolved with a dummy file, .unarchived; it is created after unpacking the archive and triggers
a new unpack operation only if the archive itself is replaced. Even this solution failed on one
occasion when a new archive was inserted with a tool that set its date to its original date of
creation instead of the date of insertion.

The external/*/Imakefiles contain some installation rules that define the Install make target
and install files into the GEE directories. More commonly, files must be installed into direc-
tories owned by the system or devoted to a COTS product installation. Since the usual devel-
oper does not have privileges to write in these directories, an additional make target is pro-
vided called SystemInstall. (This target is generated from the SystemInstallFileAsNeeded
macro, described in Section 3.3.2.) As part of installing a COTS product, the make command
for this target must be executed by the root user. The implementation takes care to limit ac-
cess, however, by ceding ownership of the installed file to the user who owns the destination
directory, rather than root. Execution as root must usually be done by a system administrator,
but there is no standard way to request such operations. Rather than rely on personal interac-
tion or email, there could be a queue of actions, which the administrator would check and
execute occasionally.

One of the steps that must be done as root is to install files that will initiate server processes
whenever the operating system starts. Such servers are needed for Oracle, VisiBroker, JRun,
and Netscape. On Solaris, a System V-like UNIX, these servers are started by files installed
into /etc/rc.d. For instance, the following file is installed from external/vbroker/ so VisiBro-
ker will be started at boot start time:

#!/bin/sh
VBROKER_HOME=GEE_VISIBROKER
VBROKER_OWNER=‘/bin/ls -dl ${VBROKER_HOME}/adm/impl_dir \

| awk ’/impl_dir/{print $3}’‘
/bin/su - ${VBROKER_OWNER} -c ${VBROKER_HOME}/bin/vbstartservers

Before installation, this script is expanded according to gee.sed to get the value of
GEE_VISIBROKER, the location of the VisiBroker installation. The third line of the script
determines which user owns the directory ./adm/impl_dir/ in the VisiBroker installation and
then starts a shell as that user running the vbstartservers script. (The latter is also installed
from external/vbroker/.)

CMU/SEI-99-TR-013 37

Ideally, each developer has an independent testing environment and suffers no interference
from tests by others. GEE supports this with a full sandbox build by allowing distinct in-
stances of gee.properties, different Oracle databases, and variant Java class paths. The limi-
tations of the evaluation version of JRun do not permit separate development, although these
restrictions are lifted by JRun’s Professional Edition. For a subset build, most of those dis-
tinctions were not possible; however, GEE does support separate CORBA servers by allo-
cating a different Visibroker port to each developer.

5.2 Oracle Challenges
GEE uses an Oracle database for record storage and retrieval. Oracle is quite mature and no
new releases occurred during GEE development. However, GEE relies on Oracle’s Java Da-
tabase Connectivity (JDBC) interface, which was not part of the previously installed Oracle.
Since it is likely to be needed in any environment for GEE, the JDBC release is retained in
external/oracle/. The Imakefile decompresses and expands it, but leaves its actual installation
as a manual operation to be done in accordance with the distribution’s Readme file.

Gee.properties has a number of entries for Oracle, such as the path to the installation, the da-
tabase name, and the server host name and port. Properties exist for the Oracle “schema”
name and password; these are changed for each GEE version. The gee.java.classpath property
is augmented with the location of Oracle’s Java library that comes as part of the JDBC distri-
bution. (This library is labeled for use with JDK 1.1.1, but seems to work with JDK 1.2.)

For a full GEE system build, GEE’s Oracle database must be created. Considerable experi-
mentation was required to learn how to do this, and this experience has now been incorpo-
rated in the Imakefile. A small shell script, runsql, shown in Table 7, concatenates a set of
Oracle command files and passes the result as a script to Oracle’s sqlplus client tool. The ac-
tion in the Imakefile is this:

${CSH} runsql dropdb dropdb createdb createfk

All these files, including the runsql script, are processed through ExpandGeeProperties to
expand the GEE_… values.

38 CMU/SEI-99-TR-013

#set variables required by sqlplus
setenv ORACLE_BASE GEE_ORACLE_BASE
setenv ORACLE_HOME GEE_ORACLE_HOME
setenv ORACLE_SID GEE_ORACLE_SID
setenv ORACLE_TERM GEE_ORACLE_TERM

#combine argument files into one temporary file
set tmpfile=/tmp/sqlscript.$$
rm -f $tmpfile
foreach f ($*)

 echo @$f >> $tmpfile
end

#run sqlplus
set PW=GEE_ORACLE_PASSWORD_FOR_SCHEMA

set DB=GEE_ORACLE_SCHEMA/${PW}

${ORACLE_HOME}/bin/sqlplus ${DB} < $tmpfile
rm $tmpfile

Table 7: runsql.csh: Send Commands to Oracle

5.3 VisiBroker Challenges
VisiBroker is an implementation of the CORBA standard for “object request brokers.” In
CORBA, a process running a “service” implements an object with methods, a client program
calls those methods, and the broker arranges the communication between the client and the
service within its process.

The objects and methods offered by a service are described in a file written in IDL, an inter-
face definition language. Visibroker, or any other CORBA implementation, provides a trans-
lator from IDL into a programming language, in GEE’s case Java. The Java output from
translating an IDL file is two-fold:

• a set of client objects having the defined methods

• a set of super-class files for objects implementing the services

Client programs make calls on the first, while semantics for the service are implemented by
writing subclasses of the second.

The construction/deployment tasks for Visibroker include running the IDL translator, com-
piling the resulting Java files, installing all files, and registering the service so Visibroker
knows how to start it. All these tasks are illustrated in Table 8, the Imakefile for the GEE
business logic component, GEEBuildTree/src/busLog/.

CMU/SEI-99-TR-013 39

IDLSource(Genotype, Genotype)
IDLModule(Genotype)
InstallIDLSource(Genotype.idl, ${GEELIBDIR}/idl)
InstallIDLModule(Genotype, ${GEECLASSESDIR})

EXTRACLASSES = ../gee:../rdbms:../security:../naming
JavaPackage(.)
InstallJavaPackage(., ${GEECLASSESDIR})
JavaPackage(Genotype/UserFactoryPackage)
InstallJavaPackage(Genotype/UserFactoryPackage, ${GEECLASSESDIR})

VERSION = GEE_VERSION
RegisterForActivation(IDL:gee.v${VERSION}/Genotype/UserFactory:1.0, \
 UserFactory,UserFactoryImpl)

Table 8: Imakefile for a Component Describing a Service with IDL

Note:

• Genotype.idl describes a CORBA service called LocService.

• The first two lines invoke the IDL transformation and the necessary Java compilation.
(Note that there is no change to the Imakefile in order to switch to a different IDL
converter.)

• The InstallIDLxxx lines copy the results of the IDL processing into the proper installation
directories.

• Definitions nested within IDL interface declarations10 cause extra packages to be created,
which must also be compiled and installed. This is the purpose of the two lines for
UserFactoryPackage.

• The last two lines register the new service, LocService, with Visibroker so it will be
started when a request for that service arrives at the Visibroker port.

• VERSION is defined to avoid having vGEE_VERSION, which would not be converted
by the C proprocessor.

An IDL source file may contain descriptions of a number of “modules,” each of which com-
piles eventually into a Java package. Correspondingly, gee.rls provides one macro, IDL-
Source, for processing an IDL source file and another, IDLModule, for processing each
module. It would have been preferable to have IDLSource describe all this processing; the
macro was created with this in mind and its parameters include a list of the modules. How-
ever, the imake language is too weak to create the module processing rules this way, so the
IDLModule macro is provided as well. In practice, the internals of the latter rule are identical
to those for JavaPackage (they use a common sub-macro), but future developments could
provide additional semantics for IDLModule.

10 In Genotype.idl, the declaration of interface UserFactory contains

typedef sequence<octet> Credentials;

40 CMU/SEI-99-TR-013

Ideally, IDLSource would compare the dates of the .idl file and one of its outputs to reproc-
ess the .idl file when it has changed. This cannot be done because there is no file that is al-
ways created by processing an IDL source file. Instead, a dummy file called .srcname.stubbed
is created and tested. The body of the macro looks like this:

compile:: .srcname.stubbed
.srcname.stubbed: srcname.idl

<set environment> $${VB}/bin/idl2java srcname.idl
${TOUCH} .srcname.stubbed

The <set environment> code defines VB to be the Visibroker directory, defines other envi-
ronment variables for VisiBroker, and defines Java variables so Java version 1.1 will be used.
Idl2java is the only piece of GEE that needs Java 1.1, but it requires almost as much machin-
ery as Java 1.2 in gee.properties, gee.rls, and imake.tmpl.

As noted above, IDL translation produces a set of Java superclasses for which subclass ob-
jects must be written. These subclasses must be accommodated in the Imakefile by adding
rules for Java compilation and installation of these files. In Table 8, this is done with the
usual rules for the default package as shown in lines 5-7.

Installed services are useless until processes executing them are started on the VisiBroker
host. Every service could be started at system boot time, but the result could be many unused
processes occupying system resources. Instead, VisiBroker has an object11 activation daemon
process—called “oad”—which listens for service requests and locates or starts a process for
each. In order for oad to be able to activate a service, that service must first be registered. The
following describes the Visibroker registration process from the standpoint of a user who has
actually done it.

