
An Introduction to the Programmer's Workbench
T. A. Dolotta
J. R. Mashey

Bell Laboratories
Piscataway, New Jersey 08854

Keywords: Program development facility, UNIX.

Abstract: The Programmer's Workbench (PWB) is a specialized
computing facility dedicated to satisfying the needs of developers
of computer programs. The PWB might well be called a
"human-end" computer; like "front-end" and "back-end" com-
puters, it improves productivity by efficient specialization. It pro-
vides a convenient working environment and a uniform set of
programming tools to a diverse group of programming projects.
These projects produce software for various "target" computers,
including IBM System/370 and UNIVAC 1100 systems of much
greater size than the PWB machines. The projects range in size
from several people up to several hundred. The first PWB
machine was installed in October, 1973; usage, acceptance, and
interest have grown rapidly since that time. The PWB currently
supports about 110 time-sharing terminals, utilizing a network of
four DEC PDP-11 computers, all running the UNIX Time-Sharing
System. The PWB adds tools to UNIX to support large projects.
This paper gives an overview of the PWB and its development;
further details appear in the five following companion papers
[BIA76A, DOL76B, KNU76A, MAS76A, MAS76B].

1, INTRODUCTION

The Programmer's Workbench (PWB) is a specialized computing
facility dedicated to supporting large software development pro-
jects. Although it performs many of the functions that have
been suggested for projects such as the Program Support Library
[LUP74A], the Development Support Library [BAK75A], the
Automated Project Management Information System [BRA75B], or
the Software Factory [BRA75A], some of its goals are quite
different, and its implementation is even more so. Each of these
systems may be categorized as a program development facility
(PDF), i.e., a system or package of programs meant specifically to
support software development.

The PWB is a production system that has been used for
several years in the Business Information Systems area of Bell
Laboratories. It supports a user community of about 700 people,
and can handle 110 simultaneous on-line users. Although the
PWB is still growing and evolving at a rapid rate, accumulated
experience provides strong support for the viability, economy,
and effectiveness of its approach.

This paper explains the rationale for the existence of the PWB
and describes its history and current status. It also serves to
supply the background for five companion papers, which, in
turn, supply examples and evidence that support the assertions,
and opinions presented here.

2. THE PWB CONCEPT

The PWB concept embodies the following ideas:

• Program development and execution of the resulting pro-
grams are two radically different functions. Much can be
gained by assigning each function to a computer best suited
for it. Thus, as much of the development as possible should
be done on a computer dedicated to that task, while execu-
tion should occur on another computer, called a "host" or
"target" system.

• Although there may be several target systems, possibly sup-
plied by different vendors, the PDF should present a single,

uniform interface to its users. Existing PWB targets include
IBM System/370 and U N I V A C 1100 computers; in some
sense, the PWB is a target also, in that it is built and main-
tained with its own tools.

s A PDF should be implemented on several computers of
moderate size, even when the target machines consist of very
large systems. The rationale for this idea is given in sections
4.1 and 4.6. The PWB currently is implemented as a network
of four large DEC PDP-1 l 's (three 11/45's and one 11/70), all
operating under the UNIX Time-Sharing System [RIT74A].

Although the PWB is a special-purpose system in the same sense
as a "front-end" or "back-end" [CAN74A] computer, its goal is to
be a "human-end" computer. As shown in Figure 1, it provides
the primary interface between program developers and their tar-
get computer(s). Unlike a typical "front-end," the PWB supplies
a separate, uniform environment in which people perform their
work.

Users at

hardcopy and

CRT terminals

[target 1]

target 2]

target n I

Figure 1. PWB Interface for Users

3. DISADVANTAGES--REAL AND IMAGINARY

The PWB approach of using small computers to build a PDF for
use with much larger targets has both good and bad points. For-
tunately, many of the potential disadvantages that caused con-
cern at the outset of the PWB project have not materialized, and
the actual disadvantages are far outweighed by the benefits
[IVI75A]. The following points apply mainly to our implementa-
tion of the PWB; some may have little relevance for other PDFs.

3.1 Additional Hardware Costs

The first disadvantage is that of requiring more computer
hardware and communications gear. This is a real disadvantage
only if one has target systems with excess capacity. In our case,
the reverse was true: overall hardware costs were probably
decreased by using several minicomputers instead of obtaining
additional large systems or upgrading those already installed. An
associated (and real) problem is that of the overhead of separate
contracts, maintenance, training, etc.

