| mproving the build architecture of legacy
C/C++ software systems

Homayoun Dayani-Fard Yijun Yu John Mylopoulos Periklis Andritsos
IBM Canada University of Toronto

Abstract. The build architecture of legacy C/C++ software systems, groups pro-
gram files in directories to represent logical components. The interfaces of these
components are loosely defined by a set of header files that are typically grouped
in one common include directory. As legacy systems evolve, these interfaces de-
cay, which contribute to an increase in the build time and the number of conflict
in parallel developments. This paper presents an empirical study of the build ar-
chitecture of large commercial software systems, introduces a restructuring ap-
proach, based on Reflexion models and automatic clustering, and reports on a
case study using VVIM open source editor.

1 Introduction

In large software development, it is a common practice to organize programs into com-
ponents (or sub-systems), which group a number of related files. Components can be
identified by a simple naming convention, a directory, or using configuration items in
more sophisticated configuration management tools. Each component exposes its in-
terface to other components through a number of header files. This grouping of files
and components, and their logical and syntactic inter-dependencies, constitute the build
architecture of a system. The build architecture provides division of responsibility and
ownership among teams as it facilitates the development of new features [1].

To ensure the stability of the software [2], as program files are changed, these and
other files dependent on them need to be recompiled to create a new version of the
software. As software systems evolve, the number of files, the number of components,
and the dependencies among them grow. The result is a decaying build architecture,
where the original objectives may no longer be valid, interfaces lose their integrity, and
compilation times increase rapidly.

The solution, can broadly be stated as a (semi-)automatic approach to improving the
build architecture of C/C++ software systems. More succinctly, a solution that partitions
a software system into components with the following goals.

1. Components must have clean interfaces, where changes to one component do not
require unnecessary recompilations of other components. This contributes to faster
build as well as easier migration to parallel code management environment such as
Rational ClearCase.

2. Components must follow a reference architectural pattern reflecting an architecture
discovered from the code [3]. This can contribute to a controlled evolution of the
architecture in light of future growth.

To achieve the first goal, we remove redundancies (i.e., program entities or units
that are declared but not used in the preprocessed files) and false dependencies (i.e.,
unnecessary program entities included from header files) [4]. As for the second goal,
we combine the architectural repair [5] and the reflexion model [6].

To ease the discussion, we use VIM, an open source editor as our case study. First,
VIM is representative of small to average size components in commercial software
systems that we have studied. Second, VIM is continually evolving and growing (e.g.,
+5% from version 6.1 to 6.2 [7]). Third, availability of existing studies on the repair of
VIM architecture enables us to compare our approach to others. Though VIM is written
in C, our approach can be applied to C++ programs. Elsewhere [8], we reported the
application of our tool on a large C++ component of a commercial software product,
which is the basis of the motivation in Section 2.

The rest of the paper is structured as follows. Section 2 presents motivations behind
the stated problems by reporting on our study of the growth of commercial software
systems. Section 3 outlines our approach. Section 4 reports on the results of a case
study (e.g., VIM) and its experimental results. Section 5 evaluates the componentization
process and the case study. Section 6 summarizes related work in architectural discovery
and repair as well as some VIM case studies. Section 7 concludes the findings.

2 Motivation

The curiosity arises from a study of a number of commercial software systems and their
build architecture. These systems are implemented using C/C++. The number of pro-
gram source files vary from several hundred to several thousands, which are organized
into components. On average each component has 30 to 50 files and is owned by a de-
velopment manager. The development model resembles synch and stabilize [2], where
the programs are compiled and linked on a daily basis.

Fig. 1. The build architectures of a software before (a) and after (b) the componentization

Program files are organized in directories, each of which represent a component. All
header files are placed in a separate i ncl ude directory (Figure 1a). Initially, such a
layout with proper protocols could sustain changes due to the addition of new features or
the repairs of existing defects. However, as the software evolved, the interdependencies
increased, which made manual protocols ineffective. Modern languages, such as Java,

provide other mechanisms (e.g., packages) to organize files and components, as well as
controlling access among components. However, such mechanisms are absent in legacy
C/C++ software systems and must be created manually.

