
Modelling and Extracting the Build-Time Software Architecture View

Qiang Tu, Michael W. Godfrey, and Xinyi Dong
Software Architecture Group (SWAG)

School of Computer Science, University of Waterloo
email:

�
qtu,migod,xdong � @swag.uwaterloo.ca

Abstract

Large software systems often have complex subparts that en-
gage in subtle relationships with the underlying technologies
from which they are built. Consequently, many such systems
have complex and interesting architectural properties that
can only be understood in the context of the various phases
of system construction. We consider that modelling and ex-
tracting build-time architectural views of such systems are
key to the software comprehension process. In this paper,
we explore the notion of build-time architectural views and
their relationship to well-known taxonomies of software ar-
chitecture views. We present a simple notation for modelling
build-time views, we present three detailed examples of sys-
tems with interesting build-time view, and we introduce a re-
lated architectural style — the “code robot”. Finally, we
discuss some of our recent work in the design of a toolkit for
extracting and modelling build-time architectural views.

1 Introduction

The grand goal of software architecture modelling is to ex-
tract and usefully represent the most important high-level
design information about a software system. Previous re-
search and practice within the field of software architecture
has affirmed the need to consider software systems from
several distinct points of view. The well known architec-
tural taxonomies of Kruchten [13] and Hofmeister et al. [9]
suggests that four or five points of view may be suffi-
cient: the logical view (i.e., the domain object model), the
(static) code view, the process/concurrency view, the deploy-
ment/execution view, plus scenarios and use-cases. How-
ever, we have found that some classes of software systems
exhibit interesting and complex build-time properties that are
not explicitly addressed by previous models.

In this paper, we explore the idea of build-time architec-
tural views. We explain what they are, and how they fit into
traditional models of software architecture, and outline how
they can be extracted and modelled. We also present three
detailed examples of software systems with interesting build-
time architectural views.

The structure of the rest of this paper is as follows: Sec-
tion 2 explores the need for the explicit modelling of build-
time architectural properties: it summarizes previous defi-
nitions of software architecture and taxonomies of architec-
tural views; it introduces the idea of build-time architectural
views; it outlines some of the common activities performed
at build-time and the reasons behind them; and it discusses
the relationship between build-time views and configuration
and build management. Section 3 introduces a visual nota-
tion for modelling build-time views, and presents three de-
tailed examples of systems that have interesting build-time
architectural views: the GCC compiler suite, the Perl lan-
guage interpreter/run-time system, and a simple use of the
Java Native Interface (JNI). Section 3 also introduces the
“code robot” architectural style, which is common to sys-
tems that have interesting build-time views. Section 4 de-
scribes some preliminary work on a toolkit for extracting and
modelling build-time views. Finally, Section 5 summarizes
the work presented here, and suggests some future research
directions.

2 Background: Why the build-time
view is important

In this section, we explore the motivation for studying build-
time architectural views. We first describe the kinds of
software comprehension problems that explicitly modelling
build-time properties can help to ameliorate. We then dis-
cuss software architecture and architectural views, and dis-
cuss how build-time views fit in.

2.1 The build/comprehend pipeline

Large software systems often have complex subparts whose
realization involves complex and often subtle relationships
with the various technologies employed in designing and im-
plementing the system [10]. For example, a linker has a de-
fined search order for resolving missing symbols; a program-
mer may take advantage of this knowledge to manage the
configuration of software built for different deployment envi-
ronments, or to select the correct routine from a collection of

libraries in the case of name collisions. A more complex ex-
ample occurs during the building of the GCC compiler suite,
when the build process first probes the target environment,
and then generates core algorithms and data structures that
are specialized for that environment.

Sometimes, these phenomena are relatively easy to under-
stand, and knowledge about them can simply be recorded as
annotations on appropriate software artifacts, as in the case
of the linker example. More complex phenomena, such as
the generation of specialized source code, are much harder
to document or model without a great deal of intellectual ef-
fort; in such cases, it is common for detailed information
about these properties to exist only in the minds of the sys-
tem experts.

As long as an understanding of these relationships and
their effects remains in the minds of the developers, it is
likely that these software systems can be successfully main-
tained. However, it is also possible (and likely, judging by
our anecdotal experiences) that such a design decision will
not be documented anywhere in the source code or other de-
velopment artifacts; indeed, in our own work uncovering the
build-time architecture of GCC, we found very useful little
information in the various official documents and web sites.
Furthermore, personnel turnover, the passage of time, “off-
site” system building and development (such occurs as in
open source systems) can all contribute to a loss of knowl-
edge about these aspects of the architecture of these systems.
In turn, the systems become brittle and increasingly difficult
and expensive to maintain.

So, therefore, it is our argument that if a software sys-
tem with complex build-time properties is to be successfully
maintained, then the software comprehension process must
provide an intellectual means for modelling this information,
as well as semi-automated tools for extracting it from the
source artifacts and the build processes themselves. We now
explore these ideas in more detail.

2.2 Software architecture and architectural
views

Although the idea of considering software at the “architec-
tural” level has been practised since the very first large soft-
ware systems were built, as an area of formal study software
architecture is still in its early stages. Several definitions of
software architecture have been proposed [16, 18, 2], various
architectural styles have been documented [18], and differ-
ent taxonomies of architectural views have been suggested
[13, 9]. Bass et al. define software architecture as “the de-
sign and implementation of the high-level structure or struc-
tures of the system; it comprises software components, the
externally visible properties of these components, and rela-
tionships among them”. Perry and Wolf presented their def-
inition of software architecture as a mathematical model:

Software architecture � �
elements, form, rationale �

Others have continued to refine and adapt the definition.
For example, Boehm uses the term “connections” instead of
form, and supplements constraints to the rationale. Shaw and
Garlan define software architecture as components, connec-
tors, and configurations [18]. For our purposes, we will take
a hybrid view; we consider that the software architecture of
a software system consists of a set of inter-related high-level
design (structural) views; each view consists of a set of com-
ponents and connectors, plus annotations. We now discuss
the idea of software architecture views in more detail.