3.2 Increased Complexity of Total System

The second disadvantage is the increased number of nodes and
links in the resulting network. There is a potential for disaster if
failure of a few components can make the rest unusable. This
can (and has sometimes been) a real problem, but is lessened, if
not completely eliminated, by providing appropriate redundancy,
and by configuring the overall system so that individual com-
ponents can perform useful stand-alone work. As an example,
when the PWB is up, users can edit programs and queue jobs for
later transmittal to a target, even if that target or the communica-
tions links to it are down.

164

3.3 Data and Function Splitting

The third problem is that of splitting data and capabilities
between machines. Communication links must be fast enough
to avoid unacceptable delays. Fortunately, it turns out that many
types of data need exist only in one place. For example, the PWB
concentrates on the handling of text files containing source pro-
grams, control statements, and documentation. A target only
keeps such things temporarily, but it does keep its own object
programs, which are seldom, if ever, seen by the PWB.

3.4 Incompatibilities

Incompatible character sets and the resulting data conversion
costs are the fourth problem. In practice, this has been at most a
minor irritation. It may not be a p rob lemat all if target and PDF
computers are chosen to use the same character sets.

3.5 Load Balancing

The fifth disadvantage is the possible loss of flexibility in load
balancing, because some resources are dedicated to specific tasks
and cannot be used for others.

3.6 Limits on Size and Speed

Large systems are capable of many actions far outside the range
of small ones. For example, as currently implemented, the PWB
does not offer interactive debugging on the target systems.

3.7 Duplication of Software

The final problem is that of the duplication of software, not only
between the target and PWB, but between separate PWB proces-
sors. For example, each PWB CPU has an independent copy of
the system software. However, this software is relatively small,
and consumes much less space than user files and programs.

Another aspect of the problem is the need to distribute and
coordinate the installation of software on separate systems. One
compensation is the ability to test new or modified programs
(including the operating system) on one system before installing
it on all the others.

4. ADVANTAGES

The PWB approach is no panacea for many of the problems fac-
ing the software industry today. However, it appears to be very
effective in the presence of certain conditions, each making the
PWB approach advantageous. It is hardly accidental that the PWB
originated at an installation where a / / these conditions exist.

4.1 Gain by Effective Specialization

The computer requirements of software developers often diverge
quite sharply from those of the users of that software. This
observation seems relevant to many kinds of software projects,
but is especially true in the production of large, interactive, data-
base-oriented systems. In our opinion, the following are some of
the primary needs of software developers:

• Convenient, inexpensive, and continually available interactive
computing services.

• A file structure oriented to interactive use, as opposed to one
grafted as an additional layer onto a batch-oriented structure.
The overall structure and individual files must be quickly
changeable, should avoid unnecessary involvement with
hardware details, and should never require explicit allocation
of storage. This observation derives from watching program
developers waste much effort on managing disk space, rather
than doing their work.

• Powerful, human-engineered, and surprise-free tools for scan-
ning and editing text files. Much programming activity con-
sists of manipulation of text.

• A flexible and easy-to-use command language. It should be a
programming language in its own right, but still simple
enough to allow quick learning.

• Extensive document preparation facilities.

• Facilities to help solve smal l data base management problems
quickly and cheaply.

• Adaptability to rapid organizational and personnel changes.
• Guaranteed service during normal working hours. PWB users

can survive more easily the temporary loss of a target
machine or communication links than the loss of the PWB
itself.

On the other hand, users of the end product may have any or all
of the following needs:

• Hardware large and fast enough to run the end product, pos-
sibly under stringent real-time and deadline constraints.

• File structure and access methods that can be optimized to
handle large amounts of data.

• Transaction-oriented teleprocessing facilities.
• The use of a specific type of computer and operating system,

in order to meet any one of a number of possible, externally-
imposed requirements.

Although, in principle, it is possible to conceive of a system that
satisfies both of the above sets of requirements in a cost-effective
way, we are not aware of the existence of such a system. If it is
necessary to choose one set over the other, the developers often
lose the battle because the end users are usually paying for the
system. Given the fact that software costs already exceed
hardware costs, and are expected to do so to an even greater
extent in the future [BOE73A, DOL76C], this may be a very unwise
approach in the long run.