While control is a prime reason for repairing the architecture of legacy software,
the compilation time is also pressing. In particular, our study revealed that on average
between 80 to 90% of extra program entities (i.e. units such as, function, data, and type
declarations) are included through unused header files. On average, each file included
60% of all header files multiple times. In an average size component, 172KLOC or 2.8%
of entire programs, the average number of header files included by program files was
543 (directly and through transitive inclusion). The average size of program files was
37KB, whereas the average size of preprocessed file was 1.96 MB. While the compiler
will discard unused entities, the preprocessor and the parser are penalized for opening,
reading through , and closing the files. Even in case of conditional compilation, while
the entire file is discarded, all lines must be read to determine the end of conditional
guard. Such rate of dependency can significantly slow the compilation process in a
software with thousands of program files.

Another reason for the repair reflects the changing needs of the development team.
In our example, the number of files in the system has been growing steadily for the past
four years, with jumps near major new releases. Similarly, the number of actual depen-
dencies have grown as well as the average number of header files included by program
files. Figure 2 shows the growth of the number of program entities (broken down into
functions, variables and types), source files, included header files, and component de-
pendencies for several major releases of the software.

To improve productivity, teams need to work in parallel. This can be accomplished
if components are smaller and their interfaces minimized. Each component needs to
know only the interface of the components that it uses and parallel development can
proceed. When the interface of a component changes, all other components that use it
must update their definitions. In our example, any time the interface of a component
changes, the components that use it must synchronize (recompile, re-test). As com-
ponents become larger and their interfaces degrade, the number of synchronizations
increases rapidly, which prevents parallel development.

Our objective is to generate component hierarchies (Figure 1b) by leveraging hidden
structures in the program files. In other words, clustering files according to some cri-
teria and implement these clusters using directory hierarchies to control the increasing
complexity. The main constraint here is to maintain the semantics of the programs: we
can only move program entities between files, create new files and directories, or move
files between directories. Figure 1 depicts a sample build architecture before and after
the proposed improvement. For practical purposes, the process must be semi-automatic:
it accepts as input a hypothesis about the layout of components and connectors (i.e., a
reference architecture) and leverages automatic clustering to satisfy it.

3 Componentization process

The componentization process described in this section relies on data extracted from
the programs and an initial architectural pattern. The former is automatically generated,

W Functions M Variables M Types w0

P
4
§ 140 - [| lr...«m
4
£ 2 0] - g ©
: =
: 100 —4-7- — |] 25 r‘l
£ g
g e mm § L AATWAN
|3 2
2 5
5 60 g 15
P oon .,
20 1
0 5

builds over time

builds over time

400 o 220
ad £ 200
foos- £
- e ek
2 poerentred g 2180
2 300 @ =
2 I 160
§ 250 % g 140
H g2
2 §g 12
5 200 g8
H 38 100
58
E 150 PN N NN £° 80
2 s 60
Emo é 40
- H
50 c 20
o 0

builds over time builds over time

Fig. 2. The growth of an industrial software

while the latter is the input from the developers providing a high level build architecture.
If there is no overall build architecture, we can use automatic clustering to propose
possible build architectures. The componentization process involves three steps, where
at each step mechanisms are provided for manual intervention.

1. Form an initial hypothesis: H =< D, A, M > where

— D is the program dependency graph, which captures the dependencies among
program units, e.g. functions, variables, and types. This graph is automatically
constructed from the program source [4]. It contains all possible dependencies
among program units and provides an invariant logical view of the program
that must not change by restructuring.

— Aisahigh-level architecture, which captures the structure of the program. This
is a graph where nodes are high-level clusters (or components) and the edges
are inter-dependencies among them. If there are no high-level architectures, we
use the information loss minimizing clustering algorithm [3] on the program
dependency graph D to create an initial architecture.

— M is a one-to-many mapping, which maps nodes of D to a node in A. This
mapping can be provided by the developers or an initial mapping can be ob-
tained from the clustering algorithm (as specified in the creation of A above).
M may not cover all nodes in D.

2. The dependency graph D is invariant, while the architecture description A and
its mapping M can vary. Using the Reflexion model [6] we identify the outliers
between D and A. These are the divergences (e.g. dependencies that exist between

nodes in graph D but not in corresponding nodes in A) or absences (e.g., dependen-
cies that are in D but not in A). If the number of outliers exceeds a pre-determined
threshold, we make manual adjustments based on developers’ feedbacks, naming
conventions, or available documentation.