2.2.1 Architectural views

Large, long-lived software systems typically accrue design
complexity as they age; it is generally agreed that to be com-
prehended, such systems need to be considered from differ-
ent points of view. Different stakeholders (e.g., users, busi-
ness analysts, programmers, testers, and maintainers) typi-
cally care about only specific aspects of the software sys-
tem, and have widely varying mental models based on how
they experience the system. To separate the different areas
of concerns, and to reflect the dynamic nature of software
architecture, the notion of “views” of software architecture
is introduced.1

The first and best known taxonomy of software architec-
ture views was suggested by Kruchten; he proposed a “4+1”
view model to describe the software architecture of a system
from multiple perspectives, to separate concerns from vari-
ous stakeholders of the architecture, and to differentiate the
functional and non-functional requirements [13]:

� The logical view is the analyst’s abstract object model,
which captures the abstraction, encapsulation, and in-
heritance in the problem domain.

� The process view models concurrency and synchroniza-
tion aspects of the software system.

� The physical view maps the software elements onto the
hardware execution environment; this view also capture
the distributed aspects of some systems.

� The development view models the the static organiza-
tion of the software in its development environment. It
mainly focuses on the source code structure.

� Scenarios and use-cases show how all four views work
together to satisfy user requirements.

Hofmeister et al. have defined a similar taxonomy, which
we shall refer to as the “four views” model [9]:

� The conceptual architecture view is analogous to the
“4+1” logical view.

1Buschmann et al. define a view as “a a partial aspect of a software
architecture that shows specific properties of a software system”. [4].

2

� The module architecture view shows the high-level de-
sign of the system. Its purpose is twofold: it describes
how to map the conceptual view onto the high-level de-
sign artifacts, and it describes the layering structure of
subsystems and specifies the interfaces between subsys-
tem layers and low-level design artifacts (e.g., source
code modules).

� The code architecture view is the low-level design view
that describes the interfaces and interdependencies be-
tween source code, files, directories, libraries, etc.

� The execution architecture view describes the structure
of a system in terms of its run-time platform elements,
such as tasks, processes, threads, and address spaces.
This view captures the distributed and concurrent as-
pects of the system, as well as other non-functional re-
quirements such as resource sharing, scheduling poli-
cies and load balancing.

Roughly speaking, we can consider that the above mod-
els concern three kinds of views: requirements views (logi-
cal, process, scenarios, and conceptual), development views
(conceptual, module, and code), and deployment views
(physical, execution). However, we have noticed that
many software systems exhibit interesting structural and be-
havioural properties that are apparent only at system con-
figuration and build-time, and that these properties are not
explicitly considered by either the “4+1” or “four views”
models. Therefore, we now examine the idea of build-time
architectural views in more detail.

2.3 Build-time architectural views

Once a software system has been designed and implemented,
it must be configured, compiled, and linked for a particular
environment before it can be deployed. For a small soft-
ware system written for a single platform, the make utility
and a single Makefile is often sufficient to manage system
building. However, for systems that are large and complex,
that run on a variety of platforms, and that support multiple
functional configurations, build management is non-trivial.
For example, the Perl build process has become so compli-
cated that a separate development effort has been created just
to write the configuration scripts and Makefile for each
release [20]. Furthermore, the GCC system (GNU Com-
piler Collection) exhibits even more dynamic and interesting
build-time behaviours, including as multiple passes of com-
pilation and a significant amount of automatic source code
generation.

For such large and complex systems, build management
is typically performed by dedicated employees (“build engi-
neers”) using a specialized build management system. The
main responsibilities of a build management system are to
configure and manage the build scripts, to provide the abil-
ity to define repeatable system build procedures, to maintain

Architects

Designers

Developers

Testers

Development

Views

Design Doc

Source Code

Deliver

Concern

system-

engineers

integration-

engineers

Deployment

Views

Binary Executable

Binary System Library

Runtime Process

Deliver

Concern

configuration-

engineers

build-

engineers

Build Architecture

View

Makefile

Automatic Code

Generator

Build Configuration Script

Deliver

Concern

Transform

Transform

Users

Analysts

Requirement

Views

Specification Doc

Analysis Doc

Deliver

Concern

Transform

Figure 1: Transformation between architecture views.

Figure 2: Kruchten’s “4+1” model enhanced with the build-
time architectural view.

consistency in system builds, and to control the various build
tools that are involved in the process.

Build-time architectural views should capture configura-
tion and built-time properties that are extractable from build
management artifacts, such as build scripts, the source and
object files, and configuration choices. At the very least, they
should model the compilation dependencies among compi-
lation units, time-sequence configuration of the compilation
procedure, and source code generation at build-time.

As mentioned above, neither the “4+1” or “four views”
models explicitly addresses the idea of build-time architec-
tural views. Figure 1 shows the relationships between build-
time views and the other kinds of architectural views, and
Fig. 2 shows how the “4+1” model may be extended to in-
clude build-time views.

As shown in Fig. 1, a software system undergoes a se-
ries of fundamental transformations as the result of devel-
opment and deployment efforts, and different architectural
views are important to different stakeholders throughout this

3

process. For example, the software designer studies the log-
ical view of the software system, and applies various design
techniques to layout the development view. When the de-
velopment phase is complete, the build engineers write the
Makefile and actually build the system from a collection
of source code files (development view or code architecture
view) into a suite of executables and libraries (execution ar-
chitecture view or physical view) that work together closely
to deliver the functional and non-functional requirements de-
manded by the customer.2

2.4 Build-time views and configuration/build
management

Build-time architectural views can serve as high-level and
visual documentation for software configuration and build
management. As the build architectures of software systems
become more dynamic and complex, the importance of ex-
plicitly modelling build-time artifacts and their related activ-
ities increases.

