
Using a Command Language as a High-Level Programming Language
J. R. Mashey

Bell Laboratories
Piscataway, New Jersey 08854

Keywords: Command languages, command interpreters, UNIX.

Abstract: The command language for the Programmer's Work-
bench (PWB) utilizes an extended version of the standard UNIX
shell program, plus commands designed mainly for use within
shell procedures (command files). Modifications have been aimed
at improving the use of the shell by large programming groups,
and making it even more convenient to use as a high-level pro-
gramming language. In line with the philosophy of much exist-
ing UNIX software, an attempt has been made to add new
features only when they are shown necessary by actual user
experience in order to avoid contaminating a compact, elegant
system through "creeping featurism." By utilizing the shell as a
programming language, PWB users have been able to eliminate a
great deal of the programming drudgery that often accompanies a
large project. Many manual procedures have been quickly,
cheaply, and conveniently automated. Because it is so easy to
create and use shell procedures, each separate project has tended
to customize the general PWB environment into one tailored to its
own requirements, organizational structure, and terminology. A
summary is given of the usage patterns revealed by a survey of
1,725 existing shell procedures.

I. INTRODUCTION

A good operating system command language (CL) is an invalu-
able tool for large programming projects. A common occurrence
in such projects is the diversion of significant resources from
building the end product to creating internal support programs
and procedures. If a CL is a flexible programming language, it
can be used to solve many internal support problems, without
requiring compilable programs to be written, debugged, and
maintained. Its most important advantage is the ability to do the
job now.

The Programmer's Workbench (PWB) environment [IVI75A,
DOL76AI supports projects ranging in size from several people to
those involving hundreds. The PWB CL is a modified version of
the UNIX shell language [RIT74A, THO75AI. Experience with it has
shown it to be an effective tool for automating procedures and
eliminating programming drudgery. Nearly two thousand CL pro-
cedures have been inspected to observe real-life usage. Many of
the assertions made in this paper are based on the results of this
survey.

Existing CLS include a wide range of structures and abilities,
ranging from those quite similar to assembly language to a few
having the appearance and abilities of high-level programming
languages [BRU76A, COW75AI. A diversity of viewpoints exists
regarding the relative importance of various CL characteristics
[DOL69A, SIM74A, UNG75A]. Several years of PWB experience sug-
gests that the following qualities are valuable in a CL:

• Ease o f on-line use - -Many advantages can be gained by
replacing keypunches with terminals, even when jobs are
prepared for batch execution. To support this approach, CL
syntax should emphasize simplicity and avoid the need for
redundant typing.

• Convenient use o/" the same language as an on-line CL and as a
programming language--It must be possible to build and store
sequences of commands (CL procedures) that can be invoked
at a later time.

• Interchangeability o f programs and CL procedures--No user
should need to know whether a given command is imple-
mented as a compiled, executable program or as a CL pro-
cedure. Syntactic differences should be avoided.

• Ease o f creation and maintenance o f CL procedures--It should
require very little effort to write a CL procedure, save it for
later use, and maintain it. The overhead of writing a small
procedure should be especially small; as will be seen later,
many procedures are only a few lines long.

• Organization o f CL procedures--It must be possible to share
easily the use of procedures among people in a way consistent
with organizational structure.

• Programming language features--I t must be possible to write
procedures with convenient conditional branching, looping,
argument handling, variables, string manipulation, and occa,
sional arithmetic. Thus, many of the capabilities of a typical
procedural language are necessary for a good CL. However,
they may not be sufficient: a CL may need additional capabili-
ties, a somewhat different syntax, and a radically different set
of priorities concerning the importance of various constructs.
For example, a crucial CL capability is that of connecting exe-
cuting programs in a variety of ways. Pattern-matching and
other string manipulation operations are quite useful. Arith-
metic operations are also helpful, but seem to be much less
important than the others.

• Separation from operating sys tem--A CL interpreter should nor-
mally be an ordinary command, treated like other commands,
and definitely not embedded in the heart of the operating sys-
tem. The operating system should not be viewed as an imple-
mentation of the CL, but as an environment that can support
a variety of good CLS. Different users should be able to have
different CLs if they feel like it. This approach permits exper-
imentation and evolution without bothering, other users. It
often leads to a "survival-of-the-fittest" behavior. Mutations
occur, live, and die on their merits, and eventually breed
hybrids containing features found useful from actual practice.

2. OVERVIEW OF THE UNIX ENVIRONMENT

Full understanding of some later discussions depends on famil-
iarity with UNIX. [RIT74A] is a definite prerequisite, and it would
be helpful to read at least one of [KER75A, KER76A, THO75A]. For
completeness, a short overview of the most relevant concepts is
given below.

2.1 File System

The UNIX file system's overall structure is that of a rooted tree
composed of directories and other files. A .file name is a sequence
of characters. A path name is a sequence of directory names fol-
lowed by a file name, each separated from the previous one by a
slash ("/") . If a path name begins with a " / " , the search for the
file begins at the root of the entire tree; otherwise, it begins at
the user's current directory. (The first type of name is often called
an absolute path name because it is invariant with regard to the
user's current directory.) The user may change current direc-
tories at any time by using the chdir command. In general, file
names and path names can be used in the same ways. Some
sample names are:

169

/ root of the entire file structure.

/bin directory of commonly used public com-
mands.

/u0/ tnds/ t f / j tb/bin a path name typical of multi-person program-
ming projects. This one is a private directory
of commands belonging to person " j tb" of
group " t f" in project "tnds".

bin/umail a name depending on the current directory:
it refers to file "umail" found in subdirectory
"b in" of the current directory. If the current
directory is " / " , it names " /bin/umail" . If
the current directory is " /u0/ tnds/ t f / j tb" , it
names " /uO/tnds/tf/jtb/bin/umail".

