
Towards a Versioning Model for Component-based Software Assembly

Jaroslav Gergic
Charles University, Faculty of Mathematics and Physics

Department of Software Engineering
Malostranske nam. 25, 118 00 Prague, Czech Republic

gergic@nenya.ms.mff.cuni.cz, http://nenya.ms.mff.cuni.cz

Abstract

The world of software development has rapidly changed
in the last few years due to the adoption of component-based
technologies. The classical software configuration manage-
ment, which deals with source code versioning, becomes
insufficient in the world where most components are dis-
tributed in a binary form. This paper focuses on solving ver-
sioning issues in the SOFA/DCUP component environment,
however, many ideas introduced in this paper are applica-
ble in other component-based environments. The paper in-
corporates the following versioning issues: component and
type identification, component and type evolution, compo-
nent version description model and component retrieving
based on the version description model. It also outlines
a prototype repository designed as a proof of concept.

1. Introduction

1.1. Software configuration management

Software configuration management (SCM) is a very im-
portant constituent of software engineering. SCM deals
with development, assembly, configuration, updating and
maintenance of software systems. SCM covers all the
stages of software evolution: project management, software
development, application assembly/configuration and soft-
ware systems maintenance [6]. Majority of the SCM tools
focus on the development stage. These tools are typically
file-oriented, because they deal with the source code ver-
sioning. Common examples of the file oriented tools are
the Revision Control System (RCS) [22] and its network-
enabled variant, the Concurrent Version System (CVS).
Both tools are widely accepted by the open-source com-
munity. Several SCM tools evolved from the basic file-
versioning utilities in different directions: some include
support for process management and workflow, other sup-
port long and nested transactions required for staged soft-

ware development. This section provides a brief introduc-
tion into basic SCM-related terms used in this paper. For
more detailed overview of recent status in SCM, we refer
the reader to [6] and [2]. We briefly evaluate the existing
SCM and other related technologies in theGoals and Moti-
vationssection.

Versioned entity. Versioned entity is a mutable item
(file, object, component, etc.) which evolves in time
and space and can exist in multiple incarnations. Dur-
ing the development stage, typical versioned entities are
source code files, exported data structures and public inter-
face/component declarations. During the software assem-
bly stage we need to track component binaries, distribution
packages or assemblies. During the software system main-
tenance and upgrading we have to maintain the deployment
descriptors, configuration and persistent state of the compo-
nents in a particular software environment. The versioned
entities change their nature during the different stages of
a software system life-cycle. Each phase deals with dif-
ferent kind, granularity and quantity of versioned entities
and thus imposes quite different requirements on a version
model.

Version, revision, variant. Revisions are versions of the
same entity which are created by repetitive modifications of
the original entity in time. The revisions can be easily or-
dered along the time axis. The successor/predecessor rela-
tion is implicit to the entity revisions. Variants are versions
of the same entity which can occur in parallel with the re-
spect to the time axis. The successor/predecessor relation
typically does not have sense when referring to the variants.
Both the revisions and variants of the same entity are called
versions. Versions are immutable items: a new version is
created when modifying any existing version.

Version group, version graph, version grid. Version
group is a set of immutable item versions which belong to
the same versioned entity. The version group of a particu-
lar entity can be organized into a directed graph. Particular
versions are nodes of the graph and edges are labeled with
the name of the relation which has been used to derive one



version from another (revision, branch, merge, etc.). An
alternative approach to the version group organization uses
a set of named attributes attached to each entity version de-
scribing its properties. The version space then maps to an
n-dimensional grid having one dimension for each named
attribute.

Extensional versioning, intentional versioning.Exten-
sional versioning allows only retrieval of pre-existing ver-
sions identified by their unique version identification. The
intentional versioning allows to retrieve versions by spec-
ifying a logic constraint, so the versions can be either re-
trieved from the version repository or constructed on-the-fly
according to the specified criteria. The most common ex-
ample on the intentional versioning is probably conditional
compilation directed by C preprocessor.

1.2. Software components

The world of software development has rapidly changed
in the last few years due to the adoption of component-
based technologies. This process induces changes in the
area of software configuration management. The majority
of software today is not developed from scratch. A typical
up-to-date software system is composed from a set of soft-
ware components, these components are partially designed
by a development team and partially obtained from third
parties. A precise definition of the termsoftware component
has not been established yet, however, there is a common
sense of what properties are typical for a piece of software
in order to get it labeled as a software component. Those
typical properties are:

• autonomy(a software component is the unit of deploy-
ment/configuration)

• component provisions(a formally declared set of ser-
vices a given component provides)

• component requirements(a formally or informally de-
clared set of assumptions and constraints imposed on
a component deployment/runtime environment)

• abstraction and information hiding (a component
hides its implementation details and describes its be-
havior in terms of its provisions and requirements)

