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Abstract

Software rebuilding is the process of deriving a deployable software system
from its primitive source objects. A build tool helps maintain consistency
between the derived objects and source objects by ensuring that all necessary
build steps are re-executed in the correct order after a set of changes is made to
the source objects. It is imperative that derived objects accurately represent
the source objects from which they were supposedly constructed; otherwise,
subsequent testing and quality assurance is invalidated.

This thesis aims to advance the state-of-the-art in tool support for auto-
mated software rebuilding. It surveys the body of background work, lays out a
set of design considerations for build tools, and examines areas where current
tools are limited. It examines the properties of a next-generation tool concept,
redo, conceived by D. J. Bernstein; redo is novel because it employs a purely
top-down approach to software rebuilding that promises to be simpler, more
flexible, and more reliable than current approaches. The details of a redo pro-
totype written by the author of this thesis are explained including the central
algorithms and data structures. Lastly, the redo prototype is evaluated on
some sample software systems with respect to migration effort between build
tools as well as size, complexity, and performances aspects of the resulting
build systems.

Keywords: software manufacture, system building, software rebuilding, build
tool, build automation, redo
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Chapter 1

Introduction

Building deliverable software from source code is a crucial but often overlooked
phase of the software engineering cycle. While much work has been done to
study and improve the design, programming, and testing phases, the build
process is rarely examined critically and systematically. This thesis aims to
take steps to rectify this situation. It treats building as a serious software
engineering activity, and aims to improve engineers’ ability to practice this
activity by investigating a novel form of tool support for automated software
rebuilding.

The build process for obtaining deliverable software from source code must
be fast, automatic, reliable, and repeatable. It is, in a sense, “where the rubber
meets the road” in software engineering; all programming effort is wasted if
you cannot efficiently get deliverable software into the hands of the customer.
Not surprisingly, the quality of the build process can often directly influence
the success or failure of the project. Errors and oversights in the build process
cause disruptions in the flow of code changes from programmers to testers and,
later, to customers, resulting in lost revenue and marketshare.

1.1 Motivation

Results of an informal questionnaire by Kumfert and Epperly [85] indicate that
the perceived overhead required to maintain the build infrastructure for a soft-
ware project is approximately 12%, on average. This represents a significant
proportion of resources that could be better spent on tangible improvements,
such as implementing features and fixing bugs. The results also suggest that
many of the developers surveyed are frustrated with current tool support for
software building; they believe much of their time spent on this activity is
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unproductive or “wasted,” and that the build infrastructure may be limiting
the progress of the project.

In his classic paper on the difficulties of software engineering, Brooks makes
the distinction between essence and accidents [32]. Essential difficulties relate
to an abstract construct of interlocking concepts including data, relationships,
algorithms, and modules. These difficulties are inherent in the nature of soft-
ware and cannot be eliminated through the use of improved technologies or
methods. Accidental difficulties, on the other hand, are not inherent. They
only exist because we, as software engineers, have not yet developed appropri-
ate means to effectively address and eliminate them.

Presently, it is unclear exactly what proportion of the difficulty of main-
taining the build infrastructure for a software project with the technologies
and methods available today is essential, and what proportion is accidental.
However, the collective experience to date strongly suggests that a significant
amount of this difficulty may in fact be accidental. Hence, it may be possible
to realize significant gains in productivity, reliability, and simplicity with re-
spect to build infrastructure by pursuing improved technologies and methods
that aim to reduce build-related complexity.

1.2 Contributions

This thesis makes three contributions to the area of system building. First, it
provides a comprehensive survey of background work in the area of software
rebuilding. Second, this thesis presents a detailed list of design issues related
to implementing a build tool. The choices made by tool authors with respect
to these design issues directly affect the types situations where their tool will
be effective. Third, this thesis presents the first publicly available prototype
of D. J. Bernstein’s redo tool concept, a novel approach that uses a simpler,
purely top-down model of software rebuilding. The prototype provides a proof-
of-concept starting point for further research into patterns and techniques for
applying purely top-down build tools to software systems.

1.3 Organization

The organization of this thesis is as follows. Chapter 2 surveys the existing
body of research on software rebuilding, including work on software manufac-
ture theory, standalone build tools, integrated build tools, selective recompila-
tion, and higher-level build management. In Chapter 3 a set of design decision
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categories for build tools is presented and then discussed in relation to cur-
rent build tools. Chapter 4 explains the design of D. J. Bernstein’s redo tool
concept; novel features such as dynamic dependency generation, dependencies
on nonexistent files, and the purely top-down approach employed by the tool
are discussed. Chapter 5 presents the details of my redo prototype, includ-
ing the central build algorithm used, design decisions faced, and opportunities
for future work. Chapter 6 describes some results of an evaluation of redo

on some sample software systems including effort required for migration, build
system size and complexity, and speed of different types of rebuilds. Chapter 7
presents conclusions.
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Chapter 2

Background

This chapter surveys background work in the area of software rebuilding. It
explains the advances made in the past thirty years in the areas of software
manufacture theory, standalone build tools, integrated build tools, selective
recompilation, and higher-level build management.

2.1 Software manufacture theory

Borison presented the first formal treatment of software rebuilding in 1986.
Borison describes a model for software manufacture[28] that generalizes and
combines ideas from existing technology at the time. The purpose of the
model is to help better understand and explore the effect of change on software
manufacture, as well as serve as a basis for evaluating current build tools and
designing new ones. The first part of the model defines a configuration as a
directed acyclic graph of components and manufacturing steps; this provides
a basis for identifying and delimiting the scope of changes. The second part
uses difference predicates to determine when components are out of date, as
well as what steps need to be taken to incorporate a set of changes.

In [86], Lamb examines several problem areas in software manufacture re-
lated to the abstraction mechanisms provided by build tools. He aims to design
a few simple mechanisms to minimize what the programmer must specify to
cause the build tool to construct the correct manufacture graph for the system.
First, he proposes that build tools should allow the programmer to modular-
ize, abstract, and reuse multi-step manufacturing idioms in the same fashion
that most programming languages allow code to be modularized. Second,
he examines how build tools could capture different kinds of dependencies.
For example, transitive or implied dependencies are caused by a C source file
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including a header file which in turn includes another header file. Derived
dependencies are caused by a C source file including another module’s header
file, thus necessitating that the other module’s object file be linked in as well
to provide the symbols. (These examples are specific to C code, but implied
and derived dependencies could be useful in modeling other parts of builds.)
In [87], Lamb provides more detail about how different kinds of dependencies
could be implemented and used in practice.

In [115], Singleton and Brereton present DERIVE, which employs deduc-
tive meta-programming to allow a build to be realized as a pure query eval-
uation. Abstract interpretation and partial evaluation are used, and minimal
recompilation is supported using memoisation. Because tools are treated (or
repackaged to behave) as pure functions, it is possible to schedule build tasks
with a high degree of concurrency.

In [63], Gunter presents an abstract model of build dependencies based on
concurrent computation over a class of Petri nets called p-nets. He develops a
general theory of build optimizations and discusses how build abstractions can
be created during a build and later used to optimize subsequent builds. The
state of a p-net is an assignment of values to variables of the p-net, and build
abstractions are additional states representing other assignments of values to
variables. Gunter also uses this theory to show how correctness properties can
be proved, and how optimizations can be composed and compared.

2.2 Build architecture, reverse engineering,

reengineering, and program comprehen-

sion

The build process for a software system can serve as a basis for program
comprehension, architectural analysis, and reverse engineering efforts. In [77],
Holt, Godfrey, and Malton argue that the comprehension process for a large
software system should mimic the build process. In [133], Tu and Godfrey
consider describe the build-time architectural view and explain how it can
help bridge the gap between other well-known architectural views. They ex-
amine the build architecture of three software systems to show evidence of
architectural styles at the build level.

De Jonge applies component-based software engineering (CBSE) principles
at the build level in [47], [46], and [48]. He introduces the notion of build-level
components, defines rules for developing such components, and presents a
semi-automatic process for source-tree decoupling to migrate existing software
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to sets of build-level components. In [21], Ammons describes Grexmk, a tool
suite for speeding up builds so they can be executed incrementally or in paral-
lel. The suite uses one dynamic analysis to divide the build into mini-builds,
and another dynamic analysis to verify that a set of mini-builds executes safely.

2.3 Standalone build tools

This section discusses the design of standalone build tools, which do not inte-
grate with version control systems.

2.3.1 make and its derivatives

Currently, over 30 different flavors of Make have been proposed
and used . . . Few original propositions have been made. . . . There
is a clear need to do better than Make; but it is a serious challenge.

—J. Estublier, [53, Section 2]

Written by Stuart Feldman in the mid-1970s and first distributed with
Seventh Edition UNIX, make[54] was a revolution. make gave programmers a
well-defined way to capture dependencies in their software, allowing them to
automatically rebuild only the necessary components after making a change.
make operates on a set of source files, transforming and combining them to
produce target files. make reads a text file called a Makefile that describes the
target files to be maintained. make then queries the environment to determines
which files have changed, and then deduces the set of commands necessary to
bring the relevant target files up to date.

Consider a program that checks whether or not a mailbox has new mail.
Figure 2.1 shows a sample Makefile for this program, along with the corre-
sponding dependency graph constructed by make. As seen in the figure, the
sample Makefile has several types of constructs. Line 2 shows a macro def-
inition; the text -g -Wall will be substituted for all instances of $(CFLAGS)

in the Makefile. Line 5 shows an explicit rule; it specifies that the pro-
gram mailcheck depends on three object files, mailcheck.o, buffer.o, and
maildir.o. Line 6 shows the commands that are issued to rebuild mailcheck;
the special Makefile variables $@ and $< are used to refer to the target and de-
pendency list, respectively. Line 10 shows and implicit rule; this specifies how
an object file is rebuilt from the corresponding source file. The “old-fashioned
suffix rule” notation is used here, although newer make’s such as GNU make

support more general pattern rules. Lines 14–19 show extra rules that specify
dependencies of the object files on the appropriate source and header files.
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# Macro definition
CFLAGS = -g -Wall
# Explicit rule
mailcheck: mailcheck.o buffer.o maildir.o

gcc $(CFLAGS) -o $@ $<
# Implicit rule
.c.o:

gcc $(CFLAGS) -c -o $@ $<
# Possibly auto-generated rules
mailcheck.o: mailcheck.c maildir.h buffer.h
buffer.o: buffer.c buffer.h
maildir.o: maildir.c maildir.h buffer.h

mailcheck

buffer.c

buffer.o maildir.o

maildir.c

mailcheck.o

mailcheck.c

buffer.h maildir.h

Figure 2.1: A sample Makefile and corresponding dependency graph

These rules are often generated prior to running make using a program like
makedepend[137].

