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Abstract

Research and practice in the application of software ar-
chitecture has reaffirmed the need to consider software sys-
tems from several distinct points of view. Previous work by
Kruchten [9] and Hofmeister et al. [6] suggests that four or
five points of view may be sufficient: the logical view (i.e.,
the domain object model), the (static) code view, the pro-
cess/concurrency view, the deployment/execution view, plus
scenarios and use-cases. We have found that some classes
of software systems exhibit interesting and complex build-
time properties that are not explicitly addressed by previ-
ous models. In this paper, we present the idea of build-time
architectural views. We explain what they are, how to rep-
resent them, and how they fit into traditional models of soft-
ware architecture. We present three case studies of software
systems with interesting build-time architectural views, and
show how modelling their build-time architectures can im-
prove developer understanding of what the system is and
how it is created. Finally, we introduce a new architectural
style, the “code robot” that is often present in systems with
interesting build-time views.

1 Introduction

The recently emerged field of software architecture has
attracted tremendous interest from researchers in both the
academic and industrial communities. Perry and Wolf pre-
dicted that the 1990s would be the decade of software archi-
tecture [11]; it seems clear that this prediction was accurate
and that research into software architecture will continue to
mature and evolve for several years to come.

As an area of study, software architecture is still in its
early stages. Several definitions of software architecture
have been proposed [11, 13, 2], various architectural styles
have been documented [13], and different taxonomies of ar-
chitectural views have been suggested [9, 6]. However, we
have found that some classes of systems exhibit interesting
properties that are apparent only at system build-time. Con-

sequently, we have investigated modelling these properties
and incorporating these models into existing taxonomies of
architectural views.

The structure of the rest of this paper is as follows: Sec-
tion 2 summarizes previous definitions of software archi-
tecture and taxonomies of architectural views; it also in-
troduces the idea of build-time architectural views. Sec-
tion 3 presents three case studies of software systems that
have interesting build-time architectural views: the GCC
compiler family, the Perl language interpreter/run-time sys-
tem, and the Java Native Interface (JNI). Section 4 discusses
the relationship between build-time views and configuration
and build management and presents an informal metamodel
for build-time architectural views. Section 5 introduces the
“code robot” architectural style, which is common to sys-
tems that have interesting build-time views. Finally, Sec-
tion 6 summarizes the work presented here.

2 Software Architecture

Various definitions of software architecture have been
suggested by researchers. Bass et al. define software archi-
tecture as “the design and implementation of the high-level
structure or structures of the system. It comprises software
components, the externally visible properties of these com-
ponents, and relationships among them”. Perry and Wolf
presented their definition of software architecture as a math-
ematical model:

Software architecture ��� elements, form, rationale �
Others have continued to refine and adapt the definition.
For example, Boehm uses the term “connections” instead
of form, and supplements constraints to the rationale. Shaw
and Garlan define software architecture as components,
connectors, and configurations [13].

2.1 Architectural Views

The “system” modelled by software architecture is usu-
ally large and complex in nature. Different stakeholders
(e.g., users, business analysts, programmers, testers, and



maintainers) typically care about only specific aspects of
the software system, and have widely varying mental mod-
els based on how they experience the system. To separate
the different areas of concerns, and to reflect the dynamic
nature of software architecture, the notion of “views” of
software architecture is introduced.

Kruchten proposed a “4+1” view model to describe the
software architecture of a system from multiple perspec-
tives, to separate concerns from various stakeholders of the
architecture, and to differentiate the functional and non-
functional requirements [9]:

� The logical view is the analyst’s abstract object model,
which captures the abstraction, encapsulation, and in-
heritance in the problem domain.

� The process view models concurrency and synchro-
nization aspects of the software system.

� The physical view maps the software elements onto the
hardware execution environment; this view also cap-
ture the distributed aspects of some systems.

� The development view models the the static organiza-
tion of the software in its development environment. It
mainly focuses on the source code structure.