1.3. SOFA/DCUP

SOFA (SOFtware Appliances) is a research project
which tries to analyze all the requirements for a modern
component-based technology (trading, licensing, billing,
versioning, security, etc.) and design a solution for these
requirements. The DCUP (Dynamic Component Updat-
ing) project extends SOFA technology with the capability to
change components at software system runtime. This fea-
ture enables such options as silent updating or automated

software re-configuration. We briefly describe important
parts of the SOFA/DCUP architecture with the respect to the
versioning issue. For more detailed information we refer the
reader to previously published work about SOFA/DCUP.
[15], [16]

Interfaces. SOFA/DCUP architecture uses CDL (Com-
ponent Definition Language [8]) to specify interfaces, com-
ponent frames and architectures. CDL is an extension of
OMG IDL. A basic building block of component specifi-
cation is an interface. The SOFA interface has syntax and
semantics very similar to the OMG IDL interface element.
The only extension is that the CDL interface also contains
protocol specification. A protocol is a regular-like expres-
sion used to partially express an interface semantics [17].
Such a protocol specification is considered to be a part of
an interface type, which means a protocol can have an in-
fluence on the substitutability of interfaces.

Component frames.a Component frame is a collection
of providesinterfaces andrequires interfaces bound with
a frame protocol. Services a component provides are spec-
ified in the provides section of its definition and services it
requires from its environment are specified in the requires
section. This feature allows flexible and automated tracking
of type dependencies in a software system. The frame pro-
tocol specifies a component frame behavior. It can be gen-
erated from provides and requires interface specifications
or it can be written by hand, however, it only can tighten
the contract imposed by the interface protocols of provides
and requires interfaces. When a component frame is used
in a software system, all the requirements should be sat-
isfied and all the provisions have to be bound to requires
interfaces of other components. It means that SOFA com-
ponents are (like COM components) bound at the CDL in-
terface level. a component frame together with interfaces
specification provides ablack-box viewof a SOFA compo-
nent.

Architectures and implementations. SOFA supports
component nesting and compound components. A SOFA
component can use other services in a system using the
client-server relationship (bindingrequires interfaces to
correspondingprovidesinterfaces) or by aggregating other
components. SOFA differentiates between primitive com-
ponents and compound components. Only primitive com-
ponents can contain real functionality. Compound compo-
nents are provided to bind several smaller components to-
gether. A parent component delegates incoming requests
to its nested members and subsumes outgoing requests
through its own requires interfaces. This mechanism has
a great impact on the architectural scalability of applica-
tions based on SOFA architecture and thus allows the build-
ing of software systems from fine-grained components with
the power of both abstraction and refinement. Bindings be-
tween a parent component and its direct sub-components

2



are also specified in CDL. This is calledarchitecture speci-
fication. Architecture specification also contains a protocol
specification - the architecture protocol. The architecture
protocol is usually generated from frame protocols of nested
components and is necessary when checking the confor-
mity of architecture against the component frame of a parent
component. This feature allows for static checking whether
designed architecture violates component frame specifica-
tion or not. Architecture specification at the CDL level
provides agray-box viewof a SOFA component. Because
nested components are identified only using their compo-
nent frames in an architecture specification, each architec-
ture can have multipleimplementations(instantiations) de-
pending on a substitution of particular nested components.

1.4. Structure of the paper

The following section summarizes our goals and moti-
vations. It also briefly evaluates the existing solutions and
related work. The section 3 describes all the aspects of the
proposed version model, including identification, descrip-
tion and retrieval of versioned entities. It also describes
the prototype implementation. The section 4 summarizes
this paper and outlines the current status and possible future
work in the research area.

2. Goals and motivations

2.1. Motivations

During the design and development of the SOFA/DCUP
architecture a requirement for a component-based version-
ing model arose. There was a need to provide the develop-
ers designing their applications in SOFA/DCUP with a tool
allowing them to deal with different component versions.

A typical component-based application is composed of
several pre-existing components while some other (applica-
tion specific) components are developed by the application
developer. Every component used in a particular applica-
tion can evolve during time. Moreover, sometimes multiple
different components provide similar or identical function-
ality and some of them can be substituted at a given place
in the application architecture.

The component selection and substitution into the appli-
cation architecture we call anapplication assembly process.
The application assembly can be driven manually by the ap-
plication developer at the design time. It can be postponed
to the application build phase, where the assembly process
is driven by predefined composition rules, or it can dynam-
ically proceed even at runtime. In all the above cases, there
is a need to provide version management tools to help the
application developer to manage this complex task.