— Modify the architecture A by adding a new cluster or merging two clusters.

— Modify the mapping M by grouping nodes in D into clusters in A.
Repeat step 2.

3. Each cluster in A represents a component in our new build architecture.

To demonstrate the operation of the componentization process, we use VIM 6.2
as a case study. VIM is a widely used open source editor whose size is comparable
to components of average or medium size in commercial software systems that we
have studies. Furthermore, earlier version of VIM was studied by Tran et al [5] for the
purpose of architectural repair. Elsewhere, we used VIM to investigate the reduction of
build time by removing false dependencies among program header files [8].

Constructing program dependency graphs The program dependency graph was ob-
tained as a by-product of our header restructuring algorithm [4]. There are two types
of dependency graphs. A file-level dependency graph (FDG) G =< V, E > is a graph
where its vertices V' represent files (program files or header files) and its edges represent
inclusion directions between files (i.e., #i ncl ude directives). A snippet of this graph
for VIM 6.2 is shown below.

buffer.c <- vimh
vimh <- globals.h

A program unit dependency graph (PUDG) G =< V, E > contains more detailed
information about the program. Its vertices are program units (e.g. entities with one
definition and multiple declarations) and its edges are syntax dependencies among the
program units. A snippet of the PUDG for VIM 6.2 is shown below.

func: AppendChar ToRedobuff <- func: add_char _buff
func: AppendChar ToRedobuff <- var: bl ock_redo

After restructuring VIM 6.2 header files, 956 header files (numbered by a natural
number) were generated, which were included by 46 compilation units. This results in
an updated FDG with 1002 nodes and 5546 vertexes. The respective PUDG has 26389
nodes and 72056 edges. The PUDG captures all low-level call graph, use-def relations,
type dependencies, etc. in one graph. Both FDG and PUDG can be constructed using a
C/C++ parser. They can be clustered into components to improve cohesion and reduce
coupling among the resulting components.

Clustering dependency graphs The reference architecture explored by Tran et al. [5]
was not based on the VIM documentation. Furthermore, VIM has evolved through sev-
eral major revisions from 5.7 to 6.2 and it is not clear whether the reference architecture
proposed by Tran et al. still fits the code. Therefore, we tried two different paths to see

(@) Initial clustering (b) Divergence for outliers edges (c) Divergence resolved

Fig. 3. The reflexion models as a result of LIMBO clustering on the restructured header file
dependency graph. An edge label is the number of inclusions between two clusters. The final
model can be seen as MVC model after merging “c0” and “c3” as “Controller”, merging “cl”
and “c4” as “View” and regarding “c2” as “Model”.

if we can converge on the same architecture: (1) use FDG to reveal an initial archi-
tecture based on information loss minimizing clustering; (2) use PUDG to reveal the
architecture through repairing a reference architecture.

We performed an initial clustering of the updated FDG of the restructured program
using the LIMBO algorithm [3]. Chosen N = 5 as the desired number of clusters, the
output of the algorithm gave a partition of the involved files as follows:

cO0={*.c except for buffer.c (41 files) 151.h 152.h ... (24 fil
cl={buffer.c 1.h 156.h ... (143 files) }

c2={10.h 103.h ... (365 files) }

¢3={110.h 150.h ... (96 files) }

c4={0.h 101.h ... (298 files)}

To apply j RMTool (the reflexion model tool) [6], we prepared a mapping with the
following format:

[file=<fil eNanme> mapTo=<conponent Name>]

where f i | eName can be given as a regular expression to match multiple files using
the patterns from naming conventions. After feeding the rules found by the clustering
mapping into j RMTool , a reflexion model is created as shown in figure 3a.

The divergences and absences are indications that either the high level model does
not present a good fit or the mapping is not correct. Adjusting the high level model
requires better understanding of the architecture.