� Scenarios and use-cases show how all four views work
together to satisfy user requirements.

Hofmeister et al. have defined a similar taxonomy, which
we shall refer to as the “four views” model [6]:

� The conceptual architecture view is analogous to the
“4+1” logical view.

� The module architecture view shows the high-level de-
sign of the system. Its purpose is twofold: it describes
how to map the conceptual view onto the high-level
design artifacts, and it describes the layering struc-
ture of subsystems and specifies the interfaces between
subsystem layers and low-level design artifacts (e.g.,
source code modules).

� The code architecture view is the low-level design view
that describes the interfaces and interdependencies be-
tween source code, files, directories, libraries, etc.

� The execution architecture view describes the structure
of a system in terms of its run-time platform elements,
such as tasks, processes, threads, and address spaces.
This view captures the distributed and concurrent as-
pects of the system, as well as other non-functional re-
quirements such as resource sharing, scheduling poli-
cies and load balancing.
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Figure 1. Transformation between architec-
ture views.

Roughly speaking, we can consider that the above mod-
els concern three kinds of views: requirements views (log-
ical, process, scenarios, and conceptual), development
views (conceptual, module, and code), and deployment
views (physical, execution). However, we have noticed that
many software systems exhibit interesting structural and be-
havioural properties that are apparent only at system con-
figuration and build-time, and that these properties are not
explicitly considered by either the “4+1” or “four views”
models. Therefore, we now examine the idea of build-time
architectural views in more detail.

2.2 Build-time Architectural Views

Once a software system has been designed and imple-
mented, it must be configured, compiled, and linked for
a particular environment before it can be deployed. For
a small software system written for a single platform, the
make utility and a single Makefile is often sufficient
to manage system building. However, for systems that are
large and complex, that run on a variety of platforms, and
that support multiple functional configurations, build man-
agement is non-trivial. For example, the Perl build pro-
cess has become so complicated that a separate develop-
ment effort has been created just to write the configuration
scripts and Makefile for each release [14]. Furthermore,
the GCC system (GNU Compiler Collection) exhibits even
more dynamic and interesting build-time behaviours, in-
cluding as multiple passes of compilation and a significant
amount of automatic source code generation.

For such large and complex systems, build management
is typically performed by dedicated employees (“build engi-
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Figure 2. Kruchten’s “4+1” model enhanced
with the build-time architectural view.

neers”) using a specialized build management system. The
main responsibilities of a build management system are to
configure and manage the build scripts, to provide the abil-
ity to define repeatable system build procedures, to main-
tain consistency in system builds, and to control the various
build tools that are involved in the process.

Build-time architectural views should capture configura-
tion and built-time properties that are extractable from build
management artifacts, such as build scripts, the source and
object files, and configuration choices. At the very least,
they should model the compilation dependencies among
compilation units, time-sequence configuration of the com-
pilation procedure, and source code generation at build-
time.

As mentioned above, neither the “4+1” or “four views”
models explicitly addresses the idea of build-time architec-
tural views. Figure 1 shows the relationship between build-
time views and the other kinds of architectural views, and
Fig. 2 shows how the “4+1” model may be extended to in-
clude build-time views.

As shown in Fig. 1, a software system is transformed
from one kind of architectural view to another as the result
of development and deployment efforts. For example, the
software designer studies the logical view of the software
system, and applies various design techniques to layout the
development view. When the development phase is com-
plete, the build engineers write the Makefile and actu-
ally build the system from a collection of source code files
(development view or code architecture view) into a suite
of executables and libraries (execution architecture view
or physical view) that work together closely to deliver the
functional and non-functional requirements demanded by
the customer

Having outlined what we consider build-time architec-
tural views to be and how they fit into traditional models

of software architecture, we now examine as case stud-
ies three software systems that have interesting build-time
views: GCC, Perl, the use of the Java Native Interface (JNI).