In [55], Feldman notes that make was not suitable for describing large
programs. Regardless, make is still used today, over thirty years later, as the
de facto build tool for extremely large software systems. Part of make’s success
owes to the simplicity and generality of the design, while part of it owes to
the many enhancements and extensions that have been added over the years;
in [56], Feldman summarizes the goals and limitations of the tool as well as
changes made during the first decade of use.
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In [75], Hirgelt describes an enhanced version of make with new condi-
tionals, expressions, loops, includes, and improved error handling. In [51],
Erickson and Pellegrin describe build, an extension to make in which a view-
path environment variable can be defined to contain lists source directories
to be overlayed on each other; this is useful because it allows developers to
share a common source tree and keep copies of only the files they change in a
separate tree, thereby saving disk space. This feature is now found in many
modern make variants such as GNU make[122, Section 4.5.1].

In [59], Fowler describes Fourth Generation make (later known as nmake),
which implements major semantic and syntactic enhancements to the original
make, including support for source files distributed among many directories, an
efficient shell interface that allows concurrent execution of update commands,
dynamic generation of header file dependencies, dependencies on conditional
compilation symbols, and a new meta-language for constructing default rules.
In [60], Fowler explores how several ideas and features implemented in make

derivatives (such as nmake) can be used to improve the loosely coupled, tool-
based model of software rebuilding and make this approach favourable to the
tightly coupled, seamless model employed by integrated development environ-
ments (IDEs).

In [80], Hume describes mk, which features improved efficiency, transitive
closure on implicit rules, parallel execution of update commands, and regu-
lar expression implicit rules. (Most of these features are now also found in
GNU make.) mk differs from nmake in that it aims to be a general-purpose
tool for maintaining file dependencies, without any built-in knowledge about
C programming. mk reuses syntax and concepts from original make wherever
possible, but also generalizes many of make’s features. For example, metarules
are generalized to full regular expressions, transitive closure is allowed on all
rules including metarules, and parallel execution is allowed for any set of up-
date commands. mk also eliminates special cases; for example, mk variables
are simply shell variables and update commands are shell scripts. In [81],
Hume and Flandrena explain how mk is used to maintain files in the Plan 9
environment.

In [118], Somogyi describes cake, a “fifth generation” rewrite of make from
the ground up. cake uses the standard C preprocessor to perform macro sub-
stitution and include description file fragments. cake also provides transitive
implicit rules, and permits the use of variables in implicit rules for increased
flexibility. Finally, cake adds support for conditional rules and dynamic de-
pendencies, which can be used to make build scripts more flexible.

Several make variations allow parts of the build to be parallelized. Version
8 make requires the user to explicitly indicate which commands can execute in
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parallel. Concurrent Make[42] (also known as cmake) is written in Concurrent
C and based on Version 8 UNIX make; it executes commands in parallel by de-
fault and explicitly distributes commands among multiple processors. cmake

offers special rules to force update commands to run locally or to suppress
parallelism for certain targets. pmake[24], implemented as a module for UNIX
SVR2 make, also executes commands in parallel by default but delegates to
the underlying operating system to make efficient use of multiple processors.
As mentioned before, nmake and mk both provide support for parallelization.
Parmake[106] provides concurrent execution of operations that have no mu-
tual dependencies; a set of heuristics is used to balance the local load while
another program called dp schedules distant processes based on machine-load
statistics. DYNIX make (also known as dmake), provides a mechanism to spec-
ify parallelism explicitly by placing an ampersand next to the colon in a rule.
PGMAKE[92] extends GNU make using clustering software that makes hetero-
geneous networks of parallel and serial computers appear as one computational
resource. (When compiling software, the different machines must be able to
generate code for the target architecture by cross-compiling, if necessary.)

Optimistic make[34][35][105] monitors the file system for out-of-date tar-
gets, and executes the commands necessary to bring targets up to date before
the user types make. In [78], Holyer describes an “automatic” make facility
called bmake, which is implemented using command tracing. Rather than
maintaining an actual Makefile, the user only needs to build the target files
in some way, either by hand or using shell scripts; command transactions are
monitored by a user shell called brush.

GNU make[122][98] is likely the most popular make derivative in use today;
it incorporates many features from other makes such as conditionals, func-
tions, include statements, and parallel execution. The GNU make Standard
Library (GMSL) is a collection of functions implemented using native GNU
Make functionality that provide list and string manipulation, integer arith-
metic, associative arrays, stacks, and debugging facilities. Makepp[76] is a
drop-in replacement for GNU make written in Perl; it also contains some ex-
tensions. Variations of BSD make are also in wide use to install and maintain
software on FreeBSD, NetBSD, and OpenBSD. Object Make[119][120] is a
modern variation of make that aims to allow build scripts to be separated into
reusable components.

Table 2.1 summarizes the various make derivatives that have been cre-
ated over the years. Note that there also exist Microsoft’s nmake and Kit-
ware’s cmake[97] that share their names with older, unrelated variations. The
large number of make implementations makes it difficult to write portable
makefiles; some of the differences between them are outlined in [103].
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Year Name Alternate name Backwards compat.?
1979 make “original” or “classic” make —
1984 build — yes
1985 nmake Fourth Generation make no
1986 cmake Concurrent Make yes
1987 mk — no
1987 cake Fifth Generation make no
1987 Parmake/dp N/A yes
1987 dmake DYNIX make no
1987 omake Opus make N/A
1988 pmake N/A yes
1988 MMK MadGoat make unknown
1988 gmake GNU make yes
1989 — “optimistic” make N/A
1995 — Object Make yes
2000 bmake/brush “automatic” make N/A
2003 makepp — yes

Table 2.1: Various make derivatives

Numerous tools have also been developed to work in cooperation with
make, tailoring or generating Makefiles based on other files or the results of
platform probes and dependency calculations. Mm4[94] uses the M4 macro
processor to customize Makefiles. Tilbrook’s pmak[130] serves as a front-end
to make that aims to abstract the underlying platform differences and aid with
the construction of large-scale software. QEF[129] represents a later, more-
refined tool by the same author. The GNU autotools (autoconf, automake)
are currently used in a wide variety of free and open source software projects;
imake[50] was used for many years as the basis for the X11 build system.

Some work has been done to examine problems with the fundamental make
model and the way it is used; in particular, out-of-dateness checks based on
timestamps have been shown to be unreliable in practice [100]. Many newer
build tools calculate cryptographic hashes of file content for use as the basis
of out-of-dateness checks. The popular idiom of “recursive make,” where make
is reinvoked by itself, has been shown to be error-prone and inefficient[99].

2.3.2 make alternatives Jam[141] is a free, fast, customizable build tool
written by Christopher Seiwald. Jam has its own description file language,
which includes control-flow statements, variables, rules, and actions. The Jam
language separates operating system-independent descriptions from operat-

10



ing system-dependent descriptions. Jam has considerable built-in knowledge
about how to build C and C++ programs; indeed, this is the type of project
where it is commonly used. Several variants of Jam have developed including
FT-Jam[135], Boost.Jam[19], and KJam[18].

Odin[39][40][41] is a replacement for make that focuses on extensibility and
efficiency. A central part of Odin is the derivation graph, which describes
relationships between tools in the environment. Another interesting feature of
Odin is support for compound derived objects, which consist of sets of derived
objects; this allows all build steps to be abstracted as producing a single
output.

2.3.3 XML-based build tools Apache Ant[45] is an open source Java-
based build tool designed for cross-platform use. Rather than using the shell
to issue update commands, Ant is extended using Java classes. Instead of a
custom build description file syntax, Ant uses an XML-based language. In-
stead of variables, Ant uses properties, which are immutable once initially
set. Ant includes many built-in tasks to support the typical structure of Java
projects. For example, the Java compilation task understands the directory
structures involved with Java packages, and is able to compile all Java source
files in a directory at once. An add-on package provides extra tasks for C++
support, including automatic dependency checking. It is also possible to write
Ant build scripts in Java-based scripting languages, such as Groovy[123].

NAnt[113] is a variation of Ant written for Microsoft’s .NET platform. It
is designed to support C# projects, but also has built-in support for C++. In
practice, NAnt uses a slightly different syntax for build descriptions that Ant.
MSBuild is Microsoft’s own .NET-based Ant variation. Geant, part of Gobo
Eiffel[27], is an Eiffel-based Ant variant.

2.3.4 Scripting language-based build tools In the past decade, the
popularity of scripting languages has given rise to a number of build tools
that operate on build descriptions expressed as code written in a single script-
ing language. This eliminates the complexity caused by interactions between
a build tool language and a build command language. For example, GNU
make’s Makefile syntax provides variables, conditionals, various functions for
transforming text. However, the actual commands are written in shell script,
which provides its own syntax for the same features. Scripting language build
tools often incorporate many improvements found in various make derivatives,
such as the use of cryptographic hashes rather than timestamps to determine
if files are out of date.
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Cons[114], which uses Perl, is one of the earliest scripting language-based
build tools. Cons uses cryptographic hashes to determine out of dateness, and
focuses on full and accurate dependency analysis. It has built in rules for C++.
SCons[83] originally began as a port of Cons to Python, but is now its own
full-fledged build tool. SCons is designed in an object-oriented style; Builder
objects do the actual construction, Emitter objects manipulate lists of files,
and Scanner objects parse source files and extract implicit dependencies. This
object-oriented approach makes SCons different from other build tools. SCons
has built-in knowledge about several kinds of projects, including C++. A-A-
P[101] is another build tool is also based on Python. tmk[108] and Bras[82]
use TCL, Rake[138] and Rant[89] use Ruby.