Given the prevailing costs and natures of large and small
computers, it would appear that small ones are much more suited
to the usual needs of program developers. Furthermore, assum-
ing that a PDF should have duplicated systems in order to
guarantee service, it seems logical to duplicate small, cheap com-
puters instead of large, expensive ones.

4.2 Multi-Vendor Installations

It is desirable to have a uniform set of tools in order to ease
training and to permit the transferral of personnel between vari-
ous projects. The creation of such a set of tools is made difficult
by the differences in file structures, command languages, and
communications protocols of the various targets. These
differences are very troublesome; they are qualitatively different
from problems encountered in transferring, say, COBOL pro-
grams between various target systems. Nevertheless, they must
be dealt with. As a result, a few PWB tools are target-specific,
but, wherever possible, they possess target-independent user
interfaces.

4.3 Changing Environments

Changes to hardware and software occur and cause problems
even in single-vendor installations. Such changes may be disas-
trous if they affect both development and. production environ-
ments at the same time. This problem is at least partially solved
by using a separate program development system. The approach
also helps programmers "get going" on a project before the pro-
duction hardware becomes available.

As an example, over the last year, there have been major
reconfigurations in both the hardware and software of all of our
target systems, and in the geographic work locations of all of our
users. Because of the "insulation" that PWB provides, most of
our users were relatively unaffected by these changes.

4.4 Effective Testing of Termlnai-Oriented Systems

It is difficult enough to test small batch programs; effective test-
ing of large, interactive, data base management systems is far
more difficult. It is especially difficult to perform load testing
when the same computer is both generating the load and run-
ning the application program being tested. It is much simpler
and more realistic to perform testing with the aid of a separate
computer.

165

4.5 Availability of Better Software

Many time-sharing systems for large computers often retain
significant vestiges of batch processing. Of necessity, some of
them have evolved over a long period of time, and may contain
design elements that would not exist if they were redone in the
light of current knowledge. Separation of support functions onto
an appropriate minicomputer may offer an easy way to gain
access to more up-to-date software. For example, much of the
stimulus for the PWB arose from the desire to make use of the
simple, elegant, and powerful UNIX Time-Sharing System.

4.6 Human Orientation and Sizing

In many cases, operating systems, especially interactive ones,
have become incredibly complex and incomprehensible. Small
systems can be made more comprehensible, friendly, and adap-
tive, and an individual user can have more impact on their
development. Many people welcome any movement in the
direction of simplicity: "Small is Beautiful" applies to this area, as
well as many others [SCH73B].

5. CURRENT STATUS

This section represents a snapshot of the status of the PWB as of
June, 1976. Due to the continuing, rapid growth in its usage,
this snapshot will soon to be obsolete.

5.1 Hardware Configuration

Figure 2 displays the current structure of the PWB and of its tar-
get computers.

Figure 2. PWB Hardware Configuration

Several notes are in order regarding Figure 2:

• Systems A, B, and D are all interconnected via direct
memory- to-memory (DMA) links.

• The communications links between PWB and targets consist of
a number of 4.8kb, 9.6kb, and 48kb channels; these links are
actually implemented as. sub-channels of several multiplexed
230kb lines.

• Each PDP-11 has 124K words of memory (248K bytes). Sys-
tems A, B, and D are located in one building (Piscataway,
N.J .) ; the IBM and UNIVAC systems are in another

building a few miles away; System C is located about 20 miles
away (at Murray Hill, N. J.), as is the XDS SIGMA 5.

• System A is used primarily by the people who develop and
support the PWB, by users of some testing facilities [DOL76B],
and by users of the phototypesetter.

• System B is primarily used by the developers of a very large,
UNIVAC-based system, and also supports additional docu-
mentation activities.

• System C supports a large IBM-based project, as well as some
members of a project using XDS and other computers.

• System D (a PDP 11/70) is used by developers of other
IBM-based systems. Some additional text processing (typing
pool) is also done here.

• Systems B and D share disk drives and each can easily be
used as backup for the other.

• Temporarily, System C has no convenient backup. This situa-
tion will be rectified in the near future. In the next upgrade,
Systems A and B will become PDP l l /70 ' s , and a PDP 11/45
(System E) will be moved to join System C.