Each IDL module declaration may describe one or more named “interfaces,” some of which
correspond to services that can be registered and activated. Registration is done in GEE
Imakefiles with the RegisterForActivation macro, which has three arguments:

1. the name the service will have in the repository

2. the name of the interface that the service advertises

3. the class name of the class to execute for that interface

(The documentation describes the first as the “repository name.” This, it turns out, is not the
name of a repository, but is a name that the service will have in the repository. The repository
itself does not seem to have a name.)

A service’s name in the repository has this form:

IDL:gee.vnn/modulename/interfacename/:1.0

11 Technically, the service class is instantiated as an object, hence the name.

CMU/SEI-99-TR-013 41

where nn is the value of gee.version, modulename is the name of the module, and inter-
facename is the name of the interface. (The “:1.0” is supposed to be a version number, but
VisiBroker provides no support for any other value.) In GEE (version 01), the Genotype
module contains a UserFactory interface, which is implemented in the UserFactoryImpl
class; these names are the second and third parameters to RegisterForActivation. After de-
termining the parameters, there is one more problem to solve before defining that macro.

Problem: Our first experiments with JDK1.2 and VisiBroker failed. Eventually we discov-
ered that Java itself supports an object request broker and fields the calls on the CORBA ap-
plication programmer interface; VisiBroker never sees them. Moreover, the JDK 1.2 class
files for its broker are not on its CLASSPATH; no possible change to that path can put Visi-
Broker ahead of the Java broker. Instead, JDK 1.2 has a “bootclasspath” value that lists in-
ternal classes that are always loaded.

Solution: It was necessary for us to provide a value for the bootclasspath and list VisiBro-
ker’s class files ahead of those for JDK 1.2. Thus, the Java section of gee.properties became a
bit more complex. Considerable time was spent in determining what values were needed on
the bootclasspath, what their order should be, and what classes should be on the classpath.

Problem: VisiBroker can register services that are written in Java, but it provides no way to
set the bootclasspath.

Solution: Use the syntax for registering a service written in C, but instead register the gj
command and specify parameters so that it runs the correct Java program. The resulting reg-
istration macro is shown below:

#define RegisterForActivation(repname,interface,classnm)
install.time:: classnm.class

GEE_VISIBROKER/bin/oadutil reg -r ’repname’ \
-o interface -cpp ${GEEBINDIR}/gj \
-a ‘echo classnm | ${TR} ’/’ ’.’‘ \

-host GEE_VISIBROKER_HOST

Problem: There is no rule for what RegisterForActivation calls classnm.class, which is
supposed to be the result of compiling the implementation files. If the file does not exist,
make fails because it cannot figure out what to do.

Solution: None. If the failure occurs, make must be rerun with the compile target, which will
rebuild all classes. (The rebuild will occur because of the file absence; this is one advantage
of the needjc approach over a dummy file approach.)

Since multiple developers may be implementing and testing new services, it is valuable to be
able to distinguish between them. We were able to do so because VisiBroker allows multiple
instances of oad to be running, each listening on a different port. For GEE we wrote a vbstart
command that starts a set of VisiBroker processes listening on a port named as a command
argument. By setting an environment variable (VBPORT), a developer arranges that services

42 CMU/SEI-99-TR-013

registered will be available on that port and that any client programs that are started will use
that same oad. As with gj, vbstart incorporates the system environment information from
gee.properties.

Debugging is further supported by VisiBroker with a repository of IDL files, such as are in-
stalled in GEELIBDIR/idl/ by InstallIDLSource. The best documentation of this repository is
GeeBuild.doc, the user’s guide to the GEE construction scripts [Hansen 98a].

5.4 JRun and the Netscape Web Server
One of three modes of user interface for GEE is via “servlets.” A servlet is a Java package
associated with a URL and a Web server; when that URL is requested from the server, the
servlet is executed and its output is returned as the requested page. Java provides jsdk, the
Java Servlet Development Kit, as an application programmer interface to servlets, but third-
party software is needed to bridge the Web server to the Java execution environment. After
some searching on the Web, the only product that connected servlets written in JDK 1.2 was
JRun from Live Software. We downloaded the evaluation distribution and incorporated it into
GEE in the external/livesoftware/ directory.

As part of setting up JRun, the Web server (in our case Netscape Enterprise Server) must be
told to communicate with JRun for selected incoming URLs. This process is initiated by the
external/livesoftware/Imakefile after installing JRun. However, the Netscape server must then
be manually stopped and restarted to incorporate the changes into its environment. Moreover,
the JRun server process must be started before restarting Netscape and at every system reboot
thereafter. The Imakefile does not immediately start the JRun server, but it does install a script
to do so and arranges for the script to be called on subsequent reboots.

JRun does not start a new Java execution for each incoming servlet URL because doing so
would incur the response time penalty of Java startup. Instead, JRun loads the class refer-
enced in the URL into its own process and executes it there.

Problem: To execute classes, they must be on Jrun’s CLASSPATH; The JRun convention is
for them to be in a directory within the JRun installation. However, to put them there would
further complicate the GEE installation process by requiring permission to modify the JRun
directory.

Solution: A single GEE destination directory name—.../gee/jrunclasses/—is added to the
JRun CLASSPATH. This is done from the external/livesoftware/Imakefile by a sed script that
modifies a property file within the JRun installation tree. To provide for redirection of servlet
calls from one GEE version to another, the jrunclasses name is in fact a symbolic link to the
classes subdirectory of the GEE installation tree for one of the several extant versions of
GEE.

CMU/SEI-99-TR-013 43

The jrunclasses/ solution has an appealing simplicity but also a few drawbacks. One is that
the servlet class files are in the same directory with other class files. Consequently, other
class files may conceivably be initiated from a URL. Since these classes do not implement
jsdk, the worst that will happen is a confusing error report to the user. Such reports should be
replaced with more user-friendly responses in a professional installation. A second drawback
is that if a servlet has been initiated, it is necessary to stop and restart JRun to use a new ver-
sion of that servlet. A last drawback is that one environment must be used for both testing and
production use. All these drawbacks are avoided by the “Professional” version of JRun, but
the required investment has not been justified by GEE’s modest needs.

44 CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 45

6 Miscellaneous Issues

In this chapter, we cover a few additional topics that posed significant problems for construc-
tion and deployment.

6.1 Security
Since security issues are important to all Software Engineering Institute customers, security
issues were a major concerns of GEE development. We strove to incorporate state-of-the-art
certificate technology, but we were stymied by this technology’s immaturity.

Problem: Passwords for Oracle and user certificate databases are contained unencrypted in
gee.properties.

Solution: No solution was implemented. Encrypting passwords in gee.properties would not
help much because an interloper could decrypt them with whatever process GEE itself uses.
Ideally, a password would be entered manually for every system restart. However, if hands-
free automatic restarts are desirable, the passwords must be in a file somewhere on the sys-
tem. Gee.properties could give the location of this file, to which access would be limited by
security measures outside GEE.

Problem: Where should the user certificate database be stored?

Solution: No good solution was developed:

In principle, a certificate infrastructure manages a user’s certificates. An authority issues cer-
tificates that identify the user and are tied to permissions for various GEE actions. An en-
crypted form of these certificates is stored in the user’s certificate database. When a user be-
gins an interactive session, the certificate is fetched from the database (or from a ring or other
wearable device) and decrypted according to some password entered by the user. Once the
user has a certificate, it is passed to each application where it specifies the user’s rights.

No infrastructure for certificates existed on the GEE deployment systems, so the certificate
database was made part of the GEE distribution, and we attempted to perform certificate
processing within the GEE client application. To mimic the eventual certificate environment,
certificates are stored on the client host rather than centrally stored at the GEE server. The
question then arises: In what directory on the client’s host should the certificate database be
stored? Since clients were to run on both Windows and UNIX platforms, a full solution to
this problem would have required developing deployment packages for both these environ-
ments. Instead, we decided to store the database in the directory that was “current” at the time

46 CMU/SEI-99-TR-013

the client was launched. This is a simple concept for UNIX platforms, but it required consid-
erable experimentation on Windows to find out which was the current directory. In either
case, the certificate database is manually copied to the user environment.

6.2 Cron: Daily Processing
In external/, alongside the directories for COTS products, there is a directory called exter-
nal/cron/. It describes GEE processing that is performed daily, as dictated by a shell script
that is initiated daily at 3:07 a.m. by the UNIX cron mechanism. This script ensures that the
installed GEE is up-to-date by deleting the entire installation, refetching the sources from the
archive, and executing a complete rebuild. The script also copies the GEE source archive to a
host where files are backed up daily. Originally, these backups were saved for a week, but
when the disk overflowed this was changed to saving them for only two days.

Problem: If there is any failure during the build, no executable GEE is installed.

Solution: Constant vigilance is required to keep updating files so the rebuild succeeds. For-
tunately, there is no actual usage of GEE, so failures are not catastrophic. Ideally, the daily
build would be augmented to send an email message if it failed.

A third task of the daily processing is for JRun. JRun can access only one library directory, so
it is told about the name gee/jrunclasses/. The daily cron process makes this name be a sym-
bolic link to the classes library for the most current stable version of GEE.

6.3 Beginning a New GEE Version
From time to time, the current version of GEE is deemed “finished,” and work begins on a
new version. Usually a finished version is working, but seldom in all facets; the impetus for
change is to attempt new approaches requiring major changes not only to the files, but also in
the number of files or the directory structure. To retain the old version, the entire source ar-
chive is copied and stored along with an installation directory resulting from that version.

