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Abstract. Reuse between software systems is often not optimal. An important
reason is that while at the functional level well-known modularization princi-
ples are applied for structuring functionality in modules, this is not the case at
the build level for structuring files in directories. This leads to a situation where
files are entangled in directory hierarchies and build processes, making it hard to
extract functionality and to make functionality suitable for reuse. Consequently,
software may not come available for reuse at all, or only in rather large chunks of
functionality, which may lead to extra software dependencies.
In this paper we propose to improve this situation by applying component-based
software engineering (CBSE) principles to the build level. We discuss how exist-
ing software systems break CBSE principles, we introduce the notion of build-
level components, and we define rules for developing such components. To make
our techniques feasible, we define a reengineering process for semi-automatically
transforming existing software systems into build-level components. Our tech-
niques are demonstrated in a case study where we decouple the source tree of
Graphviz into 47 build-level components.

1 Introduction

Modularity is a prerequisite for component technology [17]. Already in 1972, Parnas
introduced the modularization principles of minimizing coupling between modules and
maximizing cohesion within modules [16]. The former principle states that dependen-
cies between modules should be minimized, the latter principle states that strongly re-
lated things belong to the same module. These principles are well understood at the
functional level for structuring functionality in functions or methods and in modules or
classes.

Unfortunately, these principles are usually not applied at the build level for struc-
turing modules and classes in directories. Often, bad programming practice like strong
coupling and weak cohesion therefore move from the functional level to the build level.

In practice, many software systems therefore consist of large collections of files
that are structured rather ad-hoc into directory hierarchies. Between these directories a
lot of references exist (= strong coupling) and directories often contain too many files
(= weak cohesion). Build knowledge gets unnecessarily complicated due to improper
structuring in monolithic configuration files and build scripts.

As a result, modules are entangled, the composition of directories is fixed, and build
processes are fragile. This yields a situation where: i) potentially reusable code, con-
tained in some of the entangled modules, cannot easily be made available for reuse; ii)
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the fixed nature of directory hierarchies makes it hard to add or to remove functionality;
iii) the build system will easily break when the directory structure changes, or when
files are removed or renamed.

To improve this situation, we can learn from component-based software engineering
(CBSE) principles. In CBSE, functionality is only accessed via well-defined interfaces,
and one cannot depend on the internal structure of components. Unfortunately, CBSE
principles are not yet applied at the build level. Reusability of components is therefore
hampered, even when CBSE principles are applied at the functional level.

For example, the ASF+SDF Meta-Environment [1] is a generic framework for lan-
guage tool development. It contains generic components for parsing, pretty-printing,
rewriting, debugging, and so on. Despite their generic nature and their component-based
implementation, they were not reusable in other applications due to their build-level en-
tangling in the ASF+SDF Meta-Environment. After applying the CBSE principles dis-
cussed in this paper, they became distinct components, which are now reused in several
different applications [10]. Graphviz [4] is another example. It is too large, yielding too
many external dependencies. In this paper we demonstrate how its implementation can
be restructured such that its individual parts can be separately reused.

In this paper we discuss how to apply CBSE principles to the build level, such
that access to files only occurs via interfaces, and dependencies on internal directory
structures can be dropped. We also describe a composition technique for assembling
software systems from build-level components. CBSE principles at the build level help
to improve reuse practice because build-level components can be reused individually
and be assembled into different software systems. To make our techniques feasible, we
propose a semi-automatic technique for decoupling existing software systems in build-
level components. We demonstrate our ideas by means of a case study, where Graphviz
(300,000+ LOC) is migrated to 47 build-level components.

The paper is structured as follows. In Sect. 2 we introduce the concept of build-
level components. In Sect. 3 we discuss bad programming practice and we introduce
development rules for build-level components with strong cohesion and weak coupling.
In Sect. 4 we discuss automated composition of build-level components. In Sect. 5
we present a semi-automatic process for decoupling software systems into build-level
components. In Sect. 6 we demonstrate our ideas by means of a case study. In Sect. 7
we summarize our results and discuss related work.

2 Build-level Components

According to Szyperski [17], the characteristic properties of a component are that it: i)
is a unit of independent deployment; ii) is a unit of third-party composition; iii) has no
(externally) observable state. He gives the following definition of a component:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.”

