
SEPTEMBER/OCTOBER 2003 Copublished by the IEEE CS and the AIP 1521-9615/03/$17.00 © 2003 IEEE 83

Editors: Paul F. Dubois, paul@pfdubois.com

David Beazley, beazley@cs.uchicago.edu

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

techniques and ideas. This installment is a departure; it dis-
cusses an essential problem I don’t know how to solve.

The title of this article refers to Rudolph Flesch’s famous
1955 book, Why Johnny Can’t Read, which called attention to
a nationwide decline in reading ability. Here, I want to talk
about another situation in which an important ability is lack-
ing: the ability to create significant, portable scientific soft-
ware. I’ll discuss some of the reasons this problem exists and
suggest some approaches to solving it that seem promising.

The Birth
of the Build Problem
The “build problem” is the task of creating a system that de-
livers a software system on a wide variety of platforms that
have various programming tools and configurations. Unfor-
tunately, the build problem’s dimensions are hard to mea-
sure. Thomas Epperly and Gary Kumfert did a survey of
code groups working in a variety of disciplines at Lawrence
Livermore National Laboratory.1 Their results suggested
that of the effort spent on modern scientific code, perhaps
10 and up to 30 percent of it (for small and large projects, re-
spectively) went into trying to solve the build problem. My
own experience confirms this estimate. If these estimates are
anywhere near accurate, the build problem represents a sub-
stantial part of scientific simulation budgets, yet almost noth-
ing is being done about it.

The build problem’s significance has grown in part from
successes in other areas of the program construction process.
The object-oriented revolution and the earlier modular pro-
gramming movement led to the idea of programs constructed
from existing reliable pieces, often supplied by outside “ven-
dors.” Moreover, the open-source movement and the Inter-
net’s continued development have made obtaining such pieces

and contributing to their evolution possible. Whereas a ma-
jor scientific program might have been nearly self-contained
a decade ago (with references to only a few mathematical or
graphical libraries), a modern program could rely on 20 or
more outside packages and program-building tools.

A code I work on, for example, uses 22 tools and libraries
that the code team did not write (not counting those things
usually available with the system such as compilers, linkers,
shells, and so on). It includes

• six mathematical packages,
• two packages for accessing physical property databases,
• two physics algorithm packages,
• one graphics library, and
• eleven computer-science tools and libraries.

Ultimately, this list means that we must build 22 tarballs on
whatever variety of platforms we have (in our case, everything
from Linux to massively parallel processors) using several dif-
ferent compilers, linkers, and other tools and system libraries.

The problem we run into is that few of the people sup-
plying outside software have access to the same set of plat-
forms and tools we’re using. Even when all else is equal, dif-
ferent system administrators configure file systems
differently, supply different default startup files and envi-
ronment variables, and keep various parts of the systems up
to date at different rates. The system manufacturers don’t
have identical header files, file locations, or tool interfaces—
rather, they have tools with different limitations and quirks.
Even the commands to unpack the tarball can vary.

This situation is rather frustrating: just when we’re start-
ing to solve the problem of how to create software using
reusable parts, it founders on the nuts-and-bolts problems
outside the software itself.

Three Parts of the Process
The build process essentially consists of three steps: config-
uration, compilation, and linking. In theory, they should fol-
low each other seamlessly. In practice, though, the line be-
tween compilation and linking blurs for C++ codes, and other
linking failures can occur at runtime when shared libraries are

WHY JOHNNY CAN’T BUILD
By Paul F. Dubois, with Thomas Epperly and Gary Kumfert

I N MY 10 YEARS OF EDITING THE SCIENTIFIC

PROGRAMMING DEPARTMENT, I’VE TRIED TO

SELECT ARTICLES THAT GIVE YOU REAL INFOR-

MATION YOU CAN USE OR THAT SHOWCASE NEW

84 COMPUTING IN SCIENCE & ENGINEERING

used. Complicating matters further, the build process also
must be compatible with the source-code control process.

Configuration is the mechanism for handling differences
in computing environments (that is, the set of all things that
can differ from one target location to another). Perhaps the
most-used tool in this area is autoconf, a part of the GNU
project. The information the configuration tool collects goes
to a build tool, which must recompile and relink those parts
of the software that must be rebuilt.