Although there is no divergence in the above model, two edges in the high-level
model, namely c1— c0 and c1 — ¢3, have only very few instances in the source model.
We consider them as outliers. After removing them in the high-level model, we have
two divergences as shown in figure 3b. These divergences arise from two sets of mis-
classified headers, we reclassified them into the more appropriate cluster:

c0 -> cl: {153.h 159.h 43.h}
¢3 -> cl: {110.h 116.h 200.h 210. h}

Applying the above adjustments on the reflexion mappings, we obtain a new high-level
model as shown in figure 3c. It is worth noting that the clustering leads to an architecture
that is similar to the model-view-controller (MVC) pattern.

es) }

Selecting a reference architecture We begin by using the architecture from Tran et al
for VIM 5.7 [5] as a reference architecture and compare the results of the reflexion
model with the PUDG for VIM 6.2. We convert the “contain.rsf” used in Tran’s result
into an initial high-level model A with the initial mapping M. Here, we only use the
call-graph, a subgraph of the PUDG where the edges are function calls, in order to com-
pare VIM 6.2 with results reported for VIM 5.7 [5]. Figure 4a shows the result of this
comparison. As this reflexion model shows, there are many divergences and absences.
These are due to the changes made to the programs between the two releases. Adding
the new functions to the original mapping and merging the sub-components “CHAR”
and “MISC” with their parent components “Terminal” and “Utility” respectively, we
obtain a new reference architecture, as shown in Figure 4b. Furthermore, we merge
“Lang_Interface” into “Terminal” and “Utility” into “FILE”, and adjusted some cluster-
ings by changing the mappings. The repaired architecture is shown in Figure 5b, where
three divergences are fully repaired by merging “Terminal” and “GUI” into “View”,
part of “FILE” and “OS_Interface” into “Model” and “Command” and rest of “FILE”
into “Controller”.

Componentization of VIM Both automated clustering and manual creation of a ref-
erence architecture suggest an MVC architectural style for VIM 6.2. We partition the
program files into three components, each of which is implemented as a directory. As
for PUDG for VIM 6.2, we use the results of earlier header restructuring [4]. To fit
the MV C architecture on VIM 6.2, we leverage the Reflexion Model [6]. We gave the
reference architecture as a high-level model and the converted dependency graph as the
source-level model. In addition, we gave the mapping from the compilation units to the
clusters.

According to the reflexion mappings, the 46 compilation units are mapped into 3 di-
rectories: 4 in Model, 24 in View and 18 in Controller. Then, we copy the 956 generated
headers into these directories that are directly or indirectly included by the implement
files: 126 headers in Model, 868 in View and 862 in Controller. There are duplicated
headers among them, namely 109 headers are common to all the three directories, for
the remaining 759 headers in View and 753 headers in Controller, there are 665 in
common. We create two additional directories for common headers. Next, we put these
headers into an interface for the components to obtain just 5 headers, the file inclusion
dependencies for the directory restructured VIM becomes:

comon.h -> nodel .h -> 4 .c files
-> comon.c.h -> view h -> 24 .c
-> controller.h-> 18 .c

4 Experimental Results

We adapted the GCC 3.4.0 compiler (1) to remove redundancies through a precompi-
lation option: - dunp- pr ogr am uni t s; (2) to remove false dependencies through a
header restructuring option: - dunp- header s; (3) and to cluster generated headers
into smaller number of headers and adjust the inclusion directives accordingly through

(b)

Fig. 4. The initial reflexion model is based on Tran’s architecture of VIM 5.7. Figure 4a shows the
initial model without considering new functions in VIM 6.2, and figure 4b shows the model with
the new functions. Here an edge label shows the number of function calls among two clusters.

(2) (b)

Fig.5. The reflexion model after architecture repairing, where three divergences are inevitable
while the clusters were fixed. If we merge “Terminal” and “GUI” as “View”, merge part of “FILE”
with “OS_Interface” as “Model” and “Command” and part of “FILE” as “Controller”, a MVC
model can be obtained which resolves all the divergences/absences.

