
Language-Specific Make Technology
for the JavaTM Programming Language

Mikhail Dmitriev
Sun Microsystems Laboratories

UMTV29-112, 2600 Casey Avenue
Mountain View, CA 94043, USA

Mikhail.Dmitriev@sun.com

ABSTRACT
Keeping the code of a JavaTM application consistent (code is
consistent if all of the project classes can be recompiled to-
gether without errors) prevents late linking errors, and thus
may significantly improve development turnaround time. In
this paper we describe a make technology for the Java pro-
gramming language, that is based on smart dependency
checking, guarantees consistency of the project code, and
at the same time reduces the number of source code recom-
pilations to the minimum. After project code consistency
is initially assured by complete recompilation, the informa-
tion extracted from the binary classes is stored in a so-called
project database. Whenever the source code for some class
C is changed, its recompiled binary is compared to the old
version of C preserved in the project database. As a result,
we find a minimum subset of classes that depend on C and
may be affected by the particular change made to it. These
are recompiled in turn, and absence of compilation errors
at this phase guarantees the consistency of the new project
code. To determine which dependent classes to recompile,
we categorize all source incompatible changes, and for each
category establish a criterion for finding the smallest possi-
ble subset of dependent classes.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software development;
D.3.4 [Programming Languages]: Processors—Incremen-
tal compilers

General Terms
Design, Languages

Keywords
Java, dependency checking, make, development turnaround
time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

1. INTRODUCTION
Viewed in the beginning of its history as a language for

relatively small applications, such as applets or those run-
ning on hand-held devices, the Java programming language
is now used in the implementation of a wide variety of ap-
plications in just about any area. Recently there have been
informal reports about some Java applications that exceed
one million lines of code. Management of code volumes of
this size can present a number of challenges. One of these
is the time it takes to rebuild the application after changes
have been made to the source code.

Though general build management may be concerned about
a number of issues (e.g., think of an application written in
more than one language, with parts of code generated au-
tomatically, etc.), the aspect of it that we are focussing on
in this paper is minimising the number of recompilations.
Once the source code has been modified, all of the modules
that have changed and those that depend on the changed
ones should be recompiled. However, unnecessary recompi-
lations, i.e. those that would not result in changed binary
files, should be avoided.

From the point of view of build management, the Java
platform is distinct from most of the other industrial-strength
programming languages in at least one aspect, namely its
lazy linking model. It converts the final linking phase into
a lazy incremental resolution process that happens every
time a new class is loaded by the Java VM1. However, un-
like e.g. Smalltalk which exploits the same linking model,
the Java programming language is statically type checked.
Therefore, the developers should either maintain strict bi-
nary compatibility (see the Java Language Specification [12],
or JLS, as we will refer to it from now) between succes-
sive versions of the same class, or make sure that whenever
an incompatible change occurs, all of the classes that de-
pend on this change are fixed accordingly. For example, if
the type of an argument of a public method m() of class
C is changed from boolean to int (we are not consider-
ing method overloading), the developer should change all
the calls to C.m(boolean) from other classes. Otherwise a
NoSuchMethodFoundException will be thrown when execu-
tion reaches a call for C.m(int).

Another feature of the Java programming language is that

1Some Java programming environments, e.g. Visual Cafe
[19] have an option that allows the developer to compile
an application into a single binary executable file. This,
however, makes the application non-portable, eliminating
one of the main advantages of the Java platform.

dependencies between programming modules (classes) can
take many forms. Class C can call a method of class D, be
D’s subclass, implement interface D, declare a local variable
of type D in one of its methods, to name a few. Some changes
to D will affect C and some not, depending on the actual kind
of relation(s) between C and D. For example, consider what
happens if the signature of method D.m() is changed. If C
previously called this method, it, in most of the cases, should
be updated and recompiled. However, if C simply declares a
local variable of type D, nothing need be done with it.

Combined together and applied to large, complex applica-
tions with many internal dependencies, the above properties
substantially reduce the ability of the developers to control
the consistency of the resulting binary application when a
change to some class is made. There is no linking of the en-
tire application that could have diagnosed many of the prob-
lems such as “referenced member is undefined”. In addition,
the complex nature of dependencies between classes makes
traditional hand-crafted makefiles very unreliable. Thus, de-
velopers are often left with a choice between recompiling in-
dividual changed classes (thus leaving type safety issues to
be revealed at run time), or recompiling the whole appli-
cation. Since the latter is time-consuming, developers tend
to use mostly the former option, and only occasionally the
latter. Thus the problems they experience are mostly due
to broken, or, worse than that, working but now-incorrect
links. This is especially true for developers who are not the
original code authors and thus may not understand all of the
implications of seemingly innocent changes that they make.
Since linking happens lazily, a problem can manifest itself
very late, significantly increasing development turnaround
time, whereas using “recompile all” for large volumes of code
all the time may become very annoying.

A solution that addresses this problem is called smart
dependency checking, which can be viewed as a variant of
the more general smart recompilation technique. The latter
term was originally introduced by Tichy [18, 4] in his work
that involved a Pascal compiler, though this method is gen-
erally applicable to other languages as well. In Tichy’s work,
the compiler’s symbol table was extended to keep track of
finer granularity dependencies between declarations (type
definitions, constants, variables, etc.) and the items in the
compilation units referencing these declarations. The pos-
sible changes to declarations were classified. For each kind
of change, the dependency information was used in a test
to decide whether recompilation is necessary. Later, an im-
proved version of this technique was described in [17].

At present smart recompilation techniques are widely ado-
pted in integrated development environments (IDE) prod-
ucts for popular languages. Most of the IDEs for C/C++,
e.g. Microsoft Visual C++ [16] or Borland C++ Builder
[6], have this feature, as well as IDEs for Pascal and its
descendants, e.g. Borland Delphi [8].

Smart dependency checking was implemented in several
Java IDEs and command line compilers, e.g. VisualAge for
Java, Eclipse, Borland JBuilder and Jikes (see Section 5 for
details). The internal design, however, is disclosed for none
of them.

In this paper, we describe language-specific make tech-
nology for the Java programming language, based on smart
dependency checking, and a command line tool that im-
plements it, called Javamake. The important point about
this technology is that it does not depend on any partic-

ular Java compiler, i.e. it obtains all the information on
class dependencies from binary .class files. Thus, any Java
compiler can be used with our tool, provided that it satisfies
the minimum requirement of returning an error code which
tells whether the compiler invocation was successful (all of
the source files passed to it were recompiled successfully), or
not (errors were detected during compilation). The tool can
be used as a make utility on its own for relatively simple
projects, or within a more general build procedure, (such
as building an Enterprise Java application) involving many
more actions than just compilation of source files.

The tool is written in Java itself and thus can be used
on any platform where a Java VM is available. We believe
that it can be integrated with a Java IDE in a straightfor-
ward way (for instance, this has already been done for the
NetBeansTM [3] IDE). Currently the binary code of this tool
is available at the Sun Microsystems Laboratories Web site,
http://www.experimentalstuff.com.

The rest of the paper is structured as follows. Section 2
describes our technology, from the general idea to the details
of its core algorithm. Section 3 presents the complete list of
all source incompatible changes that can be made to classes.
This list is used to determine dependent classes that need
recompilation, based on the particular change made to a
given class. In Section 4 we present some initial performance
measurements. We then discuss the related work (Section
5), which, unfortunately, does not include any publications
— only several software products with undisclosed internal
design. Finally, we present our thoughts on future work and
conclusions.