2.3.5 Compiler caches A compiler cache is a tool that acts as a wrapper
for a compiler. Each time a file is compiled, the wrapper stores the result in
a cache. Upon subsequent recompiles, the wrapper can fetch the result from
the cache rather than invoking the compiler again. This can speed up build
times because it is much more expensive to invoke the compiler than simply
fetching the resulting object file from the cache.

The System Modeller for the Cedar programming environment is an early
example of a compiler cache; it used a “48-bit version stamp which is con-
structed by hashing the name of the source object, the compiler version and
switches, and the version stamps of any interfaces which are parameters of the
compilation.”[88]. More recent examples of compiler caches include compiler-
cache[125] and ccache[132].

Compiler caches are often able to store many different compilation results
for a particular input file. This can help speed up builds if a change is reverted,
or if multiple different variants of a software system are frequently built, such as
versions with and without debugging symbols. On its own, a compiler cache
can be used to implement single-phase system building. Build commands
can be stored in a script, which is run in its entirety each time a rebuild is
requested. A compiler cache can also be used in conjunction with a generic
build tool such as make. In this case, the compiler cache acts as a sort of safety
net for make’s dependency checking. That is, the compiler cache will save time
if make requests a file that has not actually changed to be recompiled.

In [84], Koehler and Horspool explain how a caching compiler can be used
to maintain a database of partially processed header files to eliminate redun-
dant work of reprocessing the same headers over and over. This is a different
sort of compiler cache than those mentioned above.
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2.4 Integrated build tools

An integrated development environment (IDE) is a program that assists pro-
grammers in writing software. An IDE often includes its own build tool, along
with other components such as a code editor, compiler or interpreter, and de-
bugger. The tightly-coupled nature of these components allows them to share
information. A build tool that is part of an IDE often has access to the code’s
abstract syntax tree, which may be extracted by the code editor in real-time.

DSEE[90] was an early commercial product that integrated building with
versioning; it was based on system models, which describe the version-
independent structure of a system, and configuration threads, which describe
the version requirements. shape[95] was an extension of make that provided
full access to the version control system and support for configuration rules,
which control the selection process for component versions during rebuilding.
shape is built on top of an attributed filesystem, that provides a more gener-
alized scheme for document identification than does a regular filesystem.

Vesta[65][67][69][71] is an advanced software configuration management
system designed to support two important tasks: versioning and building. Sys-
tem models are specified in a functional system description language (SDL)
and, when executed, the results of function calls are cached and later used to
transparently speed up rebuilds[72]. In order to improve repeatability, builds
are done on a separate isolated build server.

2.5 Selective recompilation

Selective recompilation mechanisms reduce unnecessary or redundant compi-
lations by considering the semantic effect of changes to source files. Tichy’s
smart recompilation [126] is one of the first examples; Schwanke and Kaiser’s
smartest recompilation [110] allows certain harmless inconsistencies to remain
in the build. The idea has also been applied to Java[49][23]. There have been
many other variations on the idea[112][38].

Selective recompilation techniques must balance the time taken to deter-
mine which recompilations are unnecessary with the time taken to simply
perform those recompilations; if the selection algorithm is too complex it may
actually take more time that simply recompiling the files in question right
away[29][20]. Yu, Dayani-Fard, and Mylopoulos investigated using a graph
algorithm and programming tool to remove false dependencies that result in
lengthy preprocessing time[143].
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2.6 Higher-level build management

Higher-level build management overlaps with the area of automated release
management. It addresses problems such as scheduling builds among a pool
of build servers, notifying the appropriate people when builds fail, running test
suites after builds finish, and copying and archiving deliverables to file stores.
Examples of higher level build tools include Apache’s Maven and IBM Ratio-
nal’s BuildForge. The term continuous integration is often used to describe
techniques that ensure higher-level build management runs around the clock,
giving developers constant feedback about the status of the project.

2.7 Summary

This chapter has surveyed the background work related to software rebuild-
ing. I have explained the advances made in software manufacture theory,
standalone build tools, integrated build tools, selective recompilation, and
higher-level build management over the past thirty years.
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Chapter 3

Build tool design

This chapter discusses the topic of build tool design. In order to evaluate and
compare build tools, it is important to be aware of the various dimensions along
which build tools can differ. This chapter lays out a set of design considerations
for build tools developed by the author of this thesis. It also discusses how
these issues relate to current build tools.

3.1 Design considerations

This section presents set of design considerations that can help in analyzing
different build tools. Each point represents a design decision made by tool
authors, and the choices made directly affect how the build tool will be used
as well as which types of projects it will be suited to.

3.1.1 Operation What does the build tool do when it is invoked? How
and when does the build tool parse the description files? What are the per-
formance characteristics of the build tool? How long does the build tool take
before building a single target? How long does the build tool take to determine
nothing needs to be built (known as a null build)?

Most build tools look for a build description file with a well-known name
in the current directory. This description file may include or call description
files in other directories, which are processed as well. In order to effectively
organize and maintain a build system for a project, it is essential that it be
possible to break down the build description into separate files or modules.

3.1.2 Organization Where are the description files located with respect
to the source files? Where are the target files stored?
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The build tool may leave this decision up to the programmer to specify. It
may be desireable to store some build files in the same location as the source
files they operate on, while other build files may be kept together as a build
module. As a system grows, it is increasingly important for the build tool to
allow build description files to be distributed throughout the source tree, since
the system may be composed of individual, reusable subsystems.

3.1.3 Syntax What syntax is used for the build description files? Are
there multiple different syntaxes used or a single unified syntax? Is dependency
information specified using the same syntax as command sequences?

Traditionally, build tools such as make have used their own custom syntax
to specify description files. However, at some point, the build tool needs to be
able to execute commands to actually generate target files. Therefore, there
must be some interface to the underlying operating system. make uses the
shell to execute commands, while Ant allows commands to be written in Java.
Newer scripting language-based build tools allow build description files to be
specified entirely in a single chosen scripting language.

3.1.4 Interaction with the environment Can information be passed to
the build tool from the environment? Does the build tool attempt to prevent
information from the environment from accidentally influencing the build?

Many aspects of a user’s environment can influence build results. For
example, the value of the $PATH environment variable will influence which
particular versions of tools will be used, provided they are not specified with
absolute paths. make allows all environment variables to be directly visible
inside the build description files, while SCons requires a variable to be explicitly
declared before it can be visible.

3.1.5 Integration with versioning Is the build tool aware of multiple
versions of the same source file?

Some build tools operate with no knowledge of multiple versions of source
files; they are only aware of the current versions. This type of approach
seems to be tailored towards monolithic projects with one large source reposi-
tory. However, when software is split into multiple separate repositories, each
evolving separately, it may be helpful for the build tool to cooperate with
the versioning tool to use knowledge about what the different variants of the
components are and what a valid configuration consists of.
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3.1.6 Caching Does the build tool keep track of multiple versions of target
files?

Target files are not traditionally kept under version control. However, if a
build tool stores previous targets in a cache, it may be able to reduce build
times if old versions of the targets are ever needed again. For example, if a
change is rolled back and the software is rebuilt, the previously cached versions
of targets can be used to speed up the build process.

3.1.7 Variants Does the build tool consider that the user may want to
build multiple versions of target files side-by-side using different configuration
parameters (source files)?

It is common in many large organizations to require several different types
of builds at once, such as one with debugging information enabled and one
with more aggressive code optimizations enabled. While it is possible to get
two different types of builds by building the software twice separately, it may
be desireable to build many variants at once.

3.1.8 Built-in knowledge Does the build tool know how to build certain
types of target files? How is this knowledge represented? How is it extended
by the user?

Most build tools have at least a small amount of innate knowledge about
how to rebuild certain types of derived objects. For example, make has a set
of default built-in implicit rules that dictate how to rebuild object files from C
source files, and how to generate C parser source code from Yacc grammars.
Some build tools, such as SCons, provide even more sophisticated built-in
rules that take into account information about the current build platform
when deciding how to invoke necessary tools.

On one hand, built-in knowledge may be attractive because it allows the
build tool to be used out-of-the-box without extensive effort. On the other
hand, built-in knowledge is often useless for projects of any significant size,
since these projects invariably have slightly different assumptions and require-
ments. In these cases, it may be better for the tool to let the project specify
all of the necessary knowledge and build description information explicitly.

3.1.9 Grouping How can multiple different targets be grouped together
and built the same way?

Most projects build many different target files that are all of the same type.
For example, a C program will typically be composed of several different object
files, which are built from corresponding source files. It is not realistic to expect
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the programmer to specify the build description for each of these individually;
the build tool must offer a way to group these files together and allow them
to share common build description information. Many tools, such as make,
allow this to be done with suffix matching. For example, the programmer can
specify how a file with a .o extension is rebuilt from the corresponding file
with a .c extension. Although this is usually sufficient for most projects, it
may be desireable to use other matching mechanisms, such as the arbitrary
pattern matching facility provided by Fowler’s nmake tool.

3.1.10 Batching Does the build tool allow multiple targets to be created
from a single command sequence? Or does each command sequence build
exactly one target?

While compilers and other tools typically translate one or some input files
into a single output file, some newer compilers perform better when invoked
in “batch” mode. For example, the Visual C++ 2005 compiler will compile
several source files faster if invoked once in batch mode, as opposed to many
times in single-output mode. This may create a problem for the build tool
if it is designed around the model that each build step produces exactly one
output. One way for such build tools to cope with batching is to output a
single archive file, such as a JAR, that contains all outputs. Then, subsequent
build steps can retrieve individual files from the archive, keeping the model
consistent. Odin’s concept of composite targets works in a similar way.

3.1.11 Granularity On what types of artifacts does the build tool oper-
ate? Does it treat source files as opaque or transparent?

Most build tools, such as make, operate strictly on the file level. They
generate target files from source files, and they treat files as opaque objects.
Interestingly, make has another level of granularity in description files: vari-
ables; however, make does not allow dependencies on variables. That is, if
the compilation flags are stored in a Makefile in a variable called CFLAGS,
make will not notice if this variable is changed between builds and rebuild
the corresponding object files, unless each object file explicitly depends on
the Makefile. This is discussed in more detail in Section 4.1.3. By contrast,
SCons allows dependencies on variables and directories, as well as files.