3 Case Studies

3.1 Build-Time Architecture of GCC

The GNU Compiler Collection (GCC) is a suite of com-
pilers that supports several programming languages (C,
C++, Object-C, etc.) and runs on a variety of hardware
architectures and operating systems [7]. GCC is an open
source software system: the source code is freely available,
and it is therefore possible for users to compile and install
their own customized versions. In fact, portability and cus-
tomizability are major design goals for GCC, and this has
had a significant influence on its software architecture.

In examining the GNU C compiler (gcc), a subcompo-
nent of GCC, we have found that it exhibits two particu-
larly interesting phenomena at build time: it uses a multiple-
pass compilation process (also known as “bootstrapping”),
and it automatically generates significant portions of the
system source code.1 In this section, we will try to cap-
ture these phenomena with a formalized build-time archi-
tectural views, which will clearly define the components,
form, and rationale. The GCC version used in this case
study is 2.7.2.3.

3.1.1 Bootstrapping in gcc

Bootstrapping is a common technique employed in com-
piler design to “use the facilities offered by a language to
compile itself” [1]. A typical bootstrapping process con-
sists of several steps [12]:

1. Compile a reduced version of the compiler in a differ-
ent environment.

2. The first reduced compiler is used to compile itself for
the target machine.

3. The compiled compiler then compiles itself on the tar-
get computer.

4. The language is enhanced to its full capability and the
enhanced version recompiled.

5. If code optimization was left out in previous step, then
subsequent recompilation will improve the compiler’s
own performance.

1Note that we use the term “GCC” when referring to the full compiler
suite, and we use the term “gcc” when referring only to the C compiler
component of GCC. Although confusing, this convention is the standard
one.



A full-scale bootstrapping is essential for developing the
first compiler of a new programming language, or to support
a new hardware architecture. More commonly, a simplified
bootstrapping procedure is used to develop a new version of
the same compiler system. Bootstrapping also provides an
excellent opportunity to look for bugs in the compiler, since
the compiler source code is usually much larger and more
complex than any regression test suite.

In many compiler systems, the only artifact that doc-
uments the bootstrapping procedure and configuration is
the Makefile. However, the Makefile itself is usu-
ally inscrutable to humans due to the size and complexity
of the system, and because it is usually highly templated
and parameterized to account for cross-platform issues. The
Makefile is expanded at build-time after configuration
tools have collected information about the hardware and op-
erating system then tailored the Makefile for this specific
environment. As a result, the only practical way to infer the
behaviour that occurs during bootstrapping is to log the ex-
ecution of make at build time, and then to review the log
file.

The build-time behaviour of GCC during bootstrapping
is shown in Fig. 3. During the bootstrapping process, three
different GCC compilers are built. The first one is built by
the default system C compiler and linker, and the remaining
two are built by GCC itself. In all three builds, the same
source files are compiled.2 Three copies of the GCC com-
piler executables gcc are created at different time and each
but the last is immediately used to compile the next version.

First, the existing C compiler on the build platform is
used to compile the GCC driver, the C language compiler
and the GCC libraries (not the C system library, but the
supporting routines for other parts of GCC) from the GCC
source code. When the first build is completed, we have an
intermediate GCC C compiler that is fully functional. We
call it “stage 1” GCC.

For the second build, we run the product from last build,
the “stage 1” GCC, on the same GCC source code again.
This time, we compile not only the GCC driver, the C com-
piler, and the GCC libraries, but also the C++ compiler, the
Object-C compiler and their supporting libraries. At this
moment, all the functional components of GCC 2.7.2.3 (C,
C++ and Object-C compilers) are built and integrated with
a unified compiler driver xgcc. We call this intermediate
compiler suite “stage 2” GCC.