Size of preprocessed compliation urits in LOC (VIM 6.2) 8 a5

o 30000
2

Compilation tme for individual compilation units.
}\j\

25000

20000

15000

10000

5000

o

> A T T T

R R S R A R B A R RS
R b & & %aé&f&;? PO O 35@53 T &
E {

3!
PERORON &7 & -
LSRR A
FTGIT 7 SR « & S

R R L R R OSSR
PR R R FETEER

complatonunts SSRGS SX S
0
¢

() The LOC by individual compilation units (b) The fresh build time by - g - Q2

Fig. 6. Break down LOC and fresh build time of VIM

a componentization option: - dunp- conponent s. These options serve as a prepar-
ing step before a real compilation. As a result, the generated compilation units (.c files),
header units (.h files) and component units (directories with a clustered header file)
are saved into temporary files. These temporary files can be used by the second run of
the compiler to speedup its compilation. The build process is completely transparent to
the developers. It is not necessary to modify the Makef i | e because the new options
can be given to nake through an argument, e.g., CC = "gcc -dunp- program
uni ts". For VIM 6.2, we measured the resulting programs by our pre-compilation,
restructuring and componentization respectively.

Measuring fresh builds The experiments were carried out on a number of networked
Linux workstations. The host machine for the compilations is a 2.20 GHz Intel Pen-
tium 4 workstation, with 512 KB cache. We also used the servers available in the local
area network of our campus lab. The compilation farm can use up to 8 processors: 2 x
2.8GHz, 4 x 2.4GHz, 1 x 2.2GHz (the local workstation) and 1 x 1.6GHz. All machines
use the same operating system. The times are measured as the average of 10 separate
runs of the same settings. The default compilation takes around 70 seconds, whereas
the build time with all the tuning options turned on reduces drastically to around 2 sec-
onds (39.5x speedup). Our techniques are also shown to be orthogonal to other tuning
techniques such as parallel build and compilation cache [8].

To make a fair comparison of the code bases, we preprocessed the original code base
using the - E - P options so that no preprocessing time is compared. The average size of
preprocessed files was reduced from 708.9 KB to 104.71 KB. The overall build size is
reduced from 33.9 MB to 5.01 MB. The saving comparisons of individual compilation
units are shown in Figure 6a. The data items are horizontally sorted by the original
preprocessed file size. The similar shapes of the two curves indicate that the reduction
is almost uniform to every compilation unit. The time savings and their comparisons
are shown in Figure 6b. Here, the data items are still sorted by the descending order of
the original preprocessed file size. In this manner, we can not only see the correlation
between the curves in this chart, but also the correlation between the preprocessed file
size and the compilation time. The compilation time is almost uniformly reduced for

each unit, since almost every compilation unit in VIM includes the vi m h. The net
speedup by precompilation is 2.51. The precompilation overhead is needed for the first
fresh build. Even taking it into account, the precompilation plus a fresh build is still
12.6% faster than the original fresh build. If the precompiled code is compiled NV times,
then the overhead can be divided by N. The restructured and componentized code has
a little less time reduction in fresh build, as shown in Figure 6b.

Measuring incremental builds When a line of code is changed, all files dependent on
it must recompile. Since pre-compilation generates preprocessed files, one must rely
on the original file inclusion dependency to judge whether a compilation unit needs
to be recompiled. On the other hand, the header restructuring generates new header
inclusions that have no false dependencies, the number of recompilations is reduced to
the minimum. However, the larger number of headers generated by the restructuring
hampers the fresh build execution time because of increased file open/close operations,
thus the componentization can be employed to reduce the number of headers. The cost
of doing so is the increasing number of recompilations. To verify the above rationale,
we performed a simulation based on concrete numbers gathered from the time spent on
individual compilation units under various options, and also based on the FDG implied
by the generated inclusion relationships.

Since the change data of VIM at each incremental build is not available?!, a proba-
bility analysis is used by assuming that a program per incremental build changes AL
lines of code and the probability of change for each line is uniform: AL/L where L is
the total lines of code (LOC).

Consider a file dependency graph (FDG), and measure the line of code for each
file as Ly, for headers H; or L¢, for compilation units C;. The probability of chang-
ing a header H; or a compilation unit C; is Ly, AL/L or Lo, AL/ L respectively. For
every change in a header file H;, all the dependent compilation units D(z) require re-
compilation, whereas for each changed compilation unit, only itself must be recom-
piled. In the original code base, a compilation unit C; needs a re-compilation if either
its implementation is changed, or any of its dependent headers is changed. If we mea-
sure the time for its re-compilation as ¢;, then the overall incremental build time is

At =)~ piti where p; = [L(Ci) + 3 ;ep(n,) L(H;)]AL/L @

Equation (1) is used with a different parameter L and a different FDG for restructured
and componentized code bases, since the restructuring and clustering needs to be done
only once during the incremental build.