2. JAVA-SPECIFIC MAKE TECHNOLOGY
In this section, we first present the general idea of our

technology. Then we discuss the most important issues of
its implementation, which are the project database and the
form of input. Finally we present the core algorithm of this
technology.

2.1 The Main Idea
The main idea of our technology is to keep track of changes

that the developer makes to classes that initially form a
consistent set, and, depending on these changes, selectively
recompile the dependent sources. Recompilation of the de-
pendent classes may reveal errors in them and/or update
the links in binary classes such that they reflect the source
code correctly. Let us consider this process in more detail.

Let us call a set of classes (i.e. sources and binaries) that
we want to keep consistent a project. We define a project to
be consistent if all of its sources can be recompiled together
without problems, and the resulting binary classes will be
the same as before. If this is the case, then two important
conditions hold. First, there are no dangling links between
classes, such as calls to methods that do not exist or have
different signatures. Second, all of the links in the binary
class files correspond exactly to what the programmer would
expect from looking at the application source code (an ex-
ample violating this is described in Section 3).

Suppose now that the developer makes a change to one of
the classes. This change may be either source compatible or
not. Source compatibility is discussed in detail in Section
3. In short, source compatible changes are changes that do
not break the contract between the changed class and other
classes that reference it (its dependent classes). Changes to

private members, for example, are always source compatible,
since no other top-level classes can reference such members2.
In contrast, a source incompatible change may (though not
necessarily will in each particular case) break the contract
between a class and some of its dependent classes. For exam-
ple, changing the signature of a public method is generally
source incompatible, and would make references from other
classes to this method invalid.

It turns out that the standard binary class representa-
tion (a .class file) contains enough information about class
members, and also about other classes and members that
it references, to retrieve all of the dependencies between
classes. The only exceptions known to us are references to
compile-time constants (see Section 3 for details). Thus, by
comparing two binary versions of the same class, we can find
out exactly what changes have been made to it. Then, by
scanning the old versions of other classes, we can determine
which of them depend on the given change (for example,
which old classes referenced a changed method of our class).
If any class has not been updated and recompiled yet, we
invoke the compiler on it, possibly causing an error message.
If all of the recompilations pass successfully, we know that
the project is now once again in a consistent state.

As always, there are a lot of details that we must take
into account as we go from this high-level description to the
actual implementation. In the following sections, we will
discuss the most important of them.

2.2 The Project Database
The correct working of the algorithm just presented de-

pends on the availability of information contained in all of
the old versions of project binaries, that is, the classes that
comprise the previous consistent project state. If this infor-
mation is unavailable for some class, we are unable to deter-
mine what changes have been made to it, and will have to
recompile the entire project to ensure its consistency.

Since our technology is supposed to operate on sources
and binaries within the file system, with the non-zero prob-
ability of the user deleting some binaries occasionally or re-
compiling them directly (i.e. not under control of our tool),
the only reliable way to preserve the information contained
in old binary versions is to save it separately, in a store
which we call the project database. Apart from guaranteed
preservation of old versions of binaries, there are two addi-
tional arguments justifying such a solution. First, even if
we were absolutely sure that the user would never modify
or delete the project binaries, we would inevitably have to
save some or all of them before invoking the compiler (the
number of old class versions to save would depend on how
well we can predict which of them the compiler, once in-
voked, will change). Second, when we save the classes into
our custom database, we can save only the information that
is relevant for us. We can, for example, omit the method
bytecodes which we do not analyse, and present the rest in a
form that is fast to retrieve and easy to search. This makes
the database size quite acceptable (see Section 4) and the
time required to analyse the differences between the old and
the new class versions very short.

2Nested classes (see Section 3.2) have access to private mem-
bers of their enclosing classes. However, a nested class is
always defined within the same source file as its enclosing
class, so both classes are always compiled together. There-
fore, no changes to one class can go unnoticed by the other.

The database main data structure is a hash table, which
we call the Project Class Directory (PCD). The PCD maps
each project class name to a record containing the following
information about the respective class:

1. Full file system path for the .java file.

2. The last modification date for the .class file.

3. The fingerprint (essentially, a checksum) of the bytes
in the .class file.

4. The reflection of a class called ClassInfo.

Items 1-3 above are used to determine which source and
binary files have been changed. Information in item 4, ob-
tained for the old and the new version of a changed class
C, is used to determine what classes may be affected by the
changes made to C. How this is done is described in detail
in Section 2.4.

In addition to the above information, which is kept persis-
tently in the database, the PCDEntry object in memory also
contains some secondary information obtained at run time,
in particular, date and fingerprint for the new class version
and the full path of the class file.

The ClassInfo for the class contains essentially the same
information as the constant pool (see Section 3.1), class dec-
laration, and field and method declarations in the respective
class file (see the description of the Java class file format
in Chapter 4 of Java Virtual Machine Specification [15], or
JVMS as we will refer to it from now). However, in contrast
with the original class file format, where the data is tightly
packed to minimise the total occupied space, we can af-
ford saving this information in the form of specially grouped
strings and arrays of them, which can be easily stored and
retrieved, and can be searched quickly. For example, we rep-
resent the constant pool of a class as, in essence, three ar-
rays of strings that contain, respectively, textual references
to other classes, fields and methods. Thus, to find out if a
class references a certain method, it is enough to compare
the combination of this method’s defining class, name and
signature with each of the entries in the “referenced meth-
ods” array. This is certainly much faster than searching the
original constant pool structure. Of course, instead of an ar-
ray searched sequentially, a data structure designed for fast
searching, such as a hash table, could be used. However, we
feel that currently the database search is fast enough (see
Section 4), and thus the current solution, which imposes
lower space overhead, is quite acceptable.

2.3 Input Form
Our technology guarantees consistency for the project.

Now, there is a question of how to make the Javamake tool
aware of exactly which classes the user wants to include in
the project.

After some consideration, we came to the conclusion that
the most convenient and reliable form of input to our com-
mand line tool is a list of all of the source (.java) files for
all of the project classes. This way, to add a class (or several
classes, if in one source file there are definitions of a top-level
class and a number of its nested classes) to the project, the
user should simply add the source file to this list. To re-
move a class from the project, its source should be removed
from the list. The tool currently assumes that there is one

top-level class corresponding to each source file3, plus any
number of nested classes.

The only minor problem with the above approach is that
the tool has to guess about the actual full names of classes.
That is because the name of the source file alone does not
provide the precise information about the package name of
the corresponding class. We solve this problem by making
mandatory a convention suggested in the JLS, according to
which the .java files should be placed by the programmer
in directories that reflect package names of their respective
classes. By enforcing this convention, we are able to de-
termine package names for classes correctly without parsing
their sources (see below for how this is done). We believe
that in most cases following this strict convention should not
be too inconvenient for developers.