• Equivalent monthly lease & maintenance costs total approxi-
mately $26,000 for these four systems, exclusive of terminals
and communications lines.

5.2 Sample Usage Data

Figure 3 displays data obtained at the end of June, 1976.

Prime
Login Direc- Dial Connect

System Names Files tories Ports Hours/Day

A 134 16266 1334 16 71
B 160 27924 1828 26 124
C 156 10430 872 20 121
D 224 32254 2016 48 312

Totals 674 86874 6050 110 628

Figure 3. PWB Usage

In many cases, the same login name is used by many people who
work together. In a few cases, a single person possesses several
such names. Some login names exist for training new users and
for experimental use, and are used only occasionally.

The connect times are for 8-hour prime shifts only and
represent averages computed from one month 's totals. Of the
880 possible prime connect hours, 71% were actually consumed.
It is difficult to raise this percentage significantly: during some
parts of the day, all ports are in use, The prime shift accounts
for approximately 75% of all connect hours. Usage during other
shifts includes stand-alone and other testing, maintenance pro-
cedures, and execution of some extremely t ime-consuming user
programs that need no human interaction.

6. CURRENT FACILITIES

6.1 UNIX

Much of the impetus for the development of the PWB arose from
the desire to utilize the UNIX environment. Although the basic
flavor of UNIX has been maintained as much as possible within
the PWB, extensions have been necessary to make it more suit-
able as the operating system for the PWB. The PWB is currently
the largest known UNIX installation, in terms of number of sys-
tems, disk space, and number of users: some changes were
needed to support such an atypically large user community. In
particular, much effort has gone into improving the robustness
and efficiency of the operating system itself. It is a tribute to the
clarity and adaptability of UNIX that it can be easily adjusted to a
wide range of configurations.

Various UNIX commands were changed in significant ways.
The editor was modified to better support users dealing with
fixed-format source programs and data. Many additions and

166

modifications were made to increase the performance of the
command interpreter, improve it for use by multi-person teams,
and upgrade its capabilities as a programming language [MAS76A].

6.2 Remote Job Entry (RJE) Facility

The Remote Job Entry (RJE) facility includes the following:

• A command used to generate job streams for target systems:
it performs nested file inclusions, keyword substitutions,
prompting, and character translation (e.g., ASCII to EBCDIC).
It also includes a generalized interface to other PWB com-
mands, so that all or parts of job streams can be generated
dynamically from the output of other UNIX commands.

• Transmission subsystems used to handle all communications
activity: these are target-specific, but are not visible to the
users.

• Status reporting: users may inquire about the status of jobs
on the target systems, and can elect to be notified in various
ways (e.g., on-line or in absentia) of the occurrence of major
events in the processing of these jobs.

• Output retrieval: users may route the target's output to
remote printers, or may elect to have all or part of it returned
into PWB files. These files can be examined by various
scanners, or manipulated using many different commands.

• Supporting tools: some users need to create their own. job
streams. Others want only to transfer files among systems or
print PWB files on target system printers. Various utility pro-
grams exist to simplify these functions. Other utilities are
used to aid in converting existing target source programs to
formats more appropriate for the PWB. In particular, sequence
numbers and trailing blanks are eliminated, and other strings
of blanks are converted to tabs if possible.

[B1A76A] includes a brief description and examples of RJE usage
as seen by the users.

6.3 Source Code Control System (SCCS)

The Source Code Control System permits unusually powerful
control over changes to modules (i.e., files of text--source code,
documentation, data, etc.). It records every change made to a
module, can recreate a module as it existed at any point in time,
controls and manages any number of concurrently existing ver-
sions of a module, and offers many useful audit and administra-
tive features, sccs is described in [ROC75A].

6.4 Modification Request Control System (MRCS)

Any extensive software project usually evolves mechanisms for
requesting changes, reporting errors, and tracking the progress of
modifications. Many projects have created systems for handling
these items, but the systems are often specific to one project.
MRCS is a generalized system intended for use by many projects,
and it is described in [KNU76A].