Component-based software engineering (CBSE) is mostly concerned with execution-
level components (such as COM, CCM, or EJB components). We propose to apply



CBSE principles also to the build level (i.e., to directory hierarchies containing ingredi-
ents of an application’s build process, such as source files, build and configuration files,
libraries, and so on). Components are then formed by directories and serve as unit of
composition.

Access to build-level components occurs via build, configuration, and requires in-
terfaces. Build interfaces serve to execute actions of a component’s build process (e.g.,
to build or install a component), configuration interfaces serve to control how a compo-
nent should be build (i.e., to support build-time variability). Requires interfaces serve
to bind dependencies on other components. Referencing other components no longer
occurs via hard and fixed directory references, but only via the dependency parame-
ters of a requires interface. Dependency parameters allowlate bindingby third-parties.
Since all component access occurs via interfaces, build-level components can be inde-
pendently deployed and their internal structure can safely be changed. Directories with
these properties satisfy the component definition of [17] and can be used for build-level
CBSE.

This paper is concerned with developing build-level components and with extracting
such components from existing applications. Our work is based on the GNU Autotools,
which serve build-time configuration (Autoconf) and software building (Automake).
Strictly spoken, the GNU Autotools are not essential, but they make life much easier.

Autoconf [12] is a popular configuration script generator that produces a top-level
configuration script for a software system. The script is used to instantiate Makefiles
with a concrete configuration. The input to Autoconf is a configuration script in which,
amongst others, configuration switches and checks can be defined. We use Autoconf
because it provides a consistent way for build-time configuration (i.e., all software sys-
tems driven by Autoconf can be configured similarly). This simplifies composition of
build-level components (see Sect. 3).

Automake [13] is a Makefile generator. Its input is a high-level build description
from which standard Makefiles are generated conforming to the GNU Makefile Stan-
dards [3]. The benefits of Automake are that it simplifies the development of build pro-
cesses, and that it standardizes the process of software building. The latter is of great
importance for CBSE and the main reason that we depend on Automake. Build pro-
cesses generated by Automake always provide the same set of build actions. Automake
thus generates standardized build interfaces. Having standardized build interfaces en-
ables composition of build-level components (see Sect. 3).

3 Build-level Development Rules

Many software systems break CBSE principles at the build level. This results in stronger
coupling and weaker cohesion. In this section we analyze typical build-level practices
that break these principles, and we provide component development rules that enable
CBSE at the build level.

3.1 Component Granularity

Pitfall: Components with Other than Directory Granularity.The granularity of a com-
ponent is important for its usability [17,10]. If components are too large, then cohesion



is weak. Consequently, by reusing them, too much functionality is obtained that is not
needed at all. On the other hand, if components are too small then coupling will be
strong and it may take too much effort to assemble a system from them.

In practice, build-level component granularity is too large. There are many examples
of software systems (e.g., Graphviz, Mozilla, and the Linux kernel [7]) where poten-
tial reusable functionality is not structured in separately reusable directory hierarchies.
Consequently, the complete directory hierarchy containing the implementation of a full
software system has to be used if only a small portion of functionality is actually needed.
Often this is not an option and reuse will not take place.

Rule: Components with Directory Granularity.Build-level components should have
directory granularity, cohesion in directories should be strong, and coupling between
directories should be minimal. With strong cohesion the contents of a directory forms
a unit and chances are low that there is a need to only reuse a subset of the directory.
Minimal coupling between directories makes directories independently deployable; an
important CBSE principle. If a particular directory is not intended for individual reuse,
then it can be part of a larger directory structure. This slightly increases component
granularity, but prevents the existence of many small-sized components that are not
actually reused individually.

3.2 Circular Dependencies

Pitfall: Circular Dependencies.If two collections of files are separated in distinct di-
rectories but reference each other, then they are strongly coupled. Although they form
distinct components, they cannot be used independently because of their circular needs.

Such a decomposition into distinct directories breaks the modularization principle
of minimizing coupling. Basically, circular dependencies prove that cohesion between
directories is strong and that they belong together (or, at least, that they should be de-
composed in another way). Circular dependencies between directories therefore, almost
always indicates that something is wrong with the structure of the implementation of a
software system in files and directories.

Rule: Circular Dependencies Should Be Prevented.Striving towards weak coupling
forms an important motivation for minimizing circular dependencies. One solution is to
simply merge circular dependent directories. If this significantly reduces cohesion then
a third directory may be constructed capturing the strongly related subparts of both
directories. Both directories then become dependent on the newly created one, but not
the other way around.