“Stage 2” GCC is still not the final product. We run it
over the GCC source for the third and the last time. The
product of this round of build should be identical to the
“stage 2” GCC, because they are complied from the same

2The gcc compiler supports various extensions to the C language that
are not part of the ANSI C standard, such as comments that begin with
“//”. Many systems, such as the Linux kernel, take advantage of these
language extensions. However, since GCC is usually first compiled by a
non-GCC C compiler, the GCC system itself is written entirely in ANSI C.
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Figure 3. Build-time view of GCC bootstrap-
ping.

source code and both by the GCC 2.7.2.3 C compiler. The
purpose of this build is for self-testing only: if “stage 2”
GCC and “stage 3” GCC are different, this implies that
something has gone wrong with the compilation and that
there are still some bugs to be worked out.

The build architecture view of GCC is shown in Fig. 3;
the details were manually reverse engineered from the log
file of an actual build of GCC 2.7.2.3 on a Sun Solaris 2.6
server with the bootstrapping build option turned on.

The build architecture view captures the dynamic be-
haviours and configurations of the build process of GCC.
The constructs of the view, such as boxes and arrows, have
different semantics from other architectural views we have
been familiar with. For example, in the traditional module
view, the software system is represented as a static struc-
ture of a group of programming modules, while the links
between components (modules) represent the semantic de-
pendencies and run-time interactions. In the process view,
the system is represented as a snapshot of a running organ-
ism with different processes collaborating with each other.
However, the build architecture view is much more similar
to a time-space diagram. The components inside the view
do not co-exist at the same moment. The sequence of event
happens in the order of from top to the bottom, and from
the left to the right. The components, which should be in-
terpreted as either static data or execution units, came into
existence in sequence along with the events that modelled as
arrows in the view. The arrows between components also
represent the build-time (dynamic) dependencies between
compilation entities.



3.1.2 Automatic Code Generation During Build-Time

In this section, we will discuss another interesting aspect of
the build architecture of GCC, and its role in the architec-
tural transformation of system views.

The build process of GCC consists of two major activ-
ities: configure and make. The “configure” pro-
cess first checks whether the build environment is sup-
ported by GCC. Next, configure probes the build envi-
ronment for information such as the CPU architecture, op-
erating system, available system libraries, etc. Based on
the probed information, it generates the Makefiles us-
ing the templates and system configuration information that
configure just collected. In the “make” phase, the com-
pilation of the source, linking of object file and installation
of final binaries are performed.

For many software systems, including the Linux kernel,
Mozilla, and VIM whose architectures we have analyzed
before [3, 5, 15], the build process is fairly straightforward:
virtually all of the source code that will be used to compile
the executable system has been created during the devel-
opment phase and shipped with the source distribution, ex-
cept a few system-dependent header files that are automati-
cally generated by configure; most of these files contain
simple macros and system-dependent constants. However,
GCC has a much more complex and dynamic building pro-
cess, where the software architecture undergoes a signifi-
cant reshaping — some of the most important source code
files in the GCC system are automatically generated, then
compiled and linked to create the final compiler system.

One of the main design goals of GCC is to support mul-
tiple programming languages, hardware architectures, and
operating systems. Not only does GCC support a wide
range of languages and platforms “out of the box”, the com-
piler suite has also been designed to allow easy expansion
and customization by third-party developers. To achieve
these goals, the architecture of GCC must be both flexible
and configurable. To that end, the individual GCC compil-
ers share many of the front-end and back-end components,
such as parts of the compiler driver, the preprocessor, the
RTL (an intermediate code format), the object code gen-
erator, and the optimizer. Support for multiple program-
ming languages is achieved entirely within the downloaded
source code of GCC; however, support for multiple CPU
architectures is implemented largely by generating part of
the source code at build-time, based on information gleaned
about the target environment by the configuration process.

In GCC, the Register Transfer Language (RTL) is an in-
termediate representation used to represent the target sys-
tem’s code after parsing, similar to Java byte code. How-
ever, unlike Java bye code, RTL is hardware dependent.
The specification of RTL and the portion of source code
that operates on RTL are generated at build time, using
machine description information and collected system pa-
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Figure 4. Code architecture view of the
compiler-core subsystem in GCC.

rameters from configure. The main benefit of having
a target-dependent RTL representation is that we can im-
mediately generate the target machine language (assuming
an infinite number of registers), but in a way that the com-
piler can understand and manipulate the emitted instruc-
tions. Hardware-dependent optimizations also operate on
this intermediate format, and only valid instruction for the
machine is generated as results of all passes of transforma-
tion, for RTL has built-in knowledge about target CPU ar-
chitecture [10].