One common reason to have a complex build-time archi-
tecture is to aid in the cross-platform construction problem,
when software systems are required to build and run on a
variety of hardware platforms and operating systems using
the same source code distribution. The usual solution in-
volves running a configuration tool, such as the Unix tool
configure; such a tool queries the operating system for
hardware and operating system details. This information is
then used together with a set of provided Makefile tem-
plates to create customized build scripts that are tailored for
the target environment. Often, this information is straightfor-
ward in nature, and entails the setting of various source code
macros and compiler flags. However, in the case of GCC the
data structures of the Register Transfer Language (RTL) and
algorithms to manipulate them are fundamentally different
for each CPU architecture. The task is far beyond the capa-
bility of imake and conditional compiling techniques. The
solution employed by GCC is to develop a special program to
behave as an automatic code generator. It takes architecture
description files as input and emits appropriate algorithms
and data structures as output. As a result, some fundamental
parts of the source code for GCC are created during build-
time. This unique design approach makes the build-time
architecture of GCC very dynamic, and it is not well rep-
resented by static architectural views. Many interesting dy-
namic build architectures may be found within the domain of
programming language compiler/interpreter systems. This
is because the data structures and algorithms (especially al-
gorithms for code generation and optimization) are highly
dependent on the target CPU architecture and operating sys-
tem.

2We note that this diagram is somewhat idealized, and shows the logi-
cal progression of the development of a new software system. Experience
suggests that industrial practice is much more conceptually messy.

Components
 Connectors

Executable /

Class File (Java)

Shipped Source

code

Automatically

generated source

code

Environment

Information

compile/link

Compiler

Translator wirtten

in script lanague

Interpreter

Script

build dependency

Figure 3: Notation of build-time architectural view.

It is important to point out that there are many soft-
ware/computing systems that use various dynamic con-
figuration techniques at run-time, such as Microsoft’s
.NET/COM/DCOM, CORBA, Enterprise Java Beans, and
the Java reflection API. For example, CORBA allow dis-
tributed applications to call a remote service without know-
ing its exact location or even the programming language in
which it is implemented. However, these techniques are part
of the execution architecture, where the distributed com-
ponents have already been build and deployed. Their dy-
namic run-time architectures can be modelled by the “physi-
cal view” in the “4+1” model and the “execution architecture
view” in the “four views” model.

3 Modelling build-time views

We now give an informal definition of our notation for visu-
alizing build-time architectural views; this notation will be
used to represent build-time views of the three example sys-
tems in the next sections.

As shown in Fig. 3, we define four types of components
and three types of connectors in our build-time architecture
view:

Components: A box with a straight top edge and a curved
bottom edge represents source code that has been writ-
ten before the build and is provided within the original
source distribution. A box with curved top and bottom
edges represents source code that is dynamically gen-
erated at build-time. A box with straight edges repre-
sents a program executable or Java class file. An ellipse
denotes environmental information, such as CPU and
operating system details.

Connectors: For a compilation link, an arrow is drawn from

4

Figure 4: A built-time view of source file dependence modelled using a UML component diagram.

the source code to the compilation target; the compiler
used may be indicated as an association to the relation
arrow. A common generalization of this connector is
the interpreter/translator arrow, where a transformation
is performed based on a provided script; in this case,
the script is denoted by the addition of a hollow-headed
arrow. The third type of link is a general build depen-
dency, which is represented with a hollow-headed ar-
row.

We note that one could also use the UML notation to
model build-time views. As we have stated elsewhere [23],
“static” dependencies between components (possibly involv-
ing components generated at build time) can be modelled
using a UML component diagram (as shown in Fig. 4), and
dynamic build-time behaviours can be modelled using UML
sequence diagrams. However, it is not our intent here to dis-
cuss the additional customizations that would be required
(for example, UML stereotypes); instead, we merely men-
tion that our notation shown in Fig. 3 is but one possible
approach to modelling build-time properties of software sys-
tems.

We now examine as case studies three software systems
that have interesting build-time views: GCC, Perl, the use of
the Java Native Interface (JNI).

3.1 Example: Build-time views of GCC

The GNU Compiler Collection (GCC) is a suite of compil-
ers that supports several programming languages (C, C++,
Object-C, etc.) and runs on a variety of hardware architec-
tures and operating systems [11]. GCC is an open source
software system: the source code is freely available, and it is

therefore possible for users to compile and install their own
customized versions. In fact, portability and customizability
are major design goals for GCC, and this has had a signifi-
cant influence on its software architecture.

In examining the GNU C compiler (gcc), a subcompo-
nent of GCC, we have found that it exhibits two particularly
interesting phenomena at build time: it uses a multiple-pass
compilation process (also known as “bootstrapping”), and
it automatically generates significant portions of the system
source code.3 In this section, we will try to capture these
phenomena with a formalized build-time architectural views,
which will clearly define the components, form, and ratio-
nale. The GCC version used in this case study is 2.7.2.3.

3.1.1 Bootstrapping in gcc

Bootstrapping is a common technique employed in compiler
design to “use the facilities offered by a language to com-
pile itself” [1]. A typical bootstrapping process consists of
several steps [17]:

1. Compile a reduced version of the compiler in a different
environment.

2. The first reduced compiler is used to compile itself for
the target machine.

3. The compiled compiler then compiles itself on the tar-
get computer.

3Note that we use the term “GCC” when referring to the full compiler
suite, and we use the term “gcc” when referring only to the C compiler
component of GCC. Although confusing, this convention is the standard
one.