3.3 Build Interface

Pitfall: Non-standardized Build Interfaces.There are many different build systems
available, often providing incompatible build interfaces. For instance, software build-
ing with Imake, Ant, or Automake requires execution of different sequences of build
actions. These different build interfaces hamper compositionality of build-level compo-
nents, because build process definitions cannot be composed transparently. The reason
is that internal knowledge of a build-level component is required in order to determine



which actions constitute a component’s build process. This breaks the abstraction prin-
ciple of CBSE which prescribes that component access only goes through well-defined
interfaces.

Rule: Software Building via Standardized Build Interface.In order to make build-level
components compositional, build process definitions should all implement the same
build interface. This way the steps involved in the build process become equal for each
component.

Implementation with Autotools.We standardize on the build interface offered by Au-
tomake. This interface includes the build actionsall for building,clean for remov-
ing generated files,install for installing files,test for running tests,dist for
building distributions, anddistcheck for building and validating distributions.

3.4 Configuration Interface

Pitfall: Non-standardized Configuration Interfaces.What holds for build processes also
holds for configuration processes. If standardization is lacking and different configura-
tion mechanisms are in play, then configuration is not transparent, hampering compo-
sitionality. For configuration, knowledge of the component is then needed to determine
the configuration mechanism used. Again, this breaks the abstraction principle of CBSE
because access to the component outside its interfaces is inevitable.

Rule: Compile-time Variability Binding via Standardized Configuration Interface.Stan-
dardization of variability interfaces is needed to improve compositionality. Only then it
becomes transparent how to bind compile-time variability of varying compositions of
build-level components.

Implementation with Autotools.In this paper we standardize on the configuration inter-
face offered by Autoconf. This provides a standard way for binding configuration and
dependency parameters. For example, to turn a featuref on and to bind a parameterp
to some value , an Autoconf configuration script can be executed as./configure
--enable-f --with-p=some value . By using Autoconf a component can be
configured individually, as well as in different compositions, and it is always clear how
its variability parameters can be bound.1

3.5 Requires Interface

Pitfall: Early Binding of Build-level Dependencies.A composition of directories is
often specified in source modules or in build processes. For instance, consider the C
fragment#include "../bar/bar.h" from a hypothetical componentfoo . This
fragment clearly defines a composition and, consequently, increases coupling between
foo and another componentbar . The componentbar is a build-level dependency of
foo . The composition expressed in the C fragment is therefore a form ofearly-binding.
Early binding of dependencies increases coupling, prevents independent deployment,
and third-party binding.

1 Observe that, Autoconf is not strictly necessary because a similar configuration interface (with
the same commands and syntax) can be obtained in other ways as well.



Rule: Late Binding of Build-level Dependencies via Requires Interface.References
to directories and files should be bound viadependency parametersof a component’s
requires interface. This is a form of late binding that allows third parties to make a
composition, and that caters for different directory layouts.

Implementation with Autotools.With Automake and Autoconf this can be achieved
by defining separate configuration switches for each required component. For instance,
componentfoo can define a configuration switch for its dependency onbar as follows:

AC_ARG_WITH(--with-bar, [...], BAR=${withval})
AC_SUBST(BAR)

In the Makefile offoo the variableBARis then used to reference thebar component.
Dependency parameters are bound at configuration time.

3.6 Build Process Definition

Pitfall: Single Build Process Definition.If build knowledge of a composition is central-
ized (e.g., in a top-level Makefile), then coupling between components is increased and
the components cannot easily be deployed individually. This is because build knowl-
edge for a specific component needs to be extracted, which is difficult and error prone.
Unfortunately, single build process definitions are common practice.

Rule: Build Process Definition per Component.Build-level components need individ-
ual build process definitions. This way a component can be built independently of other
components and, consequently, be part of different compositions. There are many ways
to define an individual build process. For instance, it can be defined as a batch file,
a traditional Makefile, or as an Automake Makefile. In this paper we use Automake
Makefiles.

3.7 Configuration Process Definition

Pitfall: Single Configuration Process Definition.It is common practice to centralize
build-time configuration knowledge of software systems. Inside the files that capture
this configuration knowledge, it is usually not clear which configuration parameters be-
long to which directory, and which parameters are shared. This form of coupling ham-
pers reuse because components cannot be deployed individually without this knowledge
and because extracting component-specific configuration knowledge is difficult.