A class file is placed by the compiler either in the same
directory as its source file, or, if the -d <destdir> option
is specified, in a subdirectory of destdir that reflects the
class’s package name. Our tool accepts the -d compiler op-
tion and thus knows where class files produced by the com-
piler should go. If -d is not specified, the class file location
is unambiguous — it is the same directory that contains the
respective .java file. Otherwise, the tool makes the best
guess about the full class name by first assuming that the
package name corresponds to the complete directory name
of the .java file. For example, if the source file full path is
/a/b/C.java and the destination directory is /classes, then
we first try to find a file called /classes/a/b/C.class. Fail-
ing that, we try /classes/b/C.class and /classes/C.class.
The tool stops on a first successful attempt and, to be on
the safe side, verifies that the guessed name and the actual
class name contained in the .class file are the same. If
none of the attempts are successful, the tool issues a warn-
ing, assuming that the compiler did not manage to compile
the given source successfully.

Nested classes also need attention, since, by their nature,
there are no separate .java files for them, whereas each
nested binary class is saved into a separate class file. Fortu-
nately, each binary class file contains references to its direct
nested classes in the form of a special class file attribute
(see JVMS, §4.7.5). Thus, after parsing a class file, we can
locate all of its direct nested classes and then repeat this
recursively until nested classes for a given top-level class are
found.

Further details of how to use the Javamake tool can be
found on the web site mentioned in the introduction.

2.4 The Make Algorithm
Below is the algorithm used in our make technology.

1. The input is PJF— the set of all project source files,
and the PCD, containing the old project classes that
are mutually consistent. On the first invocation of the
tool for the given project, PCD is empty.

2. Initialize to the empty set the following sets:
NJF - the set of new .java files;
UJF - the set of updated .java files;

3The Java compiler does not prevent multiple top-level
classes in one source file: the only requirement is that the
first declared class has the same name as the source file.
However, placing more than one top-level class in a single
source file is considered bad programming practice and dis-
couraged.

RJF - the set of recompiled .java files;
UC - the set of updated classes;
UCC - the set of updated classes for which version
comparison has been performed;

3. For each PJF element, if the .java file does not have
an entry in the PCD, add this .java file to NJF and
UJF .

4. For each PCD entry, if the .java file recorded in it is
not in PJF , remove this entry from the PCD.

5. For each PCD entry, if the .class file recorded in it is
not found in the file system where it should be (i.e.
where the compiler would place it if it is invoked now,
based on this class’s full name, its .java file full path,
and the -d option value), add the respective .java file
to UJF . If the .class file is found, but is older than
its .java file, also add the .java file to UJF .

6. Pass UJF to the compiler, which will produce a new
.class file (more than one, if there are nested classes)
for each .java source. Add all of these .java files to
RJF .

7. For each file in NJF , find the corresponding top-level
class, plus, possibly, nested classes, as explained in Sec-
tion 2.3. If some source file did not compile success-
fully, and thus no class files for it can be found, issue
a warning. Otherwise, create a new PCD entry for this
class and add it to the PCD. Remove the .java file from
UJF .

8. For the remaining files in UJF , check if new nested
classes were created for the respective top-level classes,
or any of previously created nested classes do not exist
anymore. Create a new PCD entry for each new nested
class and delete the PCD entry for each removed nested
class. Clear UJF and NJF .

9. Initialize UC as an empty set. Scan the PCD and put
into UC each class which is not in UCC and which has
been changed compared to its preserved old version.
First check if the class file on the file system is newer
than its old version (whose timestamp is preserved in
the PCD). If so, compare their fingerprints to find out if
the class has actually been changed. Add each changed
class to UC and UCC.

10. Check each class Ci in UC, i.e. compare its old and
new versions and find out if the changes are source
compatible (see next section). For each detected source
incompatible change, find all potentially affected project
classes. For each such class, check if the correspond-
ing .java file is in RJF . If not, add the .java file to
UJF .

11. If UJF is not empty, go to step 6.

This algorithm never aborts, unless a real problem that
looks like an internal error is detected, such as different
guessed and actual names for a binary class. However, the
project database is updated to a different extent depending
on the results of source compilation (the tool expects that
any Java compiler that it uses returns at least a general error
code, telling whether all of the passed sources were compiled

successfully or not). If any of the compilations were not en-
tirely successful, it means that the new set of sources is in
an inconsistent state now (a compilation error by definition
means inconsistency). Since the project database should
preserve only a consistent state of the project, a radical so-
lution would be to not update any database information
related to class files until after some later invocation of our
tool all of the compilations are performed successfully.

However, if a lot of sources have been updated simultane-
ously, and only one or two of them did not compile success-
fully, such an approach leads to redundant checks, on sub-
sequent Javamake invocations, for all of the class files cor-
responding to the previously recompiled sources. To avoid
this suboptimal behaviour, we use an observation that, on
one hand, typically only a small proportion of all changed
classes is modified in an incompatible way. On the other
hand, a source compatible change to a class by definition
never breaks the contract with any other classes, i.e. never
violates project consistency. Thus, if for some class the old
and the new versions are compared and no source incom-
patible changes are found, we can always safely update this
class’s representation in the database. However, we still up-
date the information for classes changed in an incompatible
way only if no compilation errors at all were detected.

3. SOURCE INCOMPATIBLE CHANGES
A source incompatible change to a class is a change to

its .java source which, once made, may break the contract
between this class and its dependent classes. This happens
if either:

• successful joint compilation of the sources for this class
and its dependent classes becomes impossible; or

• an application that includes this class and its depen-
dent classes runs incorrectly, unless the dependent clas-
ses are recompiled.

An example of a source incompatible change which causes
the first of the above problems is a change to a signature of
a public method in class C. In the general case, another class
which calls this method and is not updated accordingly, will
not pass compilation with the new version of C. An example
of the second kind of a source incompatible change is adding
a static method m()to class C, which overloads a method
with the same name and signature in C’s superclass S. The
problem here is as follows: if there are any calls of the form
C.m() in other sources, some compilers could have compiled
them into hard-wired calls to S.m(). Therefore, even in
presence of the actual C.m() method, these classes will still
call S.m(), until they are recompiled.

We have formulated the above definition of source com-
patibility after studying Chapter 13 of the JLS, which is
the only place in this book where source compatibility is
mentioned, though never detailed. JLS in fact describes
only binary compatibility issues. Quoting the JLS, “a change
to a type is binary compatible with (equivalently, does not
break binary compatibility with) pre-existing binaries if pre-
existing binaries that previously linked without error will
continue to link without error”. So, binary compatibility
is concerned about successful class linking and does not al-
ways guarantee formally correct program execution, i.e. the
execution that the programmer would expect looking at the
source code of classes (for examples of such a behaviour

see e.g. JLS §13.4.23). Source compatibility, on the other
hand, is about successful class compilation and correct pro-
gram execution. Several examples in the JLS show that
the requirement for source compatibility is stronger than
the requirement for binary compatibility, i.e. every source
compatible change is also binary compatible, but not every
binary compatible change is source compatible.

Our choice to maintain source, rather than binary com-
patibility, was made to ensure that the existing programs
work precisely as expected after a change, and thus the ap-
plication developers are given the most reliable support.