Because users build their software repeatedly after they
make small changes, calculating dependencies and subse-
quently rebuilding as little as necessary is a must. The standard
tool used here is make, one of the oldest parts of our infra-
structure. Actually, there is no single make—rather, there’s a
large set of programs with the same name and general behav-
ior written by various computer vendors, along with a GNU
variant called gmake. On some platforms, users employ inte-
grated environments instead. Getting software into or out of
Microsoft Windows, for example, is notoriously difficult. Like-
wise, various Macintosh platforms require different treatment.

Unfortunately, neither make nor autoconf is easy to use.
Large numbers of scientists do not use autoconf or under-
stand it; it is strictly a tool for geeks. The make program is
notoriously poor at dealing with different environments and
situations such as one process producing two products; it has
spawned many attempts to enhance or replace it, such as
Imake and Jam (see the related sidebar).

Who Can We Blame?
Is this mess simply inevitable? Not entirely—it’s artificially
difficult for several reasons.

First, language standards committees deliberately do not
deal with compilers, just the languages they must compile.
They don’t know or care if a compiler has a debug mode, or
how you invoke it, or whether invoking it and some other
option will be illegal. Likewise, such committees specify al-
most nothing about what a compiler will do to implement
the language. For example, the Fortran 90 committee did
not say anything about the data structures needed to pass ar-
ray descriptors or the mechanism by which the module in-
terface information would be retained. As a result, writing
portable interfaces to C routines or creating a portable in-
put file to make is difficult.

The intellectual justification for this position is that to
specify such matters would reduce potential compiler au-
thors’ creativity. Is this benefit worth the harm it causes? An-
other factor is that committees have significant representa-
tion from compiler vendors. Agreeing that things should be
done one way causes expense and difficulty for those who
currently do it another way. In short, we users are not part
of the process—just victims of it.

Second, linker technology is not standardized, and the tools
connected with it are horrible. Add the issues involved with
shared libraries, and you have a total mess. Let’s say that you
finish building a program and it tells you something about a

S C I E N T I F I C P R O G R A M M I N G

Dave’s Sideshow

THE WAR ON TERROR—
UH, I MEAN SPAM

L ately, it seems like I’ve done
very little real work other than

delete spam from my mailbox,
delete spam from email lists, curse
about spam under my breath, and
generally whine about spam to any-
one who would care to listen (which
hasn’t been that many people, I’m
sorry to report). I received a modest
11,000 spam email messages last
year, and this flood shows no signs
of abating. Sigh.

For a while, I considered the idea
of adopting a write-only approach
to email, but that really didn’t
seem too practical (although the
idea of sending out an occasional random no-reply email

proclamation to people seemed curiously attractive). In the
meantime, I continue to suffer from spam overload.

The current spam situation makes me long for the simple
days when I used to be the sysop of a dial-up BBS system
about 20 years ago. Life was good as a sysop. People from
all over would dial up and post interesting messages. Some-

times they would ring to chat. If a
user were annoying, you could just
delete his account. And you could
have loads of fun playing mind
games with would-be hackers and
software pirates.

Probably the high point of my
sysop career was the secret modifica-
tion I made to my BBS software that
let me tag certain users as pests (the
infamous “pest flag”). The pest flag
was reserved for that especially vile
class of users—you know, the ones
who always shouted incoherent
messages in all-caps or constantly
posted insulting drivel for no appar-
ent reason other than inciting flame

wars. The pest flag was also unique in that rather than sim-

SEPTEMBER/OCTOBER 2003 85

routine being missing—only you’ve never heard of this rou-
tine, and its name looks like it’s written in Martian. What are
you to do? Even worse, what if it tells you this only at runtime?

Third, as a consequence of Microsoft’s monopolistic hold
over business software, many business programmers do not
face so many portability issues, which means market share is
inadequate to induce progress in this area. On the contrary,
most vendors have attempted to “hook” users with their own
language extensions, tool sets, and development environ-
ments. Naive users often think that the language standard
is what their compiler will compile; they realize only later
that their product is painfully nonportable.