2.2. Related work

We started to evaluate the existing solutions to software
versioning in order to find a suitable version model, which
can aid and partially automate the software assembly pro-
cess in the SOFA/DCUP environment. The results of our
investigations were quite unsatisfactory. The most popular
tools used for software versioning (CVS, RCS) are based
on the source-code versioning [22]. These systems do not
have a notion of a software component – a versioned entity
is a text file. The source-code version systems are mainly
focused to revisioning. Support for variants is limited to
branching and typically the variants are constructed using
conditional compilation, i.e., variants are not captured the
its version repository. Retrieval capabilities of these sys-
tems are also quite limited:get-latest, get-by-date, get-by-
a-version-number, get-by-a-symbolic-name. There are also
other file-oriented version models, e.g.change-set model
(Apollo DSEE) which makes up a configuration using base
configuration and several change-sets, or thelong transac-
tion model (Sun NSE) which extends a change-set model
with the support for nested transactions [6]. However, these
models strongly reflect the requirements of a development
process instead of enabling mechanisms for process inde-
pendent version retrieval.

We also examined a representative of the process-
oriented versioning tools, the Adele Configuration Manager
[5]. We realized that such a tool can hopefully satisfy our
requirements, but the cost of adoption is very high. The tool
is very general, because it tries to cover all of the develop-
ment stages including development process and not just the
software assembly task. The user of such a system is forced
develop its own versioning model using scripting, triggers,
events and otherimperativeprogramming tasks on the top
of the existing general-purpose versioning engine.

To our knowledge, there is no general component-based
versioning model. We evaluated the following systems with
the respect to versioning support: OSF/RPC, MS COM and
CORBA [11], [18], [13], [14]. None of these technologies
provide a versioning model sufficient for a modern com-
ponent based system. Their versioning models are tightly
bound to the underlying technology and are not flexible
enough to be adapted to a completely different component
architecture like SOFA. One of the common properties of
those version models is their versioning units are very small
– individual component interfaces and data structures. The
application developer deals with versioning on many places
in the code which introduces significant overhead. The re-
sult is, the software producers often avoid using even the el-
ementary available versioning features in their component-
based products in order to reduce development cost.

We also evaluated popular distribution package man-
agers like RedHat Package Manager (RPM) [19], De-

3



bian Package Manager and assembly versioning support in
MS .NET [10]. These technologies feature some interesting
concepts not present in many component versioning mod-
els. For example: package dependency tracking and multi-
ple variants support. On the other hand, those systems have
no notion of software components or data types, so they
lack many features required for semantically rich version
description.

We are aware of few research projects related to the topic
of this paper. For exampleSource Tree Composition[4]
deals with software package assembly, but is assumes the
software components are available in source code. The
composition process builds the compound packages by hi-
erarchically nesting the build process tasks of their sub-
components. The project does not further explore the area
of the version attributes and their type system and/or value
taxonomies.

The work described in [9] deals with software compo-
nent retrieval based on aconcept latticeof formal compo-
nent specifications. The approach based on a formal specifi-
cation language works well applied to the model examples,
but it is very hard to imagine to scale this approach to de-
scription of real software components. Taking the complex-
ity of the today mainstream software into account, a com-
plete formal specification seems to be impossible. The idea
of using concept lattices for knowledge representation is
also described in the following publications: [20], [12].

You will see in the section 3, that we are using partial
ordered sets to describe attribute value taxonomies. This
idea has been influenced by the concept lattices, however,
we realized we can not guarantee every attribute value tax-
onomy holds all the properties necessary to form a lattice
structure [3].

2.3. Version model requirements

The results of our version models evaluation study, led
us to the decision to design a new version model for the
SOFA/DCUP from scratch. The following features that the
version model must provide were identified:

1. the model focuses on a single task – software assembly

2. the model allows to define components, interfaces and
other high-level concepts as first-class entities

3. the model provides unique identification of versioned
entities in time and space

4. the model supports revisions as well as variants for ev-
ery versioned entity

5. the model supports encapsulation in order to scale to
large software systems

6. the model provides powerful retrieval capabilities us-
able during design, assembly and runtime

The lessons we took during the existing systems evalua-
tion were important also in one additional aspect: It is not
a good design to tie a versioning model to an underlying
component model. Such a tightly bound version model is
hard to evolve along the underlying component model. It is
almost impossible to integrate several component technolo-
gies into a single system while each technology uses its own
versioning model and different terminology.

3. A version model for component assembly

Considering the results of the versioning models evalu-
ation and given the requirements above, we designed our
versioning model as a flexiblemeta-modelallowing to in-
stantiate aconcrete versioning modelfor a particular com-
ponent model or a software architecture. Such a meta-
modeling capability can also serve as an abstraction layer
for a conceptual integration of different component tech-
nologies. On the other hand we limit ourselves to the soft-
ware component version description and retrieval. We do
not cover other aspects of an end-to-end versioning system
like development process support (locking, triggers, script-
ing, etc.). Our meta-modeling is strictly declarative, it is
similar to a relational schema declaration. Our prototype
repository comes with pre-defined entity and relationship
types for SOFA/DCUP architecture.