Tables 1 – 5 define all of the source incompatible changes
to classes which are detected by Javamake, and for each
such change the classes that may be affected by it. The
list of source incompatible changes was created by studying
Chapter 13 of JLS, and also the work by Drossopoulou et
al. [11] (the latter group worked on issues related to for-
mal verification of Java programs and has discovered some
“holes” in the JLS). Then we determined what constructs in
other classes, if not changed, will cause source incompatibil-
ity problems. These statements refer to the class or interface
being changed (denoted C or I) in one way or another. After
compilation, these references are placed in various parts of
the binary Java class (see details in the next section). Sum-
marising the above information, we can finally derive criteria
for determining a set of classes that are affected by a par-
ticular change. In some cases, however, we extended these
sets of classes, to avoid implementing complex procedures
that parse method bytecodes. For example, it is clear that
if class C is made abstract, then only those classes which
previously contained the “new C()” expression, need to be
recompiled. We, however, replace the test for the presence
of a bytecode corresponding to “new C()” with a simpler
test for a reference to class C from the constant pool (see
next section) of another class. Our observations show that
usually this kind of change is rather rare. When it happens,
the number of classes recompiled unnecessarily and, what is
more important, the overall time overhead caused by such a
lack of precision, is usually very tolerable, i.e. is of order of
10-20 per cent of the total execution time.

In these tables, we denote a changed class or interface p.C
or p.I, where p is a full package name and C is the remainder
of the class name (for top-level classes it is a simple class
name, and for nested classes it is the combination of all of
its enclosing class names plus its simple name).

Several different forms of the “class A references class B”
expression are used throughout these tables. How binary
Java classes can be referenced from other classes, and how we
define several qualified kinds of such references (for example
“class A references class B directly from the constant pool”
or “as a thrown exception”) is explained in the next section.
As for class members, i.e. fields and methods, they can be
referenced from classes only through the constant pool, so
for the sake of brevity we simply say that “class A references
member m” everywhere.

Whenever in the “Potentially affected classes” part it is
not specified in which packages, subclasses of other classes,
etc. we should look up affected classes, it is implied that
the search is restricted to the applicable subset of classes
determined by the accessibility of the class member under
consideration. For example, if a protected field of class p.C
is deleted, it makes sense to look for references to this field
only in classes in the same package p or subclasses of p.C.

Table 1: Changes to class and interface modifiers and affected classes.
Class and Interface Modifiers

Change to class p.C or interface p.I Potentially affected classes

Adding abstract modifier Classes referencing p.C (but not p.C array class) directly (see Section 3.1)
from their constant pools.

Adding final modifier Immediate subclasses of p.C.
public class made protected Each class that is not a member of package p and not a direct or indirect

subclass of C’s directly enclosing class, that references5p.C.
public class made default-access Each class that is not a member of package p, that references p.C.
protected class made default-access Each class that is not a member of package p, whose direct or indirect super-

class is C’s directly enclosing class, that references p.C.
public class made private Each class whose top level enclosing class is different from that of C, that

references p.C.
protected class made private Each class whose direct or indirect superclass is C’s directly enclosing class,

or which is a member of package p, whose top level enclosing class is different
from that of C, that references p.C.

Default-access class made private Each class that is a member of package p, whose top level enclosing class is
different from that of C, that references p.C.

Table 2: Changes to superclass/superinterface declarations and affected classes.
Superclasses and Superinterfaces

Change to class p.C or interface p.I Potentially affected classes

Deleting class (interface) S from the list of super-
classes (directly or indirectly implemented inter-
faces) of class p.C

Each class that references both S and p.C (or array classes for one or both) as
follows: from their constant pools (directly or indirectly), as a type of a data
field, as a type in a method (constructor) signature or a thrown exception, as
a direct or indirect superclass or superinterface.

Table 3: Changes to field declarations and affected classes.
Class and Interface Field Declarations

Change to class p.C or interface p.I Potentially affected classes

Adding a non-private field f to p.C that hides a
non-private field with the same name in p.C’s su-
perclass S6

Each class that references C.f

Deleting a non-private field f from p.C7 Each class that references p.C.f

public field f made protected Each class that is not a member of package p, that references p.C.f8.
public field f made default-access Each class that is not a member of package p, that referencies p.C.f.
protected field f made default-access Each class that is not a member of package p and whose direct or indirect

superclass is p.C, that references p.C.f.
public field f made private Each class that references p.C.f

protected field f made private Each class that is a member of package p or whose direct or indirect superclass
is p.C, that references p.C.f.

default-access field f made private Each class that is a member of package p that references p.C.f.
Non-private field f made final Each class that reference p.C.f

A final modifier is deleted for a non-private f
field which is a compile-time constant, or its initial
value changed, or such a field is deleted9

Each class from which p.C.f is accessible.

Non-private instance field f made static or vice
versa

Each class that references p.C.f.

Non-private field f made volatile or vice versa Each class that references p.C.f.

Table 4: Changes to interface method declarations and affected classes.
Method Declarations in Interfaces

Change to interface p.I Potentially affected classes

Adding method m()10 Each non-abstract class that directly implements p.I or some subtype of p.I,
or that is a direct subclass of an abstract class that implements p.I directly
or indirectly.

Deleting method m() Each class that references I.m()

Table 5: Changes to class method/constructor declarations and affected classes.
Method and Constructor Declarations in Classes

Change to class p.C Potentially affected classes

Deleting non-private method m() or constructor C() Each class that references p.C.m() or p.C()

Adding one or more constructors, all of which have non-
zero number of parameters, to class p.C, which previously
had no explicitly declared constructors11

Each class that references parameterless constructor C()

public method m() or constructor C() made protected Each class that is not a member of package p, that references p.C.m()
or p.C().

public method m() or constructor C() made default-access Each class that is not a member of package p, that references p.C.m()
or p.C().

protected method m() or constructor C() made default-
access

Each class that is not a member of package p and whose direct or
indirect superclass is p.C, that references p.C.m() or p.C().

public method m() or constructor C() made private Each class that references p.C.m() or p.C().
protected method m() or constructor C() made private Each class that is a member of package p or whose direct or indirect

superclass is p.C, that references p.C.m() or p.C().
Default-access method m() or constructor C() made
private

Each class that is a member of package p, that references p.C.m() or
p.C().

Changing the signature (includes the result type) of a non-
private method m()

Each class that references p.C.m()

Making a non-private method m() abstract Each class that references p.C.m()

Making a non-private method m() final12 Each class that is a direct or indirect subclass of p.C and implements
m()

Making a non-private instance method m() static or vice
versa

Each class that references p.C.m().

Extending the set of exceptions thrown by a non-private
method m() or constructor C()

Each class that references p.C.m() or p.C().

Adding to p.C a non-private method m(xxx) or constructor
C(xxx) which overloads an existing (declared or inherited)
method m(yyy) or constructor C(yyy)13

Each class that references p.C.m(yyy) or p.C(yyy).

Adding a non-private static method m() to p.C, that
hides an inherited static method with the same name and
signature defined in class Csuper14

Each class that references Csuper.m().

Adding a non-private method m() to p.C, when a method
with the same name is declared in C’s subclass D, such that
now m() in D overrides or overloads m() in p.C 15

D and each class that references D.m().

Making method m() more accessible Each class that is a direct or indirect subclass of p.C, and defines m()
with a less accessible set of modifiers.

Adding abstract method m() to p.C Each concrete direct or indirect subclass of p.C that does not define
or inherit a concrete implementation of m().

Deleting a concrete method m(), which is declared
abstract in Csuper, from abstract class p.C

Each concrete direct or indirect subclass of p.C that does not define
or inherit a different concrete implementation of m().

Changing the kind of an exception class p.C from
unchecked to checked

Each class that references p.C directly from the constant pool, and
each class that references any method that throws p.C.