Rule: Configuration Process Definition per Component.A software build process of-
ten contains numerous build-time variation points. To allow independent deployment,
the configuration process, in which such variation points are bound, needs to be inde-
pendent of other build-level components (only when generated from individual ones,
a single configuration process definition is acceptable). To that end, each build-level
component should have an independent configuration process definition. In this paper
we use Autoconf configuration scripts.



3.8 Component Deployment

Pitfall: Using a Configuration Management System for Component Deployment.Putting
a software system under control of a Configuration Management (CM) system can in-
crease coupling. The reason is that the directory structure (and thus the composition
of directories) is stored in a CM system and that it is not prepared for individual use.
It is therefore often not easy to obtain subparts from a CM system. Furthermore, it is
not easy to make different compositions of directories controlled by a CM system. For
instance, CVS requires administrative actions to make a particular composition. This
is required for each composition. Finally, composition of different CM systems (for in-
stance CVS with SubVersion) is, to the best of our knowledge, not possible with current
technology.

Rule: Component Deployment with Build-level Packages.To allow more wide-spread
use of build-level components, they should be deployable independently of a CM sys-
tem. To that end, release management [5] is needed to make components available with-
out CM system access. Release management should include a version scheme that re-
lates component releases to CM revisions. In the remainder of this paper we call such
a versioned release of a build-level component abuild-level package(or packagefor
short).

Implementation with Autotools.The combination of Autoconf and Automake already
provides support for software versioning and for generating versioned software releases.
Each build-level component is given a name and a version number in the Autoconf
configure script. Automake provides the build actiondist to make a versioned release.
Thedistcheck action serves to validate a distribution (e.g., to check that no files are
missing in the distribution).

3.9 Component Composition

Pitfall: Making a Composition by Hand.Most software systems are manual composi-
tions of directories, files, build processes, and configuration processes. Unfortunately,
it is difficult to define a configuration process for a composite system (the complexity
of configuration processes of several existing software systems demonstrate that it is no
sinecure2). It is also difficult to correctly determine all software dependencies, and to
define a composite build process. Finally, build and configuration processes are often
hard to understand. These difficulties make the composition process time consuming
and error prone. In addition, the composition process is hard to reproduce, and chang-
ing a composition, by adding new directories or removing existing ones, is costly. This
situation gets worse when the number of components increases.

Rule: Automated Component Composition.Since it is expected that the composition
process needs to be repeated (because compositions are subject to change), a need ex-
ists to keep the composition effort to a minimum. Automated component composition
is therefore a prerequisite to achieve effective CBSE practice at the build level. Auto-
mated composition makes it easy to reuse components over and over again in different
compositions and to manage the evolution of existing compositions over time.

2 For instance, Graphviz contains 5,000 LOC related to build-time configuration, Mozilla more
than 8,000.



package
identification

name=dotneato
version= 1.0

location= file:///home/mdejonge/graphviz/dist
info= http://www.graphviz.org

description= ’Graphviz dotneato package’
keywords= graph, visualization, transformation

configuration interface
dmalloc ’use dmalloc for debugging memory use’
efence ’use efence for debugging memory use’

requires
cdt 0.95
gd 2.0
graph 1.1 with optimization=nocycles
pathplan 2.0

Fig. 1.A package definition in PDL.

4 Automated Build-level Composition

Building and configuring components, which are developed according to the rules of
Sect. 3, can be performed solely via build and configuration interfaces. This property
allows for automated build-level composition.

To enable automated build-level composition, we developed the package definition
language (PDL) to formalize component-specific information [8]. A package definition
serves to capture component identification information, to define variability parameters
in a configuration interface, and to define dependency parameters. An example package
definition is depicted in Fig. 1.

Build-level composition is based on component releases (packages). Hence pack-
age dependencies are expressed as name/version tuples and package locations (defining
where packages can be retrieved from) are expressed as URLs. Package dependencies
may contain parameter bindings. For instance, the package definition in Fig. 1, binds
the parameteroptimization to nocycles. Package definitions are stored in package repos-
itories.