Figure 4 shows a portion of the code architecture view
of GCC 2.7.2.3 with “holes” (dashed boxes) that represent
the “missing” source code files. The GCC system consists
of five major subsystems: the driver, the preprocessor, the
compiler-core, the code-generator and the utility libraries.
Both the compiler-core subsystem and code-generator sub-
system contain the RTL manipulation code that is miss-
ing from the distribution. The internal code architecture of
compiler-core subsystem is illustrated in Fig. 4.

The “missing” files in the compiler-core subsystem are
generated at build-time from code templates by source code
generators.3 The procedure is explained here and illustrated
in Fig. 5 with a build architecture view diagram. In addi-
tion, Fig. 5 shows the relationship between build architec-
ture view and code architecture view from above, and exe-
cution view from below.

1. First, the (build-time) source code generators are com-
piled; the source code for these generators are con-
tained within files whose names begin with “gen”.
The result is a set of executable programs.

3The source code generators shipped with the GCC source should not
be confused with the object code generator subsystem of GCC, which is a
standard component of any compiler.



Filename Role
sparc.h Contains C macros that define the general

attributes of the Sun SPARC architecture
sparc.c Contains machine description supporting

functions and macro expansion
sparc.md Contains RTL expressions that define the

instruction set (template). This file pro-
vides the input to programs that produce
insn*.h and insn*.c files.

Table 1. GCC machine description files for
Sun SPARC.

Filename Created by Description
insn-attr.h genattr Definition for

any defined
attributes and
delay-definitions

insn-attr.c gen-attrtab Functions to access
the attributes

insn-codes.h gencodes Definitions for
named pattern

Table 2. Some GCC source files generated at
build-time.

2. Next, these code generators are executed in sequence.
They take machine description files for the target ma-
chine as input. The machine description files are
picked by configure. Table 1 lists the machine de-
scription files for Sun SPARC architecture. The output
is a collection of C source files, such as those listed
in Table 2; these generated files have names that begin
with “insn”. These C files are used to fill the “holes”
in the code view of compiler-core subsystem.

3. Finally, the source files to build a working GCC are all
available. We now compile the code from the source
distribution together with build-time generated code,
and link them together to create the GCC compiler sys-
tem.

Thus, the build-time architecture shows how the GCC
system “fills in the gaps” of the code view of the shipped
source code that were (intentionally) left by the GCC devel-
opers.

3.2 Build-Time Architecture of Perl

Perl version 5.6 [16, 8] is an interpreted high-level pro-
gramming language, originally developed by Larry Wall. It
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Figure 5. Build-time view of GCC (source code
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Filename Description
B.c Allow a Perl program to delve into its

own innards. It is used to implement
the “backends” of the Perl compiler.

ByteLoader.c Used to load byte compiled Perl code. It
uses the source filter mechanism to read
the byte code and insert it into the com-
piled code at the appropriate point.

DB File.c Allows Perl programs to make use of
the facilities provided by Berkeley DB.

Table 3. Some C files generated at build-time
in Perl.

is widely used to implement CGI programs, rapid proto-
types, and system administration tasks. Like GCC, Perl is
an open source system, which means that portability of the
source is a paramount design goal. Also like GCC, Perl ex-
hibits complex and interesting properties in its build-time
architecture, which we now discuss.

By comparing the content of Perl source directory be-
fore and after build, we found that there are 22 C source
code files newly generated during the “make”. The log
file of make reveals that these C files originate from tem-
plates written in a special language called XS. The XS tem-
plates are then processed by an intermediate Perl interpreter
miniperl with a translation script xsubpp.pl. The re-
sults of the processing are those new C source files men-
tioned above. Finally, the C files are compiled and linked
by C compiler gcc as a part of Perl 5.6 run-time libraries.