An unexpected conclusion that one can make looking at
these tables is that most of the kinds of changes to Java
classes are formally source incompatible, and under certain
circumstances can break something in a particular project
(in practice, though, this does not happen very often, since
at least humans tend to make compatible changes much
more often than incompatible ones). Another conclusion is
that such properties of the Java language as nested classes,
abstract and interface types, and various accessibility modi-
fiers, result in most of the non-trivial content of these tables,
i.e. entries saying more than just ”all classes referencing the
changed member”. To some surprise, the “adding a method
to an interface” change has resulted in the most complex
criteria for determining affected classes.

5From now and until the end of this table, “references”
means “references p.C (or its array class) as follows: directly
from the constant pool, as a type of a declared data field,
as a type in a method (constructor) signature or a thrown
exception, as a directly implemented interface or a direct
superclass”.
6This is a binary compatible change (JLS, §13.4.7). How-
ever, it is source incompatible.
7This means that the field is no longer declared in class C.
According to the Java class bytecode specification, all refer-
ences to a field in other classes have a strict form C.f, so even
if f is moved to a superclass of C, classes compiled against
the old version of C will not run with the new version.
8One may think that a more appropriate criterion could be
“Each class that is not a member of package p and is not C’s
direct or indirect subclass, that references p.C.f”. However,
according to the JLS §6.6.2, subclasses of p.C that are not
members of package p have to follow additional restrictions
to access protected members of p.C, so their code needs
checking as well. The same comment applies to protected
methods.
9A field is called compile-time constant if it is final, static
and initialised with a compile-time constant expression. The
above change is binary compatible (JLS, §13.4.8). However,
it is source incompatible, since pre-existing Java binaries
include the value of the constant, rather than a reference to
it, and will not see any new value for the constant, unless
they are recompiled. This is a side-effect of the support of
conditional compilation in Java, as discussed in JLS §14.19.

10This is a binary compatible change (JLS, §13.5.3). How-
ever, it is source incompatible — for example, some class
implementing I may already define m(), but non-public.

11This is equivalent to deletion of the only existing parame-
terless constructor.

12Making a static method final is a binary compatible change
(JLS, §13.4.16). However, it is source incompatible.

13This is a binary compatible change (JLS, §13.4.22). How-
ever, it is generally source incompatible, because for some
dependent classes a problem of finding the most specific
(JLS, §15.11.2.2) method or constructor can arise.

14This is a binary compatible change (JLS, §13.4.23). How-
ever, it is source incompatible, since due to possible strict
references to method Csuper.m() from bytecodes of C’s de-
pendent classes, their behaviour will be not as expected, if
their sources are not recompiled.

15Citing the JLS, §13.4.5, “Adding a method that has the
same name, accessibility, signature, and return type as a
method in a superclass or a subclass is a binary compatible
change”. However, in a more general case, i.e. when the ac-
cessibility or the signature of the added method may be dif-
ferent, this kind of change is generally source incompatible.
The compilation errors like “method made less accessible in
a subclass” or “failure to find most specific method” may
arise, or method calls can be re-bound to different methods
during recompilation.

3.1 References in Java Class Files
Our tables of incompatible changes present the conditions

under which classes should be recompiled in a technically
precise form. Therefore, we use some special terms, first in-
troduced in the specification of binary class format in JVMS,
plus our own terms direct and indirect references from one
binary Java class to another. Below is a short summary of
class referencing issues.

A binary Java class references other classes and their mem-
bers only symbolically, i.e. by textual names. All these
names are stored in the form of string constants in this
class’s constant pool, which is a table of variable-length struc-
tures representing various constants that are referred to by
the class. How can we find out which string constants con-
tain real class names? We can do that firstly by tracing ref-
erences from other entries of the constant pool, which have
more explicit types, denoted as follows: CONSTANT Class,
CONSTANT Fieldref, CONSTANT Methodref and
CONSTANT InterfaceMethodref. These entries are added to
the constant pool of class C if C references some other class
D explicitly, or references D’s fields or methods. In addition,
every class that declares its own fields or methods has a
non-empty Field table and Method table. Entries of this ta-
ble, denoted field info and method info, contain indexes
into the constant pool, and at these indexes there are string
constants (constant pool entries of type CONSTANT Utf8) rep-
resenting the names and signatures of the respective fields
and methods. The structure of each of the presented con-
stant pool entry types, as well as of a Field/Method table
entry, is depicted in Figure 1. Arrows represent indexes of
other entries which the given entry references.

By saying that class C is referenced directly from the con-
stant pool of another class, say D, we mean just that there is
a separate CONSTANT Class entry for class C in D’s constant
pool. This kind of reference appears, for example, if a “new
C()” statement or a declaration of a local variable of type C

appears somewhere in the source code of D. CONSTANT Class

entries for C also appear in D’s constant pool (in addition
to the relevant CONSTANT Fieldref or CONSTANT Methodref

entries), if class D uses a field or calls a method declared in
class C.

On the other hand, if, for example, class D calls a “void
m(C c)” method of yet another class E, then the only ref-
erence from D to C will be through the signature of method
m(C c), which is stored in D’s constant pool. We call this an
indirect reference to C from the constant pool of D.

One additional complexity that we have to cope with is
due to a change in the Second Edition of the JLS, which,
however, has only recently been reflected in the Sun’s javac
compiler (we are presently unaware of any other Java com-
pilers changed in the same way). Consider the following
example:

class A { public void m() { }; }

class B extends A { }

class C {

public static void main(String args[]) {

A a = new A(); a.m();

B b = new B(); b.m();

}

}

In binary classes created by javac prior to JDKTM ver-

CONSTANT_Class

CONSTANT_InterfaceMethodref
CONSTANT_NameAndType

CONSTANT_Utf8 (Method signature)

CONSTANT_Methodref,

field_info, method_info {

 descriptor_index;
}

 name_index; CONSTANT_Utf8 (Field/method name)
 CONSTANT_Utf8 (Field/method signature)

CONSTANT_Utf8 (Class name)

CONSTANT_NameAndType
CONSTANT_Utf8 (Field signature)
CONSTANT_Utf8 (Field name)

CONSTANT_Fieldref CONSTANT_Class CONSTANT_Utf8 (Class name)

CONSTANT_Class CONSTANT_Utf8 (Class name)

CONSTANT_Utf8 (Method name)

Figure 1: Binary Class Constant Pool Entries Structure

sion 1.4, both of the calls to m() in the above example would
result in the same reference to method A.m() in C’s constant
pool. However, since version 1.4, javac creates a separate,
receiver type dependent, member reference in cases such as
the b.m() call above. This call will now be compiled into the
reference to (non-existent in this case) method B.m(). At
run time, the JVM resolves such a reference correctly, de-
pending on the real structure of classes A and B. This change
to the JLS was made in order to increase the robustness of
applications assembled from classes coming from indepen-
dent sources. However, to handle such, effectively “fake”,
references in Javamake, we have to take special measures. If
we detect a change to member m of class A, we scan project
classes that may depend on A, looking for references to mem-
ber m. Whenever we find such a reference, we analyse its
class part, checking whether the referenced class is A or a
subclass of A, say B. In the latter case we check if m is over-
ridden in B, or in any class between A and B in the hierarchy.
If not, then the reference is really to A.m and should be
treated accordingly.