6.5 Document Preparation

UNIX has traditionally provided good documentation tools. Addi-
tional commands have been added, and the existing tools put to
use in various novel ways. The PWB currently supports a great
deal of documentation work, for programmer and non-
programmer alike. Many of the documentation efforts are
difficult to distinguish from data base applications. Descriptions
for the tools and techniques of document preparation are given
in [MAS76B].

6.6 Test Drivers

The PWB is often used to run various kinds of tests of IBM and
UNIVAC data base management systems and of data base appli-
cations implemented on these systems. The PWB contains two
test drivers that can generate repeatable tests for very complex
interactive systems; these drivers are used both to measure per-
formance under well-controlled load and to help verify the initial
and continuing correct operation of these systems and applica-
tions while they are being built and modified. One driver

simulates a Teletype ® cluster controller of up to four terminals,
and is used to test programs running on UNIVAC 1100 series
machines. The other driver (LEAP--[DOL76B]) simulates an IBM
3270 cluster controller managing up to eight terminals,

7. HISTORY AND DESIGN PHILOSOPHY

7.1 Brief History

The PWB concept was suggested in April, 1973, and the first PDP
11/45 was installed in October, 1973. This machine was used at
first by the development department for its own education and
experimentation, while the original RJE, SCCS, and LEAP com-
ponents were constructed. Additional systems were installed in
October, 1974 and in May, 1975. The PDP-11/70 arrived in
October, 1975; further upgrades are planned for 1976.

At first, the PWB was an experimental project that faced con-
siderable indifference from a user community heavily oriented to
large computer systems, working under difficult schedules, and a
bit wary of what then seemed like a radical idea. However, as
word spread about the system, demand for service began to
outrun our ability to supply it. When forced to make six-month
usage forecasts, users consistently underestimated the extent of
their usage, because they kept discovering unexpected applica-
tions for PWB facilities. New hardware was (and is) continually
being acquired to meet the demand.

Several large projects are awaiting the arrival of additional
hardware before they can completely convert to the PWB. We
expect the growth of PWB facilities at Bell Laboratories to con-
tinue in the foreseeable future.

7.2 Design Philosophy

Early in the PWB development cycle, many spirited discussions
were held regarding the nature of the overall design approach to
be taken. One proposed approach was that of first designing the
PWB as a completely integrated facility, then implementing it, and
then obtaining users for it. A much different approach has actu-
ally been followed. Its elements are:

• Get users on the system quickly, and let their needs and
problems drive the design.

• Build software quickly, and expect to throw much of it away.
• Build many small, independent programs, rather than large,

interrelated ones. This fits well with the nature of UNIX.
• Use as few different file formats as possible, and keep them

simple. This avoids the need for a plethora of "utilities"
needed to deal with a wide variety of formats, and maximizes
the use of existing commands.

• Monitor user problems and rearrange functions or add new
ones as needed.

• Design each new feature to be as consistent with existing
ones as possible, in order to maintain an environment that is
simple, coherent, and conducive to productive use.

• When incompatible changes are necessary, let them derive
from user demands, or make sure they offer so much benefit
that users will be glad to have them.

This approach may appear chaotic, but evidence to support its
desirability can be found in [BRO75A, p. 1161 and [NAU69A, pp. 19,
22, 32, 40, 41, 47, 73, 951, for example. In practice, it seems to work
better than designing "perfect" systems that turn out to be
obsolete or unusable by the time they are implemented. Of
course, we are lucky in being able to utilize an operating system
that both permits and encourages this kind of approach.

8. CONCLUSIONS

We have given a brief summary of the rationale for the PWB, its
advantages and disadvantages, its current status, and the philoso-
phy behind the approach taken. No claim is made that the PWB
can solve everyone's programming problems. We do claim that
the PWB approach is quite appropriate for many problems

167

exist ing today, that the direct ions of change in the c o m p u t e r
indus t ry [DOL76C] may make it even more applicable in the
future , and that it does handle m a n y real p rob lems , as evidenced
by considerable live experience.

ACKNOWLEDGEMENTS

The PWB concept was first sugges ted by E. L. Ivie [IVI75Al. The
au thors o f the five c o m p a n i o n papers , as well as m a n y o f our
o ther colleagues, have cont r ibu ted to the design, implementa t ion ,
and con t inu ing i m p r o v e m e n t of the PWB. UNIX itself, wi thout
which PWB could not have been built, was developed by
m e m b e r s of the Bell Laborator ies ' C o m p u t i n g Science Research
Center . Finally, m u c h of the success of the PWB can be attri-
bu ted to a use r populat ion willing to try n e w things and to give
us the feedback necessary to make these things useful.