Changing to a new version is begun by modifying gee.properties, especially gee.version and
the name of the Oracle database schema. Other properties and source files are then changed
as desired. The most difficult manual steps are to update the Web pages. This process has not
been mechanized because of the number of differences between what should be offered by
each version. So far, it has been possible to provide intranet Web site access to executable
instances of old versions; often, however, these begin to fail as resources are redirected to the
new version.

CMU/SEI-99-TR-013 47

7 Conclusion

Our initial goal was to develop a construction/deployment system for GEE that would im-
plement the four build scenarios in Figure 1: build-install, subset build, sandbox build, and
customer build. The necessary flexibility was introduced by dividing the sources into compo-
nent subdirectories, by centralizing definitions in gee.properties, and by using imake to gen-
erate Makefiles from platform and site-dependent definitions files.

The various COTS products incorporated in GEE had a considerable influence on the con-
struction/deployment system. Java required considerable ingenuity to adapt the make proces-
sor to suit its requirements. Together with Java, the Visibroker, Oracle, and JRun products
added complexities in the areas of installation, version change, server initiation, and estab-
lishing communication with GEE processes.

We began this report with two principles:

Repeat not.
Delay binding.

Although the text has not explicitly invoked these principles, they have been influential
throughout:

• The gee.properties file is the central source for many of the values that should not be
repeated elsewhere. The properties mechanism permits using names instead of the values
themselves, and it avoids repetition of the values so they can be revised in a single place.

• Makefiles typically have considerable repetition both within files and from one file to
another. This repetition is avoided by using imake to macro-generate a Makefile from an
Imakefile, the template imake.tmpl, and the macro definitions in gee.rls. The rules in
gee.rls generate lengthy pieces of code for each invocation of a macro. Not only are the
Imakefiles much smaller than Makefiles, but porting GEE to another platform can be
done primarily by changing these definition files and not other files throughout the
system.

• Typing commands can be repetitious. In GEE this is avoided by having a number of ad
hoc commands implemented as shell scripts: gj for Java execution, vbstart for initiating a
VisiBroker service, and so on. These scripts incorporate knowledge of the environment
from �������������	 and make it available to avoid repeated typing of options and the
consequent possibility of errors.

• When releases of COTS products arrive, the processing to incorporate them is much the
same as for the previous release. All this processing is captured in the
external/*/Imakefiles, so typing in these commands need not be repeated.

48 CMU/SEI-99-TR-013

The principle of delayed binding is observable in GEE, less in its presence than in the prob-
lems caused by its absence. The little shell scripts are preprocessed with gee.sed and do not
change when gee.properties changes. Thus, they need to be reinstalled to get a consistent en-
vironment. Similar problems exist because file names, especially in HTML files, are fixed via
preprocessing with gee.sed; consequently, it is not possible to move the installed files without
rebuilding the system.

In a future effort, we would explore further measures to defer binding. If beginning a longer
term effort, it might be fruitful to explore an alternative to imake/make that provided more
capabilities and fewer syntactic distractions.

CMU/SEI-99-TR-013 49

References

[Andrew 96] Andrew Consortium. The Andrew Consortium. Available WWW
<URL: http://www.cs.cmu.edu/~AUIS/> (1996).

[Dubois 96] Dubois, Paul. Software Portability with Imake, 2nd Edition. Sebas-
topol, CA: O’Reilly & Associates. Available WWW <URL:
http://www.primate.wisc.edu/software/imake-book/index.html>
(1996).

[Feldman 86] Feldman, S. I. “Make - a program for maintaining computer pro-
grams.” UNIX Programmer’s Supplementary Documents Vol. 1
(PS1), USENIX Assn., 1986 (pp. PS1:12-1–PS1:12-9).

[Fulton 89] Fulton, Jim. Configuration Management in the X Window System.
Cambridge, MA: X Consortium, MIT Laboratory for Computer
Science, pp. 12. Available WWW <URL:
http://www.primate.wisc.edu/software/imake-stuff/fulton.txt>
(1989).

[Hall 97] Hall, Richard S.; Heimbigner, Dennis; and Wolf, Alexander L.
Software Deployment Languages and Schema (CU-SERL-203-97).
Dept. of Computer Science, University of Colorado, December
1997. Available WWW <URL: http://www.cs.colorado.edu/users/
rickhall/deployment/SchemaPaper/Schema.html> (1997).

[Hansen 98a] Hansen, W. J. Gee Building. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, December 1998. (Available
within [Hansen 98b] as geebuild/doc/GeeBuild.doc.)

[Hansen 98b] Hansen, W. J. GEE construction/deployment scripts sources. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity. Available WWW <URL:
http://www.sei.cmu.edu/staff/wjh/geebuild.tar> (1998).

50 CMU/SEI-99-TR-013

[Hansen 99] Hansen, W. J. “Deployment Descriptions in a World of COTS and
Open Source,” Ninth International Symposium on System Configu-
ration Management (SCM-9). Toulouse, France, Sept. 1999. Hei-
delberg: Springer Verlag LNCS, 1999. Available WWW <URL:
http://www.sei.cmu.edu/staff/wjh/DeployDesc.html>.

[Inprise 99] Inprise. CORBA Technology from Inprise. Scott’s Valley, CA.
Available WWW <URL: http://www.inprise.com/visibroker/>
(1999).

[Live Software 99] Live Software. Live Software Products: JRun. Cupertino, CA.
Available WWW <URL: http://www.allaire.com/products/jrun>
(1999).

[MacKenzie 98] MacKenzie, David and Elliston, Ben. Autoconf - Creating Auto-
matic Configuration Scripts, Edition 2.13. Cambridge, MA: Free
Software Foundation. Available WWW <URL:
http://www.gnu.org/manual/autoconf/index.html> (1998).

[Netscape 99] Netscape Communications. Netscape Products. Mountain View,
CA. Available WWW <URL:
http://home.netscape.com/download/index.html. (1999).

[Oracle 99] Oracle. Oracle8 - Database Servers – Products. Redwood Shores,
CA. Available WWW <URL:
http://www.oracle.com/database/oracle8/> (1999).

[Sun 99a] Sun Microsystems. Java™ Technology Home Page. Palo Alto, CA.
Available WWW <URL: http://www.java.sun.com> (1999).

[Sun 99b] Sun Microsystems. Code Conventions for the Java™ Programming
Language. Palo Alto, CA. Available WWW <URL:
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html>
(1999).

[Tilbrook 96] Tibrook [sic], D. “An Architecture for a Construction System,” 76-
87. Software Configuration Management, ECOOP’96 SCM-6
Workshop. Berlin, Germany, March 1996. Springer, Lecture Notes
in Computer Science # 1167. Available WWW <URL:
http://www.cleanscape.net/stdprod/qef/qefwhite.html> (1996).

CMU/SEI-99-TR-013 51

[Wallnau 98] Wallnau, K.; Hansen, W. J.; Hissam, S.; Long, F.; and Seacord, R.
GEE Vee Zero Point One. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, August 1998. (Available
within [Hansen 98b] as geebuild/doc/GeeVeeZeroPointOne.doc.)

52 CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 53

Appendix A: Properties File: gee.properties

At runtime, GEE components that are written in Java retrieve property values from
gee.properties, below, via the GeeProperties class. Other GEE components get these values
at build time via processing with gee.h or gee.sed as generated from gee.properties by De-
fines.java. (See Appendix B for Defines.java.)

Properties file for GEE
#
This file is installed in gee.destination.directory/config/gee.properties
and are preprocessed to create gee.h and gee.sed in the same directory.
#
WARNING
WARNING No property name should be a substring of any other property name.
WARNING
#

#__________________________________
GEE
the root of installation tree
gee.destination.directory = /usr/local/gee/dest

version number. The value must be only letters and digits.
gee.version = 03

host for gee web site
gee.web.host = gc.sei.cmu.edu

#__________________________________
WEB SITE
For the descriptions, ".../gee" means the value of gee.destination.directory

The overall gee website
(This is established in the webserver by mapping GEE to .../gee
gee.website.prefix = http://${gee.web.host}/GEE

the URL to refer to html files. The html files themselves must go

54 CMU/SEI-99-TR-013

into the directory to which the server maps this URL.
gee.html.prefix = http://${gee.web.host}/GEE/dest/html

The url location for servlets
(The web browser maps /servlet/ to the jrun style.
(The jrun style sends the URL to jrun.
(jrun maps /servlet/ so the next word is a class name
((see jrun/jsm-default/services/jse/properties/rules.properties)
(The class is sought in jrun.servletdir
(which is set in jrun/jsm-defaults/services/jse/properties/jrun.properties
(to the directory /usr/local/gee/jrunclasses,
(which is a symlink to one of
(gee/dest/classes, gee/dest01/classes, gee/dest02/classes, ...
gee.servlet.prefix = http://${gee.web.host}/servlet

The url location for cgi-bin executables
(this is mapped by the web server to .../gee/cgi-bin
gee.cgi.prefix = http://${gee.web.host}/GEE/cgi-bin

#__________________________________
SECURITY

location of key store (per client)
gee.keystore = ${gee.destination.directory}/etc/oscStore-v0.3

gee.password.for.keystore = 08j06a96s

#__________________________________
VISIBROKER

the location of Visibroker.
gee.visibroker = /usr/local/vbroker
gee.visibroker.port = 14000
gee.visibroker.host = gc.sei.cmu.edu

#__________________________________
ORACLE
the location of Oracle.
gee.oracle.base = /u01/app/oracle

the particular Oracle version in use.