Even hooks have their problems: inadequate standards for
them exist between tools. It is quite common to want (or even
need) to specify linker options on the compile line, for ex-
ample, but there’s no standard way to do so. More seriously,
tools that check for memory use errors often want to inter-
vene in the link process, but there is no standard way to no-
tify the linker of that.

Finally, computer scientists on certain platforms can use
tools such as autoconf or Imake, albeit with some diffi-
culty. They frequently say to me that autoconf is “good
enough,” without seeming to realize how totally geeky it is.
Normal people—I’m talking people with PhDs in engi-
neering, physics, and mathematics—can’t use these things.
After all, there wouldn’t be much of an auto industry if you
had to be a mechanic to own a car.

Smaller Problem, Better Tools
Solving the build problem will require a two-pronged ap-
proach: making the problem smaller and improving the tools
that solve the problem. To make the problem smaller, we could

• get standards expanded to cover what needs to be covered
(we’d have to account for fewer differences);

• improve testing and debugging methodologies (tools
would have fewer idiosyncratic bugs to work around);

• use the Internet in more creative ways (we could acquire
knowledge about how to build packages on certain plat-
form–compiler combinations rather than having to use
tools such as autoconf); and

• increase our use of component approaches such as Babel
(we could avoid language interface problems).2,3

To improve our tools, let’s start with the linker. As far back
as 1976, Lawrence Livermore National Laboratory had a lo-
cally written link tool that told you exactly what was missing,
who asked for it, and exactly what routines loaded from
where. It operated on a routine level (not an object-file one),
and it didn’t complain about something being missing if a li-
brary asked for a routine in a library listed before it on the
link line. It wasn’t perfect, but it was miles ahead of the stan-
dard Unix link. A step forward would be to build a better,
standardized linker.

Such a linker could be key to solving another problem: de-

ply deleting a user’s account or restricting permissions, it
just made everything the pest performed completely invisi-
ble to everyone else. Post an idiotic message, and nobody
else ever sees it. Send email, and it’s silently never delivered.
Upload a file, and it never actually gets stored.

Of course, the key to implementing a really good pest
flag is ensuring that the pest remains unaware of his or
her special status. When pests log on to the system, their
messages should still appear as normal, sent email should
say that it was received, and uploaded files should still ap-
pear to be there. Invariably, pests would become rather
bored with the community and leave—mission accom-
plished. If you ask me, the Internet could use a pest flag
right now.

Reproducibility of Results
Reproducing the source code used to produce a scientific re-
sult is a subtle, and usually overlooked, aspect of scientific data
management. Oddly enough, this problem usually only arises
at the most inconvenient times: when you’re writing a paper
and you’re trying to summarize some work you did six months
earlier, for example. The only trouble is remembering all the
details of what you were doing at the time—especially if
you’ve made lots of code modifications. If you’ve encountered

similar problems and implemented a solution, I’d definitely like
to know about it. Better yet, consider writing an article!

The Aesthetics of Programming
In my spare time, I recently decided to take some music
classes in an attempt to learn how to play jazz piano.
What does this have to do with scientific programming,
you ask? Well, nothing, and I guess that’s the whole point.
In any case, as part of the class we are often presented
with certain artistic challenges—for example, to create an
engaging improvised solo using nothing but two notes or
perhaps nothing but long notes. Needless to say, this is a
lot harder than it sounds, and the end result rarely sounds
as good as you would like (at least it doesn’t for a novice
like me).

I’m starting to wonder whether this kind of approach
would work for an introductory programming class. I could
force students to write programs with all sorts of weird con-
straints like, “you’re not allowed to use the multiplication
operator” or “the goto statement is the only form of con-
trol flow—oh, and by the way, you’re only allowed to use
one function too.” Needless to say, this would probably
force students to come up with devious solutions. Imagine
the chaos and puzzled looks. Hmmm. Stay tuned.

86 COMPUTING IN SCIENCE & ENGINEERING

bugging. Writing good, portable debugging tools, especially
those that deal with multiple languages, is hard. For exam-
ple, David Beazley’s work on a Python–C integrated debug-
ger required unreasonable effort.4

Some open-source programs are close to universally
portable thanks to the efforts of a large, diverse user base. The
growth of programming languages such as Python and Perl
come to mind here. These packages in turn, use configuration
to run the C compiler and linker, which are the most portable
of underpinnings. It would seem in everyone’s best interests if
we could base our tool set on just this set of portable tools.