3.2 About Nested Classes
Nested classes are classes defined within bodies of other

classes. They were first introduced in JDK 1.1 to support
the new model of event handling in GUI (Graphical User
Interface) programs. In such programs, nested anonymous
classes are used essentially as placeholders for methods that
handle events. An instance of a nested class which defines
method m() is first passed to a GUI library (AWT or Swing)
class, and then m() is called when an appropriate event is
generated. In effect, an instance of an anonymous class is
used instead of what would be a function pointer in some
other language. The advantage of using nested classes in-
stead of top-level classes in this particular case is that we
can define a number of classes with event handling meth-
ods (the latter are typically very short) “in place”, within
the body of a single top-level class. Otherwise this model of
event handling would require us to create countless number
of separate classes, each in a separate source file, and each
responsible for handling, e.g., a single menu item.

Static nested classes is another useful category of nested

classes. These are in all respects similar to top-level classes,
but also have access to private members defined in their
enclosing class. It is a good idea to make some class a static
nested one if it is small and probably too insignificant to
put in a separate source file, yet the developer would like to
avoid the bad practice of putting multiple top-level classes
in one source file.

Nested classes introduce additional complexity that our
tool has to deal with. First of all, they do not have their
own source files, thus we must take additional steps to locate
such classes and keep track of them (see Section 2.3). In
addition, it turns out that not all kinds of nested classes
should be treated in the same way as top-level classes —
namely, it does not make sense to keep track of versions for
some of them. To see why, and to better understand the
issues related to nested classes, let us first present a general
picture of nested classes in the Java programming language.

The description of the various kinds of nested classes is
scattered about the Java Language Specification, Second
Edition [12] in a number of sections in different chapters. In-
stead of reproducing their contents in this paper, we present
a diagram (see Figure 2), on which the taxonomy of nested
classes is depicted, with a reference to the appropriate sec-
tion of the JLS for each item.

Any non-member nested class, which includes local and
anonymous classes, may not be referenced by the source
code of any class defined outside the immediately enclosing
source code block for this class. Thus, no change made to
a non-member class C, even its complete deletion, can affect
any other class except those defined within the same source
code block. These latter classes will be recompiled anyway
when C changes, since they reside in the same source file
as C. Therefore, versions of non-member nested classes need
not be compared during step 10 of the Javamake algorithm
(see Section 2.4). Instead, the new versions are saved uncon-
ditionally in the project database whenever such a class is
changed. We still have to keep track of non-member nested
classes during other phases of Javamake execution since such
classes themselves may reference other (top-level and mem-
ber) classes, and thus may need recompilation in case of
incompatible changes to the latter.

Top-level classes N e s t e d c l a s s e s

Inner (8.1.2)

Local (14.3) Anonymous (15.9.5) Non-static member (8.5)

In static context
(no enclosing instance)

With enclosing instance Have no names at all

Non-member

Have names, but can not be referenced by any classes defined outside their own
enclosing class

Static member (8.5.2, 9.5)

Figure 2: Taxonomy of nested classes in the Java programming language

4. EVALUATION
In this section, we first present the results of performance

measurements for Javamake. We then compare its “qual-
ity”, measured as the number of correctly spotted inconsis-
tent changes, with that for several other tools supporting
smart dependency checking.

4.1 Performance
It is essential for a make tool like Javamake to keep the

overhead above the time it takes to recompile the changed
sources to the minimum, since, after all, such a tool is de-
signed to minimise development turnaround time. However,
certain kinds of overhead are inherent to all make tools that
work with files, e.g. they all have to read time stamps of all
of the project files, which is a relatively time-consuming op-
eration. In our case it also makes sense to compare the time
it takes to run our tool with the time it takes to recompile
the whole project, since in the absence of smart dependency
checking technology the latter is the only way to ensure that
the project is consistent.

Our experimental setup consisted of a Sun EnterpriseTM

3500 machine with four UltraSparcTM II processors, with 4
GB RAM, running the SolarisTM Operating Environment,
version 2.8. The HotSpotTM Java VM and the javac Java
compiler from JDK Version 1.4 were used. As compila-
tion targets we used two projects, jEdit and Netbeans, freely
available on the Internet (at Web sites www.sourceforge.net
and www.netbeans.org respectively). From the latter pro-
ject, we compiled two code subsets: the “core” and the “ex-
tended” one, differing by size. We refer to these subsets as
NBc and NBe in the following discussion. The characteris-
tics of these projects are presented in Table 6.

The results of the first set of our measurements are pre-
sented in Table 7. We compared the time it takes Javamake
and the popular make tool GNU make (version 3.78, avail-
able from www.gnu.org) to run for the same project, and the
time it takes to recompile the whole project from scratch.
For each tool, we measured three values: the time it takes to
run it over the completely unchanged set of sources, the time
it takes to run the tool plus the compiler when an incompat-

Table 6: Target projects characteristics
Project KLOC Number

of sources
Number
of classes

JEdit 72.2 246 466
Netbeans “core”
(NBc)

230 843 2373

Netbeans “ex-
tended” (NBe)

611 2580 6558

ible change is made to a single source file (though this par-
ticular change does not break anything in the project), and
the time when 5 incompatible changes are made to 5 source
files (again, nothing is broken). The incompatible changes in
each case were: making a public class package-private, mak-
ing a public field package-private, making a public method
package-private, making a method final, and making pro-
tected method public. In the zero changes case, we ob-
serve the overhead due to functionality which is common to
Javamake and GNU make (time stamp checking for files).
Comparing the other two execution times for GNU make
and Javamake indicates additional overhead due to depen-
dency checking in Javamake, and can be viewed as a typical
“response time” of this tool that one is likely to expect in
practice.

The measurements show that Javamake runs slower than
GNU make generally by a factor of 1.2...1.4, depending on
the project characteristics. This is an expected, even a very
good result, given that Javamake runs on top of a JVM16

and performs a number of operations, such as reading a
project database from disk, that the traditional make utility
does not perform. We believe that the absolute overhead
of Javamake is also within acceptable bounds in all cases.

16For small projects and small number of changes, the con-
stant JVM startup time becomes a considerable part of the
total Javamake execution time — hence a notable relative
performance degradation of Javamake recorded in the first
line of Table 7.

Table 7: Javamake vs. GNU make performance
evaluation

Project No
of
chan-
ges

GNU
make
time, sec

Javamake
time, sec

Recom-
pile all
time,
sec

0 1.27 (1.00) 2.12 (1.67)
JEdit 1 2.48 (1.00) 3.29 (1.33) 19.95

5 3.66 (1.00) 4.50 (1.23)
0 4.49 (1.00) 6.41 (1.43)

NBc 1 7.47 (1.00) 9.43 (1.26) 70.54
5 8.74 (1.00) 10.45 (1.20)
0 13.95 (1.00) 18.25 (1.31)

NBe 1 16.72 (1.00) 22.57 (1.35) 265.09
5 17.98 (1.00) 23.69 (1.31)

Table 8: Project database characteristics
Project JEdit NBc NBe

PDB size,
KB

404 1670 4011

PDB create
time, sec

1.60 (41%) 7.81 (78%) 24.52
(106%)

PDB read
time, sec

0.34 (9%) 1.05 (11%) 1.92 (8%)

PDB write
time, sec

0.37 (10%) 1.07 (11%) 2.08 (9%)

That is, developers would be willing to pay this small cost
for safety that they get — especially if it is compared to
the much greater (by a factor of 5 to 10) time needed for
complete recompilation of the whole project.