Techniques such as smart recompilation treat source files as transparent;
they determine what steps are necessary to rebuild the system by parsing the
source files and using language-specific knowledge to determine the impact of
changes.
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3.1.12 Composability How are build systems for disjoint subsystems or
subcomponents composed into a single build system? How much effort is
required to incorporate an existing standalone component with its own build
system into a larger codebase?

As a system grows larger, it will invariably be composed of distinct,
reusable subsystems. While the code of these subsystems is designed to be
reusable separately, the build description files are often not. In order to in-
tegrate a new subsystem into a system, the build files for the overall system
must be able to utilize the subsystem’s build files at the appropriate point,
passing in any necessary information.

Currently, many open source software systems use GNU autoconf to create
a configuration script that is run before the system is built, filling in values in
a set of Makefile templates. Unfortunately, when projects using autoconf

are composed, the same tests are often repeatedly run for each subsystem.

3.1.13 Concurrency What parts of the build process run in parallel?
Does the programmer need to explicitly indicate the build tool?

Modern software systems are built on machines with multiple processors
and multiple processing cores. In order to take full advantage of the hard-
ware, build tools should support running different parts of the build process
concurrently. Unfortunately, it is not always trivial to determine what parts
can be run concurrently, and incorrectly parallelizing build steps that should
be executed serially can jeopardize the correctness of the build. It is even
possible that the build will succeed, but the final system will not be correct,
resulting in bugs that are difficult to track down.

It is beneficial for a build tool to allow the programmer to indicate which
steps are safely parallelizable, either implicitly or explicitly. The build tool
can then exploit this information to reduce build times by performing different
parts of the build concurrently. The amount of parallelization possible may
be directly influenced by the organization of the build description files. For
example, a large description file for a project must be read serially. However,
if it is broken up into fragments, organized in a tree-like formation, different
branches of the tree could be processed in parallel.
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3.2 Discussion with respect to current build

tools

Most current build tools do not make an effort to integrate with versioning
tools. One reason could be related to the large amount of open source software
in use today. These projects are often distributed as a source code archive over
the web, to be downloaded and built by the user prior to installation. By not
integrating with versioning tools, it makes this installation process simpler for
the user.

Composability is an area where most current tools have difficultly. It would
be desireable to be able to drop in a new subcomponent into an existing project
and have the project’s build system interface properly with the subcompo-
nent’s build system. In theory, this is not difficult if all the files are located in
the project root’s directory, and hence share the same namespace. However,
in reality, the issue becomes complicated by the fact that most projects iso-
late subcomponents into separate subdirectories. Source and target files are
specified relative to the project root directory, and because the subcomponent
is no longer in the top-level project directory the paths in its build scripts
must be modified to include an extra directory component. One workaround
for this is for the build tool to change to the subcomponent’s directory before
building it, as is done with recursive make. This effectively changes the root
of the namespace to what the subcomponent expects. However, it also throws
away all the benefit of being able to analyze dependencies in a whole-project
manner.

Although most current build tools have at least some facility for building
targets in parallel, the way the tools are used often prevents parallelization
from happening in practice. Consider the GNU autoconf program, which
is used as a de facto standard in the open source community in conjunction
with GNU make. autoconf creates a configuration script that the user needs
to run before running make in order to execute platform probes to customize
the Makefiles. While these probes could executed in parallel, the scripts
generated by autoconf always execute in serial. The result is a long period
with no parallelization at the start of the build while this script is run. For
large projects, this period may not be significant with respect to the total
build time; however, for small projects, running the configuration script may
take more time than actually executing make.
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3.3 Summary

In this chapter, I have described several important issues relevant to build tool
design. How these issues are handled by the build tool directly affects how
the build tool is used, and which types of projects it is appropriate for. I have
discussed how these design issues are handled by current tools current tools
and the consequences of these design decisions.
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Chapter 4

Purely top-down software
rebuilding with redo

4.1 Specification

In 2003, D. J. Bernstein published four web pages describing a new build tool
concept called redo in [26]. At present, this is the only information available
redo. While Bernstein has not published a version of the software, he has
made available several redo-style build scripts in the bib directory of his FTP
server. These build scripts are presumably used along with an unpublished
redo implementation to translate bibliographic information stored as simple
TEXinto HTML and BibTeX, and serve as an example of how redo might be
used in practice. The following is a high-level specification of redo’s features
as inferred from Bernstein’s web pages and bibliography build scripts.

4.1.1 Semantics redo operates in purely top-down manner. Given a tar-
get to build, the corresponding build script for that target is read and ex-
ecuted. For example, if asked to rebuilt hello.o, redo will use the build
script hello.o.do. If that build script does not exist, it will fall back to using
default.o.do.

Dependency information is embedded in the build script commands, caus-
ing dependencies to be recursively rebuilt as a side-effect of building the tar-
get itself. This behaviour is similar to the way functional languages use lazy
evaluation to delay a computation until the result is known to be needed.
Dependency information can be expressed using one of two programs:

• “redo-ifchange hello.o” means “Remember that the current target
depends on hello.o; and if hello.o is not currently up to date, rebuild
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it.”

• “redo-ifcreate hello.o” means “Remember that the current target
depends on hello.o not existing.”

4.1.2 Atomic target rebuilding Invoking programs in the simplest way
from a typical Makefile results in each target file being rebuilt one disk block
at a time. This can confuse a program that uses a target file because the file
is truncated while it is being built. It can also confuse make because, if the
build process is suddenly halted, the truncated file remains and is mistaken on
subsequent runs as being correct and up to date. redo creates the new target
under an alternate filename and, once complete, atomically replaces the old
target with the new one.

For example, the build script a.do for a target a

redo-ifchange c

sed ’s/World/Waterloo/’ < c

is comparable to the Makefile

a: c

sed ’s/World/Waterloo/’ < c > a

but is actually as safe as the Makefile

a: c

sed ’s/World/Waterloo/’ < c > a---redoing

mv a---redoing a

fsync

Note that the target filename is implicit in the build script name.

4.1.3 Isolated build descriptions A typical Makefile may contain mul-
tiple explicit rules that describe how particular targets are rebuilt, as well as
multiple implicit rules that describe how particular classes of targets are re-
built. redo requires the rule for each target or class or targets to be isolated
in its own file. For example, the rule that describes how to rebuild a target
named buffer.o is stored in a file called buffer.o.do. The rule that describes
how to rebuild a .o file from a .c file is stored in a file called default.o.do

(however, this will only be used if a target-specific file does not exist).
Isolated build descriptions allow redo to avoid rebuilding targets that are

not affected when part of the system’s build description changes. For example,
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suppose the file c contains one line with the string “Hello, world”. Figure 4.1
shows a Makefile that can be used to build two targets, a and b, each perform-
ing a text substitution on c. The bold circle represents a top-level Makefile
target that depends on both a and b. A change to either the commands or
the dependency lists will not trigger a rebuild, since make only checks that the
dependency list is up to date (the targets do not depend on the Makefile). This
is a problem because it forces the programmer to manually determine which
targets are out of date and rebuild just those. Or, to be safe, the programmer
will simply rebuild everything.

# Makefile:

it: a b

a: c

sed ’s/World/Waterloo/’ < c > a

b: c

sed ’s/Hello/Goodbye/’ < c > b

b

c

a

it

Figure 4.1: No dependencies on build script with make

This problem can be mitigated somewhat by making all targets depend on
the Makefile and encapsulating each of the command sequences in a separate
script. The resulting Makefile is shown in Figure 4.2. Now the correct target
will be rebuilt if its command sequence changes, and everything will still end
up getting rebuilt if the Makefile changes, although this may be unnecessary.

Figure 4.3 shows how redo handles this situation. Because each build
script is isolated in a separate file and each target implicitly depends on its
build script (indicated by the dependencies in grey circles) a change to a build
script is guaranteed to only trigger a rebuild of the corresponding target.

4.1.4 Homogeneous build descriptions A typical Makefile rule has
two separate components. The first component is list of targets along with
a list of associated prerequisites. The second component is a sequence of
commands that, when executed, brings the targets up to date. A redo rule
is homogeneous: there is only a sequence of commands that, when executed,
brings the target up to date. Prerequisite information is embedded in the
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# Makefile:

it: a b Makefile

a: c build a Makefile

sh build-a > a

b: c build-b Makefile

sh build-b > b

# build-a:

sed ’s/World/Waterloo/’ < c

# build-b:

sed ’s/World/Waterloo/’ < c

a

c

it

b

build−a build−b

Makefile

Figure 4.2: Partial dependencies on build script with make

commands by invoking the redo-ifchange and redo-ifcreate programs with
appropriate arguments.

Homogeneous build descriptions can be thought of as the defining charac-
teristic that gives redo its power. Because the dependencies for a target are
not determined until the target starts building, the target’s build script can
use up to date information from other parts of the build to decide what the
dependencies should be. This technique is discussed further in Section 4.1.6.

4.1.5 Up to dateness not determined by timestamp make considers
a target file up to date if its timestamp is newer than the timestamp of all of
its dependencies. redo does not use the newness of a target file as a reason
to consider the target file up to date; redo considers the target file up to date
only after it finishes and records what happened in .redo, a file in the top-level
build directory containing build metadata.

Several build tools are able to determine whether a file is up to date using
the file contents, rather than the timestamp. The key idea about redo is
that it records what happens at each build step, not just isolated pieces of
information about each file. This is discussed more in Section 5.4.1.