The precompiled programs use the same FDG as original, but Equation (1) is ad-
justed as Equation (2) since the directly changed compilation unit needs an overhead of
t; to redo the pre-compilation, while indirectly changed compilation unit can quickly
recompile with the precompiled code.

At =3[P (t: + 1) + (1 = p)plti] , 0§ = L(CHAL/L . p} = 3 jiepa,) LIH;)AL/L
()

! The publicly committed CVS log does not match the real development changes since not all
changes were committed to the repository.

Second

2.5

Estimated incremental recompilation time —
—&—original

—#—precompiled
T —a—restructured ||
—e—componentized

0.5 1

099,
o=
\A§g—!‘0—:-0—0-._- -0 N

0 T e 0 920000 000 g 4 Sin e o O Oor O O B F OO0
E VXA L DN @ A @ QD@ @ e L QD@ S 30 DL A @
R N S e R e e R R R R R

NES) N o RS é‘o\ s 6\6&‘%@@ £)

& S S S/

compilation units

N A 5 N . ..

B A AT AR

LA RS
5/

Q

Fig. 7. Break down the required recompilation time as a line is changed per incremental build.

Having the LOC of source files (Figure 6a) and the timing of the compilation units
(Figure 6b), the incremental build time analysis of the original, precompiled, restruc-
tured and componentized code bases is shown in Figure 7. In total, for the original,
precompiled, restructured and componentized code base, an incremental build when
changing one line of code takes respectively 22.73, 10.06, 1.76 and 2.46 seconds of re-
compilation (see Figure 7), whereas the fresh build takes 97.89, 39.04, 41.1 and 40.91
seconds respectively (see Figure 6b).

Finally, we verified both the header restructured and componentized VIM programs
by executing all 51 test cases and comparing the results with that of original VIM. 49
test cases ran cleanly and produced identical results, while 2 test cases failed due to
dependencies on Win32 platform. The original VIM also failed these two test cases in
our environment.

5 Discussion

The goals of improving a build architecture are many-fold and some are conflicting.
In particular, the improvement of build time through reduction of redundancies and
the number of header files that conflict with one another. Other goals contribute to our
overall objectives to varying degrees. Figure 8 depicts various objectives, issues, con-
cerns and operations as a soft-goal interdependency graph [9]. In this graph, the cloud
nodes are high-level soft-goals, those not directly affecting the correct functionality of
the system. At the root level we have the goal of improving build architecture. The
intermediate goals represent issues and concerns that contribute to our root goal, e.g.,
reducing the build time. Similarly, the lower level goals contribute to their respective

improve
[build architecture;
/ \
reduce
build timel

+
mprove maintainability
[program
reduce reduce
[fresh build time [incremental build tims

R

improve remove redundancy
[locality] [program units]
++

precompilation
+restructuring
+componentize
[headers]

compiler cache

[compilation units]

parallel build
[compiler farm]

++

pass
[test cases]

+

correctness
restructufingy

Fig. 8. Rationale of improving the architecture for the build process

parents. The hexagon nodes are the operationalization of higher-level goals: the actions
or tasks that assist in achieving goals.

Precompilation and header restructuring are both fully automated with little over-
head. Other steps of our componentization process provide facilities for manual input.
This combination facilitates an exploratory approach to improving the build architec-
ture, where the developers have complete control through creation of a reference archi-
tecture and appropriate mappings. Using similar goal models, developers can balance
the trade offs in the architectural repair process.

6 Reated work

Architecture views and the MVC pattern. Different views of software architecture sup-
port different tasks in software development. Typical examples of views include the
“4+1” view [10], Siemens Four view [11], and Business Component Factory [12]. In a
recent book, Clements et al [1] provide a treatment of various views, their definitions,
and their audience in a software development project. Furthermore, the authors describe
conditions under which various views may be merged together. This paper focuses on
two such views: module view and allocation view. Module views focus on physical
program units, e.g. functions, classes, or a group thereof, and their relationships. The

allocation view (more specifically the implementation styles) focus on how a module is
allocated to the code management system. In its simplest form, this can be a directory,
or in more elaborate configuration management, a configuration item. While the mod-
ule view is necessary for understanding the static properties of the software system, the
allocation view enables project managers to assign work responsibilities or divide the
resources for build and testing activities.