The information stored in package definitions is sufficient to automate the com-
position process. This process is called Source Tree Composition [8] and consists of i)
resolving package dependencies; ii) retrieving and unpacking packages; iii) merging the
build processes of all components; iv) merging the configuration processes of all com-
ponents. The result of source tree composition is a directory hierarchy containing the
build-level components (according to a transitive closure of package dependencies), and
a top-level build and configuration process. Typical deployment tasks, such as building,
installing, and distributing can be performed for the composition as a whole, rather than
for each constituent component separately. Hence, the composite software system can
be managed as a single unit.



1. Source tree analysis
– Find components
– Find component references
– Fine-tune

2. Source tree transformation
– Create components
– Create package definitions
– Fine-tune

3. Online package base creation

Fig. 2.The three phases of source tree decoupling.

Package repositories can be put online in the form of Online Package Bases.3 An on-
line package base serves as component repository from where people can select build-
level components of interest. Then, by simply pressing a button, a composite software
system is automatically produced from the selected components.

We have implemented automated source tree composition in the tool set Autobun-
dle.4 In [9] we discuss how source tree composition can be used to integrate component
development and deployment. This improves software reuse practice and provides an
efficient development process for build-level CBSE.

5 Migration to Build-level Components

The development rules for component development of Sect. 3 and the composition tech-
nique presented in Sect. 4, bring CBSE principles to the build level. Together they allow
development of software in separate reusable components and their composition in mul-
tiple software systems. Although build-level CBSE seems promising, adapting existing
software forms a barrier that stands in the way of adopting the techniques presented
thus far. The question that comes into mind is: can’t we reengineer existing software
systems into build-level components automatically?

To that end, we present a semi-automatic technique for applying the development
rules of Sect. 3 to existing software. Fig. 2 depicts the three-phase process for decou-
pling source trees into build-level components. This reengineering process analyses the
structure of a source tree to determine candidate components, and Makefiles to deter-
mine component references. This information is used to split the source tree into pieces,
and to generate component-specific Makefiles and configure scripts. Below we discuss
the process in more detail.

5.1 Source Tree Analysis

We assume that source code is structured in subdirectories. A root directory only con-
tains non-code artifacts (including build knowledge). If all sources were contained in a

3 http://program-transformation.org/package-base
4 http://www.cs.uu.nl/˜mdejonge/software
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single directory, then some additional clustering techniques can be used to group related
files in directories.

Finding Components.The structure of a source tree in directories determines the set
of build-level components. Consider Fig. 3, where nodes denote directories, edges di-
rectory structure, and arrows directory references. Basically, there are two approaches:
i) each non-root directory constitutes a separate component (i.e.,a, b, c, d, ande form
components); ii) each directory hierarchy belowroot, without external references to its
subdirectories constitutes a component (i.e.,abc, d, ande). In the first approach, each
directory is a candidate for potential reuse. This leads to fine-grained reuse but also to
a large number of components. In the second approach, actual reuse information serves
to determine what the candidates for reuse are. Since nodesb andc in Fig. 3 are not
referenced outside the tree rooted ata, both are considerednot reusable. This reduces
the number of components, but also results in more coarse-grained reuse. In this paper
we follow the first approach.

Finding References.Directory references serve to determine component dependencies.
That is, if a directory reference froma to b exists anda andb become separate compo-
nents, thenb becomes a dependency ofa.

Directory references are found by inspecting the Automake Makefiles in the source
tree for directory patterns. For each directory reference found it is checked that it points
to a directory inside the source tree and that the target directory contains an Automake
Makefile. Thus, references outside the source tree and references to directories that are
not part of the build process are discarded.

Fine Tuning.From the information that is gathered thus far, we can construct a compo-
nent dependency graph that models components and their relations. This model serves
as input for the transformation phase discussed below. Fine tuning consists of modify-
ing the graph to specific needs and to repair some problems:

– Additional edges and arrows can be added to the graph, in case the analysis failed
to find them all automatically.

– The component dependency graph needs to be adapted in case of cyclic dependen-
cies. These are not automatically repaired because changing a cycle into a tree and
selecting a root node cannot be done unambiguously.

– The graph can be adapted to combine certain nodes to represent single, rather than
separate components.

We useDOT [4] to represent component dependency graphs. The adaptations are spec-
ified as graph transformations, which can be performed automatically. The complete
analysis phase then becomes an automated process that can be repeated when needed.