The structure of this section follows all the important el-
ements of the described versioning model framework. We
discuss the issue of establishing a naming convention for
version identification first (3.1). a well defined identifica-
tion schema is an essential building block for any scalable
version model. Once having the identification schema es-
tablished, we discuss how to describe the versioned entities
using version attributes and how to capture the relations be-
tween the versioned entities (3.2). Since every versioned en-
tity (and its respective versions) are uniquely and uniformly
identified, their “description” is accomplished in a generic
way by attaching attribute values and relation bindings to
their unique identifications. The subsection 3.3 enumerates
viable options and describes a chosen solution for storing
the versioned entity descriptions. The last subsection (3.4)
describes the query language we define to retrieve the infor-
mation about the versioned entities. The language allows
to specify a set of constraints (aquery) and the versioning
engine returns a set of versioned entities which conform to
the given constraints. A special query language was needed
in order to express the unique features provided in our ver-
sioning model.

3.1. Version identification

The identification of versioned entities is an issue when-
ever a technology should support the integration of com-

4



ponents provided by different vendors during an uncon-
strained time period. According to the terms defined above
we can view the identification of a particular entity version
as a two-step process: (1) we have to identify the entity
(which evaluates to a version group), (2) and identify a par-
ticular version in a given version group. Another approach
can use single-step version identification and assign a glob-
ally unique identification directly to a particular entity ver-
sion - using a flat-space identification domain. Regardless
of the identification assignment process, we are using the
term Universally Unique Identification(UUID) for entity
version identification.

Other criteria for version identification is whether the
UUIDs are human-readable or not. Both approaches are
used in the real world. Human-readable version identi-
fication is typically used together with a two-step iden-
tification process, so given a UUID the user can recog-
nize also a version group. As an example of this ap-
proach we consider the Red Hat Package Manager (RPM)
[19] naming schema used in many Linux distributions.
For example, given the following RPM package UUID:
apache-1.3.9-8mdk-i586.rpm , the user can detect the
version group (apache ), the revision number (1.3.9 )
and other attributes used to denote a particular package
version. A typical example of a flat-space identifica-
tion schema using human-unreadable UUIDs is Microsoft
COM [18] or DCE RPC [11] which use 128-bit hex-
adecimal UUIDs generated by software development tools:
148BD520-A2AB-11CE-B11F-00AA00530503 .

Scope of versioning. Majority of current component
technologies attaches the version identification to individual
interfaces and components. The versioning model main-
tains and handles relations between individual interfaces
(classes, components). Many of these technologies are in-
spired by the original DCE-RPC standard. These old mod-
els are suitable for simple software systems with a small
number of versioned interfaces. The complexity and main-
tenance overhead is growing very rapidly when increasing
the number of versioned entities - interfaces, classes, com-
ponents. We can say, from the point of view of our today
knowledge, that an interface/component based versioning
models became insufficient for current complex software
systems. Our solution reflects the real-world practice used
in many software environments. We moved versioning to
the scope ofdistribution packages. All the versioned en-
tities (types, interfaces, classes, components) are identified
in the scope of a distribution package they are bundled in.
A typical software package is developed as a unit, so that
the developer does not need to care about versioning when
referring to the entities inside the package. Version identifi-
cation issue occurs only when referring to external entities
in other distribution packages. This approach reduces ver-
sioning complexity and overhead for the developers.

We propose to use human readable UUIDs to identify
distribution packages. Following the two-step process de-
scribed above, a distribution package UUID has two com-
ponents. The first part of the UUID is a globally unique
package name. We prefer reversed Internet-domain names
used in the Java Platform, because they provide safe and
well-established convention resulting in human-readable
identification strings. The second part of the UUID is ver-
sion identification – an arbitrary string which uniquely iden-
tifies a particular distribution package version within its
version group (a version group is identified by the distri-
bution package name). We specify neither format nor se-
mantics of the version identification string. The informa-
tion about properties of a given distribution package is de-
coupled from the version identification. We prefer to use
version attributes and relations as a more flexible and pow-
erful way of describing properties of distribution packages.
The following two examples illustrate the proposed naming
convention, please note the package UUID inbold :

• com.sun.JDK/1.2.2 /java.util.Map
• org.w3c.DOM/Level1 /org.w3c.dom.Node

3.2. Version attributes and relations

Version attributes are properties describing a particular
entity version, e.g. a supported operating system, an opti-
mization level, run time libraries and many other. It may
seem that the version attributes apply to the version mod-
els usinggrid version spaceonly. When investigating the
issue more deeply, we note that version attributes also oc-
cur in the version models based on the version graph space
concept. In these models the version attributes are often en-
coded directly into entity version UUIDs (RPM packages)
or they are attached as labels to the edges of a particular
entity version graph (RCS).