CMU/SEI-99-TR-013 55

gee.oracle.home = ${gee.oracle.base}/product/8.0.3

the userid of the owner of gee.oracle.home
gee.oracle.owner = oracle

the oracle data base name
gee.oracle.sid = test

the oracle terminal type
gee.oracle.term = xsun5

the schema used for GEE
gee.oracle.schema = TARZAN
gee.oracle.password.for.schema = JANE

oracle host an port
gee.oracle.server = @gc
gee.oracle.port = 1521

#__________________________________
#JAVA

The Java of choice is jdk1.2.
location of java jdk1.2; binaries are in gee.java/bin
gee.java.home = /usr/local/jdk1.2

path list (colon-separated) of directories containing Java class
files. Also among the entries can be classes.zip files.
gee.java.bootclasspath =\

${gee.visibroker}/lib/vbjorb.jar:\
${gee.visibroker}/lib/vbjapp.jar:\
${gee.java.home}/jre/lib/i18n.jar:\
${gee.java.home}/jre/lib/rt.jar

gee.java.classpath =\
${gee.destination.directory}/classes:\
${gee.oracle.base}/product/8.0.3/jdbc/lib/classes111.zip:\
${gee.java.home}/lib/jce12-dom.jar:\
${gee.java.home}/lib/jsdk.jar:\
${gee.java.home}/lib/ldapjdk.jar:\
${gee.java.home}/lib/capsapi_classes.zip:\
${gee.java.home}/lib/classes.zip

56 CMU/SEI-99-TR-013

#We also (grudgingly) support compilation and execution with jdk 1.1
gee.java11.home = /usr/local/jdk1.1
gee.java11.classpath =\

${gee.destination.directory}/classes:\
${gee.visibroker}/lib/vbjorb.jar:\
${gee.visibroker}/lib/vbjapp.jar:\
${gee.oracle.base}/product/8.0.3/jdbc/lib/classes111.zip:\
${gee.java11.home}/lib/jce12-dom.jar:\
${gee.java11.home}/lib/ldapjdk.jar:\
${gee.java11.home}/lib/capsapi_classes.jar:\
${gee.java11.home}/lib/classes.zip

#__________________________________
JRun from Live Software, Inc.

gee.jrun.home = /usr/local/jrun

CMU/SEI-99-TR-013 57

Appendix B: Properties File Converter:
Defines.java

Defines.java, the program below, processes gee.properties to produce gee.h and gee.sed. (See
Appendix A for the gee.properties file.)

/** Defines.java

This program converts a Java properties file into a
.h file with #defines file suitable for the C preprocessor.
It also produces a .sed file with s/.../.../g commands
for the same expansions.

Lines beginning with # are deleted.
Other lines are in the form

property.name = value string extending to end-of-line

These lines are converted for the .h file as
#define PROPERTY_NAME value string extending to end-of-line

Note that the property name is converted to all caps and
periods are converted to underline.
The conversion for the .sed file is

s/PROPERTY_NAME/value string extending to end-of-line/g

The first argument is the path to the properties files,
ending in ".properties" The output files are the same but
have the extension .h and .sed.

After reading in the .properties file with java.util.Properties.load(),
the property values are scanned for subsequences ${...}. If the
contents name a property, the value of that property is substituted
for the entire subsequence. Prior to the substitution, the value
is itself scanned for possible substitutions by this rule.
Recursion is detected by limiting this process to ten levels.
The sequence $${ is converted to ${

*/

58 CMU/SEI-99-TR-013

import java.io.BufferedWriter;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Enumeration;
import java.util.Properties;

public class Defines {

static java.util.Properties props = new java.util.Properties();

// write a single line to a BufferedWriter
private static void writeLine(java.io.BufferedWriter f, String s)

throws java.io.IOException {
f.write(s, 0, s.length());
f.newLine();

}

// choose a delimiter which is not among the characters of a
private static char chooseDelim(String a) {

String candidates =
"’\":;.,/^%$#@!~‘><][}{|+=-)(*&?"
+ "1234567890qwertyuiopasdfghjklzxcvbnm"
+ "QWERTYUIOPLKJHGFDSAZXCVBNM_";

while (candidates.length() > 0) {
char thisChar = candidates.charAt(0);
if (a.indexOf(thisChar) < 0)

return thisChar;
candidates = candidates.substring(1);

}

throw new IllegalArgumentException(
"no character available as delimiter");

}

// in val, expand ${...} to value of ...
// cnt increments for expansion depth and does not exceed 10

CMU/SEI-99-TR-013 59

// (cnt does NOT increment when expanding a tail of a string)
// the algorithm is highly inefficient and recursive,
// not too many ${...} are expected
private static String expand(String val, int cnt) {

if (cnt >= 10) return val; // avoid recursion
int dolloc = val.indexOf("${"); //

location of first "${"
if (dolloc < 0) return val; // no "${"
if (dolloc > 0 && val.charAt(dolloc-1) == ’$’)

// "$${" -> "${"
return val.substring(0,dolloc-1) + "$"

+ expand(val.substring(dolloc+1), cnt);
int rightloc = val.indexOf(’}’, dolloc);
if (rightloc < 0) return val; // no trailing ’}’

// expand ${...}
String name = val.substring(dolloc+2, rightloc);
return val.substring(0, dolloc)

+ expand((String)props.get(name), cnt+1)
+ expand(val.substring(rightloc+1), cnt);

}

public static void main(String args[]) throws java.io.IOException {

// setup filenames and file objects
//
String inFileName = args[0];
String hFileName, sedFileName;
if (! inFileName.endsWith(".properties"))

throw new IllegalArgumentException(
"file name must ends with \".properties\"");

hFileName = inFileName.substring(0,
inFileName.length()-".properties".length()) + ".h";

sedFileName = inFileName.substring(0,
inFileName.length()-".properties".length()) + ".sed";

System.out.println(inFileName + " => " + hFileName
+ " & " + sedFileName);

java.io.FileInputStream inFile
= new java.io.FileInputStream(inFileName);

java.io.BufferedWriter hFile
= new java.io.BufferedWriter(

new java.io.FileWriter(hFileName));

60 CMU/SEI-99-TR-013

java.io.BufferedWriter sedFile
= new java.io.BufferedWriter(

new java.io.FileWriter(sedFileName));

props.load(inFile);
inFile.close();
java.util.Enumeration pe = props.keys();

while (pe.hasMoreElements()) {
String key = (String)pe.nextElement();
String keyOut = key.replace(’.’, ’_’).toUpperCase();
String value = expand((String)props.get(key), 0);
char delim = chooseDelim(keyOut+value);

writeLine(hFile, "#define " + keyOut + " " + value);
writeLine(sedFile, "s" + delim + keyOut

+ delim + value + delim + "g");
}

hFile.close();
sedFile.close();

}

}

CMU/SEI-99-TR-013 61

Appendix C: Macros for Imake: gee.rls

The imake processor expands macro calls in the Imakefile by using the macros defined in
gee.rls, below. The string “@@\” at the end of a line is converted into a new line in the ex-
pansion of the macro. If there is a “\” before that, it is left in the output and is eventually
passed along to the shell where it signals that the line break should be ignored.

/* gee.rls - macro (rules) for Imakefiles

Copyright Carnegie Mellon University 1998

$Disclaimer: $

$Hdr: /home/wjh/gee/src/config/gee.rls 1.3 $
*/

#define NOSHERRORS case ’$(MFLAGS)’ in *[ik]*) set +e;; esac
#define SHVERBOSE set -x

#define ALLFILES *

/*==*\
 * COMPILATION RULES
==/

/* IDLSource(srcname, modulenames)
Executes idl2java if srcname.idl has changed.
Will create a directory and contents for each module named
in srcname.idl. The list modulenames is used for the
‘clean’ target; all named directories are deleted in full.
For each module, there should be an instance of IDLModule
and an InstallIDLModule.
For each Object which is a separate process,
the Imakefile must have a RegisterVBServer.
The Imakefile should also have

JavaPackage(.)
InstallJavaPackage(.)

so it can deal with the xxxImpl.java files

62 CMU/SEI-99-TR-013

*/
#define IDLSource(srcname,modulenames) @@\
MACROINVOKED = _IDLSource(srcname,modulenames) @@\
COMMA = , @@\
Sedify(srcname.idl, $(CONFIGDIR)/gee.sed, ${COMMA}srcname.idl) @@\
compile:: .srcname.stubbed @@\
.srcname.stubbed: ${COMMA}srcname.idl @@\

JAVA_HOME=GEE_JAVA11_HOME; export JAVA_HOME; \ @@\
ALT_JDK=$${JAVA_HOME}; export ALT_JDK; \ @@\
VB=GEE_VISIBROKER; VBROKER_ADM=$${VB}/adm; \ @@\
LD_LIBRARY_PATH=$${VB}/lib:$${LD_LIBRARY_PATH}; \ @@\
PATH=$${JAVA_HOME}/bin:$${VB}/bin:$${PATH}; \ @@\
CLASSPATH=${CLASSES11}:GEE_JAVA11_CLASSPATH;\ @@\
export VBROKER_ADM; export LD_LIBRARY_PATH; \ @@\
export PATH; export CLASSPATH; \ @@\
$${VB}/bin/idl2java ${COMMA}srcname.idl @@\
$(TOUCH) .srcname.stubbed @@\

clean:: @@\
$(RM) -rf modulenames

/* IDLModule(modulename)
Arranges to compile the java files in the named module,
which must also be the name of a directory.