5

4. The language is enhanced to its full capability and the
enhanced version recompiled.

5. If code optimization was left out in previous step, then
subsequent recompilation will improve the compiler’s
own performance.

A full-scale bootstrapping is essential for developing the
first compiler of a new programming language, or to support
a new hardware architecture. More commonly, a simplified
bootstrapping procedure is used to develop a new version of
the same compiler system. Bootstrapping also provides an
excellent opportunity to look for bugs in the compiler, since
the compiler source code is usually large and complex.

In many compiler systems, the only artifact that doc-
uments the bootstrapping procedure and configuration
is a Makefile (or hierarchically organized family of
Makefiles). However, the Makefile itself is usually
inscrutable to humans due to the size and complexity of
the system, and because it is usually highly templated and
parameterized to account for cross-platform issues. The
Makefile is expanded at build-time after configuration
tools have collected information about the hardware and op-
erating system then tailored the Makefile for this specific
environment. As a result, the only simple and practical way
to infer the behaviour that occurs during bootstrapping is to
log the execution of make at build time, and then to review
the log file.

The build-time behaviour of GCC during bootstrapping is
shown in Fig. 5. During the bootstrapping process, three dif-
ferent GCC compilers are built. The first one is built by the
default system C compiler and linker, and the remaining two
are built by GCC itself. In all three builds, the same source
files are compiled.4 Three copies of the GCC compiler ex-
ecutables gcc are created at different time and each but the
last is immediately used to compile the next version.

First, the existing C compiler on the build platform is used
to compile the GCC driver, the C language compiler gcc,
and the GCC libraries (not the C system library, but the
supporting routines for other parts of GCC) from the GCC
source code. When the first build is completed, we have an
intermediate GCC C compiler that is fully functional. We
call it “stage 1” GCC.

For the second build, we run the product from last build,
the “stage 1” GCC, on the same GCC source code again.
This time, we compile not only the GCC driver, the C com-
piler, and the GCC libraries, but also the C++ compiler, the
Object-C compiler and their supporting libraries. At this mo-
ment, all the functional components of GCC 2.7.2.3 (C, C++
and Object-C compilers) are built and integrated with a uni-

4The gcc compiler supports various extensions to the C language that
are not part of the ANSI C standard, such as comments that begin with “//”.
Many systems, such as the Linux kernel, take advantage of these language
extensions. However, since GCC is usually first compiled by a non-GCC C
compiler, the GCC system itself is written entirely in ANSI C.

Completed GCC

Source Code

Existing C Compiler

"cc" or "gcc"

Stage 1 GCC

C Compiler "cc1"

C Library "libgcc.a"

Driver "xgcc"

Stage 2 GCC

C Compiler "cc1"

C++ Compiler "cc1plus"

Object C Compiler "cc1obj"

C Library "libgcc.a"

Object C Library "libobjc.a"

Driver "xgcc"

Stage 3 (final) GCC

C Compiler "cc1"

C++ Compiler "cc1plus"

Object C Compiler "cc1obj"

C Library "libgcc.a"

Object C Library "libobjc.a"

Driver "xgcc"

use

use

use

Compile

Compile

Compile

Figure 5: Build-time view of GCC bootstrapping.

fied compiler driver xgcc. We call this intermediate com-
piler suite “stage 2” GCC.

“Stage 2” GCC is still not the final product. We run it over
the GCC source for the third and the last time. The product of
this round of build should be identical to the “stage 2” GCC,
because they are complied from the same source code and
both by the GCC 2.7.2.3 C compiler. The purpose of this
build is for self-testing only: if “stage 2” GCC and “stage
3” GCC are different, this implies that something has gone
wrong with the compilation and that there are still some bugs
to be worked out.

The build architecture view of this aspect of GCC is shown
in Fig. 5; the details were manually reverse engineered from
the log file of an actual build of GCC 2.7.2.3 on a Sun Solaris
2.6 server with the bootstrapping build option turned on.

This build architecture view shows the dynamic behaviour
and configurations of the build process of GCC. The con-
structs of the view, such as boxes and arrows, have different
semantics from other architectural views we have been fa-
miliar with. For example, in the traditional module view,
the software system is represented as a static structure of
a group of programming modules, while the links between
components (modules) represent the semantic dependencies
and run-time interactions. In the process view, the system
is represented as a snapshot of a running organism with dif-
ferent processes collaborating with each other. However, the
build architecture view is much more similar to a time-space
diagram. The components inside the view do not co-exist at
the same moment. The sequence of events happen in the
order of from top to the bottom, and from the left to the
right. The components, which should be interpreted as ei-
ther static data or execution units, came into existence in
sequence along with the events that modelled as arrows in

6

the view. The arrows between components also represent
the build-time (dynamic) dependencies between compilation
entities.

3.1.2 Automatic code generation during build-time

In this section, we will discuss another interesting aspect of
the build architecture of GCC, and its role in the architectural
transformation of system views.

The build process of GCC consists of two major activi-
ties: configure and make. The “configure” process
first checks whether the build environment is supported by
GCC. Next, configure probes the build environment for
information such as the CPU architecture, operating system,
available system libraries, etc. Based on the probed informa-
tion, it generates the Makefiles using the templates and
system configuration information that configure just col-
lected. In the “make” phase, the compilation of the source,
linking of object file and installation of final binaries are per-
formed.

For many software systems, including the Linux kernel,
Mozilla, and VIM whose architectures we have analyzed be-
fore [3, 8, 21], the build process is fairly straightforward:
virtually all of the source code that will be used to compile
the executable system has been created during the develop-
ment phase and shipped with the source distribution, except
a few system-dependent header files that are automatically
generated by configure; most of these files contain sim-
ple macros and system-dependent constants. However, GCC
has a much more complex and dynamic building process,
where the software architecture undergoes a significant re-
shaping — some of the most important source code files in
the GCC system are automatically generated, then compiled
and linked to create the final compiler system.