REFERENCES

All re ferences for this and the five c o m p a n i o n papers [BIA76A,
DOL76B, KNU76A, MAS76A, MAS76B] are given below.

ADR73A Applied Data Research. The LIBRARIAN: User Reference
Manual. Report Pll2L, Applied Data Research, Inc., Princeton,
N. J., 1973.

BAK75A Baker, F. T. Structured Programming in a Production Program-
ming Environment. Proc. Int. Conj'. on Reliable Software, April
21-23, 1975, 172-85.

BIA76A Bianchi, M. H., and Wood, J. L. A User's Viewpoint on the
Programmer's Workbench. Proe. Second Int. Conf. on Software
Engineering, Oct. 13-15, 1976.

BOE73A Boehm, B. W. Software and its Impact: A Quantitative Assess-
ment. Datamation 19, 5 (May 1973), 48-59.

BRA75A Bratman, H., and Court, T. The Software Factory. Computer 8, 5
(May 1975), 28-37.

BRA75B Bratman, H. Automated Techniques for Project Management and
Control. In Practical Strategies Jbr Developing Large Software Systems,
ed. E. Horowitz, Addison-Wesley, Reading, Mass., 1975, 193-211.

BRO75A Brooks, F. P., Jr. The Mythical Man-Month. Addison-Wesley,
Reading, Mass., 1975.

BRU76A Brunt, R. F., and Tufts, D. E. A User-Oriented Approach to Con-
trol Languages. SQ/?ware--Practice and Experience 6, 1 (Jan. 1976),
93-108.

CAN74A Canaday, R. H., Harrison, R. D., Ivie, E. L., Ryder, J. L., and
Wehr, L. A. A Back-End Computer for Data Base Management.
Comm. ACM 17, 10 (Oct. 1974), 575-82.

COL76A Colijn, A. W. Experiments with the KRONOS Control Language.
Software--Practice and Experience 6, 1 (Jan. 1976), 133-36.

COM76A COMTEN. HyperFASTER Concepts and Facilities Manual. COM-
TEN, Inc., 2 Research Court, Rockville, Md.

COW75A Cowan, R. M Burroughs B6700/B7700 Work Flow Language. In
Command Languages--Proc. tFIP Working Cot!/brence on Command
Languages, ed. C. Unger, North Holland, Amsterdam, 1975, 153-66.

DEC74A Digital Equipment Corp. Option Description, DQSll-A/B Com-
munications Controller. Form CSS-MO-F-32-3A, Digital Equip-
ment Corp., Maynard, Mass., 1974.

DOL69A Dolotta, T. A., and lrvine, C. A. Proposal for a Time Sharing Com-
mand Structure. In In/ormation Processing 68--Proc. IFIP Congress
1968, vok I, North Holland, Amsterdam, 1969, 493-98.

DOL76A Dolotta, T. A., and Mashey, J. R. An Introduction to the
Programmer's Workbench. Proc. Second Int. Con/i on SQ/~ware
Engineering, OCt. 13-15, 1976.

DOL76B Dolotta, T. A., Licwinko, J. S., Menninger, R. E., and Roome, W.
D. The LEAP Load and Test Driver. Proc. Second Int. Cot!/~ on
Software Engineering, Oct. 13-15, 1976.

DOL76C Dolotta, T. A., et al. Data Processing in 1980-1985. Wiley-
lnterscience, New York, 1976.

GRE69A Greenbaum, H. J. A Simulator of Multiple Interactive Users to Drive
a Time-Shared Computer ,System, M.I.T., Cambridge, Mass., 1969
(avail. from NTIS; AD 686 988L

IBM72A

IBM73A

IBM73B

IBM74A

IBM75A

1BM75B

IBM75C

IBM76A

IVI75A

JAM75A

KER75A

KER75B

KER76A

KNU76A

LUP74A

MAS76A

MAS76B

NAU69A

OSS74B

PUL68A

RIT74A

RIT75A

ROC75A

SCH73B

SIM74A

THO75A

THO75B

UNG75A

IBM. OS/VS Utilities. Form GC35-0005, IBM Corp., White Plains,
N. Y., 1972.