Los Alamos National Laboratory sponsored a “Software
Carpentry” design contest in January 2000 to elicit new ideas
and tools in a variety of areas related to software construction.
The Software Carpentry contest was based on the idea of
making Python-based tools, because Python is easy to read
and learn. If tools are written in an accessible language such
as Python, the set of contributors to them opens up to include
more of us. The winning designs in every category empha-
sized user customization and extendibility. Two of the con-
test’s categories were a platform-inspection tool to replace
autoconf and a build-management tool to replace make.

The fact that these were separate categories was controver-
sial—the boundary between the tools is part of the problem
rather than part of the solution. SCons (http://scons.
sf.net) won the make tool contest. SCons does part of the con-
figuration job and is increasingly doing more. The basic ideas
behind it come from Cons, a Perl-based tool. Perl, unfortu-
nately, is a difficult language for most scientists. After the design
contest, Steven Knight and others implemented the SCons de-
sign and have since attracted a growing audience of users.

SCons: A Modern Build Tool
I installed SCons on both a Linux box and a Windows XP
box by unpacking the tarball and executing

python setup.py install.

After installing SCons on Windows, you need to make a
scons.bat script to execute the C:\Python23\Scripts\
scons script, as is usual with Python applications, and put
it in your path. (If you don’t have Python you can get it from
www.python.org. For Windows, there is the usual prebuilt
installer.)

SCons admits from the first that building programs is al-
ways going to involve special cases: a certain file that cannot
be compiled with optimization when using a certain com-
piler, a local preprocessor that must be invoked, a tool that
produces multiple products, or a new language that SCons’
authors have never heard of.

Although it’s designed to be extendible and customizable,
SCons keeps simple things fairly simple. It is written entirely
in Python, which is pretty much everywhere. SCons also
tries to make it possible to write one input file to guide the
build on a variety of platforms, even though these platforms
might have different naming conventions for things such as
object files or library names.

Just as make looks for its input in a file named Makefile,
SCons operates off a user-written file that explains what is
to be built. This file is typically named SConstruct. As-
suming we have written a “Hello, world” program in file
hello.c, the SConstruct file needed to build it would
look like this:

env = Environment()

env.Program(‘helloworld’, [“hello.c”])

The first line constructs an environment, which you can cus-
tomize to build files a certain way. In this case, we add a target
to the default environment, which is an executable program
called helloworldwhose sources are given in a list supplied
as the second argument.

If we enter the command scons, the executable will be
built. Here it is on Linux:

> scons

S C I E N T I F I C P R O G R A M M I N G

Open-Source Software for Building and Configuration

A utoconf (www.gnu.org/manual/autoconf/) is the most widely used configuration tool, but it’s hard for authors to
learn and often confuses users.

make is a build tool that comes with every version of Unix, but every version differs in some way. The Windows version
is called nmake, but most Windows users use the Visual C++ environment with the build tool integrated into it.
Imake (www.dubois.ws/software/imake-stuff/) was something my group tried for a year or so, but again it was too

hard for scientists. (This Web site by Paul Dubois is not my Web site. As Yoda said, there is another.)
Cons (www.dsmit.com/cons/) is a Perl-based system about which some people think highly.
SCons (www.scons.org) is discussed more in the main article. It is a descendant of Cons. Some configuration is now sup-

ported too.
JAM/MR (perforce.com) is another build system that has attracted an enthusiastic audience.
Xenofarm (www.lysator.liu.se/xenofarm/) is a new attempt to centralize the build knowledge using a client-server archi-

tecture. It was derived from a method called Tinderbox used by the Mozilla team.

SEPTEMBER/OCTOBER 2003 87

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Building targets ...

cc -c -o hello.o hello.c

c++ -o helloworld hello.o

scons: done building targets.

SConscript files refers to the SConstruct file and any
files included in it via SConscript commands. Also, SCons
can traverse subdirectories or restrict itself to specific targets.