One of the main design goals of GCC is to support multi-
ple programming languages, hardware architectures, and op-
erating systems. Not only does GCC support a wide range
of languages and platforms “out of the box”, the compiler
suite has also been designed to allow easy expansion and
customization by third-party developers. To achieve these
goals, the architecture of GCC must be both flexible and con-
figurable. To that end, the individual GCC compilers share
many of the front-end and back-end components, such as
parts of the compiler driver, the preprocessor, the RTL (an
intermediate code format), the object code generator, and
the optimizer. Support for multiple programming languages
is achieved entirely within the downloaded source code of
GCC; however, support for multiple CPU architectures is
implemented largely by generating part of the source code
at build-time, based on information gleaned about the target
environment by the configuration process.

In GCC, the Register Transfer Language (RTL) is an inter-
mediate representation used to represent the target system’s
code after parsing, similar to Java byte code. However, un-
like Java bye code, RTL is hardware dependent. The spec-

RTL Generator

Optimizer

Parser

Scanner

Semantic

Analyzer

Subsystem
 Call Dependency

Generated Files at

Build-time

insn-attr.h

insn-attr.c

insn-config.c

insn-flags.c

... ...

insn-peep.c

Figure 6: Code architecture view of the compiler-core sub-
system in GCC.

ification of RTL and the portion of source code that oper-
ates on RTL are generated at build time, using machine de-
scription information and collected system parameters from
configure. The main benefit of having a target-dependent
RTL representation is that we can immediately generate the
target machine language (assuming an infinite number of
registers), but in a way that the compiler can understand and
manipulate the emitted instructions. Hardware-dependent
optimizations also operate on this intermediate format, and
only valid instruction for the machine is generated as results
of all passes of transformation, for RTL has built-in knowl-
edge about target CPU architecture [15].

Figure 6 shows a portion of the code architecture view
of GCC 2.7.2.3 with “holes” (dashed boxes) that represent
the “missing” source code files. The GCC system consists
of five major subsystems: the driver, the preprocessor, the
compiler-core, the code-generator, and the utility libraries.
Both the compiler-core and code-generator subsystems con-
tain the RTL manipulation code that is missing from the dis-
tribution. The internal code architecture of compiler-core
subsystem is illustrated in Fig. 6.

The “missing” files in the compiler-core subsystem are
generated at build-time from code templates by source code
generators.5 The procedure is explained here and illustrated
in Fig. 7 with a build architecture view diagram. In addition,
Fig. 7 shows the relationship between build architecture view
and code architecture view from above, and execution view
from below.

1. First, the (build-time) source code generators are com-
piled; the source code for these generators are contained
within files whose names begin with “gen”. The result
is a set of executable programs.

5The source code generators shipped with the GCC source should not
be confused with the object code generator subsystem of GCC, which is a
standard component of any compiler.

7

Filename Role
sparc.h Contains C macros that define the general

attributes of the Sun SPARC architecture
sparc.c Contains machine description supporting

functions and macro expansion
sparc.md Contains RTL expressions that define the

instruction set (template). This file pro-
vides the input to programs that produce
insn*.h and insn*.c files.

Table 1: GCC machine description files for Sun SPARC.

Filename Created by Description
insn-attr.h genattr Definition for

any defined
attributes and
delay-definitions

insn-attr.c gen-attrtab Functions to access
the attributes

insn-codes.h gencodes Definitions for
named pattern

Table 2: Some GCC source files generated at build-time.

2. Next, these code generators are executed in sequence.
They take machine description files for the target ma-
chine as input. The machine description files are picked
by configure. Table 1 lists the machine descrip-
tion files for Sun SPARC architecture. The output is
a collection of C source files, such as those listed in Ta-
ble 2; these generated files have names that begin with
“insn”. These C files are used to fill the “holes” in the
code view of compiler-core subsystem.

3. Finally, the source files to build a working GCC are all
available. We now compile the code from the source
distribution together with build-time generated code,
and link them together to create the GCC compiler sys-
tem.

Thus, the build-time architecture shows how the GCC sys-
tem “fills in the gaps” of the code view of the shipped source
code that were (intentionally) left by the GCC developers.

3.2 Example: Build-time views of Perl

Perl version 5.6 [24, 12] is an interpreted high-level pro-
gramming language in very wide use, originally developed
by Larry Wall. Like GCC, Perl is an open source system,
which means that portability of the source is a paramount
design goal. Also like GCC, Perl exhibits complex and in-
teresting properties in its build-time architecture, which we
now discuss.

By comparing the content of Perl source directory before
and after build, we found that there are 22 C source code files

genattr.c genflags.c

gencodes.c genconfig.c

... ...

C

Compiler

genattr genflags

gencodes genconfig

... ...

sparc.md

GCC C Compiler

C Compiler

Source files come

from GCC

distribution

Code View

Execution View

Build View

use
 Enviroment

Parameters

insn-attr.h insn-flags.h

insn-codes.h insn-config.h

... ...

compile

use

use

depend

compile/link

Figure 7: Build-time view showing GCC source code gener-
ation.

Filename Description
B.c Allow a Perl program to delve into its

own innards. It is used to implement
the “backends” of the Perl compiler.

ByteLoader.c Used to load byte compiled Perl code. It
uses the source filter mechanism to read
the byte code and insert it into the com-
piled code at the appropriate point.

DB File.c Allows Perl programs to make use of
the facilities provided by Berkeley DB.