IBM. Introduction to Programming the IBM 3270. Form
GC27-6999, IBM Corp., White Plains, N. Y., 1973.

IBM. IBM 3270 Information Display System Component Descrip-
tion. Form GA27-2749, IBM Corp., White Plains, N. Y., 1973.

IBM. IMS/VS System Operator's Reference Manual. Form
SH20-9028, IBM Corp., White Plains, N. Y., 1974.

IBM. IMS/VS System Programming Reference Manual. Form
SH20-9027, IBM Corp., White Plains, N. Y., 1975.

IBM. IMS/VS General Information Manual. Form GH20-1260,
IBM Corp., White Plains, N. Y., 1975.

IBM. DB/DC Driver System General Information Manual. Form
GH20-1639, IBM Corp., White Plains, N. Y., 1975.

IBM. Teleprocessing Network Simulator (TPNS) Program Refer-
ence Manual. Form SH20-1823, IBM Corp., White Plains, N. Y.,
1976.

Ivie, E. L. The Programmer's Workbench--A Machine for
Software Development. Unpublished Report, Bell Laboratories,
May 19, 1975.

James, D. L., and Lambert, D. W. Remote-Terminal Emulator
(Design Verification Model)--lntmduction and Summary. Mitre Corp.,
Bedford, Mass., 1975 (avail. from NTIS; AD A007 827).

Kernighan, B. W., and Plauger, P. J. Software Tools. Proc. First
National Conference on Software Engineering, Sept 11-12, 1975, 8-13.

Kernighan, B. W., and Cherry, L. L. A System for Typesetting
Mathematics. Comm. ACM 18, 3 (Mar. 1975), 151-56.

Kernighan, B. W., and Plauger, P. J. Software Tools. Addison-
Wesley, Reading, Mass., 1976.

Knudsen, D. B., Barofsky, A., and Satz, L. R. A Modification
Request Control System. Proc. Second Int. Con[~ on Software
Engineering, Oct. 13-15, 1976.

Luppino, F. M., and Smith, R. L. Programming Support Library
(PSL) Functional Requirements. Structured Programming Series, vol.
5, IBM Federal Systems Div., 1974 (avail. from NTIS;
AD A003 339).

Mashey, J. R. Using a Command Language as a High-Level Pro-
gramming Language. Proc. Second Int. Conj'. on SQBwam Engineering,
Oct. 13-15, 1976.

Mashey, J. R., and Smith, D. W. Documentation Tools and Tech-
niques. Proc. Second Int. Con]i on Software Engineering, Oct. 13-15,
1976.

Naur, P., and Randell, B., eds. Software Engineering. Scientific
Affairs Division, NATO, Brussels 39, Belgium, 1969.

Ossanna, J. F. NROFF User's Manual. 2nd ed. Unpublished
Report, Bell Laboratories, September 11, 1974.

Pullen, E. W., and Shuttee, D. F. MUSE: A Tool for Testing and
Debugging a Multi-Terminal Programming System. Proc, AFIPS
Spring Joint Computer Conference, vol. 32, 1968, 491-502.

Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing Sys-
tem. Comm. ACM 17, 7 (July 1974), 365-75.

Ritchie, D. M. C Reference Manual. Unpublished Report, Bell
Laboratories, February 1, 1975.

Rochkind, M. J. The Source Code Control System. IEEE Trans. on
Software Engineering SE-I, 4 (Dec. 1975), 364-70.

Schumacher, E. F. Small is BeautilM. Harper & Row, New York,
1973.

Simpson, D., ed. Job Control Languages--Past, Present, and Future.
National Computing Centre Ltd., Quay House, Quay St., Manches-
ter, England, 1974.

Thompson, K. The UNIX Command Language. In Structured
Programming--International Computer State o.[' the ,4rt Report,
lnfotech Information Ltd., Maidenhead, Berkshire, England, 1975,
375-84.

Thompson, K., and Ritchie, D. M. UNIX Programmer's Manual.
6th ed. Unpublished Report, Bell Laboratories, May, 1975.

Unger, C., ed. Command Languages--Proc. IFIP Working Cot~l~'rence
on Command Languages. North-Holland, Amsterdam, 1975.

168