Almost all the version models support some kind of ver-
sion attributes. The major difference between the grid-
space and the graph-space version models is in the flex-
ibility of using version attributes. In the case of grid-
space models, an entity can have possibly unlimited num-
ber of version attributes attached. In the case of graph-
space models, a number of attributes is determined (and
limited) by the number of UUID components (RPM) or
a version graph topology and its branch-naming conven-
tion (RCS, CVS). We consider the grid-space concept
as a generalization of graph-space (naming-convention)
based version models. For example an RPM package
UUID apache-1.3.9-8mdk-i586.rpm can be rewritten
as a list of attributes:entity=apache , revision=1.3.9 ,
release=8mdk , processor=i586 .

Version relations are used to describe connections be-
tween versioned entities. A relation can be defined between
entities (version groups), so that it relates sets of objects,

5



or a relation can be defined between concrete entity ver-
sions (particular objects), for example:ftpd requireslibc

versusftpd2.5 requireslibc5 . The dependency relation
(requires) is one of the most common relations the develop-
ers are dealing with. It is quite often expressed in terms of
a programming language (C/C++include , Javaimport )
rather then in terms of a versioning model. Consider-
ing a relation-aware versioning model, such programming-
language expressed relations can be relatively easily cap-
tured by an automated tool and represented in the version
model together with other explicitly constructed relations.

Relations versus attributes. Attributes can be con-
sidered as a special case of relations. E.g. an attribute
OS="Linux" can be easily translated intorequiresrelation.
The dividing edge between version attributes and version
relations can be based on the fact whether the “related” ob-
ject is aversioned entityrecognized by a given versioning
model or it is anexternal entity. If the “related” object is
a versioned entity, a version relation should be established.
If the “related” object is an external entity to the versioning
model, the “fact” should be modeled as a version attribute.

OS


UNIX
 Windows


Win9x family
WinNT family


AIX
 Solaris
Linux


RedHat
Caldera


Suse
 Win95
 Win98
 WinME
WinNT 4.0
Win2000


other


EPOC


WinCE


PalmOS


Figure 1. An operating systems tree.

Attribute value taxonomies. Other versioning models
typically state that the versioned entities can have named
attributes. Some versioning models also allow to specify
attribute types, but majority of systems uses an arbitrary
string as the attribute value. Simply speaking: version at-
tributes are name-value pairs in a typical case. Our version-
ing model distinguishes two types of attributes:descriptive
and taxonomic. The descriptive attributes correspond to
generic entity attributes as used by other versioning mod-
els. These attributes are useful for unordered information
pieces like company name, URL, author name and similar
attributes. The taxonomic attributes provide more informa-
tion about their value domains: enumeration of legal values
and a taxonomy of the values. Taxonomic attributes are use-
ful especially for classification of versioned entities. Let us
explain the concept of taxonomic attributes on several ex-
amples.

Consider a version attributeoperating system(OS) iden-
tifying the operating system required by a particular entity
version. You can leave the value domain of the attributeOS

OS


UNIX
 Windows


Win9x family
WinNT family
AIX
 Solaris
Linux


RedHat
Caldera
 Suse
 Win95
 Win98
 WinME


WinNT 4.0
Win2000


other


EPOC
WinCE


SERVER
 DESKTOP
 PDA


PalmOS


Figure 2. An operating systems poset.

unspecified, however, this significantly reduces the retrieval
capabilities - in general you can test the entity versions for
equality only:OS="Windows 95" . You are unable to issue
queries like: Get me all components for any Win9x com-
patible OS. or Get me components for any UNIX operating
system.The simplest possible solution to this problem is to
create a category tree for theOSattribute. See Figure 1 for
a fragment of such a category tree.

The category tree on Figure 1 can easily solve the ques-
tions mentioned in the previous paragraph, but it can be very
constraining to try to construct a category tree in every situ-
ation. Moreover, sometimes it is impossible to create a tree
because some nodes belong to more than one branch – this
problem typically occurs when trying to mix and combine
several criteria into one taxonomy. Considering our OS ex-
ample: some users can prefer the classification based on
OS families (UNIX, Windows, ...) while others can pre-
fer categories based on the type of usage of operating sys-
tems (server, desktop, PDA, etc.). The result of this anal-
ysis is obvious: the tree-structure is not sufficient to rep-
resent the knowledge about version attribute value taxon-
omy in a general case. We have to look for a more general
structure to represent version attribute value taxonomies.
Such a structure should support multi-criterial classifica-
tion of elements. The simplest algebraic structure which
fulfills our requirements is the partially ordered set (poset)
structure [3]. Figure 2 shows a poset covering the knowl-
edge represented by both the classification criteria men-
tioned above applied theOS domain. The true power of
the poset representation becomes more evident when think-
ing queries like:“Get me UNIX operating systems usable
for desktop.” or “Are there any Windows-based operating
systems for PDA?”

Posets are used in our versioning model to structure val-
ues of taxonomic attributes. Each taxonomic attribute pro-
vides at least one poset taxonomy covering whole attribute

6



value domain. Any taxonomic attribute can also provide un-
limited number of additional taxonomies describing other
aspects of the attribute. The additional taxonomies can
cover only a subset of the attribute value domain and pro-
vide anypartial orderof these values. Using the taxonomic
attributeOS(see above) we can easily define for example re-
lation successor/predecessorwhich will describe evolution
of operating systems. This feature enables queries like:Get
components of type T for Win95 or newer.Figure 3 demon-
strates a fragment of such an optional taxonomy.