*/
#define IDLModule(modulename) @@\
MACROINVOKED = _IDLModule(modulename) @@\
JavaPackageInternal(modulename,JAVACOMPILE)

/* RMIStubs(classname)
Takes an RMI class and runs rmic on it to generate
stub and skeleton classes
??? how to generate dependency for classname.class???

*/
#define RMIStubs(classname) @@\
MACROINVOKED = _RMIStubs(classname) @@\
EMPTY = @@\
compile:: Concat(classname,_Stub.class) @@\
Concat(classname,_Stub.class): classname.class @@\

$(RMIC) classname @@\
install:: Concat(classname,_Stub.class) @@\
clean:: @@\

$(RM) -rf Concat(classname,_Stub.class) Concat(classname,_Skel.class)

CMU/SEI-99-TR-013 63

/* WARNING: There must be NO SPACES around the first argument */
#define JavaPackageInternal(pkgname, compiler) @@\
compile:: @@\

@(NOSHERRORS; \ @@\
jfiles=‘${CONFIGDIR}/needjc pkgname/ALLFILES.java‘; \ @@\

if ["X$${jfiles}X" != "XX"] ; then \ @@\
$(ECHO) compiler $${jfiles}; \ @@\
$(compiler) $${jfiles}; \ @@\

fi; exit 0) @@\
clean:: @@\

$(RM) pkgname/ALLFILES.class @@\
javalist:: @@\

(cd $(JAVADOCTOP); \ @@\
$(LS) -1 $(JAVADOCLIMB)/pkgname/ALLFILES.java) \ @@\

>> $(JAVADOCTOP)/javadoc/,javafiles

/* JavaPackage(packagename)
The packagename should be given with ’/’ instead of ’.’
The .java files for the package should be in the
subdirectory ./packagename.
The .class files will be built in the same directory.
Any time any .java file in the package is modified,
all .java files will be recompiled.

*/
#define JavaPackage(pkgname) @@\
MACROINVOKED = _JavaPackage(pkgname) @@\
JavaPackageInternal(pkgname,JAVACOMPILE)

/* Java11Package(packageName) same as JavaPackage, but uses jdk1.1 */
#define Java11Package(pkgname) @@\
MACROINVOKED = _Java11Package(pkgname) @@\
JavaPackageInternal(pkgname,JAVA11COMPILE)

/* JarFile(name, files)
Creates a .jar file containing the named files
and a default manifest. The ‘name’ must end with the
.jar extension.
Each dollar sign in a file names must be represented
with four (4) consecutive dollar-signs. (!)

*/

64 CMU/SEI-99-TR-013

#define JarFile(name, files) @@\
MACROINVOKED = _JarFile(name, files) @@\
compile:: name @@\
name: files @@\

(filelist=‘$(ECHO) ’files’‘; \ @@\
$(JAR) cf name ‘${CONFIGDIR}/gjardirs $$filelist‘)

/* JarFileWithManifest(name, files)
Creates a .jar file containing the named files
and manifest META-INF/MANIFEST.MF. The ‘name’ must
end with the .jar extension. The manifest must exist
with the name MANIFEST.MF in a subdirectory named META-INF.
Each dollar sign in a file names must be represented
with four (4) consecutive dollar-signs. (!)

*/
#define JarFileWithManifest(name, files) @@\
MACROINVOKED = _JarFileWithManifest(name, files) @@\
compile:: name @@\
name: files @@\

(filelist=‘$(ECHO) ’files’‘; \ @@\

$(JAR) cmf META-INF/MANIFEST.MF name \ @@\
 ‘${CONFIGDIR}/gjardirs $$filelist‘)

#define Sedify(infile, script, outfile) @@\
compile:: outfile @@\
outfile: infile @@\

$(SED) -f script infile > outfile @@\
clean:: @@\

$(RM) outfile

/* ExpandGeeProperties(infile, outfile)
Infile is copied to outfile, except that the variables defined
in gee.properties are replaced with their values.
(sed is used with config/gee.sed as the script.)

*/
#define ExpandGeeProperties(infile, outfile) @@\
MACROINVOKED = _ExpandGeeProperties(infile, outfile) @@\
Sedify(infile, $(CONFIGDIR)/gee.sed, outfile)

CMU/SEI-99-TR-013 65

/* *** *\
 * INSTALLATION RULES

recommended rules:
InstallJavaClass InstallDocs InstallShScript InstallCshScript
InstallDataFiles

* *** */

/* these rules could be rewritten to have the destination file dependant on
the source file instead of the artificial ’install.time’.

*/

#define InstallFiles(files, mode, dest) @@\
install.time:: files @@\

@(NOSHERRORS; \ @@\
for i in ‘$(ECHO) ’$?’‘; do \ @@\

(SHVERBOSE; $(INSTALL) mode $$i dest/$$i); done)
/* the weird ‘echo ’$?’‘ manages to protect

against file names containing $ */

#define InstallJavaPackage(package,dir) @@\
MACROINVOKED = _InstallJavaPackage(package, dir) @@\
MkdirTarget(dir/package) @@\
InstallFiles(package/ALLFILES.class, $(INSTCLASSFLAGS), dir)

#define InstallIDLSource(idlfile,dir) @@\
MACROINVOKED = _InstallIDLSource(idlfile,dir) @@\
InstallFiles(idlfile, ${INSTDATAFLAGS}, dir)

#define InstallIDLModule(package,dir) @@\
MACROINVOKED = _InstallIDLModule(package, dir) @@\
MkdirTarget(dir/package) @@\
InstallFiles(package/ALLFILES.class, $(INSTCLASSFLAGS), dir)

#define InstallJarFile(file,dir) @@\
MACROINVOKED = _InstallJarFile(file,dir) @@\
InstallFiles(file,$(INSTCLASSFLAGS),dir)

66 CMU/SEI-99-TR-013

#define InstallDocs(files, dest) @@\
MACROINVOKED = _Install(files, dest) @@\
InstallFiles(files, $(INSTDOCFLAGS), dest)

#define InstallDataFiles(files, dest) @@\
MACROINVOKED = _InstallDataFiles(files, dest) @@\
InstallFiles(files, $(INSTDATAFLAGS), dest)

#define InstallLibFiles(files, dest) @@\
MACROINVOKED = _InstallLibFiles(files, dest) @@\
InstallFiles(files, $(INSTLIBFLAGS), dest)

/* RegisterForActivation(repname,interface,classnm)
Registers with the object activation daemon (oad)
the indicated interface.
repname - the repository name for the object.

By convention the form is
IDL:prefix/modulename/interfacename:1.0

where for gee the prefix is gee.vNN,
where NN is the value of gee.version

interface - the name following the keyword interface
classnm - the name of the java class

which registers the interface by calling
boa.obj_is_ready(impl), where impl is a
java object of class interfaceImpl
It is assumed that this class is in the default
package.

example:
RegisterForActivation(IDL:gee.v02/Genotype/UserFactory:1.0,

UserFactory,UserFactoryImpl)
*/
#define RegisterForActivation(repname,interface,classnm) @@\
MACROINVOKED = _RegisterForActivation(repname,interface,classnm) @@\
install.time:: classnm.class @@\

-GEE_VISIBROKER/bin/oadutil unreg -r ’repname’ \ @@\
 -o interface -host GEE_VISIBROKER_HOST @@\

GEE_VISIBROKER/bin/oadutil reg -r ’repname’ \ @@\
-o interface -cpp ${GEEBINDIR}/gj -a classnm \ @@\
-host GEE_VISIBROKER_HOST

#ifdef SCOUNIX

CMU/SEI-99-TR-013 67

#define InstallCshScript(file, dest) @@\
MACROINVOKED = _InstallCshScript(file, dest) @@\
install.time:: file @@\

$(RM) /tmp/,file @@\
$(ECHO) \: "\n/bin/csh -f -s csh \$$* \ @@\

<< ’==EOF==’\nshift" > /tmp/,file @@\
$(CAT) file >> /tmp/,file @@\
$(ECHO) "==EOF==" >> /tmp/,file @@\
$(INSTALL) $(INSTPROGFLAGS) /tmp/,file dest @@\
$(RM) /tmp/,file

#define InstallShScript(file, dest) @@\
MACROINVOKED = _InstallShScript(file, dest) @@\
install.time:: file @@\

$(RM) /tmp/file @@\
$(ECHO) \: > /tmp/,file @@\
$(CAT) file >> /tmp/,file @@\
$(INSTALL) $(INSTPROGFLAGS) /tmp/,file dest @@\
$(RM) /tmp/,file

#else /* SCOUNIX */

#define InstallShScript(file, dest) @@\
MACROINVOKED = _InstallShScript(file, dest) @@\
InstallFileToFile(file, $(INSTPROGFLAGS), dest)
#define InstallCshScript(file, dest) @@\
MACROINVOKED = _InstallCshScript(file, dest) @@\
InstallFileToFile(file, $(INSTPROGFLAGS), dest)
#endif /* SCOUNIX */

/* deprecated rules */

/* IDLPackage(modulename)
Executes idl2java if modulename.idl has changed.
Incorporates all the rules for building the
resulting class.
The Imakefile must also have

InstallIDLPackage(destination-directory, modulename)
and for each Object which is a separate process,
the Imakefile must have a RegisterVBServer.
The Imakefile should also have

JavaPackage(.)
InstallJavaPackage(.)