With make, moving to Windows would be a job, but with
SCons it just works:

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Building targets ...

cl /nologo /c hello.c /Fohello.obj

hello.c

link /nologo /OUT:helloworld.exe hello.obj

Note that on Windows, SCons appropriately renamed my
target to helloworld.exe, knew that Windows object files
are named “.obj” not “.o”, and knew the right way to run the
Visual C++ compiler and linker via the command line.
SCons’s design contains features like this to reduce the dif-
ferences between systems. We’ll see another example shortly.

If I add the argument –debug=tree to my SCons com-
mand, I get a listing of my dependency tree:

+-.

+-SConstruct

+-hello.c

+-hello.obj

| +-hello.c

+-helloworld.exe

| +-hello.obj

| +-hello.c

+-stdio.h

And I don’t even need a “clean” target because: scons –c
does the job:

> scons -c

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Cleaning targets ...

Removed hello.o

Removed helloworld

scons: done cleaning targets.

Suppose now that I want to put the calculation of the mes-
sage into a static library, with header file hello.h and source
file hello.c in a subdirectory src. I modify the original
hello.c in this directory to include hello.h and call the
function that it defines to get the message. I modify SCon-
struct like so:

env = Environment(CPPPATH=[‘src’],

LIBS=‘hlib’, LIBPATH=‘.’)

env.StaticLibrary(‘hlib’, [‘src/hello.c’])

env.Program(‘helloworld’, [‘hello.c’])

SCons scans my input files for dependencies. I tell it where
to look for the include files using the CPPPATH variable of the
SCons environment env. Now when I run scons I get

> scons

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Building targets ...

cc -Isrc -c -o hello.o hello.c

cc -Isrc -c -o src/hello.o src/hello.c

ar r libhlib.a src/hello.o

ranlib libhlib.a

c++ -o helloworld hello.o -L. -lhlib

scons: done building targets.

Again, this same SConstruct file will work on Windows.
Of course, moving the specification for the library into a sub-
sidiary SConscript file in the src directory is straightfor-
ward, and when working in the src subdirectory, you can re-
build just that library or the whole program. Note that
nowhere did I have to know that the library I wanted to call
hlib would be libhlib.a on this platform. That’s good,
because on other systems, this wouldn’t be the library’s name.

SCons also supports parallel builds with the –j flag, sim-
ilar to gmake.

Already SCons supports quite a few languages and other
tools, notably including Latex and PDF file creation, f77, and
Java. It has extensive facilities for allowing options and
choices of tools, and by using it, you can set up many differ-
ent targets with different environments. Most importantly,
it is designed to let you add your own build tools and depen-
dency scanners, so that the system is open rather than closed.

One hint when looking at the SCons source and docu-
mentation: the examples are good, but hard to find. You’ll

find them hiding near the end of the main page for scons.
One thing to keep in mind is that the SConstruct file is a
Python input file, so you have the full power of a program-
ming language—you can decide to include a certain file or
not on a given platform, or you can decide to use a certain
compiler flag.

D espite the superiority of Flesch’s phonics method, he
later had to write a book entitled, Why Johnny Still

Can’t Read. New tools, even if far superior, cannot and will
not be adopted very quickly. Using the dual approach of re-
ducing the problem while improving our tool set is impor-
tant and offers a greater chance at success.

In 1984, I began writing Basis (http://basis.llnl.gov), which
was probably the first widely used steering system for scien-
tific programs. That year, I read a business-school paper that
claimed the average time for a new technology’s widespread
adoption was 17 years. I laughed. Surely, I thought, this
modern generation of ours wouldn’t take that long. We were
about to have the Internet, the world would live on Internet
time, and the government would give me stock options.

I stopped laughing in 2001, when it dawned on me that
steering was just then becoming widespread in scientific
programming.

Although it might take some time, we have to start some-
where. Otherwise, we’ll look back in 20 years and discover
that Johnny and Jane still can’t build. We can do a lot as a
community, and government and the industry can do much
to help. Government and industry have done a lot to en-
courage the standards process and the creation of pioneer-
ing technology; they just have to push harder to remove ar-
tificial barriers to progress.