The data on the disk space and performance overhead
due to the presence of a project database is presented in
Table 8. We have measured the size of the project database
and several performance characteristics. The first one is the
initial time to create a project database on the first invoca-
tion of the tool for the given project. This time is spent in
parsing .class files and creating the corresponding internal
data structures, and is a one-time overhead, since on subse-
quent invocations usually only a fraction of classes changes,
and the time to parse them is negligible. However, to read
and write existing internal data structures to/from disk also
requires time, and we present the corresponding measure-
ments, both absolute and in percentage to the average total
Javamake execution time for each project.

We have observed that project database size grows prac-
tically linearly with the number of source code lines. The
ratio between the above two values seems to vary little for
all of the projects on which we tested our tool, and is be-
tween 6.5 and 7.5 kbytes per 1 KLOC (thousand lines of
source code). This yields e.g. a 4MB database for a project
consisting of 611,000 lines of code, which we believe is quite
modest overhead. For comparison, sources for this project
occupy about 25MB of disk space, classes — about 10MB,
and the javac compiler should be invoked with the JVM
heap size set to about 128MB to make it recompile all these
sources in one go.

Table 9: Total dependency checking time, ms
Number of
changes

JEdit NBc NBe

1 13 (0.40%) 21 (0.22%) 69 (0.31%)
5 49 (1.08%) 78 (0.74%) 211 (0.89%)

The time to create a project database can be quite sig-
nificant, but since the project database is created once for
a project, and after that a developer needs to re-create it
rarely if at all, there is no practical reason to take this over-
head into serious consideration. The time to read and write
a project database appears to be pretty stable, each taking
about 10 per cent of the average total execution time of the
tool.

Dependency checking is the main part of our technology,
so it was important to determine how much time it con-
sumes. The results of the measurements, presented in Table
9, were a pleasant surprise for us (note that results in this ta-
ble are in milliseconds, unlike in the other tables). It appears
that dependency checking, which may involve traversing the
whole project database many times, nevertheless happens
instantly compared to other operations. Its duration can
vary depending on the project and on the particular change,
but in none of our tests, and in further informal evaluation
of our tool, did the proportion of time spent in dependency
checking exceed 2 per cent of the total time. Thus it turns
out that most of the time that our tool runs is spent in
project database reading/writing, file timestamp checking,
and source file recompilation. In Section 6 we explain that
in certain circumstances the first two sources of overhead
can be eliminated almost completely.

4.2 Detecting Incompatible Changes — How
Well Other Systems Do

A key characteristic of the quality of a dependency check-
ing tool (provided that its performance is at least satisfac-
tory) is its ability to correctly detect all possible incompat-
ible changes and report inconsistencies caused by any such
change. In order to determine how good in this respect our
tool is, compared to others, we evaluated three presently
available tools that support smart dependency checking: Bor-
land JBuilder version 6.0, Eclipse version 2.5 and Jikes ver-
sion 1.15 (detailed information on all these tools is presented
in Section 5).

To compare the capability of these tools for detecting and
handling incompatible changes, we created a set of test cases
according to the tables given in Section 3. Each of these
tests is a small set of Java classes that is initially consistent.
Then an incompatible change is made, and the tool’s “smart
make” command is invoked. We would then see if the re-
sulting inconsistencies in dependent code were correctly de-
tected, or, in case of a change which is binary compatible
(though source incompatible), if dependent code was recom-
piled properly.

Our evaluation has shown that of the three above tools,
one tool could detect all of the incompatible changes as ef-
ficiently as Javamake. One other tool was unable to detect
one kind of change. As a result of this undetected change,
the recompiled application would crash due to an unsatis-
fied link error. Finally, the third tool was unable to detect

eight kinds of source incompatible changes. However, all
these changes are binary compatible, so the resulting appli-
cation would not crash. It would, however, work incorrectly,
or an error would be reported by the compiler later, when
attempting to explicitly recompile some dependent classes.

5. RELATED WORK
So far we have found only three products supporting smart,

or incremental, compilation of Java applications (for com-
parison, the number of Java IDEs available now is nearly
20). Unfortunately, there are no publications on any of
them, that would explain the internal details. Therefore the
following discussion is based entirely on our own informal
evaluation.

Borland JBuilder [7] Java IDE supports smart compilation
(called “smart make” in its terminology), as one of the com-
piler options, along with two others: “recompile the current
file” and “recompile the whole project”. The implementa-
tion of “smart make” seems to be based on the same princi-
ples as our implementation: the so-called dependency cache,
which is equivalent to our project database, is created for
each project and then used to determine which classes need
recompilation.

IBM VisualAge for Java [14] is another Java IDE which
provides smart (incremental, in their terminology) compi-
lation. In VisualAge, the developer edits, saves and re-
compiles methods individually, similar to the approach pi-
oneered in Smalltalk, and is in contrast with most of the
other IDEs which operate with the more traditional file-
based source code representation. The incremental compiler
is invoked automatically whenever a new Java class, inter-
face, or method is created, or an existing one is changed. It
recompiles the changed item, as well as all of the other items
within the work space, that are affected by this change. If
an incompatible change is made, the compiler immediately
flags any inconsistencies created by that change.

Eclipse [2] is a highly extensible and configurable IDE (it
is dubbed “a universal tool platform” by its creators), that
is being developed as an open source project led by IBM. It
has an incremental compiler, which is invoked every time a
source file is changed and saved. The compiler checks any
changed dependencies and flags all errors in sources that
become inconsistent as a result of the change — much like
in VisualAge.

The last product known to us that supports smart (incre-
mental) compilation is the Java compiler called Jikes [13], an
open source project being developed at IBM. This product
is not an IDE, but a command-line compiler, which has an
additional “incremental build” mode. The compiler enters
this mode if it is invoked with a special “++” command-line
option for a .java source file containing the main(String

args[]) method, e.g.
>jikes ++ myprog.java

This will compile myprog.java and other files that it de-
pends on, as needed, and leave Jikes running. The developer
can then change myprog.java or any of the source files it de-
pends on, and simply hit “Enter” at the command line to
tell Jikes to re-check the dependencies and only recompile
files as required to bring the entire project up to date. The
compiler will stay in this “hit Enter/rebuild” loop until the
developer enters a “q”, which tells it to terminate. This ap-
proach works well if the developer needs to just recompile
the source files whenever they change, but, unfortunately,

is unusable if this recompilation is a part of a more general
authomated make process.

As for other programming languages and academic works,
we have managed to find only one relatively recent work
[9] — a PhD thesis by Crelier describing design and im-
plementation of fine-grain dependency checking for Oberon.
Oberon supports dynamic loading and linking of software
modules, but these modules themselves are machine-depen-
dent object files. Therefore, a part of the problem solved
in that work was to provide sufficient type information for
symbols (called objects in this work) exported by modules,
in such a way that if a type of an exported object changes,
the change is reflected in the exported type information.
This was achieved by using fingerprints which were calcu-
lated as a function of, essentially, type name and structure
information. Most of the complexity of this work lies in the
area of correct fingerprint computation for complex type and
their optimal storage in symbol files associated with mod-
ules. Change to the fingerprint for an exported object nec-
essarily leads to recompilation of clients that import this
object. This is probably correct for Oberon, given that it
does not provide e.g. various levels of member accessibility,
such as protected or package-private access, or abstract,
interface and nested types. The latter are the cause of most
of the non-trivial entries in our tables of source incompatible
changes. Determining how to calculate a fingerprint for an
object in Crelier’s work seems quite similar to detecting an
incompatible change and finding what can be affected by it,
as it is done in our work.