Win95
 Win98
 WinME


WinNT 4.0
 Win2000


successor

relation


Figure 3. A successor relation fragment.

The optional taxonomies are not limited to a single at-
tribute. In general case – following the mathematical defi-
nition of the termbinary relation– a relation can be defined
between any pair of the taxonomic attributes. This enables
us to defineconstraints. For example having the taxonomic
attributesOSandPROCESSOR, we can define theruns on

relation describing the matrix which operating systems are
implemented for a particular processor and vice-versa.

Summary. Taxonomic attributes with their mandatory
poset taxonomies and additional optional taxonomies bring
a new power to describing versioned entities using version
attributes. When using taxonomies, the user knows not only
the value of a particular attribute but also the “meaning”
of the value. This knowledge enables a new category of
advanced queries allowing to extract more information from
the version repository.

3.3. Version repository

There are two possible approaches to version attribute
and relation handling. One possible approach is to ap-
pend a special meta-information section to each distribu-
tion package. Such a meta-information section contains at-
tributes and relations information associated with a particu-
lar distribution package. In case a given package references
other distribution packages, the user is forced to download
the referenced packages recursively in order to access their
meta-information. This approach leads to a distributed ver-
sion model without any central point of control. Other pos-
sible solution is based on theversion repositoryconcept.
A version repository contains version-related information
for all versioned entities maintained in a particular software

system. Such a version repository (in contrary to the first
solution) can also store pieces of information which do not
belong to any particular distribution package - system-wide
version information (such as attribute value taxonomies).

We chose the repository-based approach with separate
version and component repositories. The version repository
serves as an search engine which allows the user to query
the repository and obtain a set of UUIDs of a particular en-
tity type as a result. The UUIDs then can be used to re-
trieve the physical components from the component repos-
itory. The chosen approach clearly de-couples versioning
and a particular component technology and therefore allows
us to study also the software systems that offer limited or
no versioning support. The system-wide version repository
also adds possibilities for global analysis of version infor-
mation across the whole modeled system.

We use the concept of object oriented database to model
our version repository. There is a clean mapping between
versioned entities, entity attributes and entity relations on
the versioning side and objects, object attributes and ob-
ject relations on the database side. The versioned entity
UUIDs are mapped directly to the persistent object refer-
ences - often referred to asobject identifications(OID) us-
ing object database terminology. Using the object-database
paradigm we can easily characterize potentially any com-
ponent/versioning model.

The proposed versioning model goes a step beyond
a generic object database concept by emphasizing the
versioning-related aspects. It allows to define both the en-
tity relations and attribute taxonomies, including their re-
lational properties (reflexivity, symmetry, transitivity), in
a declarative way. For example, thesuccessor taxonomy
on Figure 3 is defined as transitive, so the user is required to
enter only the immediate successor for each value. The tran-
sitive closure is built by the versioning engine. The same
holds for the poset taxonomies like theOS taxonomy on
Figure 2. The user only defines the properties (reflexivity
and transitivity in this particular case) and enters the infor-
mation about thearcsbetween the nodes. The reflexive and
transitive closures are built by the versioning engine, so that
the query evaluation can accommodate not only the arcs but
also thepathsvisiting multiple nodes of the poset.

M-cube is the code-name of the prototype version repos-
itory implementation. We made this prototype to be our
testing environment which enables us to test the version
model described in the previous sections. M-cube is imple-
mented on top of a relational database - it uses a relational
database as the underlying data store. The business logic of
the repository is implemented using the PHP scripting lan-
guage. Any HTML 3.2 compliant web browser can be used
to access and manipulate the repository remotely.

The version repository splits into two logical parts: the
meta-repository and the repository instance. The meta-

7



RDBMS


Taxonomic

Attributes

Support


Object

Relationship


Support


py
si

ca
l v

ie
w



lo

gi
ca

l v
ie

w



MQL


Meta Repository

Repository

Instance


Version Repository


Type Repository


Component Repository


Figure 4. Version repository and its relation
to type and component repositories.

repository contains definition of entity types, their rela-
tions and taxonomies. The meta-repository definition pro-
cess is similar to creating a database schema in a relational
database. The fact our version repository prototype is not
bound to a specific component model allows us to use the
prototype repository to model our SOFA/DCUP compo-
nents system as well as other software component frame-
works like EJB or COM. Having defined a meta-repository,
the user can enter information about a particular software
system into the version repository instance and then use the
tools provided by the versioning engine to track the proper-
ties and relations of the described components. The M-cube
query language can be used to formulate advanced queries
to the version repository instance.