68 CMU/SEI-99-TR-013

so it can deal with the xxxImpl.java files

*/
#define IDLPackage(modulename) @@\
MACROINVOKED = _IDLPackage(modulename) @@\
compile:: modulename/.modulename @@\
modulename/.modulename: modulename.idl @@\

JAVA_HOME=GEE_JAVA11_HOME; export JAVA_HOME; \ @@\
ALT_JDK=$${JAVA_HOME}; export ALT_JDK; \ @@\
VB=GEE_VISIBROKER; VBROKER_ADM=$${VB}/adm; \ @@\
LD_LIBRARY_PATH=$${VB}/lib:$${LD_LIBRARY_PATH}; \ @@\
PATH=$${JAVA_HOME}/bin:$${VB}/bin:$${PATH}; \ @@\
CLASSPATH=${CLASSES11}:GEE_JAVA11_CLASSPATH;\ @@\
export VBROKER_ADM; export LD_LIBRARY_PATH; \ @@\
export PATH; export CLASSPATH; \ @@\
$${VB}/bin/idl2java modulename.idl @@\
$(TOUCH) modulename/.modulename @@\

JavaPackageInternal(modulename,JAVACOMPILE) @@\
clean:: @@\

$(RM) -rf modulename

/* RegisterVBServer(module,interface,classnm)
Registers with the object activation daemon (oad)
the indicated interface.
module - the name following the keyword "module"
interface - the name following the keyword interface
classnm - the name of the java class

which registers the interface by calling
boa.obj_is_ready(impl), where impl is a
java object of class interfaceImpl
It is assumed that this class is in the default
package.

example:
RegisterVBServer(Genotype,UserFactory,UserFactoryImpl)

*/
#define RegisterVBServer(module,interface,classnm) @@\
MACROINVOKED = _RegisterVBServer(module,interface,classnm) @@\
install.time:: classnm.class @@\

-GEE_VISIBROKER/bin/oadutil unreg \ @@\
-i module/interface -o interface \ @@\
-host GEE_VISIBROKER_HOST @@\

GEE_VISIBROKER/bin/oadutil reg \ @@\
-i module/interface -o interface \ @@\

CMU/SEI-99-TR-013 69

-cpp ${GEEBINDIR}/gj -a classnm \ @@\
-host GEE_VISIBROKER_HOST

#define InstallFile(file, flags, dest) @@\
InstallFiles(file, flags, dest)

#define InstallFileToFile(file, mode, destfile) @@\
install.time:: file @@\

$(INSTALL) mode file destfile

#define ForceInstallFiles(files, mode, dest) @@\
install.time:: @@\

@(NOSHERRORS; \ @@\
for i in files; do \ @@\

(SHVERBOSE; $(INSTALL) mode $$i dest/$$i); done)

/* There must be NO initial spaces on the third argument */
#define InstallFileAsNeeded(file, mode, dest) @@\
MACROINVOKED = _InstallFileAsNeeded(file, mode, dest) @@\
install::dest @@\
dest: file @@\

${INSTALL} mode file dest

/* There must be NO initial spaces on the third argument */
#define SystemInstallFileAsNeeded(file, mode, dest) @@\
MACROINVOKED = _SystemInstallFileAsNeeded(file, mode, dest) @@\
systeminstall:: dest/file @@\
dest/file: file @@\

${INSTALL} mode file dest @@\
(df=dest/file; \ @@\
cmd=‘${LSLD} dest | ${AWK} ’/^d/\ @@\

{print "${CHOWN} " $$3 " ’"$$df"’;";\ @@\
 print "${CHGRP} " $$4 " ’"$$df"’"}’‘;\ @@\

${SH} -c "$$cmd")

#define InstallIDLPackage(package,dir) @@\
MACROINVOKED = _InstallIDLPackage(package, dir) @@\
MkdirTarget(dir/package) @@\
InstallFiles(package/ALLFILES.class, $(INSTCLASSFLAGS), dir) @@\
InstallFiles(package.idl, $(INSTDATAFLAGS), ${GEELIBDIR}/idl)

70 CMU/SEI-99-TR-013

/* *** *\
 * MISCELLANEOUS RULES
* *** */

#define AppendFiles(target, sources) @@\
target: sources @@\

$(RM) ,target target @@\
$(CAT) sources > ,target @@\
$(MV) ,target target

#define CleanTarget(files) @@\
MACROINVOKED = _CleanTarget(files) @@\
clean:: ; $(RM) files

#define MkdirTarget(dirs) @@\
MACROINVOKED = _MkdirTarget(dirs) @@\
install.time:: makedirs @@\
makedirs:: @@\

@$(ECHO) "Checking Destination Directories...." @@\
@sh -c ’for i in dirs; do \ @@\

if [-f $$i]; then \ @@\
$(ECHO) Mkdir: $$i is a FILE; \ @@\
exit 1; \ @@\

elif [! -d $$i]; then \ @@\
$(ECHO) Making directory $$i; \ @@\
$(CONFIGDIR)/geemkdirs $$i;\ @@\

fi; \ @@\
done; \ @@\
exit 0’

/* *** *\
 * RULES FOR IMAKE.TMPL
* *** */

#define RecursiveMakes(subdirs) @@\
MACROINVOKED = _RecursiveMakes(subdirs) @@\
CompileSubdirs(subdirs) @@\
InstallSubdirs(subdirs) @@\
JavalistSubdirs(subdirs) @@\
GEESubdirs(subdirs) @@\

CMU/SEI-99-TR-013 71

SystemInstallSubdirs(subdirs) @@\
CleanSubdirs(subdirs)

#define MakefileTarget() @@\
Makefile:: Imakefile $(CONFIGDIR)/imake.tmpl @@\
 $(CONFIGDIR)/gee.rls $(CONFIGDIR)/gee.h @@\

$(IMAKE_CMD) @@\
$(CONFIGDIR)/gee.h: $(CONFIGDIR)/gee.properties @@\

$(ECHO) "*** config/gee.h is out of data. redo ’make Makefiles’" @@\
exit 1

#define SubdirTarget(dirs, mktag, string) @@\
mktag:: @@\

@(NOSHERRORS; \ @@\
for i in dirs; do \ @@\
 (cd $$i; $(ECHO) string "(‘$(PWD)‘)"; \ @@\

$(MAKE) $(MFLAGS) CONFIGDIR=$(CONFIGDIR) \ @@\
JAVADOCLIMB=$(JAVADOCLIMB)/$$i \ @@\
JAVADOCTOP=../$(JAVADOCTOP) \ @@\
mktag || exit 1) || exit 1; done)

/***
NOTE: The following uses of SubdirTarget() have no spaces between the
arguments because the HP version of imake does some weird expansion
of the space into a tab, which causes the target tag to be tabbed
and, thus, unrecognized by make.
**/

#define CompileSubdirs(dirs) @@\
SubdirTarget(dirs,Compiles,"compiling")

#define InstallSubdirs(dirs) @@\
SubdirTarget(dirs,Installs,"installing")

#define JavalistSubdirs(dirs) @@\
SubdirTarget(dirs,javalist,"listing java files")

#define SystemInstallSubdirs(dirs) @@\
SubdirTarget(dirs,SystemInstall,"system installation")

#define CleanSubdirs(dirs) @@\
SubdirTarget(dirs,Clean,"cleaning")

72 CMU/SEI-99-TR-013

/*
‘make GEE’ at any level will make Makefiles in subdirs and

then install in self and GEE in subdirs
‘make Makefiles’ will make Makefile and then make subMakefiles
‘make subMakefiles’ will build a Makefile in each subdirectory

and then make subMakefiles in each subdirectory
*/

#define GEESubdirs(dirs) @@\
GEE:: @@\

@NOSHERRORS; \ @@\
for i in dirs; do \ @@\

$(ECHO) "Making sub Makefiles (‘$(PWD)‘/$$i)";\ @@\

$(MAKE) $(MFLAGS) subdirMakefile \ @@\
CONFIGDIR=$(CONFIGDIR) \ @@\
MAKE_SUBDIR=$$i || exit 1;\ @@\

done @@\
@@\

SubdirTarget(dirs,GEE,"building GEE") @@\
@@\

Makefiles:: subMakefiles @@\
subMakefiles:: @@\

@NOSHERRORS; \ @@\
for i in dirs; do \ @@\

$(ECHO) "Making Makefiles (‘$(PWD)‘/$$i)"; \ @@\

$(MAKE) $(MFLAGS) subdirMakefile \ @@\
CONFIGDIR=$(CONFIGDIR) \ @@\
MAKE_SUBDIR=$$i || exit 1;\ @@\

(cd $$i; $(MAKE) $(MFLAGS) \ @@\
CONFIGDIR=$(CONFIGDIR) \ @@\

subMakefiles || exit 3); \ @@\
done @@\

subdirMakefile: @@\
cd $(MAKE_SUBDIR); $(IMAKE_CMD)

CMU/SEI-99-TR-013 73

Appendix D: The Imake Template:
imake.tmpl

Imake essentially just processes this template file, imake.tmpl, through the C preprocessor,
using the command line to set INCLUDE_IMAKEFILE to the pathname of the chosen
Imakefile. That file and other definition files are incorporated by the #include statements.
Make variable definitions, indicated with an equal sign, define symbols that can be used in
macros in gee.rls or in the Imakefiles themselves.