Various architectural patterns have been documented (e.g. Clements et al [1]). Such
patterns provide clues to developers’ intentions and help speed up the communication
among the team. The patterns are loosely defined. In this paper, we used the idea of
patterns as a reference architecture that was the input to our componentization process.
In our case study of VIM, we used the Model-View-Controller (MVC) pattern, which
was proposed by the Smalltalk community as a reference architecture for graphical
editors [13]. In this pattern, the Model keeps the data structures of the documents being
edited, the View shows the model to the user, and updates the view whenever there
is a change in the model, the Controller calls appropriate actions based on the user’s
command. Thus, both View and Controller need to interact with the Model and each
other. Such patterns can be loosely defined and modified by reflecting different views.

Reflexion Model and architectural repair. There are many reverse engineering tools to
compare an architecture against the low-level code artifacts [6, 14, 15, 5]. Among them,
we choose Murphy et al’s reflexion model [6] and Tran’s architecture repair [5] for the
reverse engineering. The reason for the choice is not only to recover the architecture,
but also allows for maintaining it through monitoring and repairing.

This paper uses the reflexion model to verify the mappings or clusterings after the
architecture discovery and during the architecture repair. Unlike other work that uses
call-graphs as the source model, we compute the program dependency graphs as the
source model to reduce the build time through removal of false dependencies.

Tran et al [5] proposed a way of repairing an architecture through manual clustering.
The idea is similar to the reflexion model [6], which also requires a mapping between a
high level model (e.g., architecture) and a low level source model (e.g., call graphs). The
architecture repair aims at adjusting the high-level models as well as low-level source
models so that the number of divergences is kept small. Tran et al studies VIM 5.7 as one
of their case studies. In this paper, we investigated whether the same architecture is still
followed by VIM 6.2, and moreover, how much repair is needed to remove divergences.

Architecture discovery through clustering. There are several approaches in literature [3,
16-18] to cluster software artifacts into architectures. Among them, we chose LIMBO,
a scalable algorithm developed by Andritsos et al [3] that discovers clusters from code
facts automatically. The algorithm computes the information content of the data at hand
and its objective is to minimize the loss of information as code artifacts are placed into
clusters. Intuitively, when a code artifact is given, LIMBO tries to minimize the uncer-
tainty of identifying the cluster to which this artifact belongs. The reason for choosing
LIMBO, is that our artifacts collected from header restructuring are dependency graphs
that can be expressed into input for the algorithm, and the algorithm allows for an un-
biased clustering with a single parameter N: the number of desired clusters.

In a program fact graph with nodes and links, each node is annotated by a set of
neighboring nodes through its links to them, i.e., each node becomes a vector over the
nodes with which it is connected. Then, the distance between two particular nodes is
defined as the loss of information we would incur if their vectors were merged into a
single vector, representative of the two. Therefore, during the first steps of the algo-
rithm, vectors with no information loss are merged. These are the vectors that contain
identical sets of code facts. Given a threshold for the information that can be lost, the al-
gorithm proceeds with more vector merges and stops when a desired number of clusters
is reached. In this paper, LIMBO was used as an initial step to discover an architecture
based on program dependency graph rather than a call-graph. Some further repair is
needed to remove divergences from automatically generated clusters.

Build speedup through header restructuring. Large legacy C/C++ software systems
typically consist of header files (.h files) and compilation units (.c files). Ideally an
compilation unit includes only the declarations that it uses. However, a header file can
be included by multiple files and as such may contain declarations and definitions that
are not used by all compilation units that include it [19]. In such cases, false dependen-
cies are created. Another problem is that symbols may be declared in more than one
places. As systems evolve, such redundant declarations tend to become common.