4.1.6 Dynamic prerequisite generation make does not allow to allow
the content of a prerequisite to itself be a list of prerequisites. Since all prereq-
uisite information is processed only once at the beginning of a build when the
Makefile is read, make will not reexamine such a list if it changes after the
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# it.do:

redo-ifchange a b

# a.do:

redo-ifchange c

sed ’s/World/Waterloo/’ < c

# b.do:

redo-ifchange c

sed ’s/Hello/Goodbye/’ < c

b

c

a.do b.do

it.do

a

it

Figure 4.3: Full dependencies on build script with redo

prerequisite is rebuilt. GNU make allows the content of a prerequisite to itself
be a Makefile fragment which can be included by the primary Makefile.
Upon reading a Makefile, GNU make will immediately notice this scenario;
if the fragment is out of date, GNU make will rebuild it and then start again
from the beginning. redo is designed to allow the content of one prerequisite
to itself be a list of prerequisites. Because targets are rebuilt in a strictly
top-down manner, the build scripts can be written to ensure the prerequisite
will always properly rebuilt before its content is extracted and used in further
stages of the build.

make traverses nodes in a post-order fashion, rebuilding the current node af-
ter rebuilding each of its children. redo, on the other hand, rebuilds child nodes
in the middle of rebuilding the current node (by invoking redo-ifchange from
within the current node’s build script). After a particular redo-ifchange

command returns, indicating the requested child nodes have been built, redo
then continues building the current node.

Consider the example of compiling a C source file into an object file. The
source file may include header files, on which the object file should also depend.
These dependencies are often called implicit dependencies. The common so-
lution to this problem when using make is to add a separate pre-build stage
that runs a program such as makedepend to generate a Makefile fragment ex-
pressing these dependencies on the header files. makedepend cannot be called
from within the Makefile since the new fragment won’t be re-evaluated. (The
exception is GNU make, which is able to re-evaluate the new fragment by going
back and starting at the beginning.) In order to be safe, this pre-build stage
should be run before each build. However, this is obviously a waste of time
if make is, for example, being invoked to build documentation targets rather
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than program targets.
Figure 4.4 shows how redo solves the problem of implicit dependencies.

The object file can depend on not only a file listing the relevant header files,
but also each of the listed headers; The UNIX cat command can be used to
extract the list of headers from the dependency file.

# hello.o.do:

redo-ifchange compile hello.c hello.o.deps

redo-ifchange ‘cat hello.o.deps‘

./compile hello.c

# hello.o.deps.do

redo-ifchange findincludes hello.c

./findincludes hello.c

hello.o

hello.c

hello.o.deps

hello.o.do

hello.o

hello.c

hello.o.deps bar.hfoo.h

hello.o.do

cat hello.o.deps

compile compile

findincludes findincludes

hello.o.deps.do hello.o.deps.do

Figure 4.4: Dynamic dependencies with redo

4.1.7 Dependencies on nonexistent files make will only notice one type
of change made by the user: the modification or removal of an existing file.
redo can notice this type of change, too. redo can also notice when a particular
file that did not exist before is created and then incorporate this into the build
process. The way this is accomplished is through the use of a command called
redo-ifcreate. While the line

redo-ifchange buffer.h

indicates that the current target should be rebuilt if the existing file buffer.h
is modified or removed, the line

redo-ifcreate buffer.h
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indicates that the current target should be rebuilt if the nonexistent file
buffer.h is created.

For example, consider a software package containing several small C pro-
grams. These programs are all compiled in roughly the same way, using a
set of standard flags. However, it may be desirable to compile some programs
with extra flags. With redo, each program can have a dependency on a special
file, which may or may not exist containing extra flags for the build of that
program. If the file is not found by the build script, it simply uses the default
flags. If the file is created at some point, redo will notice and rebuild the
program, even if nothing else has changed. This is illustrated in Figure 4.5.

# it.do:

redo-ifchange hello.o

# hello.o.do:

redo-ifchange cflags

cflags=‘head -1 cflags‘

if [ -e hello.cflags ]; then

redo-ifchange hello.cflags

cflags="$cflags ‘head -1 hello.cflags‘"

else

redo-ifcreate hello.cflags

fi

redo-ifchange hello.c

gcc -o /dev/stdout $cflags hello.c

# hello.cflags:

-O3

it.do

it

cflags

hello.cflags

hello.c

hello.o

hello.o.do
1

2 3

Figure 4.5: Dependency on a nonexistent file with redo

4.2 Discussion

The features of redo work together in a consistent way. By making build
scripts ordinary shell scripts, flexibility is gained in where dependencies can
be declared. For example, the dependency declarations can be intermixed with
commands that output parts of the target file; this naturally allows for dynamic
prerequisite generation because information from earlier dependencies in the
script can be used to calculate later dependencies.
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In most situations where dependencies on nonexistent files are desireable,
it is also desireable to be able to specify what happens if the nonexistent
file actually exists. In this case, a normal conditional shell construct can
be used to check if the file exists or not, and then trigger the appropriate
invocation of either redo-ifchange or redo-ifcreate. Also, problems could
be encountered if it were possible for a target to add dependencies for a target
other than itself. redo eliminates this possibility by only allowing dependencies
for a particular target to be declared inside the corresponding target’s build
script.

redo’s purely top-down style of rebuilding allows for an enormous amount
of parallelization compared to existing build tools. Because a redo-ifchange

command builds each of the requested dependencies in parallel, entire subtrees
of the dependency graph can be built in parallel. This is different than existing
build tools, such as make and SCons, which only build different nodes of the
dependency graph in parallel. One consideration to keep in mind might be
that redo needs a way to limit parallelization. Some commands, such as
linking a set of object files and libraries together into an executable, can require
a considerable portion of the system’s memory. If multiple link commands
happen to be executed in parallel, the system may run out of memory.

4.3 Summary

This chapter has described in detail the behaviour of D. J. Bernstein’s redo

tool concept, elaborating on the description provided in his web pages. It has
outlined the major features and explained the difference between the approach
used by redo and the approaches used by other tools, such as make. It has
discussed how these features fit together and combine to make purely top-down
software rebuilding possible.
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Chapter 5

Implementation of a redo

prototype

This chapter discusses the details of a prototype implementation, written by
the author of this thesis, of D. J. Bernstein’s redo tool concept. It explains the
types of data stored between rebuilds, design decisions faced, and limitations
of the prototype. It also presents some directions for future work related to
redo implementations.

5.1 Overview

The overriding design goal of this prototype is to produce correct build results
while being as simple as possible. The prototype consists of approximately
250 lines of Bourne shell code (available as Appendix A).

5.2 Metadata stored by redo

redo, unlike make, records explicit state between builds in a file (or perhaps a
directory) called .redo. Bernstein does provide any details about what pieces
of information are stored or the format of this file. In the prototype described
here, this database is modeled as an associative array, with keys that map
filenames to a data value or list of data values. For both source and target
files,

• type is either “s” (for source) or “t” (for target);

• md5 is a string containing the MD5 cryptographic hash of the file, such as
“feb254e8f28fdcf679414457248e4fa1.”
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For targets only,

• prereqs is a list of prerequisites; the target file should be rebuilt if any
of these prerequisites are modified or removed;

• prereqsnonexist is another list of prerequisites; the target file should
be rebuilt if any of these prerequisites are created;

• result is an integer between 0 and 254 representing the exit code of the
target file’s build script.

For files which are neither sources nor targets, but have been mentioned in
a call to redo-ifcreate, an empty nonexist key is created for that file. This
allows subsequent runs to properly detect dependencies on nonexistent files
and rebuilt targets appropriately. redo could also possibly store the output
or error messages from building a particular target in .redo; this is discussed
in more detail below in the subsection titled “Error handling.”

It is nontrivial to implement associative arrays efficiently in a persistent,
disk-based format. One option is to use a database package like Berkeley
DB or UNIX’s DBM. However, for simplicity, I implemented the database
as a collection of text files, where the filename is the key and the contents
of the file are the value. Lists of values are stored one value per line in the
file. For example, the prerequisites for a file called maildir.o are stored in
.redo/maildir.o.prereqs, whose contents might be

maildir.h

buffer.h

5.3 Algorithm

Part 1 shows the beginning of the algorithm used by redo. When the redo

command is invoked, it attempts to build the top-level target named it, by
invoking redo-ifchange. A limitation of it is that it always rebuilds the top-
level it target; it cannot rebuild a subset of arbitrary targets. Notice that all
the uptodate keys are removed prior to starting; this forces redo to assume
that each file is out of date until it actually examines the file, verifies whether
or not it is up to date, and records the decision.

Part 2 shows the beginning of redo-ifchange. When the procedure is
invoked, it first creates the .redo database if it does not already exist. It
then loops over all the files passed as arguments, rebuilding each of them.
Limitation: My prototype rebuilds these files in series, rather than parallel.
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Algorithm 1 redo, part 1: redo procedure

1: procedure redo(args)
2: delete *.uptodate
3: redo-ifchange it

4: end procedure

The program next determines whether the current file being rebuilt is a source
or a target. If there is no record of whether this file is a source or target, we
check if the file exists: if it does, we assume it is a source file; if not we assume
it is a target. Finally, if there is already an uptodate entry for this target in
the database, we can assume this target has already been rebuilt and can stop
building.

Algorithm 2 redo, part 2: redo-ifchange procedure

5: procedure redo-ifchange(args)
6: create .redo database if it does not already exist
7: for each argument i do
8: if i.type does not exist then
9: if i exists then

10: i.type ← source
11: else
12: i.type ← target
13: end if
14: end if
15: if i.uptodate exists then
16: record i as a regular prerequiste for its parent
17: continue
18: end if

In Part 3, we handle the case where we have been asked to rebuild a
source file. In this case, no actual build commands are issued; we only need to
determine whether or not the file is up to date. If we have already stored an
MD5 hash for this file, we calculate the MD5 hash of the file’s current contents
and compare the two. If they match, we record that the file is up to date. If
no previous MD5 hash exists, we record the file is out of date. We also check
if a special key has been created to indicate that one or more targets depend
on the nonexistence of this file, and if this key exists we remove it. (This key
will be created again if the file is removed.) Finally, we can exit, since there
is nothing left to be done to rebuild a source file.
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Algorithm 3 redo, part 3: continuation of redo-ifchange procedure

19: if i.type = source then
20: if i.md5 exists and it matches the current MD5 hash then
21: i.uptodate ← yes
22: else
23: i.uptodate ← no
24: if i.nonexist exists then
25: delete i.nonexist
26: end if
27: end if
28: i.md5 ← current MD5 hash
29: record i as a regular prerequiste for its parent
30: continue
31: end if

If we have made it to Part 4, we know the file is a target file. Thus, it can
have two types of prerequisites: regular and nonexistent. There is a list of files
for each prerequisite type; these lists were created dynamically the last time
the target’s build script was run. The idea behind this part of the algorithm is
to calculate a boolean value, uptodate, for this target, which tells us whether
or not we can skip running the actual build script this time. We can examine
each file in the list of regular prerequisites, prereqs, rebuilding it if necessary
(shown in Part 6). If all of these files are up to date, then we can consider the
current target up to date as well, without building it. This works because the
build script itself is listed as a prerequisite; the key to this algorithm is that if
the build commands are the same, and the inputs to those commands are the
same, then the output must be the same.