Table 3: Some C files generated at build-time in Perl.

newly generated during the “make”. The log file of make
reveals that these C files originate from templates written in
a special language called XS. The XS templates are then pro-
cessed by an intermediate Perl interpreter miniperl with
a translation script xsubpp.pl. The results of the process-
ing are those new C source files mentioned above. Finally,
the C files are compiled and linked by C compiler gcc as a
part of Perl 5.6 run-time libraries.

Table 3 lists the filenames and descriptions of some of the
C files that are generated at build-time; these particular files
enable the Perl system to call Unix system libraries, Berke-
ley DB and Sys V IPC. It also enable Perl programs to di-
rectly manipulate the backend Perl run-time system. These
C files are part of the Perl source code but they are gener-
ated at build-time. The templates for the C files are written
in a special language called XS and they come with the Perl
source distribution. We now explain the XS language and its
relationship to Perl [24].

Assume you are a programmer who wants to implement
a function in C or call a C system library from Perl. To do
so, you need to write a special C library that can be either

8

dynamically loaded by the Perl run-time system or statically
linked into the Perl executable. This library acts as “glue”
that links the C code with the Perl system. For example,
when a C library function is called from the Perl program,
the glue library first pulls arguments of the call from Perl’s
argument stack and converts the Perl values to the formats
expected by the particular C function. Then, it calls the C
function and finally transfers the return values of the C func-
tion back to Perl. To pass the result back to Perl, the glue
library either puts them on the Perl stack or modifies the ar-
guments supplied by Perl.

Of course, a programmer can craft a “glue” library di-
rectly in C, but this is very tedious and requires knowledge
about the working mechanisms of Perl stack. Therefore, the
Perl distribution provides a standard interface and mecha-
nism to create glue libraries that is both flexible and easy
to use. The interface is written in XS language that allows
a programmer to describe the behaviours of the glue. The
XS language describes the mapping between a Perl function
and a C function. It can also define a wrapper Perl function
that wrap around a C function. The XS compiler xsubpp,
which comes with the Perl source distribution, compiles the
XS file and generates the glue automatically. The output of
xsubpp is the C source file that implements the glue library,
as we can see in Table 3.

Now that we understand the procedure to create a Perl-
C extension, we can investigate and create models for the
build-time architecture of of Perl 5.6. The Perl source distri-
bution includes 22 Perl-C extension templates written in XS
language. These extensions are either part of the Perl run-
time environment, or interface to important Unix/C libraries.
The translation process to generate the Perl-C extension from
the XS templates is operating system dependent. Therefore,
these extensions are created at build-time, since the operat-
ing system environment parameters are only available after
running configure on the build platform.

Similar to GCC, Perl also bootstraps itself. An interme-
diate Perl interpreter called miniperl is built first, then
miniperl and gcc are used together to build the com-
plete Perl interpreter and run-time system. The translation
script that transform XS file to C file is also executed by this
miniperl.

The build architecture view of Perl is shown in Fig. 8,
where the build-time code generating and bootstrapping are
clearly illustrated. At the top of Fig. 8, the code architec-
ture view corresponds to the directory structure and orga-
nization of Perl source code. Components of the code ar-
chitecture view shown here include the source files to build
miniperl, the translation script from XS to C xsubpp,
Perl-C extension templates .xs files and other C code to
build the rest of Perl interpreter and run-time.

The first step of build creates an intermediate Perl inter-
preter miniperl, which provides a functionality subset of
the full-scale Perl interpreter. Although miniperl is not as

miniperlmain.c

opmini.c perl.c

... ...

Gcc
 use

miniperl

xsubpp.pl

B.xs ByteLoader.xs

DB_File.xs Dumper.xs

... ...

Gcc

Source files

come from Perl

distribution

Perl Interpretor

and Runtime

Build View

Code

View

Execution View

B.c ByteLoader.c DB_File.c

Dumper.c

... ...

compile

use

interpret

transform

use

compile/link

Figure 8: The build-time view of compiling Perl 5.6.

efficient and optimized as the final Perl interpreter perl, it
is sufficient to accomplish the required tasks.

The second step is to create another important compo-
nent of the build architecture: the C files that implement the
“glue” libraries for system Perl-C extensions. The transla-
tion is carried out by the Perl interpreter miniperl and
translator utility script xsubpp. The translator script takes
.xs files as input, and outputs the C files, such as those listed
in Table 3.

The final step is to compiler all of the C source files and
linked them together to create the Perl interpreter and run-
time libraries.

3.3 Example: Build-time views of the JNI

The Java Native Interface (JNI) is a programming interface
for Java. Using the JNI allows Java programs running within
a Java virtual machine (JVM) to interact at run-time with ap-
plications and libraries written in other languages, such as
C, C++ and assembly language. Similar to the Perl-C exten-
sion provided in Perl, JNI enables Java programs to take ad-
vantage pre-existing native applications, to exploit platform-
dependent utilities, or to improve the performance of system
bottlenecks [5].

Similar in spirit to the Perl XS interface, the JNI also pro-
vides a standard framework with a collection of Java APIs
and tools. They work together to allow the programmer to
“glue” Java application with native methods (typically, C or
C++ library functions).

A typical use of JNI involves several steps:

1. First at the development stage, we write Java code that
declares only the signature of the native method. The
native method can be called from any other part of the
Java program as if it were a “normal” Java method. We
also implement the native method in C or C++.

9

Call

Build View

Code View

Execution View

HelloWorldImp.c
 HelloWorld.java

javac
use

HelloWorld.class

"javah -jni"

hello.so
 HelloWorld.class

M
o

ve

gcc

HelloWorld.h

compile

use

compile

use

compile

Figure 9: The build-time view of a simple use of the JNI.

2. At build-time, we compile the Java class that declares
the native method and all other Java classes including
those who call the native method. Next, we use the
JDK tool javah to generate the header file for the
native method. Now we have the native signature for
our C/C++ implementation. Then, we compile both the
header file and the implementation C/C++ file into a
shared library file.