Table 3 lists the filenames and descriptions of some of
the C files that are generated at build-time; these particular



files enable the Perl system to call Unix system libraries,
Berkeley DB and Sys V IPC. It also enable Perl programs
to directly manipulate the backend Perl run-time system.
These C files are part of the Perl source code but they are
generated at build-time. The templates for the C files are
written in a special language called XS and they come with
the Perl source distribution. We now explain the XS lan-
guage and its relationship to Perl [16].

Assuming you want to implement a function in C or call
a C system library from Perl, you need to write a special
C library that can be either dynamically loaded by the Perl
run-time system or statically linked into the Perl executable.
This library acts as “glue” that links the C code with the Perl
system. For example, when a C library function is called
from the Perl program, the glue library first pulls arguments
of the call from Perl’s argument stack and converts the Perl
values to the formats expected by the particular C function.
Then, it calls the C function and finally transfers the return
values of the C function back to Perl. To pass the result back
to Perl, the glue library either puts them on the Perl stack or
modifies the arguments supplied by Perl.

Of course, a programmer can craft a “glue” library di-
rectly in C, but this is very tedious and requires knowledge
about the working mechanisms of Perl stack. Therefore, the
Perl distribution provides a standard interface and mecha-
nism to create glue libraries that is both flexible and easy
to use. The interface is written in XS language that allows
a programmer to describe the behaviours of the glue. The
XS language describes the mapping between a Perl function
and a C function. It can also define a wrapper Perl function
that wrap around a C function. The XS compiler xsubpp,
which comes with the Perl source distribution, compiles the
XS file and generates the glue automatically. The output
of xsubpp is the C source file that implements the glue
library, as we can see in Table 3.

Now that we understand the procedure to create a Perl-
C extension, we can investigate and create models for the
build-time architecture of of Perl 5.6. The Perl source dis-
tribution includes 22 Perl-C extension templates written in
XS language. These extensions are either part of the Perl
run-time environment, or interface to important Unix/C li-
braries. The translation process to generate the Perl-C ex-
tension from the XS templates is operating system depen-
dent. Therefore, these extensions are created at build-time,
since the operating system environment parameters are only
available after running configure on the build platform.

Similar to GCC, Perl also bootstraps itself. An interme-
diate Perl interpreter called miniperl is built first, then
miniperl and gcc are used together to build the com-
plete Perl interpreter and run-time system. The translation
script that transform XS file to C file is also executed by this
miniperl.

The build architecture view of Perl is shown in Fig. 6,
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Figure 6. The build-time view of Perl 5.6.

where the build-time code generating and bootstrapping are
clearly illustrated. At the top of Fig. 6, the code architec-
ture view corresponds to the directory structure and orga-
nization of Perl source code. Components of the code ar-
chitecture view shown here include the source files to build
miniperl, the translation script from XS to C xsubpp,
Perl-C extension templates .xs files and other C code to
build the rest of Perl interpreter and run-time.

The first step of build creates an intermediate Perl inter-
preter miniperl, which provides a functionality subset of
the full-scale Perl interpreter. Although miniperl is not
as efficient and optimized as the final Perl interpreterperl,
it is sufficient to accomplish the required tasks.

The second step is to create another important compo-
nent of the build architecture: the C files that implement the
“glue” libraries for system Perl-C extensions. The transla-
tion is carried out by the Perl interpreter miniperl and
translator utility script xsubpp. The translator script takes
.xs files as input, and outputs the C files, such as those
listed in Table 3.

The final step is to compiler all of the C source files and
linked them together to create the Perl interpreter and run-
time libraries.