We can then examine each of the files in the list of nonexistent prerequisites,
prereqsnonexist. If all of these files are still missing, then the current target
must be up to date. (Note that this list is also one of the prerequisites for the
target, so if the list changes then the target will be properly rebuilt.) Finally,
if the current target is up to date, we can exit.

If we have made it to Part 5, we know we have a target file that is out
of date, and therefore must be rebuilt. This part of the algorithm determines
which build script to use. The idea is that we want to use the specialized build
script if it exists, but fall back to the generic build script for our target type
otherwise. The complication is that we would like to ensure that if we start off
using the generic build script, we can automatically switch to the specialized
one for if it is created. Finally, if no appropriate build script exists for this
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Algorithm 4 redo, part 4: continuation of redo-ifchange procedure

32: if i.prereqs exists then
33: i.uptodate ← yes
34: for each file j in i.prereqs do
35: if j.uptodate does not exist then
36: redo-ifchange j

37: if j.uptodate = no then
38: i.uptodate ← no
39: end if
40: end if
41: end for
42: end if
43: if i.prereqsnonexist exists then
44: for each file j in i.prereqsnonexist do
45: if j exists then
46: i.uptodate ← no
47: end if
48: end for
49: end if
50: if i.uptodate = yes then
51: break
52: end if

target, we have an error.
Part 6 is the last part of the redo-ifchange procedure. Its purpose is to

run the build script determined in the previous part, and to record the result.
If there is no error and the new MD5 hash matches the old MD5 hash, we can
mark this target as up to date. (This may prevent targets that depend on it
from being rebuilt.) Otherwise, we record the new MD5 hash and the status
of the target remains out of date.

Part 7 shows the logic for redo-ifcreate, which is very simple compared
to redo-ifchange. If the current file exists, we have an error because the fact
that this procedure was invoked means some other file is depending on the
current file’s nonexistence. Otherwise, we record it as a prerequisite for the
appropriate parent, delete any previous MD5 hash (in case the file existed at
one point), and create a nonexist key for this file.
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Algorithm 5 redo, part 5: continuation of redo-ifchange procedure

53: if build file i.do exists then
54: redo-ifchange i.do

55: i.buildfile← i.do
56: else
57: calculate filename for default build script
58: if if default build script exists then
59: redo-ifchange default
60: redo-ifcreate i.do

61: i.buildfile ← default
62: else
63: error: no build script for i
64: end if
65: end if

Algorithm 6 redo, part 6: continuation of redo-ifchange procedure

66: execute the build script for i and store the result
67: if result 6= 0 then
68: error: build failed
69: end if
70: if i.md5 exists and matches the current MD5 hash then
71: record i.uptodate = yes
72: end if
73: record i.md5 = current MD5 hash
74: end for
75: record i as a regular prerequiste for its parent
76: end procedure

5.4 Design decisions

I faced several major design decisions when implementing my redo prototype.
The choices made directly affect the efficiency, reliability, and complexity of
the prototype. In this section, I explain the alternatives considered for each
of these decisions, and the trade-offs between them.

5.4.1 Determining whether a target is up to date. Bernstein explains
in his web pages that redo does not use the newness of a file to determine
whether or not it is up to date. He goes on to say that a “target file isn’t
considered up to date until redo finishes and atomically records what happened
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Algorithm 7 redo, part 7: redo-ifcreate procedure

77: procedure redo-ifcreate(args)
78: for each argument i do
79: if i exists then
80: error
81: end if
82: record i as a nonexistent prerequiste for its parent
83: delete i.md5
84: create i.nonexist
85: end for
86: end procedure

in .redo.”[26] As described in the previous section, the prototype calculates
the MD5 hash of the file and compares it to the previous MD5 hash. If the
MD5 hashes match, the file is up to date. The MD5 hash for each file is stored
in .redo. MD5 is suitable for this purpose because it is fairly fast to calculate
and, for all practical purposes, two files will not have the same MD5 hash
unless they have the same contents.

There is a problem with this approach, however. Consider the case where
only a subset of the targets are built in a particular run. For example, suppose
both A and B depend on Z. Suppose that first A is built, then Z is modified,
then B is built. Now when A is rebuilt, redo incorrectly believes A is up to
date because its only prerequisite, Z, has not changed since the previous run.
The correct way to handle this case is to not store a single MD5 hash for each
file, but to instead store an MD5 hash for each prerequisite. This way, if a
particular file is a prerequisite for two targets, its MD5 hash is stored in two
different places in .redo. If one of the targets is rebuilt, the MD5 hash of the
prerequisite is updated to reflect the state of that target.

For simplicity, my prototype only stores a single MD5 hash for each pre-
requisite and requires that all targets be rebuilt each time redo is run.

5.4.2 Communication between parent and child nodes. One tricky
part of implementing redo is managing communication between parent target
files and their children. Recall that a dependency on a child is specified implic-
itly by invoking a regular program, redo-ifchange, from within the parent’s
build script. Because redo-ifchange does not take any other parameters than
the files to rebuild, there is no obvious way for redo-ifchange to record the
dependency information in .redo.

For example, consider the case where a target called A depends on two
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children, Y and Z. Target B also depends on Z. The build script for A contains
a call

redo-ifchange Y Z

while the build script for Z contains a call

redo-ifchange Z

Now, rebuilding A will cause Y to be rebuilt. After Y is rebuilt, we would like to
record that Y is a prerequisite of A. Furthermore, rebuilding A will also cause Z
to be rebuilt. But Z may already be up to date if B has already been rebuilt,
since B also depends on Z. Either way, we would like the end result to be that
Z is recorded as a prerequisite for both A and B.

A naiive solution might be create a convention that the last parameter to
redo-ifchange is not the name of a prerequisite, but the name of the current
target. While this would work, it is redundant. Even worse it changes the
specification of redo-ifchange and adds unnecessary complexity.

A second solution is to use an environment variable to store the current
target being built; say, $REDOPARENT. Each time the build script for a target is
executed by redo-ifchange, $REDOPARENT is set appropriately. One drawback
with this approach is that it clutters the global environment namespace. An-
other is that it is also potentially unreliable—programs or build scripts could
clear or change this variable.

A third solution to this problem is to use an associative array in .redo

to map the UNIX process ID of each running build script to the name of the
target it is building. When the child process redo-ifchange is executed, it
can use the getppid() system call to find out the UNIX process ID of its
parent. The child process can then determine the name of the parent using
the associative array in .redo, and properly record itself as a prerequisite.
Although this solution is likely the best, communication between parent and
child was implemented using an environment variable, since this is simpler to
implement.

5.5 Future work

There are several areas where future work could be focused on my redo pro-
totype.
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5.5.1 Concurrency At present, my prototype does not rebuild targets in
parallel as described by Bernstein. However, parallel rebuilding would likely
not be overly difficult to implement. Since different targets are built by sep-
arate UNIX processes, these processes can naturally run in parallel with one
another. However, care must be taken to ensure that the processes do not
interfere with one another. Prior to starting rebuilding of a target, the process
must obtain an exclusive lock for that target. Upon completion of the build,
the process releases the lock file. If the process was not able to obtain the
lock, it knows that another process is currently rebuilding the target.

5.5.2 Error handling Error handling is an area of my prototype that
could be improved in the future. At present, redo will exit when it encounters
an error while executing a build script. However, if my prototype were to
execute multiple build scripts in parallel, it would be desirable to continue as
far as possible in each branch of the build.

Another issue with error handling, and build output in general, is the user
interface. With multiple build scripts executing at once, output may appear
interleaved in the terminal. It would be better if redo saved a copy of the
build output for each target in a separate file, making it easy for the user to
examine what happened at a later time.

5.5.3 Target cache As discussed in Chapter 2, target caches currently
exist in for certain types of target files, such as those produced by C compilers
(e.g. ccache). More general-purpose target caches also exist in integrated
build tools such as Vesta. It may be useful to add a similar facility to redo.
In large systems, changes are occasionally made and later reverted; a cache
would save time in this situation because it would enable redo to “remember”
versions of targets beyond the last issued build. Furthermore, if it was possible
to share such a cache among developers, then this would reduce the time
necessary to build the system from scratch for the first time.

5.5.4 Different scripting languages Some users may wish to write build
scripts in a language other than Bourne shell. One reason for this might
be that many software systems are developed on both UNIX and Windows
simultaneously, and the Windows platform does not typically contain a port
of the Bourne shell. A scripting language such as Python, Perl, or Ruby could
be used; however, it is likely that build speed will be reduced because these
interpreters take longer to start up than Bourne shell, and redo is designed
run a separate interpreter process for each target.

38



In my prototype, while the default interpreter is currently the Bourne shell,
other interpreters could be used by invoking them on the command line. For
example, a simple Python script can be passed to the Python interpreter with
the -c option:

python -c ’print "hello, world"’

A more complex script could be stored in a separate file and used via

redo-ifchange complex.py

python complex.py

5.5.5 Batch tools Some compilers operate more efficiently by processing
several sources at once to produce several targets. For example, the Visual
C++ 8 compiler performs considerably better if run in batch mode. However,
these types of tools pose a problem for redo because each build scripts must
produce exactly one target by writing the data to standard output.

One solution to this that would work with the current semantics of redo

would be to write a build script that produces a single composite target, such
as a JAR or ZIP file, that actually contains several targets concatenated.
(The Odin build tool also uses composite targets[41].) The individual targets
may then be extracted in subsequent build steps. Unfortunately, this approach
would require twice the storage space. However, a key benefit of redo—atomic
creation of targets—is maintained.