3. Finally, we have the running application, where the Java
code from the JVM can call the functions defined in the
native library.

A build-time architectural view of using Java JNI is shown
in Fig. 9 using our notation. This simple example shows a
Java program that calls a C program that prints “Hello world”
[5]. We can compare this view to the the build-time view
of Perl shown in Fig. 8; we note that unlike the previous
two example systems, in this case the development of the
applications and their (partial) construction are intertwined,
rather than being neatly separated into distinct phases.

3.4 The “code robot” architectural style

In their book on software architecture, Shaw and Garlan dis-
cussed several architectural styles that model recurring ab-
stract patterns of high-level structure within software sys-
tems, such as “pipeline”, “layered”, “client-server” and “in-
terpreter” [18]. In Kruchten’s “4+1” paper, each of his ar-
chitectural views indicates some representative architecture
styles. For example, the “object-oriented” style is used in
logical view, while the “pipe and filter” and “client-server”
styles are applied in the process view [13].

We consider that the dynamic build-time behaviour of sys-
tems such as GCC and Perl defines a new architectural style

Build View

Code Robot

Code Templates

Compiler

"Code Robot" Source

Code

use

Hardware and OS dependent

source code

Environment

Information

compile

use

transform

depend

Figure 10: The “code robot” architecture style.

that applies to build-time architectures; we call it the “code
robot” architecture style. The idea is, if the behaviour of the
software system depends heavily on the hardware architec-
ture or operating system, the software designer must devise
an effective and sophisticated strategy for customization of
the system source code at build-time. For example, the strat-
egy taken by the developers of GCC and Perl is to write a
code generator, a “code robot”, such as the gen*.c in GCC
and xsubpp in Perl. In Perl, the system-dependent code is
specified by a template written in XS language. In GCC, the
rules of how to create them from hardware architecture de-
scription files are embedded in the code robot itself. Given
a description of hardware architecture, the code robot knows
how to generate corresponding system-dependent code. Fig-
ure 10 shows the “code robot” architecture style.

3.4.1 Code robots and open source software

Automatic source code generation is not new; it is a well
known technique that is in wide use in both industry and by
open source projects. For example, the code wizard in Mi-
crosoft’s VisualStudio can create generic MFC skeleton code
for a Win32 application, which includes standard windows,
menus, dialog boxes, and shortcuts. Others examples include
lex, yacc, and their relatives which generate scanners and
parsers for compilers.

Automatic source code generation during system building
is much less common. The reason seems to be that most
commercial software systems are targetted for a relatively
small number of possible hardware architectures and oper-
ating systems. Most companies do not ship the source code
for their systems to clients; consequently, system building is
performed prior to shipping, and the software company can
choose its preferred platforms, compilers, subtools, and li-
braries. This means that system building can be managed
in a straightforward manner, often by creating a product line
for each target environment.

10

Analyzer

Targets

Dependencies

Environment

Commands

...

BTV

Repository

Browser

Extractor1

Extractor2

Extractor3

Figure 11: Architecture of the BTV Toolkit.

However, open source software systems are, in general,
designed to be as portable as possible. Since the source code
is available, the system is typically built by the user; this
means that the source code distribution must be designed to
buildable on a large number of possible platforms, using dif-
ferent compilers and subtools, and using different system li-
braries. Rather than create a separate source distribution for
each set of alternatives, open source systems usually abstract
the commonalities into a single distribution and rely on con-
figuration tools to aid in building. This is why the code robot
style is most commonly found within open source software
systems.

4 Extracting Build-Time Views:
The BTV Toolkit

When we did the work to examine the build-time views of
GCC and Perl, the build architectures were manually re-
verse engineered based on execution logs of make; we found
this process to be inefficient and error-prone. We have been
therefore begun developing a toolkit for supporting the ex-
traction and visualization of build-time views from software
systems called the BTV Toolkit [6]. Figure 11 shows the cur-
rent proposed architecture for the tool.6 There are four major
components:

1. a set of fact extractors that operate on source arti-
facts (usually source code, configuration scripts, and
Makefiles),

2. an analysis engine that can reconcile “facts” from dif-
ferent extractors to produce a unified set of abstracted
build views, and also respond to user queries from the
browser to generate new views,

3. a repository for build-time view facts, and

4. a browsing tool to support visualization, structural nav-
igation, and querying of build-time views.

6We note that this architecture is very similar to that of most reverse
engineering tools, such as SWAGkit [19] or Rigi [14]. This is not surprising,
since the BTV Toolkit is effectively a tool for reverse engineering build-time
architectural models of software systems.

Our current implementation7 consists of

� a fact extractor that is effectively an instrumented ver-
sion of gmake, the GNU version of make,

� an analysis engine,

� a plain-text file-based repository mechanism, and

� a browsing/visualization tool that is based on the
graphviz engine [7].

Figure 12 shows an example (partial) view of the construc-
tion of the Apache httpd program, as extracted and mod-
elled by our current prototype. In this diagram,

� a box represents a source code directory in which the
system build process has been active,

� a double ellipse represents a top-level goal of an invo-
cation of make,

� a single ellipse represents a target of the make (source
and derived files are eventual targets of make),

� a solid arrow represents a build dependency defined ex-
plicitly or implicitly in the Makefile, and

� a dotted arrow represents the instantiation relationship
between a (parent) make process, and the sub-make
processes it creates.

If a box contains another box, this indicates that the corre-
sponding directories are nested in the obvious way. If a box
contains an ellipse, this indicates that the corresponding tar-
get “lives” in the corresponding directory; that is, either the
“phony” target was executed in that directory, or the (source
or derived) file-target exists there.