3.3 Build-Time Architecture of the JNI

The Java Native Interface (JNI) is a programming inter-
face for Java. Using the JNI allows Java programs running
within a Java virtual machine (JVM) to interact at run-time
with applications and libraries written in other languages,
such as C, C++ and assembly language. Similar to the Perl-
C extension provided in Perl, JNI enables Java programs to
take advantage pre-existing native applications, to exploit
platform-dependent utilities, or to improve the performance
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of system bottlenecks [4].
Similar in spirit to the Perl XS interface, the JNI also pro-

vides a standard framework with a collection of Java APIs
and tools. They work together to allow the programmer to
“glue” Java application with native methods (typically, C or
C++ library functions), as shown in Fig. 7.

A typical use of JNI involves several steps:

1. First at the development stage, we write Java code that
declares only the signature of the native method. The
native method can be called from any other part of the
Java program as if it were a “normal” Java method. We
also implement the native method in C or C++.

2. At build-time, we compile the Java class that declares
the native method and all other Java classes including
those who call the native method. Next, we use the
JDK tool javah to generate the header file for the na-
tive method. Now we have the native signature for our
C/C++ implementation. Then, we compile both the
header file and the implementation C/C++ file into a
shared library file.

3. Finally, we have the running application, where the
Java code from the JVM can call the functions defined
in the native library.

A build-time architectural view of using Java JNI is
shown in Fig. 8 using our notation. This example shows
a Java program that calls a C program that prints “Hello
world” [4]. We can compare its to the the build-time view
of Perl shown in Fig. 6.

4 Build-Time Views and Configuration/Build
Management

In the previous section, we examined the build-time ar-
chitectures of GCC, Perl and Java JNI system, and we cre-
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Figure 8. The build-time view of JNI.

ated diagrams to model the architectural views. We now
give an informal definition of our notation for visualizing
build-time architectural views.

As shown in Fig. 9, we define four types of components
and three types of connectors in our build-time architecture
view:

Components: A box with a straight top edge and a curved
bottom edge represents source code that has been writ-
ten before the build and is provided within the original
source distribution. A box with curved top and bot-
tom edges represents source code that is dynamically
generated at build-time. A box with straight edges rep-
resents a program executable or Java class file. An el-
lipse denotes environmental information, such as CPU
and operating system details.

Connectors: For a compilation link, an arrow is drawn
from the source code to the compilation target; the
compiler used may be indicated as an association to the
relation arrow. A common generalization of this con-
nector is the interpreter/translatorarrow, where a trans-
formation is performed based on a provided script;
in this case, the script is denoted by the addition of
a hollow-headed arrow. The third type of link is a
general build dependency, which is represented with
a hollow-headed arrow.

Build-time architectural views can serve as high-level
and visual documentation for software configuration and
build management. As the build architectures of software
systems have become more dynamic and complex, the im-
portance of explicitly modelling build-time artifacts and
their related activities increases.
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One common reason to have a complex build-time archi-
tecture is to aid in the cross-platform construction problem,
when software systems are required to build and run on a
variety of hardware platforms and operating systems using
the same source code distribution. The usual solution in-
volves running a configuration tool, such as the Unix tool
configure; such a tool queries the operating system for
hardware and operating system details. This information is
then used together with a set of provided Makefile tem-
plates to create customized build scripts that are tailored for
the target environment. Often, this information is straight-
forward in nature, and entails the setting of various source
code macros and compiler flags. However, in the case of
GCC the data structures of the Register Transfer Language
(RTL) and algorithms to manipulate them are fundamen-
tally different for each CPU architecture. The task is far
beyond the capability of imake and conditional compil-
ing techniques. The solution employed by GCC is to de-
velop a special program to behave as an automatic code
generator. It takes architecture description files as input and
emits appropriate algorithms and data structures as output.
As a result, some fundamental parts of the source code for
GCC are created during build-time. This unique design ap-
proach makes the build-time architecture of GCC very dy-
namic, and it is not well represented by static architectural
views. Many interesting dynamic build architectures may
be found within the domain of programming language com-
piler/interpreter systems. This is because the data structures
and algorithms (especially algorithms for code generation
and optimization) are highly dependent on the target CPU
architecture and operating system.