5.5.6 Dependency on environment At present, redo does not rebuild
targets when variables in the user’s environment change. Although changes
to these environment variables can result in a different set of derived objects,
this is often not the case. An example of a variables whose values can directly
affect build results are the various search paths; for example, $PATH. However,
other variables, like $OLDPWD should almost certainly not influence the build
result.

5.5.7 Speed The goal of my redo prototype is to serve as a proof-of-
concept implementation of redo. As a result, it was written to be as simple
as possible, without seriously considering the speed of the program. It would
be beneficial in the future write a proper implementation of redo to run at
high-speed. This would allow more comprehensive tests to be done to verify
the suitability of redo as a build tool for software systems with millions of
lines of code.
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5.6 Summary

In this chapter, I have discussed the details of a prototype I have written of
D. J. Bernstein’s redo build tool. I have explained the central build algo-
rithm and how control flows through the program. I have discussed the design
decisions made with respect to metadata storage, communication, and deter-
mining whether a file is out of date. Lastly, I have discussed directions for
future work on the prototype.
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Chapter 6

Results and evaluation

This chapter describes some results of an evaluation of redo on some sam-
ple software systems. While a large-scale, in-depth case study is beyond the
scope of this thesis, the evaluation in this chapter aims to provide preliminary
feedback about

• the amount of effort required to migrate between redo and an existing
build tool;

• the size and complexity of a build system that uses redo compared to
the size and complexity of a functionally equivalent build systems that
uses an existing build tool; and

• the speed of full, incremental, and null rebuilds with redo compared to
the speed of these types of builds with an existing tool.

Note that the third point is an assessment of the speed of the particular
redo prototype described in the thesis, which is not designed to run at high-
speed. A high-speed implementation of redo would run much faster. The
reason for assessing the speed of the prototype is simply to determine if it is
tolerable for use in its current form.

All speed tests were done on a system running Ubuntu 6.10 with a Core 2
Duo 2.13GHz processor, 2GB RAM, and a 7200RPM disk. A full rebuild is a
rebuild from scratch with no existing targets. A null rebuild is a rebuild when
nothing has changed, and hence no targets are rebuilt. A minor rebuild is a
build when only a few files have changed; in this case I changed 2 source files
and this resulted in 11 target files getting rebuilt.
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Figure 6.1: Dependencies in an online bibliography system, part 1

6.1 Online bibliography system

This section focuses on an online bibliography system: a set of scripts writ-
ten by D. J. Bernstein to maintain a list of bibliographic references for the
web in a variety of forms. This system is unique because it is designed to
build with redo, rather than another build tool, and hence it takes advantage
of redo-specific features such as dynamic dependencies and dependencies on
nonexistent files.

The interface to the system is relatively simple. The user maintains a
directory of files, where each file is a raw bibliography entry. The syntax of
the raw bibliography entries is straight TEX using a set of macros. These raw
entries are then processed to produce properly cross-referenced TEX entries,
as well as BibTeX entries and HTML snippets. The HTML snippets are then
assembled together to form the final web page, which links to the generated
TEX and BibTeX entries.

Figure 6.1 shows an overview of the top-level dependencies in the system.
Note that certain child nodes in the dependency graph are determined dynam-
ically during the build from the output of UNIX commands that take as input
the values of sibling nodes. Figure 6.2 shows the complete dependency graph
produced after redo works its way down the tree. Note that certain source
nodes may or may not exist. If they do not exist, redo-ifcreate will remem-
ber so if they are created at a later time by the user, they will be incorporated
into the next build.

6.1.1 Migration effort The author of this thesis migrated the build
scripts for the online bibliography maintenance system from redo to make.
There were several phases involved:
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Figure 6.2: Dependencies in an online bibliography system, part 2

1. A Makefile was created to encode the dependencies expressed by calls
redo-ifchange in the .do scripts.

2. Each of the .do scripts was converted to a make script by removing all
calls to redo-ifchange and redo-ifcreate.

3. Any dynamic dependency information was moved to the start of the
Makefile where it is computed at the start of the build and stored in
variables.

The following Makefile was obtained:
In total, approximately two hours were spent doing the migration. How-

ever, it should be noted that the make-based build system has flaws that the
redo-based build system does not have. The most significant flaw is that not
all of the dynamic dependencies were able to be captured at this time, such as
the possible dependencies of processed bibliography entries on files that map
journal names to ISSNs. In order to capture this, more time would need to
be spent to figure out how to pre-compute this information for storing in a
Makefile variable. Another flaw is that pre-computing values to avoid dy-
namic dependencies results in extra work being done for each build. In order
to avoid this, the GNU make-specific technique described in [122, Section 4.14]
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SHELL = /bin/sh

ENTRIES = $(shell cat ENTRIES)

ALLBY = $(patsubst %,%.by,$(ENTRIES))

SORTEDENTRIES = $(ENTRIES)

ALLINCL = $(patsubst %,%.incl,$(ENTRIES))

ALLBIB = $(patsubst %,%.bib,$(ENTRIES))

all: entries.html

entries.html: $(ALLINCL)

./make-entries-html $(SORTEDENTRIES) > $@; chmod 644 $@

%.incl: %.tex %.bibtex

./make-incl x $* > $@; chmod 644 $@

%.bibtex: %.tex

./make-bibtex x $* > $@; chmod 644 $@

%.tex: %.bib

./make-tex x $* > $@; chmod 644 $@

clean:

-rm -f entries.html */*.incl */*.bibtex */*.tex

.PRECIOUS: %.incl %.bibtex %.tex

Figure 6.3: Migrated Makefile for an online bibliography system
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Build type redo prototype make

Full 1m28s 0m15s
Null 0m26s 0m01s
Minor 0m28s 0m01s

Table 6.1: Speed measurements comparing the redo prototype with make for
an online bibliography system

could be used. However, this technique is not as straightforward and would
certainly increase the effort required for migration.

6.1.2 Size and complexity The original redo-based build scripts were
389 lines of code in total. The migrated make-based build scripts were 425
lines of code in total. Most of the .do scripts needed to be modified only
slightly in order to be driven by a Makefile rather than redo. Hence, the
difference between the two build systems was the Makefile, which was the
most complex part of the new make-based build system.

6.1.3 Speed tests Table 6.1 shows some speed measurements from using
the redo prototype to rebuild an online bibliography with 283 entries; this
translates to 500 source files and 1135 target files.

The table shows that it takes around one and a half minutes to rebuild
the bibliography from scratch with redo. While this is not fast, it is likely
acceptable for most users for general use. Null rebuilds and minor rebuilds
take around half a minute; again this is usable. Although make builds much
faster, reliability is sacrificed since make will not notice all types of changes
(for example, adding a PDF mirror of an entry). This could result in the user
frequently having to run make clean to be ensure correct results.

6.2 Links web browser

This section focuses on the Links web browser, which consists of 27,385 phys-
ical lines of code. Links is a lightweight text-only web browser that supports
colour terminals, bookmarks, customizable keys, multiple languages, and mul-
tiple character sets. Links is written entirely in C, although it uses four custom
scripts to generate header files that allow the use off different character sets
and languages.
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6.2.1 Migration effort The author of this thesis migrated the build
scripts for Links from make to redo. There were several phases involved:

1. A top-level it.do build script was created that triggers the links exe-
cutable to be rebuilt.

2. A links.do build script was created that triggers each of the 35 object
files to be rebuilt.

3. A default.o.do build script was created that triggers a correspond-
ing file containing dependency information to be rebuilt. Each of the
dependencies listed within is then triggered to rebuild.

4. A default.deps.do build script was created that scans the correspond-
ing C source file for header dependencies.

5. Four C fragments are generated from character set and language tables
to be included in character.c and language.c, respectively. These
are triggered to rebuild when character.o and language.o are re-
built, since they are listed as dependencies in character.deps and
language.deps.

Overall, it did not require a great deal of effort to migrate to redo once
the existing build process was understood.

6.2.2 Size and complexity The make-based build system relies on auto-

make to first generate a 492-line Makefile.in template from a 27-line
Makefile.am skeleton. autoconf then generates a 4531-line configure script
from a 248-line configure.ac. There are also 110 lines of scripts for generat-
ing Unicode and internationalization information.

By comparison, all the .do scripts are 28 lines total, and no large artifacts
are generated. This suggests a redo-based build system may be easier to
debug. Granted, the redo-based build system does not provide all the custom
configuration tests, although it is unclear exactly how useful these tests are on
for most machines.

6.2.3 Speed tests Table 6.2 shows some speed measurements from using
the redo prototype to rebuild the Links web browser; this compiles 35 object
files and links them together in one executable file.

This table shows that the redo-based build system is almost as fast as
the make-based build system. However, it is difficult to get an accurate com-
parison of the two build systems because the make-based build system runs
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Build type redo prototype make

Full 0m33s 0m28s
Null 0m11s 0m04s
Minor 0m05s 0m00s

Table 6.2: Speed measurements comparing the redo prototype with make for
the Links web browser

a long configuration script at the beginning of the build to query the host
machine, and these tests were not migrated over to the redo-based build sys-
tem. However, this configuration script is generated by separate tools prior to
distribution along with Makefile containing pre-generated dependencies for
the object files, and this part of the make-based build system was not counted
while object file dependency generation was counted for redo. Overall, the key
observation is that the redo prototype is within the same order of magnitude
as make.

6.3 Discussion

The author’s experience seems to show that a quick migration from one build
tool to another retains the idioms of the old tool, which may not be as easily
expressed in the new tool. This results in increasing the total size of the new
build system. Spending more time on the migration to map the idioms of the
old tool properly onto the new one could produce a simpler, more compact
build system, but at the cost of increased effort. For large systems, it is likely
that it would be too labour intensive to manually migrate from one build tool
to another; tools to support automated or semi-automated migration would
be necessary.

The slow speed of the redo prototype when compared with other build
tools is not surprising. The prototype was not designed to run at high-speed;
rather it is a proof-of-concept for redo and the purely top-down approach to
rebuilding. That said, the speed of the prototype appears adequate for use
with smaller systems, which indeed the author of this thesis has found to be
the case while maintaining an online bibliography on a daily basis.