#ifndef XCOMM
#ifdef GNU_CPP_ENV
#define XCOMM \#
#else
#define XCOMM #
#endif
#endif
XCOMM $Id: imake.tmpl,v 1.28 1999/02/11 18:26:35 wjh Exp $
XCOMM==
XCOMM Copyright Carnegie Mellon Univ. 1998 - All Rights Reserved
XCOMM==

XCOMM $Disclaimer: $

XCOMM ##
XCOMM This Makefile is automatically generated by
XCOMM imake. Do not modify it or you will lose your
XCOMM changes when imake generates makefiles again.
XCOMM Ignore this message if you are not using imake.
XCOMM ##

XCOMM CONFIGDIR is set by make Makefiles to ./config/ in the source tree
XCOMM and is set by genmake to ./config in the destination tree.
XCOMM
XCOMM CONFIGDIRDEFN is #defined on the command line to imake
XCOMM and = defined on a call from ‘make Makefiles‘

CONFIGDIR = CONFIGDIRDEFN
#undef CONFIGDIRDEFN

74 CMU/SEI-99-TR-013

XCOMM These JAVADOC variables are for ‘make Javadocs‘
XCOMM They are overridden by the Make rucursion.
JAVADOCLIMB = .
JAVADOCTOP = .

#include <imakeconcat.h>

.NO_PARALLEL:

.SUFFIXES:
XCOMM suffix rules are too unpredictable. Use % macros instead.
XCOMM .SUFFIXES: .class .java .h .properties .csh .sh .idl

all::

XCOMM ############ Reading gee.h ###################
#include <gee.h>
XCOMM ############ Done reading gee.h ##############

XCOMM Destination directories
GEEBINDIR = GEE_DESTINATION_DIRECTORY/bin
GEELIBDIR = GEE_DESTINATION_DIRECTORY/lib
GEEDOCDIR = GEE_DESTINATION_DIRECTORY/doc
GEECLASSESDIR = GEE_DESTINATION_DIRECTORY/classes
GEEHTMLDIR = GEE_DESTINATION_DIRECTORY/html
GEEETCDIR = GEE_DESTINATION_DIRECTORY/etc

XCOMM Commands used in Makefiles

XCOMM JAVA 1.2
XCOMM usage of variables:
XCOMM EXTRACLASSES - add to CLASSPATH, can be set in Imakefile
XCOMM set to ../xxx, colon separated list
XCOMM SITE_CLASSES - dir:dir..., can be set in site.mcr
XCOMM SITE_JAVAC_OPTIONS, can be set in site.mcr
XCOMM JAVAC_OPTIONS, can be set in Imakefile
XCOMM SITE_JAVA_OPTIONS, can be set in site.mcr
XCOMM JAVA_OPTIONS, can be set in Imakefile
XCOMM SITE_JAVA_DEFINES - -Dxx=xx ..., can be set in site.mcr
XCOMM JAVA_DEFINES - -Dxx=xx ..., can be set in an Imakefile

 CLASSES = .:$(EXTRACLASSES):${SITE_CLASSES}

CMU/SEI-99-TR-013 75

 JCOPTIONS = ${SITE_JAVAC_OPTIONS} ${JAVAC_OPTIONS}
 JAVACOMPILE = CLASSPATH=${CLASSES} ${CONFIGDIR}/gjc \

$(JCOPTIONS)

 OPTIONS = ${SITE_JAVA_OPTIONS} ${JAVA_OPTIONS}
 DEFINES = $(SITE_JAVA_DEFINES) $(JAVA_DEFINES) \

-Dgee.use.sandbox=$(CONFIGDIR)/..
 JAVARUN = CLASSPATH=${CLASSES} ${CONFIGDIR}/gj \

${OPTIONS} ${DEFINES}

 JAVADOC = GEE_JAVA_HOME/bin/javadoc \
-classpath

$(CLASSES):GEE_JAVA_BOOTCLASSPATH:GEE_JAVA_CLASSPATH

XCOMM JAVA 1.1

 CLASSES11 = .:$(EXTRACLASSES11):${SITE_CLASSES11}

 COPTIONS11 = ${SITE_JAVAC11_OPTIONS} ${JAVAC11_OPTIONS}
 JAVA11COMPILE = JAVA_HOME=GEE_JAVA11_HOME
CLASSPATH=${CLASSES11} \

 ${CONFIGDIR}/gjc11 $(COPTIONS11)

 OPTIONS11 = $(SITE_JAVA11_OPTIONS) $(JAVA11_OPTIONS)
 DEFINES11 = $(SITE_JAVA11_DEFINES) $(JAVA11_DEFINES) \

-Dgee.use.sandbox=$(CONFIGDIR)/..
 JAVA11RUN = CLASSPATH=${CLASSES11} ${CONFIGDIR}/gj11 \

${OPTIONS11} ${DEFINES11}

 JAVADOC11 = GEE_JAVA11/bin/javadoc -classpath $(CLASSES11)

XCOMM C and C++. Override these in site.mcr
 CC = cc
 CPP = cc -E
 CXX = g++
 IMAKE = imake

XCOMM standard UNIX utilities
 AWK = /bin/awk
 CAT = /bin/cat
 CHGRP = /bin/chgrp
 CHOWN = /bin/chown

76 CMU/SEI-99-TR-013

 CO = /usr/local/bin/co
 CP = /bin/cp
 CSH = /bin/csh -f
 ECHO = echo
 INSTALL = /usr/ucb/install
 JAR = GEE_JAVA_HOME/bin/jar
 LN = /bin/ln
 LS = /bin/ls
 LSLD = /bin/ls -ld
 MKDIR = /bin/mkdir
 MV = /bin/mv
 PWD = /bin/pwd
 RM = /bin/rm -f
 RMIC = GEE_JAVA_HOME/bin/rmic
 SED = /bin/sed
 SH = /bin/sh
 TAR = /bin/tar
 TOUCH = /bin/touch
 ZCAT = /bin/zcat
 IMAKE_CMD = $(IMAKE) -Timake.tmpl -I. -I$(CONFIGDIR) \

-DCONFIGDIRDEFN=$(CONFIGDIR)

XCOMM modes for $(INSTALL)
 INSTMODEFLAGS = -c -m
 INSTPROGFLAGS = $(INSTMODEFLAGS) 0555
 INSTUIDFLAGS = $(INSTMODEFLAGS) 4555
 INSTCLASSFLAGS = $(INSTMODEFLAGS) 0444
 INSTDATAFLAGS = $(INSTMODEFLAGS) 0444
 INSTLIBFLAGS = $(INSTMODEFLAGS) 0555
 INSTDOCFLAGS = $(INSTMODEFLAGS) 0444
 INSTMANFLAGS = $(INSTMODEFLAGS) 0444

XCOMM ################ Reading gee.rls #########################
#include "gee.rls"
XCOMM ################ Done reading gee.rls ####################

XCOMM ################ Reading site.mcr ########################
#include "site.mcr"
XCOMM ################ Done reading site.mcr ###################

#if ConstructMFLAGS
 MFLAGS = -$(MAKEFLAGS)
#endif

CMU/SEI-99-TR-013 77

all:: compile
Compiles:: compile
compile::
Installs:: install
install:: compile install.time
GEE:: install systeminstall
SystemInstall:: systeminstall
Clean:: clean
Makefiles:: Makefile
subMakefiles::
systeminstall::

Javadocs javadoc:: javadoc/,javafiles javadoc/index.html

javadoc/,javafiles::
$(RM) -rf javadoc
-${MKDIR} javadoc
$(TOUCH) javadoc/,javafiles

javadoc/,javafiles:: javalist
javalist::
javadoc/index.html:: javadoc/,javafiles

$(JAVADOC) -d javadoc ‘sort -n javadoc/,javafiles‘
$(RM) javadoc/,javafiles

XCOMM ##
XCOMM The following comes from the local Imakefile
XCOMM ##
#include INCLUDE_IMAKEFILE
XCOMM ##
XCOMM Back from the local Imakefile
XCOMM ##

clean::
$(RM) -rf javadoc

#ifndef TopLevelMakefile
MakefileTarget()
#endif

%.class: %.java
${JAVACOMPILE} $<

78 CMU/SEI-99-TR-013

%.java: RCS/%.java,v
${CO} $@

%.sh: RCS/%.sh,v
${CO} $@

%.csh: RCS/%.csh,v
${CO} $@

%.sql: RCS/%.sql,v
${CO} $@

%.idl: RCS/%.idl,v
${CO} $@

%tar.Z: RCS/%tar.Z
${CP} $< .

%tar: %tar.Z
${ZCAT} $< > $@

clean::
$(RM) "#"* ,* *~ *.CKP *.BAK *.bas errs core *.stubbed
$(RM) *.ln *.o *.class make.log install.time foo*

install.time::
$(TOUCH) install.time

listdirs:
@$(ECHO) ${SUBDIRS}

CMU/SEI-99-TR-013 79

Appendix E: Top-Level Imakefile

In the top-level directory of the source tree, special processing is necessary to get the initial
Makefile. The Imakefile below suffices because it is constructed so that it can serve as input
to xmkmf or make and will in either case result in building a Makefile using the Amakefile
instead of an Imakefile. (See Appendix F for the Amakefile.)