Redundancies and false dependencies do not affect the functionality of a system,
but they do affect the efficiency of the development process. The longer the build pro-
cess takes, the longer developers have to wait to integrate their changes. Large software
systems that contain millions of lines of code may take several hours to build. Redun-
dancies increase the size of the code and may cause inconsistencies. A false depen-
dency between a compilation unit and its header exacerbates the problem by causing
unnecessary compilation of the unit when an independent part of the header file has
changed. This problem is particularly important in light of the popularity of the sync-
and-stabilize development paradigm [20], where software systems undergo frequent,
often daily, builds. Earlier [4], we reported an algorithm to remove false code depen-
dences and redundancies through header restructuring.

7 Conclusion

As legacy software systems evolve, their build architectures decay, which result in in-
efficiencies that can hamper the development process. However, repairing the build
architecture requires balancing a number of objectives. This paper presented a study
of commercial software systems evolution and the impact on their build architecture.
Furthermore, it outlined the key requirements for repairing the architecture of a large
system. In particular, the approach facilitates exploration, where the developers provide
some input and the process automatically carries out the restructuring. The componen-
tization process was carried out on a case study, VIM 6.2, whose build architecture
closely follows small to medium size components of legacy software systems that we
studied. After improving the build architecture, we found that technically, such a com-
ponentization can reduce the incremental build time more than 10x while reducing its
fresh build time more than 2x, and perhaps more importantly, the restructured VIM

follows the MV C pattern facilitating better understanding of the program and its main-
tenance.

References

1.

2.
3.

4.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

Clements, P., Bachmann, F., Bass, L., Garlan, D., lvers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison Wesley (2002)

Selby, R.W., Cusumano, M.A.: Microsoft secrets. Simon and Schuster (1998)

Andritsos, P., Tzerpos, V.: Software clustering based on information loss minimization. In:
10th Working Conference on Reverse Engineering. (2003) 334-344

Yu, Y., Dayani-Fard, H., Mylopoulos, J.: Removing false code dependencies to speedup
software development processes. In: Proceedings of CASCON. (2003) 288-297

Tran, J., Godfrey, M., Lee, E., Holt, R.: Architectural repair of open source software. In:
IWPC 2000. (2000)

Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the gap be-
tween design and implementation. IEEE Trans. Software Eng 27 (2001) 364-380
Moolenaar, B.: Vim 6.2, http://www.vim.org (2003)

Yu, Y., Dayani-Fard, H., Mylopoulos, J., Andritsos, P.: Reducing build time through precom-
pilations for large-scale software. Technical Report CSRG-504, Department of Computer
Science, University of Toronto (2004)

Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements:
A process-oriented approach. IEEE Trans. on Softw. Eng. 18 (1992) 483-497

Kruchten, P.: Architectural blueprints — the "4+1” view model of software architecture. IEEE
Software 12 (1995) 42 - 50

Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley (2000)
Herzum, P., Sims, O.: Business Component Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise. John Wiley and Sons (1999)

Krasner, G.E., S.T.Pope: A cookbook for using the model-view-controller user interface
paradigm in smalltalk-80. Journal of Object-Oriented Programming 1 (1988) 26-49
Eixelsberger, W., Ogris, M., Gall, H., Bellay, B.: Software architecture recovery of a program
family. In: Proceedings of the 20th ICSE, IEEE Computer Society (1998) 508-511

Bellay, B., Gall, H.: An evaluation of reverse engineering tool capabilities. Journal of Soft-
ware Maintenance: Research and Practice 10 (1998) 305-32

Maletic, J., Valluri, N.: Automatic software clustering via latent semantic analysis. In:
Proceeding of ASE’99. (1999) 251-254

Mitchell, B.S., Mancoridis, S.: Modeling the search landscape of metaheuristic software
clustering algorithms. In: GECCO-03, LNCS 2724, Chicago (2003) 2499-2510

Mitchell, B.S., Gansner, E.R., Mancoridis, S., Chen, Y.: Bunch: A clustering tool for the
recovery and maintenance of software system structures. In: ICSM’99. (1999)

Borison, E.A.: Program Changes and the Cost of Selective Recompilation. PhD thesis,
Carnegie Mellon University (1989)

Cusumano, M.A, Selby, R.W.: How Microsoft builds software. CACM 40 (1997)