For future work, it would be interesting to compare redo-based build sys-
tems with corresponding SCons-based and Ant-based build systems, since they
are less similar to redo than redo is to make.
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6.4 Summary

This chapter has described some results of an evaluation of redo on some
sample software systems. These results provide feedback about the following
properties of redo compared to existing tools: effort required for migration,
build system size and complexity, and speed of different types of rebuilds.
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Chapter 7

Conclusion

This thesis has explained the concept of purely top-down software rebuilding,
wherein build scripts are executed and a dependency graph is built on-the-
fly. It has explained how D. J. Bernstein’s redo tool concept makes use of
this approach, along with several other novel features such as dependencies on
nonexistent files, to provide a simpler and more consistent model of software
rebuilding. It has presented a redo prototype written by the author of this
thesis, and discussed the algorithms and data structures used by it, as well
as design decisions made and directions for future work on the prototype. It
has also evaluated the prototype on some sample systems and investigated
how much effort is required to migrate between redo and other build tools, as
well as the size, complexity, and performances aspects of the resulting build
systems.

A purely top-down approach to software rebuilding represents a signifi-
cant departure from the approaches used by conventional build tools over the
past thirty years, and offers promising benefits in terms of reducing accidental
complexity of build infrastructure for large-scale projects. The goal of this
thesis was to provide a starting point for researchers and practitioners inter-
ested purely top-down rebuilding; such persons are encouraged to take further
steps in developing purely top-down build tools, applying them to large-scale
software projects, and evaluating them against competing approaches.
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Appendix A

Source code

Listing A.1: redo
1 #!/bin/sh
2 #
3 # Alan Grosskurth
4 # http :// grosskurth.ca/xredo /20070117/ redo
5 # Public domain
6 #
7
8 [ -d .redo ] || mkdir .redo
9 find .redo -name ’*.uptodate ’ -exec rm -f ’{}’ \;

10 find .redo -name ’*.prereqs.build ’ -exec rm -f ’{}’ \;
11 find .redo -name ’*. prereqsne.build ’ -exec rm -f ’{}’ \;
12 redo -ifchange it

Listing A.2: redo-ifcreate
1 #!/bin/sh
2 #
3 # Alan Grosskurth
4 # http :// grosskurth.ca/xredo /20070117/ redo -ifcreate
5 # Public domain
6 #
7
8 msg_() {
9 level_ ="$1: "

10 shift
11 case "$level_" in
12 info*) level_=
13 esac
14 echo "redo -ifcreate: ${level_}$@" 1>&2
15 case "$level_" in
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16 error *) exit 111 ;;
17 esac
18 }
19
20 for i in "$@"; do
21 [ -d .redo/"‘dirname $i ‘" ] || mkdir .redo/"‘dirname $i ‘"
22 if [ -e "$i" ]; then
23 msg_ error "$i exists"
24 fi
25
26 rm -f .redo/"$i.md5"
27 touch .redo/"$i.nonexist"
28
29 case "$REDOPARENT" in
30 ’’) error_ "$i: no parent" ;;
31 *)
32 ( if [ ! -e .redo/" $REDOPARENT.prereqsne.build" ]; then
33 echo "$1"
34 elif ! grep "$1" .redo/" $REDOPARENT.prereqsne.build" \
35 >/dev/null 2>/dev/null; then
36 cat .redo/" $REDOPARENT.prereqsne.build"
37 echo "$1"
38 fi
39 ) > .redo/" $REDOPARENT.prereqsne.build"’{new}’
40 mv .redo/" $REDOPARENT.prereqsne.build"’{new}’ \
41 .redo/" $REDOPARENT.prereqsne.build"
42 ;;
43 esac
44 done

Listing A.3: redo-ifchange
1 #!/bin/sh
2 #
3 # Alan Grosskurth
4 # http :// grosskurth.ca/xredo /20070117/ redo -ifchange
5 # Public domain
6 #
7
8 msg_() {
9 level_ ="$1: "

10 shift
11 case "$level_" in
12 info*) level_=
13 esac
14 echo "redo -ifchange: ${level_}$@" 1>&2
15 case "$level_" in
16 error *) exit 111 ;;
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17 esac
18 }
19
20 record_ () {
21 echo "$1" > .redo/"$2"’{new}’
22 mv .redo/"$2"’{new}’ .redo/"$2"
23 }
24
25 record_prereq_ () {
26 case "$REDOPARENT" in
27 ’’) : ;;
28 *)
29 ( if [ ! -e .redo/" $REDOPARENT.prereqs.build" ]; then
30 echo "$1"
31 elif ! grep "$1" .redo/" $REDOPARENT.prereqs.build" \
32 >/dev/null 2>/dev/null; then
33 cat .redo/" $REDOPARENT.prereqs.build"
34 echo "$1"
35 fi
36 ) > .redo/" $REDOPARENT.prereqs.build"’{new}’
37 mv .redo/" $REDOPARENT.prereqs.build"’{new}’ \
38 .redo/" $REDOPARENT.prereqs.build"
39 ;;
40 esac
41 }
42
43 for i in "$@"; do
44 [ -d .redo/"‘dirname $i ‘" ] || mkdir .redo/"‘dirname $i ‘"
45
46 if [ -e .redo/"$i.uptodate" ]; then
47 record_prereq_ "$i"
48 continue
49 fi
50
51 # Determine file type
52 if [ -e .redo/"$i.type" ]; then
53 type=‘head -1 .redo/"$i.type"‘
54 else
55 if [ -e "$i" ]; then
56 type=s
57 else
58 type=t
59 fi
60 record_ "$type" "$i.type"
61 fi
62
63 uptodate=n
64 case "$type" in
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65 s)
66 # Check MD5 checksum
67 if [ -e "$i" ]; then
68 newmd5=‘md5sum "$i" | awk ’{print $1}’‘
69 if [ -e .redo/"$i.md5" ]; then
70 oldmd5=‘head -1 .redo/"$i.md5"‘
71 if [ "$newmd5" = "$oldmd5" ]; then
72 uptodate=y
73 fi
74 elif [ -e .redo/"$i.nonexist" ]; then
75 rm -f .redo/"$i.nonexist"
76 fi
77 record_ "$newmd5" "$i.md5"
78 fi
79 #case "$uptodate" in
80 # n) msg_ info "out -of-date source $i" ;;
81 # *) msg_ info "up-to-date source $i" ;;
82 #esac
83 record_ "$uptodate" "$i.uptodate"
84 record_prereq_ "$i"
85 continue
86 ;;
87 esac
88
89 ### Must be a target file
90
91 # Check regular prerequisites
92 if [ -e .redo/"$i.prereqs" ]; then
93 uptodate=y
94 while read -r line; do
95 if [ ! -e .redo/" $line.uptodate" ]; then
96 env REDOPARENT ="$i" redo -ifchange "$line"
97 fi
98 # Check for build errors
99 if [ -e .redo/" $line.result" ]; then

100 case ‘head -1 .redo/" $line.result"‘ in
101 0) : ;;
102 *) msg_ error "$i: failed to rebuild prerequisite $line" ;;
103 esac
104 fi
105
106 if [ -e .redo/" $line.uptodate" ]; then
107 case ‘head -1 .redo/" $line.uptodate"‘ in
108 n)
109 uptodate=n
110 break
111 ;;
112 esac

53



113 else
114 msg_ ASSERT: "$i: no uptodate file for $line" 1>&2
115 exit 111
116 fi
117 done < .redo/"$i.prereqs"
118 fi
119
120 # Check nonexistent prerequisites
121 if [ -e .redo/"$i.prereqsne" ]; then
122 while read -r line; do
123 if [ -e "$line" ]; then
124 uptodate=n
125 fi
126 done < .redo/"$i.prereqsne"
127 fi
128
129 case "$uptodate" in
130 n)
131 # Remove old prerequisites
132 rm -f .redo/"$i.prereqs"
133 rm -f .redo/"$i.prereqsnonexist"
134 # Determine which build script to execute (rebuild it if necessary)
135 if [ -e "$i.do" ]; then
136 env REDOPARENT ="$i" redo -ifchange "$i.do"
137 buildfile ="$i.do"
138 else
139 default=‘echo "$i" | sed ’s/.*\(\.[^\.]*\)$/default \1/’‘
140 if [ -e "$default.do" ]; then
141 env REDOPARENT ="$i" redo -ifchange "$default.do"
142 env REDOPARENT ="$i" redo -ifcreate "$i.do"
143 buildfile =" $default.do"
144 else
145 msg_ error "$i: no build script found"
146 fi
147 fi
148 # Execute the build script
149 basefile=‘echo "$i" | sed ’s/\..*$//’‘
150 env REDOPARENT ="$i" \
151 sh -e "$buildfile" 0 "$basefile" .redo/"$i ---redoing" \
152 > .redo/"$i ---redoing"
153 result ="$?"
154 record_ "$result" "$i.result"
155 case "$result" in
156 0)
157 newmd5=‘md5sum .redo/"$i ---redoing" | awk ’{print $1}’‘
158 if [ -e .redo/"$i.md5" ]; then
159 oldmd5=‘head -1 .redo/"$i.md5"‘
160 case "$newmd5" in
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161 "$oldmd5 ")
162 rm -f .redo/"$i ---redoing"
163 uptodate=y # No change
164 ;;
165 *)
166 mv .redo/"$i ---redoing" "$i"
167 record_ "$newmd5" "$i.md5"
168 ;;
169 esac
170 else
171 mv .redo/"$i ---redoing" "$i"
172 record_ "$newmd5" "$i.md5"
173 fi
174 msg_ info "rebuilt $i" 1>&2
175 ;;
176 *)
177 rm -f .redo/"$i ---redoing"
178 msg_ error "failed to rebuild $i"
179 ;;
180 esac
181 ;;
182 esac
183
184 if [ -e .redo/"$i.prereqs.build" ]; then
185 mv .redo/"$i.prereqs.build" .redo/"$i.prereqs"
186 fi
187 if [ -e .redo/"$i.prereqsne.build" ]; then
188 mv .redo/"$i.prereqsne.build" .redo/"$i.prereqsne"
189 fi
190 record_prereq_ "$i"
191 record_ "$uptodate" "$i.uptodate"
192 done
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