In the text below, an at-sign, @, at the beginning of a command indicates that that line is not
echoed to the output. A dash preceding a command indicates that errors arising therefrom
should be ignored. (For instance, deleting an absent file would otherwise terminate the make.)
Note that the only important effect of this file is the imake command on the sixth line. The
bulk of the file constructs imakeconcat.h, which defines three macros—Concat, Concat3,
and Stringize. These macros are useful in Imakefiles, although only one appears in gee.rls (in
RMIStubs—see Appendix C).

.NO_PARALLEL:

all:: config/gee.h config/gee.sed Amakefile config/imake.tmpl \
config/site.mcr config/gee.rls config/geemkdirs \
config/imakeconcat.h

-@rm -f Makefile
imake -I. -I./config -Timake.tmpl -f Amakefile \

-DCONFIGDIRDEFN=‘pwd‘/config

config/geemkdirs:
cc -o config/geemkdirs config/geemkdirs.c

config/gee.h config/gee.sed: config/gee.properties config/Defines.java
javac config/Defines.java
java -classpath config:$$CLASSPATH Defines config/gee.properties

config/imakeconcat.h:
@rm -f Makefile testfile
@echo ’#define Concat(x,y)x##y’ > testfile
@echo ’Concat(use,hashes)’ >> testfile
@imake -Ttestfile -f testfile
@if grep usehashes Makefile ; then \

echo "#define Concat(a,b)a##b" > cat; \

80 CMU/SEI-99-TR-013

echo "#define Concat3(a,b,c)a##b##c" >> cat; \
echo "#define Stringize(a) #a" >> cat; \

else \
echo "#define Concat(a,b)a/**/b" > cat; \
echo "#define Concat3(a,b,c)a/**/b/**/c" >> cat; \
echo ’#define Stringize(a) "a"’ >> cat; \

fi
@rm -f testfile Makefile config/imakeconcat.h
mv cat config/imakeconcat.h

Makefile GEE Compiles Installs Javadocs Clean::
@echo
@echo USE ’make’ WITHOUT ANY TARGET TO MAKE ’Makefile’
@echo

Makefile::
@echo Ignore the following message:

Makefile:: "Makefile",yet

CMU/SEI-99-TR-013 81

Appendix F: Top-Level Amakefile

Amakefile, below, is in the top-level source directory where it functions as the Imakefile for
the imake invoked by the file that is called “Imakefile” in that same directory. Most of the
processing suggested here is actually done by the Imakefile (Appendix E). The only effective
part is the call “RecursiveMakes($(SUBDIRS)),” which builds all subdirectories.

/* ***
Copyright Carnegie Mellon University 1998 - All Rights Reserved
*** */
/* $Disclaimer: $ */

#define TopLevelMakefile

DIRS = GEE_DESTINATION_DIRECTORY \
GEE_DESTINATION_DIRECTORY/config \
${GEEBINDIR} ${GEELIBDIR} ${GEECLASSESDIR} \
${GEEETCDIR} ${GEEDOCDIR} ${GEEHTMLDIR} \
${GEELIBDIR}/idl

MkdirTarget($(DIRS))

all:: Makefile
$(ECHO) A new Makefile has been created. Please restart.
exit 1

$(CONFIGDIR)/gee.h $(CONFIGDIR)/gee.sed: \
$(CONFIGDIR)/gee.properties $(CONFIGDIR)/Defines.java

javac $(CONFIGDIR)/Defines.java
java -classpath $(CONFIGDIR):$$CLASSPATH Defines \

$(CONFIGDIR)/gee.properties

Makefile:: Amakefile $(CONFIGDIR)/imake.tmpl $(CONFIGDIR)/gee.h \
$(CONFIGDIR)/gee.rls $(CONFIGDIR)/site.mcr \
$(CONFIGDIR)/gee.h

 $(IMAKE) -f Amakefile -Timake.tmpl -I. -I$(CONFIGDIR) \
-DCONFIGDIRDEFN=$(CONFIGDIR)

82 CMU/SEI-99-TR-013

GEE::
@$(ECHO)

__
@$(ECHO) Copyright 1998 Carnegie Mellon University
@$(ECHO) -
@$(ECHO) Building GEE begins at ‘date‘
/* the actual build happens from the rule for "GEE"

constructed by RecursiveMakes() */

SUBDIRS = config gee rdbms security naming busLog appclient

RecursiveMakes($(SUBDIRS))

GEE Javadocs:: install.time javadoc/index.html
$(RM) -rf $(GEEHTMLDIR)/javadoc
$(TAR) cf - ./javadoc | (cd $(GEEHTMLDIR); tar xf -)

GEE::
@$(ECHO)
@$(ECHO) Here endeth the build of GEE for ‘date‘
@$(ECHO) =
@$(ECHO) To install documentation and html files:
@$(ECHO) " cd ../doc; rehash; genmake; make GEE"
@$(ECHO) =
@$(ECHO)

CMU/SEI-99-TR-013 83

Appendix G: genmake.csh

In an installed system, genmake generates a Makefile from an Imakefile using the configura-
tion files installed in the config directory of the installed system. Genmake is installed by
processing genmake.csh, below, through sed with gee.sed as the sed command. This replaces
the string GEE_DESTINATION_DIRECTORY with its value from gee.properties.

#!/bin/csh -f
directory TARGET/config has the GEE configuration files
TARGET is set by the first defined of
a) first argument on command line
b) environment variable GEEDIR
c) build time value for GEE_DESTINATION_DIRECTORY
subsequent entries on the command line are taken as arguments to imake
to give arguments without specifying the TARGET, use --- as the first arg

if ($#argv>0 && "$1" != "---") then
set TARGET = $1
shift

else if (${?GEEDIR}) then
set TARGET = ${GEEDIR}

else
set TARGET = GEE_DESTINATION_DIRECTORY

endif
if ("$1" == "---") then

shift
endif
if (! -e Imakefile) then

echo "*** No Imakefile - Cannot Generate Makefile"
exit(1)

endif

echo "Generating Makefile using defns in ${TARGET}/config"
mv Makefile ,Makefile >& /dev/null
imake -T imake.tmpl -I${TARGET} -I${TARGET}/config \

-DCONFIGDIRDEFN=${TARGET}/config $argv:q
rm -f ,Makefile

84 CMU/SEI-99-TR-013

CMU/SEI-99-TR-013 85

Appendix H: needjc.c

The GEE script for Java compilation uses needjc, below, to generate the list of source
files for a javac compilation.

/* needjc.c
Prints those of its arguments which are the names of existing java files
for which there is no class file or the java file is newer than the class file.

*/
#include <sys/types.h>
#include <sys/stat.h>

static long filetime(fnm) char *fnm; {
struct stat buf;
if (stat(fnm, &buf) != 0) return 0L;
return buf.st_ctime;

}
static int needscompiled(jnm) char *jnm; {

char cnm[5000];
int dotloc;
long ctm, jtm;
strcpy(cnm, jnm);
dotloc = strrchr(cnm, ’.’);
if (dotloc ==0 || strcmp(dotloc, ".java") != 0) return 0; /* not a .java file */
strcpy(dotloc, ".class");
jtm = filetime(jnm);
if (jtm == 0) return 0;
ctm = filetime(cnm);
return ctm == 0 || jtm > ctm;

}
main(argc, argv) int argc; char **argv; {

int i;
for (i = 1; i < argc; i++) {

if (needscompiled(argv[i]))
printf("%s\n", argv[i]);

}
}

86 CMU/SEI-99-TR-013

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sug-
gestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE
January 2000

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

 Construction and Deployment Scripts for COTS-Based, Open Source Systems
5. FUNDING NUMBERS

C — F19628-95-C-0003
6. AUTHOR(S)

 Wilfred J. Hansen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
 CMU/SEI-99-TR-013

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-99-013

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Construction/deployment scripts direct the compilation of sources to executables and the installation of those executables. This report de-
tails the construction/deployment scripts developed at the Software Engineering Institute for the GEE project. GEE, a Generic Enterprise
Ensemble, is a prototypical three-tier information system incorporating a number of commercial off-the-shelf (COTS) products. The scripts
for GEE were challenging because we wanted a self-contained package of scripts and source files from which the system could be built and
deployed either by us at our site or by customers at their sites. The COTS products we used—Java, an Oracle database, the Visibroker im-
plementation of CORBA (the Common Object Request Broker Architecture), and the Netscape Web browser and server—added challenges
in installation, version change, process initiation, and communication rendezvous. This report describes the challenges and how our solu-
tions exploited the principles of “Repeat not” and “Delay binding.” Lessons learned are reported elsewhere.

SUBJECT TERMS), commercial off-the-shelf (COTS) products, Common Object Request Broker Archi-
tecture (CORBA), construction/deployment scripts, Generic Enterprise Ensemble (GEE)

15. NUMBER OF PAGES
86

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Concepts and External Tools
	3 GEE Definitions and Makefile Generation
	4 Java Challenges
	5 Challenges from Other COTS Products
	6 Miscellaneous Issues
	7 Conclusion
	References
	Appendix A: Properties File: gee.properties
	Appendix B: Properties File Converter: Defines.java
	Appendix C: Macros for Imake: gee.rls
	Appendix D: The Imake Template: imake.tmpl
	Appendix E: Top-Level Imakefile
	Appendix F: Top-Level Amakefile
	Appendix G: genmake.csh
	Appendix H: needjc.c