5.2 Source Tree Transformation

The source tree transformation phase consists of splitting-up a source tree into build-
level components, and creating package definitions for each of them. This process is
driven by the information contained in the component dependency graph constructed
during the first phase. In the discussion below, we assume that it contains three compo-
nents, capturing the directoriesabc, d, andeof Fig. 3.



root

a d

b c e

Fig. 3.A directory hierarchy with directory references represented by arrows.

Creating Components.Creating a build-level component, involves: i) isolating its im-
plementation from the source tree; ii) creating an Autoconf configure script; iii) creating
an Automake Makefile.

To isolate the implementation of a build-level componentc from a source trees,
the subtree containing its implementation is moved outsides. If the subtree ofc has
subdirectories, which, according to the component dependency graph, belong to other
components, then these subdirectories are recursively moved outsidec. For instance, in
case of Fig. 3, the subtrees rooted at nodesa andd are placed outside the source tree.
Componentd has a subdirectorye that forms a separate component and is therefore
moved outsided. The subdirectories ofa are not moved because they do not form
separate components.

Component-specific Autoconf configure scripts are created from the top-level con-
figure script. The following adaptations are made: i) The name and version of the orig-
inal system are replaced by the name and version of the component; ii) References
to other directories are removed. Thus, all files listed inAC CONFIGFILES that do
not belong to the component are removed; iii) Configuration switches are added for
each component dependency. For componenta of Fig. 3 this means that a configuration
switch for componente is created. The binding of this switch is accessible in Makefiles
as${E}. The resulting Autoconf configure script is tailored for a single component: it
instantiates only Makefiles of the component and it does not contain hard references to
other components.

The most complex task is creating Automake Makefiles. First, this involves remov-
ing directory names for those directories that have become separate components. In
particular, this means that these names are removed from theSUBDIRSvariable. If
this variable becomes empty, the variable itself is removed. Second, self-references are
changed. In the original tree, the componente from Fig. 3 might reference itself in
different ways, e.g., as${top srcdir }/d/e , or ../e . These have to be changed
according to the new directory structure, e.g., in${top srcdir }/e . Third, reusable
files should be made public accessible in standard locations. The original source tree
may contain direct file references but these are no longer allowed. For instance, in the
original source tree (see Fig. 3) one can depend on the exact directory structure and ac-
cess a C header filef.h in directorybas${top srcdir }/a/b/f.h However, in the
new situation this is not allowed because a component can only be accessed via its inter-
faces and one cannot depend on its internal structuring. This implies that for a file to be



accessible, it needs to be placed in a standard location. We accomplish this by replacing
noinst HEADERSandinclude HEADERSvariables bypkginclude HEADERS.
This guarantees that the header filef.h always gets installed ininclude/a/ relative
to some compile-time configurable directory. Other files, such as libraries, are made ac-
cessible in a similar fashion. Fourth, directory references are changed into component
references. This implies that all file referencing goes via interfaces. For example, the file
f.h that belongs to componenta, can then be accessed as${A}/include/a/f.h .
The variableA is bound at composition time. The result is that external references into
a component’s source tree no longer exist. The component can therefore safely change
its internal structure when needed.

Creating Package Definitions.The component dependencies of a component are cap-
tured in an automatically-generated package definition. This package definition also
contains a standard identification section, containing the name and version of the pack-
age, and the location from where it can be retrieved. In addition, a configuration inter-
face section is constructed by collecting all configuration switches from the Autoconf
configure script.

Fine Tuning. A build-level component that is the result of the procedure above, has a
component-specific configuration and build process. Component dependency parame-
ters can be bound with configuration switches. Now is the time to fine-tune the compo-
nent to repair problems resulting from its isolated structure:

– Because circular dependencies are no longer allowed, the implementation of com-
ponents having circular dependencies needs to be fixed. This involves restructuring
files or creating new components as discussed in Sect. 3.

– The automatic source tree transformation might fail in discovering and changing
all directory and file references. These can now be repaired manually.

– Software systems driven by Automake and Autoconf do not always produce com-
plete distributions. This means that a distribution does not include all files that are
referenced by its Makefiles. Build-level components inherit these errors. To make
them suitable for composition, these errors must be repaired, either by removing
them from the Makefiles, or by adding them to theEXTRADIST variable.

The modifications can be defined as patches, such that they can be processed auto-
matically. This yields a fully automated transformation process. After making sure that
these patches yield a component for which thedistcheck build action succeeds, the
component is ready and can be imported in a CM system for further development.