6. FUTURE WORK
The tables of source incompatible changes and affected

classes presented in Section 3 were defined using the JLS,
other works, and our own knowledge and experience, but,
unfortunately, there is no formal proof of their complete-
ness and correctness. Consequently, we cannot be absolutely
sure that these tables identify all of the affected classes for
each incompatible change. There is more confidence that
they cover all possible incompatible changes to Java classes,
since, after all, the number of class elements is limited and
the taxonomy of changes is created as a series of additions,
removals and changes to these elements. Formal proof of
completeness and correctness can probably be achieved us-
ing some kind of formal technique, e.g. similar to one used
in [11] and other works by this group (see [1]).

It would also be very desirable to overcome the present
problem with handling compile-time constants (see Table
3). At present, once such a constant changes, we have to
recompile all classes that potentially can access it, because
we have no way of finding out whether or not any class re-
ally uses this constant. The only way to fix this problem is
to make the Java compiler more cooperative. However, just
changing it so that it starts to put referenced compile-time
constants into the constant pool, will probably not work
very well. That is because our tool will then have to guess
whether the compiler that it is currently using is a “new”
or the “old” one. With many Java compilers on the market,
each evolving in its own way, this may be not an easy task.
So a better solution may be to introduce a special binary
class attribute that should always be present in a class file
created by a “new” compiler, and should contain informa-
tion on compile-time constants referenced by a class, if there
are any (or null otherwise).

One of our near-term goals is to provide an “incremen-
tal” execution mode in our tool, which should be of partic-
ular use when it is invoked from an IDE. In such a mode,
Javamake reads the project database from disk once and
then keeps it in memory permanently, until explicitly re-
quested to terminate. Relatively high-cost database reading
and writing operations are therefore performed only once
each, upon the IDE startup and shutdown. Further speedup
can be achieved if the IDE can provide Javamake the infor-
mation on which sources have changed, so that the tool does
not have to repeatedly perform another high-cost operation
of checking all source file timestamps. Given that depen-
dency checking itself is very fast (see Section 4), the “make”
command of an IDE would impose virtually no overhead
compared to the standard “compile” command.

7. CONCLUSIONS
Optimum build management is very important, even vi-

tal for developers of applications that consist of hundreds
of thousands or millions lines of code. This issue is gener-
ally understood, and smart dependency checking (also called
smart make or incremental compilation — all viewed by us
as variants of the general smart recompilation technique) is
provided in several IDEs and compilers for the Java pro-
gramming language. Despite that, there are, to our best
knowledge, no publications that document such a technol-
ogy for the Java language (or any other statically type-
checked programming language that compiles source code
into portable bytecodes) at the level of detail that would al-
low to verify or improve it. This may be one reason why this
technology does not seem to be implemented equally well in
the few different tools where it is available. There are also
very few contemporary academic publications in this area.
With this paper, we hope to partially close this gap. We
also hope that it may provide useful guidelines for designers
of similar technologies for other programming languages.

8. ACKNOWLEDGEMENTS
The approach to smart dependency checking presented in

this paper, and the first version of the Javamake technol-
ogy, was first designed and implemented by the author as a
part of his work on persistent class evolution in the PJama
project [5, 10], that was developed jointly by the Univer-
sity of Glasgow, Scotland, and Sun Microsystems Laborato-
ries. Professor Malcolm Atkinson, who was the author’s
supervisor, provided support and valuable input for this
work. Later at Sun Microsystems, Mario Wolczko and Gi-
lad Bracha both supported the general Javamake technology
implementation effort, have read the early drafts of this pa-
per and provided valuable comments. The author is also
grateful to Mick Jordan, Greg Czajkowski, and numerous
early adopters of Javamake, in particular Nascif Abousalh-
Neto from Nortel Networks, who reported several bugs in
its early releases and provided other useful feedback.

9. TRADEMARKS
Sun, Sun Microsystems Inc., Java, JVM, JDK, HotSpot,

Solaris, Sun Enterprise 3500, and NetBeans are trademarks
or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. UltraSPARC is a trade-
mark or registered trademark of SPARC International, Inc.
in the United States and other countries.

10. REFERENCES
[1] Sound Languages Underpin Reliable Programming

Project (SLURP), Imperial College, University of
London, London, UK.
http://www-dse.doc.ic.ac.uk/Projects/slurp/index.html.

[2] Eclipse Open Source Project. http://www.eclipse.org.

[3] NetBeans Open Source Project.
http://www.netbeans.org.

[4] R. Adams, W. Tichy, and A. Weinert. The Cost of
Selective Recompilation and Environment Processing.
ACM Transactions on Software Engineering and
Methodology, 3(1):3–28, January 1994.

[5] M.P. Atkinson and M.J. Jordan. A Review of the
Rationale and Architectures of PJama: a Durable,
Flexible, Evolvable and Scalable Orthogonally
Persistent Programming Platform. Technical report,
Sun Microsystems Laboratories Inc and Department
of Computing Science, University of Glasgow, UK,
2000. TR-2000-90,
www.sun.com/research/forest/COM.Sun.Labs.Forest.
doc.pjama review.abs.html.

[6] Borland Inprise Inc. C++ Builder 5.
http://www.inprise.com/bcppbuilder/.

[7] Borland Inprise Inc. JBuilder.
http://www.inprise.com/jbuilder/.

[8] Borland Inprise Inc. Delphi 5.
http://www.inprise.com/delphi/.

[9] R. Crelier. Separate Compilation and Module
Extension. PhD thesis, ETH Zurich, Institute of
Computer Systems, 1994.

[10] M. Dmitriev. Safe Evolution of Large and Long-Lived
Java Applications. PhD thesis, Department of
Computing Science, University of Glasgow, UK, 2001.
Available at http://www.dcs.gla.ac.uk/∼misha/papers.

[11] S. Drossopoulou, D. Wragg, and S. Eisenbach. What is
Java Binary Compatibility? In C. Chambers, editor,
Object Oriented Programing: Systems, Languages, and
Applications (OOPSLA), volume 33(10) of ACM
SIGPLAN Notices, Vancouver, BC, October 1998.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, Second Edition.
Addison-Wesley, June 2000.

[13] IBM Inc. The Jikes Open Source Project.
http://oss.software.ibm.com/
developerworks/opensource/jikes/project/index.html.

[14] IBM Inc. VisualAge for Java.
http://www-4.ibm.com/software/ad/vajava/.

[15] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, Second Edition. Addison-Wesley, 1999.

[16] Microsoft Corp. Microsoft Visual C++ Home Page.
http://msdn.microsoft.com/visualc/default.asp.

[17] R.W. Schwanke and G.E. Kaiser. Smarter
Recompilation. ACM Transactions on Programming
Languages and Systems, 10(4):627 – 632, October
1988.

[18] W. Tichy. Smart Recompilation. ACM Transactions
on Programming Languages and Systems,
8(3):273–291, July 1986.

[19] WebGain. Visual Cafe 4.0.
http://www.visualcafe.com/.