3.4. The M-cube query language

The M-cube query language (MQL) is designed to cor-
respond with our version repository object model. It is
a special-purpose query language optimized to be syntac-
tically effective for complex queries over the version repos-
itory. It uses syntax similar to SQL, but the M-cube query
language is more compact and uses only the elements re-
quired for the version repository retrieval tasks. These fea-
tures make the language easy-to-learn for anyone familiar
with SQL and at the same time they allow construction
of a relatively simple parser for the language. Some fea-
tures, like constraining a descriptive attribute or navigating
through a relation, can be achieved by standard query lan-
guages like SQL. Some features like constraining a taxo-
nomic attribute or navigating through a possibly recursive
relation go beyond the possibilities of SQL which relies on
the relational algebra.

MQL allows the retrieval of a set of entities of a partic-
ular entity type defined in the version repository. It does
not support, unlike SQL, the more detailed specification of
the result set content, e.g., the specification of a subset of
elements (in SQL context called columns or fields) consti-

tuting a given object type. Given an entity type (adomain
constraint), it simply returns a list of UUIDs conforming to
the provided selection criteria. The example below shows
the most simple M-cube language query and its SQL se-
mantic “equivalent”:

M-cube: SELECT component_frames
SQL: SELECT id FROM component_frames

MQL is able (like SQL) to constrain a result set using
selection criteria applied to attributes of a given object type.
MQL uses a bit different syntax for this kind of constraint.
The main reason for doing so is the fact M-cube directly
supports the taxonomic attributes which imposes additional
syntax requirements. The second example shows the ability
to constrain a selection to a specific value of a descriptive
attribute (ProductURL in this case).

SELECT component_implementations HAVING
(ProductURL="http://abc.com/product") OR
(ProductURL="http://abc.com/other/product")

The following example demonstrates constraining atax-
onomic attribute (OS). The query returns all of the
component implementations having the attributeOS

equal-to or related-to the valueLinux in terms of the
base taxonomy bound to the attributeOS. Considering
the sample taxonomy on Figure 2, the query returns the
component implementations havingOS in the follow-
ing set:Linux , Caldera , Suse , Red Hat .

SELECT component_implementations
HAVING (OS base "Linux")

The following query employs an optional taxonomysuc-
cessordefined for the taxonomic attributeOS. It retrieves all
of thecomponent implementations claiming to require
the "Win95" operating system or newer - in terms of the
successor taxonomy (see Figure 3).

SELECT component_implementations
HAVING (OS successor "Win95")

MQL features direct support for constraining a query us-
ing relations. The SQL contains support for a similar fea-
ture from version SQL92 using keywordJOIN and its vari-
ants. Former versions of SQL used equality constraint on
corresponding columns of joined relations. The M-cube
query language uses three keywords in the context of rela-
tions: JOIN , WITH andTHROUGH. JOIN begins the relation
restriction part of the query.WITH is used to specify a target
object type andTHROUGHdefines the relation.

SELECT component_frames
JOIN (WITH Interfaces THROUGH provides

HAVING (Name="java.io.DataInput")
)

8



The query above returns thecomponent frames pro-
viding the "java.io.DataInput" interface. The query
demonstrates direct support for navigating through re-
lations, which is a very important feature of the M-
cube query language. The last example demonstrates
a more complicated relation chain. The query re-
trieves thecomponent implementations implementing
the "java.io.DataInput" interface. Please note the ex-
ample uses the SOFA/DCUP component model so the terms
like architecture or component frame are defined in
the version repository (meta repository part) and they are
used to express the exact component’s properties:

SELECT component_implementations
JOIN (WITH architectures THROUGH implements

JOIN (WITH component_frames THROUGH refines
JOIN (WITH interfaces THROUGH provides
HAVING (Name = "java.io.DataInput"))))

The examples above were chosen to show all of the fea-
tures of the language, while remaining relatively simple, in
order to allow the reader comprehend the basic language
principles. For a complete M-cube Query Language refer-
ence and grammar specification see [7].

4. Conclusion

The proposed approach to managing versioning in the
context of component software assembly process fulfills
our requirements as stated in the section 2. The proposed
versioning model is focused on identification and descrip-
tion of versioned entities which occur during the component
software assembly and configuration phase. (1)

The model does not impose usage of any specific ver-
sioning system during the development phase. The meta-
modeling capability allows the version repository user to
define new first-class entities if required so in a given com-
ponent model. The SOFA/DCUP entities are pre-defined in
the prototype repository instance. (2)

We propose a reliable naming convention which allows
to uniquely identify the versioned entities in time and space.
We prefer usage of a human readable UUIDs assigned in
a two-step process, however, we do not claim this is the
only eventuality. (3)