5.3 Package Base Creation

The last phase in source tree decoupling, is to make the components available for use.
This implies that component distributions are created and released, and that an online
package base is generated from the package definitions. Component releases are stored
at the location specified in the generated package definitions. The online package base
is driven by Autobundle. It offers aWEB form from which component selections can
easily be assembled by pressing a single button. This makes the functionality that was
first entangled in a single source tree, separately reusable.



tclpathplan

pathplan
tclhandle

contrib/prune

agraph

cdt

tools/src

dotneato

dotneato/common

dotneato/dotgen

dotneato/neatogen

dotneato/pack

dotneato/twopigen

graph

gdtclft

gd

tcldgr

tcldot

Fig. 4.Subset of Graphviz’s directories and directory references.

6 Graphviz: a Case Study

In this section we discuss the application of source tree decoupling to a real-world
application.

6.1 Graphviz

Graphviz5, developed by AT&T, is an Open Source collection of tools for manipulating
graph structures and generating graph layouts [4]. It consists of many small utilities
that operate on theDOT graph format. Its structuring in many small utilities makes it
of general use for all kinds of graph visualization and manipulation problems. This is
affirmed by its adoption in a large number of software systems.

Thus, the functionality offered by Graphviz turns out to be effectively reusable.
However, for many uses of Graphviz only a small subset of the tool set is actually
needed (e.g., only the programdot might be needed for visualizing graphs). Graphviz
does not support reuse of this granularity. This has two important drawbacks for soft-
ware systems that are using Graphviz: i) software distributions and installations become
unnecessarily large and complex; ii) it introduces several dependencies on external soft-
ware, which are in fact not used.

At the build level we can make some other observations. The Graphviz distribution6

contains 264 directories, 1,856 files, and 174 directory references. Graphviz is imple-
mented in multiple programming languages, including C, C++, Tcl/Tk, AWK, and shell
scripts. The Graphviz implementation consists of more than 300,000 lines of code. In
Fig. 4 we depict a small portion of the build-level structure of Graphviz, containing

5 http://www.graphviz.org
6 Graphviz version 1.10

http://www.graphviz.org


directories (as nodes) and directory references (as arrows). Boxes correspond to root
nodes (i.e., directories to which no references exist). From this picture we can make
two observations: i) the many directory references reveal that there is much reuse at the
build level (each directory reference corresponds to a reuse relation from one directory
to another). Despite their reusability, they are not available for reuse outside Graphviz’s
source tree; ii) some arrows are pointing in two directions (i.e., the dashed arrows), in-
dicating circular dependencies between directories. As we pointed out in Sect. 3, this
forms an indication for problems in the structure of Graphviz. In addition, the config-
uration process of Graphviz is quite complicated (i.e., more than 5,000 lines of code
related to build-time configuration of Graphviz). It is therefore hard to extract from
the Graphviz source tree just what is needed, and integration of Graphviz with other
software is painful.

6.2 Restructuring Graphviz

Due to the aforementioned problems (i.e., Graphviz is is too large, it has too many
external dependencies, its configuration process is too complex, it has cyclic depen-
dencies, and it contains reusable functionality that is not available for external reuse),
Graphviz forms a perfect candidate for applying our semi-automatic restructuring tech-
nique. Below follows a discussion of the different steps that we performed to restructure
Graphviz.

Fixing Circular Dependencies.Because of circular dependencies between directories,
we first had to remove the corresponding cycles from the component dependency graph.
We defined this adaption as a simple graph transformation. At the end of the source tree
transformation phase, we removed circular references from the generated build-level
components as well. This had little impact, because they were either unnecessary and
could simply be removed, or they could be solved by moving some files.

Restructuring.The component structure produced at the first migration phase was not
completely satisfactory. Some components were too fine-grained and needed to be com-
bined with others. Therefore we removed some of the nodes and edges from the compo-
nent dependency graph by means of an automatic graph transformation. In some cases
we had to move files between components, because they were accessed from one com-
ponent but contained in another.

Repairing Makefiles.Graphviz is not prepared for rebuilding distributions. The prob-
lem is that the Makefiles contain references to files that are contained in Graphviz’s CM
system but not in Graphviz distributions. Consequently, building a distribution from a
distribution fails because of missing files. Since build-level composition is based on
packages, which are independent of a CM system by definition (see Sect. 3), the build-
level components of Graphviz had to be repaired. This involved adapting the Makefiles
of components such that all files referenced are also distributed.