In this particular figure, some relationships have been
elided: some arrows are not drawn, and all but one of the
boxes (i.e., srclib) have their contents hidden. An arrow
going into a box (e.g., the os directory on the right) indi-
cates that something inside the box/directory is the object of
a build relationship.

We have used the current implementation of the BTV
Toolkit to create models of the construction of several
large software systems, including GCC, Apache, Perl, Post-
greSQL, and Vim. The applicability of the current imple-
mentation is limited to those systems that can be constructed
using gmake. Also, the information that is currently ex-
tracted is limited to compilation dependencies and actions as
observed during the build.

We note that the visual notation shown in Figure 12 is not
consistent with that introduced in Section 3. This is because
it is at a lower level of abstraction than the relatively high-
level phenomena described in the previous examples. We

7The current version of the BTV Toolkit can be downloaded from
http://www.swag.uwaterloo.ca/˜xdong/btv

11

httpd-2.0.47

srclib

all

all-recursive

local-allsupport

modules server os

all httpd

modules.lo

modules.capr-util

all-recursive

pcre apr

Figure 12: Build-time view of Apache httpd.

have elected to show “raw” build relationships here between
various build targets (i.e., source and generated files, as well
as “phony” targets) embedded in the context of the directory
hierarchy of the source code. We intend to provide support
for creating build-time view models similar in abstraction
level to those diagrams shown in Section 3, based on the
kind of information shown in this diagram.

5 Summary

In this paper, we have explored the idea of build-time soft-
ware architectural views. We motivated the need for ex-
plicitly extracting and modelling build-time views for soft-
ware systems that have complex and subtle dependencies
on the the underlying technologies from which they are
constructed, and we showed how the build-time architec-
tural views relate to well-known software architectural tax-
onomies. We presented a notation for modelling build-time
views, and we explored the characteristics and the signifi-
cance of software build-time architectures in three case stud-
ies: GCC, Perl, and the use of Java’s JNI. Through our
case studies, we discussed how explicitly modelling build-
time behaviours with these architectural views can aid de-
velopers in gaining a better understanding the software sys-
tem itself, as well as in managing the build process in the

software development/deployment cycle. We introduced the
“code robot” architectural style to aid in modelling build-
time views of systems, and discussed why it is most com-
mon in open source software systems. Finally, we sketched
the design of a toolkit that is under development for the semi-
automated extracting and modelling of build-time architec-
tural views.

6 Acknowledgments

We thank our colleagues Ric Holt and Andrew Malton for
their ideas, comments, and feedback. Also, a preliminary
version of some of these results were described in a confer-
ence paper presented at ICSM 2001 [22].

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Priciples, Techniques and Tools. Addison
Wesley, 1986.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
In Practice. Addison Wesley, 1998.

[3] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster.
Linux as a case study: Its extracted software architecture. In

12

Proc. of the �����
�

Intl. Conference on Software Engineering
(ICSE-21), Los Angeles, CA, May 1999.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture. John Wiley
and Sons, 1996.

[5] M. Campione, K. Walrath, and A. Huml. The Java tutorial:
A practical guide for programmers. Website.
http://java.sun.com/docs/books/tutorial/java/.

[6] Xinyi Dong. BTV: The Built-Time View toolkit. Website.
http://www.swag.uwaterloo.ca/˜xdong/btv.

[7] John Ellson et al. Graphviz: Open source graph drawing
software. Website.
http://www.research.att.com/software/tools/graphviz/.

[8] Michael W. Godfrey and Eric H. S. Lee. Secrets from the
monster: Extracting Mozilla’s software architecture. In Proc.
of 2000 Intl. Symposium on Constructing software
engineering tools (CoSET-00), Limerick, Ireland, June 2000.

[9] C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison Wesley, 2000.

[10] Richard C. Holt, Michael W. Godfrey, and Andrew Malton.
The build / comprehend pipeline. In Proc. of 2003 ASERC
Workshop on Software Architecture, Banff, Alberta, February
2003.

[11] http://www.gnu.org/software/gcc/. GCC homepage. Website.

[12] http://www.perl.com. The Perl homepage. Website.

[13] P. Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(5), November 1995.

[14] Hausi A. Müller and Karl Klashinsy. Rigi: A system for
programming-in-the-large. In Proc. of the ���

���
Intl.

Conference on Software Engineering (ICSE-10), Singapore,
April 1988.

[15] Hans-Peter Nilsson. Porting GCC for dummies. Website.
ftp://ftp.axis.se/pub/users/hp/pgccfd/.

[16] Dewayne E. Perry and Alex Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4), October 1992.

[17] Thomas Pittman and James Peters. The Art of Compiler
Design, Theory and Practice. Prentice-Hall, 1992.

[18] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall, 1996.

[19] SWAGkit homepage. Website.
http://www.swag.uwaterloo.ca/swagkit/.

[20] The Perl mailing lists. Website.
http://www.perl.org/support/mailing lists.html.

[21] John B. Tran, Michael W. Godfrey, Eric H. S. Lee, and
Richard C. Holt. Architecture analysis and repair of open
source software. In Proc. of 2000 Intl. Workshop on Program
Comprehension (IWPC-00), Limerick, Ireland, June 2000.

[22] Qiang Tu and Michael W. Godfrey. The build-time software
architectural view. In Proc. of 2001 Intl. Conference on
Software Maintenance (ICSM-01), Florence, Italy, October
2001.

[23] Qiang Tu and Michael W. Godfrey. Representing build-time
software architecture views with UML. In Proc. of 2001
ICSE Workshop on Describing Software Architecture with
UML, Toronto, Ontario, May 2001.

[24] Larry Wall, Tom Christiansen, and Jon Orwant.
Programming Perl. O’Reilly & Associates, 2000.

13