References
1. G. Kumfert and T. Epperly, Software in the DOE: The Hidden Overhead of

“The Build,” UCRL-ID-147343, Lawrence Livermore Nat’l Lab., 2002.

2. S. Kohn et al., “Divorcing Language Dependencies from a Scientific

Software Library,” 10th SIAM Conf. Parallel Processing, SIAM Press, 2001,
CD-ROM.

3. T. Epperly, S. Kohn, and G. Kumfert, “Component Technology for High-
Performance Scientific Simulation Software,” Working Conf. Software Ar-
chitectures for Scientific Computing Applications, 2000, Int’l Federation for
Information Processing, CD-ROM.

4. D. Beazley, “WAD: A Module for Converting Fatal Extension Errors into
Python Exceptions,” Proc. 9th Int’l Python Conf., Foretec Seminars, 2001,
pp. 1–10.

Paul Dubois is a computer scientist in Lawrence Livermore National Lab-

oratory’s Center for Applied Scientific Computing. His career includes pi-

oneering work on computational steering and the use of object tech-

nology for scientific programming. He is a coeditor of CiSE’s Scientific

Programming department. He has a PhD in mathematics from the Uni-

versity of California, Davis.

Thomas Epperly is a computer scientist in Lawrence Livermore National

Laboratory’s Center for Applied Scientific Computing. His research inter-

ests focus on software frameworks and standards for large-scale compu-

tational modeling of physical systems. He has a BS chemical engineering

from Carnegie-Mellon University and a PhD in chemical engineering from

the University of Wisconsin. Contact him at tepperly@llnl.gov.

Gary Kumfert is a computer scientist in Lawrence Livermore National

Laboratory’s Center for Applied Scientific Computing. His research in-

terests include component technology for scientific programming and

model coupling on massively parallel computations. He has a BS in ap-

plied mathematics and a PhD in computer science, both from Old Do-

minion University. Contact him at kumfert1@llnl.gov.

S C I E N T I F I C P R O G R A M M I N G

Correction

Last issue’s Scientific Programming ran the incorrect
email address for John Reid. His correct email address is
j.k.reid@rl.ac.uk. We regret any confusion this error
might have caused.

Submissions: Send two copies, one word-processed file and one PostScript file, of articles and proposals to Francis Sullivan, Editor in Chief, CiSE, 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720-1314; cise@computer.org. Submissions should not exceed 6,000 words and 15 references. All submissions are subject to editing for clarity, style, and space.

Editorial: Unless otherwise stated, bylined articles and departments, as well as product and service descriptions, reflect the author’s or firm’s opinion. Inclusion in CiSE does not
necessarily constitute endorsement by the IEEE, the AIP, or the IEEE Computer Society.

Circulation: Computing in Science & Engineering (ISSN 1521-9615) is published bimonthly by the AIP and the IEEE Computer Society. IEEE Headquarters, Three Park Ave., 17th
Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, CA 90720-1314, phone +1 714 821 8380;
IEEE Computer Society Headquarters, 1730 Massachusetts Ave. NW, Washington, DC 20036-1903; AIP Circulation and Fulfillment Department, 1NO1, 2 Huntington Quadrangle,
Melville, NY 11747-4502. Annual subscription rates for 2003: $42 for Computer Society members (print only) and $48 for AIP member society members (print plus online). For
more information on other subscription prices, see http://computer.org/subscribe or www.ezsub.net/cise. Back issues cost $10 for members, $20 for nonmembers. This magazine is
available on microfiche.

Postmaster: Send undelivered copies and address changes to Circulation Dept., Computing in Science & Engineering, PO Box 3014, Los Alamitos, CA 90720-1314. Periodicals
postage paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail Agreement Number 0605298. Printed in the USA.

Copyright & reprint permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US copyright law for private use
of patrons those articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222
Rosewood Dr., Danvers, MA 01923. For other copying, reprint, or republication permission, write to Copyright and Permissions Dept., IEEE Publications Administration, 445 Hoes
Ln., PO Box 1331, Piscataway, NJ 08855-1331. Copyright © 2003 by the Institute of Electrical and Electronics Engineers Inc. All rights reserved.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