6.3 Graphviz Components

The restructuring process yielded 47 build-level components. We automatically created
releases for them and we generated a Graphviz online package base. Finally, we gen-
erated a new (abstract) package definition calledgraphviz that is depended an all



top-level components (i.e., corresponding to the boxes of Fig. 4). The corresponding
composition of components is similar to the initial Graphviz source tree. This demon-
strates that we can reconstruct the initial Graphviz distribution with build-level com-
position. In addition, we combined the Graphviz package base with additional package
bases to make build-level compositions of Graphviz components and arbitrary other
build-level components. This demonstrated build-level CBSE in practice.

7 Concluding Remarks

In this paper we argued that software reuse is hampered because the modularization
principles of strong cohesion and weak coupling are not applied at the build level for
structuring files in directories. Consequently, files with potential reusable functionality
are often entangled in source trees and their build instructions hidden in monolithic
configuration and build process definitions. The effort of isolating modules for reuse in
other software systems usually does not outweigh the benefits of reusing the module.
Consequently, reuse is not optimal or too coarse grained.

Contributions. In this paper we proposed to apply component-based software engi-
neering (CBSE) principles to the build level, such that build-level components are ac-
cessed only via well-defined interfaces. We analyzed bad programming style, practiced
in many software systems, that breaks CBSE principles. We defined rules for develop-
ing “good” build-level components. We discussed an automated composition technique
for build-level components. In order to make our techniques feasible, we defined a
semi-automatic process for source tree decoupling. It aims at easily migrating existing
software to sets of build-level components. This process consists of a source tree analy-
sis and a source tree transformation phase, where build-level components are identified
and isolated to form individual reusable components. We demonstrated our techniques
by decoupling Graphviz into 47 components.

Discussion. The most prominent shortcoming of our approach is the dependency on
Autoconf and Automake. However, since these tools are so often used in practice, and
because many systems are migrating to adopt them (Graphviz is a good example of
this), we believe that this dependence is acceptable.

Currently, we are not able to precisely track what the configuration switches and
environment checks of a component are. Consequently, the per-component generated
configure scripts need some manual adaption to remove stuff that does not belong to the
component. Observe however, that only information is removed; the generated compo-
nents will therefore work with or without this extra information.

Graphviz was not a toy application to test our techniques with. Since it has migrated
from a build system without Automake, its build and configuration processes contain
several inconsistencies, as well as constructs that break Automake principles. The suc-
cessful migration of Graphviz therefore strengthens our confidence in the feasibility of
our techniques. Nevertheless, we look forward to apply our techniques to additional
software systems.



Related work.Koala is a software component model that addresses source code com-
position [15]. Unlike our approach, Koala is concerned only with C source code. Com-
ponent composition therefore involves composing individual C source modules and
defining a sequence of compiler calls. Because it is tailored towards a single program-
ming language, Koala has more control over the composition process at the price of less
genericity. For example, adopting non-Koala components is therefore difficult.

Reengineering build and configuration processes, and decoupling source trees into
components is a research topic that is not so well addressed. Holtet al.emphasize that
the comprehension process for a larger software system should mimic the system’s build
process [6]. Their main concern is understanding the different pre-compile, compile,
and link steps that are involved in a build process, not restructuring source code, or
making build and configuration processes compositional. In [18], the notion of build-
time architectural views is explored. They model build-time relations between subparts
of complex software systems. They do not consider the structuring of files in directories
and splitting up complex software systems in individual reusable parts.

There exist several clustering techniques that help to capture the structure of exist-
ing software systems [11]. In [2], a method is described for finding good clusterings of
software systems. Such clusters correspond to use-relations (such as calling a method,
or including a C header file). A cluster therefore not always corresponds to a compo-
nent. In our approach we use the directory structure for clustering source code into
components.

It is sometimes argued that build knowledge should not be spread across directories
at all, but contained in a singleMakefile [14]. The motivation is that only in a single
Makefile , completeness of build dependencies can be achieved. This is merely due
to limitations of traditionalmake implementations. Unless such global Makefiles are
generated, they completely ignore modularization principles necessary for decompos-
ing directory structures.

Acknowledgments.John Ellson for discussions about Graphviz and Eelco Dolstra for
feedback on drafts of this paper.
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