Our version model supports evolution of versioned en-
tities (revisions) employing the concept of the user-defined
attribute taxonomies and entity relations (e.g. a user-defined
successor/predecessor taxonomy and/or relation). Our ap-
proach to the definition of revisions is much more flexible
than the typical approach based on revision numbers. The
proposed version model also directly supports variants (par-
allel versions) which are implemented using the entity at-
tributes. Special attention is paid to the taxonomic attributes

which are very powerful as they directly encode attribute
value relations and value domain structure. (4)

By moving the scope of version identification from the
individual versioned entities (interfaces, components) to
distribution packages, we reduce the versioning issues when
developing particular distribution packages. The developer
needs to deal with a version identification only when inte-
grating distribution packages but not when developing the
packages themselves. This feature reduces the overhead of
versioning for the developer and allows the version model
to scale to the enterprise level. (5)

For the prototype implementation we have developed
a special query language (M-cube Query Language) which
seamlessly incorporates the version model and allows
for flexible and powerful version information retrieval.
The language can be used during the design time as well
as during build time or run time to query the repository and
select proper components and configurations involved in the
system assembly process. The query language also enables
the intentional versioning approach in the context of soft-
ware assembly and configuration. (6)

The prototype implementation of the version repository
allows us to evaluate the version model and helps us to
evolve the proposal towards a practical application in the
SOFA/DCUP architecture development.

4.1. Acknowledgements

Many colleagues in the Department of Software Engi-
neering and other people contributed to this paper by their
advice and expertise. I would like to thank namely to
the following people for their outstanding support: Fran-
tisek Plasil, Petr Tuma, Vladimir Mencl, Premysl Brada and
Tomas Macek. This work has been supported by the Grant
Agency of the Czech Republic (project #102/03/0672).

References

[1] G. Aschemann and R. Kehr. Towards a requirements-based
information model for configuration management. InPro-
ceedings: ICCDS’98, May 1998.

[2] R. Conradi and B. Westfechtel. Proceedings: Towards a uni-
form version model for software configuration management.
In Proceedings: ICSE’97 SCM-7 Workshop, May 1997.

[3] B. A. Davey and H. A. Priestley:.Introduction to Lattices
and Order. Cambridge University Press, 1990.

[4] M. de Jonge. Source tree composition. In C. Gacek, editor,
Proceedings: Seventh International Conference on Software
Reuse, volume 2319 ofLecture Notes in Computer Science,
pages 17–32. Springer-Verlag, April 2002.

[5] J. Estublier and R. Casallas. The Adele configuration man-
ager. InConfiguration Management, number 2 in Trends In
Software. J. Wiley and Sons, 1994.

9



[6] P. H. Feiler. Configuration management models in commer-
cial software development environments. Technical Report
CMU/SEI-91-TR-7, SEI, March 1991.

[7] J. Gergic. The M-cube Query Language syntax reference.
http://nenya.ms.mff.cuni.cz/∼gergic/MQL.html.

[8] V. Mencl. Component Definition Language. Master’s thesis,
Dept. of SW Engineering, Charles University, 1998.

[9] R. Mili, A. Mili, and R. T. Mittermeir. Storing and retrieving
software components: A refinement based system.IEEE
Transactions on Software Engineering, 23(7), July 1997.

[10] Microsoft .NET. http://www.microsoft.com/net/.
[11] DCE 1.1: Remote procedure call. The Open Group, 1997.

http://www.opengroup.org/dce/.
[12] F. J. Oles. An application of lattice theory to knowledge

representation. Technical report, IBM T.J. Watson Research
Center, October 1996.

[13] Object Management Group: Trading Object Service Speci-
fication. http://www.omg.org/, 1997.

[14] Object Management Group: CORBA V2.2 - The Interface
Repository. http://www.omg.org/, 1997.

[15] F. Plasil, D. Balek, and R. Janecek. DCUP: Dynamic com-
ponent updating in Java/CORBA environment. Technical
Report 97/10, Dept. of SW Engineering, Charles University,
Prague, 1997.

[16] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Archi-
tecture for component trading and dynamic updating. In
Proceedings: ICCDS’98, Annapolis, Maryland, USA, May
1998. IEEE CS Press.

[17] F. Plasil, S. Visnovsky, and M. Besta. Bounding component
behavior via protocols. InTOOLS USA ’99, volume 30 of
TOOLS, pages 387–398. CS IEEE, August 1999.

[18] D. Rogerson.Inside COM. Microsoft Press, 1997.
[19] RedHat Package Manager. http://www.rpm.org/.
[20] G. Snelting. Concept analysis—a new framework for

program understanding. InProceedings of the SIG-
PLAN/SIGSOFT Workshop on Program Analysis For Soft-
ware Tools and Engineering, pages 1–10, July 1998.

[21] ISO/IEC 9075:1992. (SQL92).
[22] W. F. Tichy. RCS – a system for version control.Software –

Practice & Experience, 15(7):637–654, July 1985.
[23] A. Zeller and G. Snelting. Unified versioning through fea-

ture logic.ACM Transactions on Software Engineering and
Methodology, 6(4):398–441, October 1997.

10