It is important to point out that there are many soft-

ware/computing systems that use various dynamic con-
figuration techniques at run-time, such as COM/DCOM,
CORBA, Enterprise Java Beans, and Java reflection. For
example, DCOM and CORBA allow distributed applica-
tions to call a remote service without knowing its exact lo-
cation or even the programming language in which it is im-
plemented. However, these techniques are part of the exe-
cution architecture, where the distributed components have
already been build and deployed. Their dynamic run-time
architectures can be modelled by the “physical view” in the
“4+1” model and the “execution architecture view” in the
“four views” model.

5 The “Code Robot” Architectural Style

In their book on software architecture, Shaw and Garlan
discussed several architectural styles that model recurring
abstract patterns of high-level structure within software sys-
tems, such as “pipeline”, “layered”, “client-server” and “in-
terpreter” [13]. In Kruchten’s “4+1” paper, each of his ar-
chitectural views indicates some representative architecture
styles. For example, the “object-oriented” style is used in
logical view, while the “pipe and filter” and “client-server”
styles are applied in the process view [9].

We consider that the dynamic build-time behaviour of
systems such as GCC and Perl defines a new architectural
style that applies to build-time architectures; we call it the
“code robot” architecture style. The idea is, if the behaviour
of the software system depends heavily on the hardware ar-
chitecture or operating system, the software designer must
devise an effective and sophisticated strategy for customiza-
tion of the system source code at build-time. For example,
the strategy taken by the developers of GCC and Perl is to
write a code generator, a “code robot”, such as the gen*.c
in GCC and xsubpp in Perl. In Perl, the system-dependent
code is specified by a template written in XS language. In
GCC, the rules of how to create them from hardware ar-
chitecture description files are embedded in the code robot
itself. Given a description of hardware architecture, the
code robot knows how to generate corresponding system-
dependent code. Figure 10 shows the “code robot” archi-
tecture style.

5.1 Code Robots and Open Source Software

Automatic source code generation is not new; it is a well
known technique that is in wide use in both industry and
by open source projects. For example, the code wizard in
Microsoft’s VisualStudio can create generic MFC skeleton
code for a Win32 application, which includes standard win-
dows, menus, dialog boxes, and shortcuts. Others exam-
ples include lex, yacc, and their relatives which generate
scanners and parsers for compilers.
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Automatic source code generation during system build-
ing is much less common. The reason seems to be that most
commercial software systems are targetted for a relatively
small number of possible hardware architectures and oper-
ating systems. Most companies do not ship the source code
for their systems to clients; consequently, system building
is performed prior to shipping, and the software company
can choose its preferred platforms, compilers, subtools, and
libraries. This means that system building can be managed
in a straightforward manner, often by creating a product line
for each target environment.

However, open source software systems are, in general,
designed to be as portable as possible. Since the source
code is available, the system is typically built by the user;
this means that the source code distribution must be de-
signed to buildable on a large number of possible platforms,
using different compilers and subtools, and using different
system libraries. Rather than create a separate source dis-
tribution for each set of alternatives, open source systems
usually abstract the commonalities into a single distribution
and rely on configuration tools to aid in building. This is
why the code robot style is most commonly found within
open source software systems.

6 Summary

In this paper, we identified a new aspect of software ar-
chitecture: the build-time architectural view. We extended
the popular “4+1” view model of Kruchten to capture the
additional concerns that relate to the building of software
systems. We explored the characteristics and the signif-
icance of software build-time architectures in three case
studies: GCC, Perl, and Java’s JNI. Through our case stud-
ies, we discussed how explicitly modelling build-time be-

haviours with these architectural views can aid developers
in gaining a better understanding the software system itself,
as well as in managing the build process in the software
development/deployment cycle. Finally, we introduced the
“code robot” architectural style to aid in modelling build-
time views of systems, and discussed why it is most com-
mon in open source software systems.
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