Large projects require the ability to quickly and easily modify
directory structures to fit changing needs. In particular, the
"current directory" feature makes it possible for each person to
move around in the file system and work where most con-
venient. This allows simple names to be used, even when the
current directory is many levels deep in the structure. It also
permits individual directories to remain fairly small, lessening the
load on both human and computer; i.e., "locality of reference" is
good for the performance of both.

2.2 Processes and Their Interactions

An image is a computer execution environment, including core
- image, register values, current directory, status of open files,

information recorded at login time, and various other items. A
process is the execution of an image; most UNIX commands exe-
cute as separate processes. One process may spawn another
using the fork system call, which duplicates the image of the
original (parent) process. The new (child) process may continue
execution of the .image, or may abandon it by issuing an exec
system call, which initiates execution of another program.

Processes use independent address spaces and data
segments, 1 and communicate in a limited number of wavs:

• Open files--a child inherits the parent's open files, and can
manipulate the associated read/write pointers thus shared
with the parent. This ability permits processes to share the
use of a common input stream in various useful ways. In
particular, an open file possesses a pointer that indicates a
location in the file, and is modified by various operations.
Read and write copy a requested number of bytes from (to) a
file, beginning at the location given by the current value of
the pointer. As a side effect, the pointer is incremented by
the number of bytes transferred, yielding the effect of
sequential I/O. Seek can be used to obtain random-access
I/O; it sets the pointer to an absolute location within the file,
or to a location offset from the end of the file or the current
pointer location.

• Arguments--a sequence of arguments (character strings) can
be passed from one program to another via exec.

• Return code--when a process terminates, it can set a numeric
return code that is available to the process's parent.

• Files--some programs arrange conventions to share files in
various ways, or to use files of specified names.

• Pipes--pipes are interprocess channels that are similar to files
in ways of access, but allow very convenient handling of t h e
"producer-consumer" relationship between programs execut-
ing in parallel. The "producer" writes into one end of a pipe,
while the "consumer" empties it by reading from the other
end. Because UNIX handles details of buffering and syn-
:hronization, neither program needs explicit information
about the other 's activities.

1. The text segment of a reentrant program is shared by all processes
executing that program. Almost all programs are reentrant.

Limiting interprocess communication to a small number of
well-defined methods is a great aid to uniformity, understandabil-
ity, and reliability of programs. It encourages the packaging of
functions into small programs that are easily connected. The
pipe mechanism is especially desirable, both for human
comprehension and for computer performance [THO75A, KER75A,
KER76A].

3. SHELL BASICS

Most UNIX users utilize the CL provided by a program called the
shell. It reads input from a terminal or file and arranges for the
execution of the requested commands. The shell is a small pro-
gram (about 20 pages of C code); many CL functions are actually
supported by independent programs that work with the shell, but
are not built into it. The discussion is adapted from [THO75A,
THO75B].

3.1 Commands

A command is a sequence of non-blank arguments separated by
blanks. The first argument specifies the name of the command
to be executed; the remaining items are passed as arguments to
the command executed. The following line requests the pr com-
mand to print files a, b, and c:

p r a b c

If the first argument names a file that is marked as executable 2
and is actually a load module, the shell (as parent) spawns a new
(child) process that immediately executes that program. If the
file is marked executable, but is neither a load module nor a
directory, it is assumed to be a command file (shell procedure). A
command file is a file of ordinary text--sheU command lines and
possibly lines to be read by other programs. In this case, the
shell spawns a new instance of itself to read the file and execute
the commands included in it.

From the user's viewpoint, executable programs and shell
procedures are invoked in exactly the same way. The shell
determines which implementation has been used, rather than
requiring the user to do so. Most operating systems can execute
existing load modules without requiring the user to state the
source language used to produce the load module. CL proceOures
are treated in the same way, for several reasons. First, the
existence of two distinct types of commands is confusing to the
novice user. Second, any user becomes irritated when forced to
type repetitive information, especially when the system already
has it. Finally, the implementation of a given command may
well change with time, typically from shell procedure to compiled
program. This change could cause great pain to the users if it
required the invocation method to change also.

3.2 Finding Commands

The shell normally searches for commands in a way that permits
them to be found in three distinct locations in the file structure.
It first attempts to use the command name without modification,
then prepends the string " / b i n / " to the name, and then
" /usr /b in /" . If the original command name is a simple one, the
effect is to search in order the current directory, " /b in" , and
"/usr /bin". A more complex path name may be given, either to
locate a file relative to the user's current directory, or to access
one via an absolute path name.

This mechanism gives the user , ,onvenient execution of pub-
lic commands and of commands in or "near" the current direc-
tory, as well as the ability to execute any accessible command,
regardless of location in the file structure. The search order per-
mits a standard command to be ret~laced by a user:s 'command
without affecting anyone else.

2. As shown by a set of flag bits associated with the file.

170

3.3 Command Lines

A series of commands separated by "] " make up a pipeline. Each
command is run as a separate process connected to its
neighbor(s) by pipes, i.e., the output of each command (except
the last one) becomes the input of the next command in line. A
filter is a command that reads its input, transforms it in some
way, then writes it as output. A pipeline normally consists of a
series of filters. Although the processes in a pipeline are permit-
ted to execute in parallel, they are synchronized to the extent
that each program needs to read the output of its predecessor.
Many commands operate on individual lines of text, reading a
line, processing it, writing it, and looping back for more input.
Some must read larger amounts of data before producing output;
sort is an example of the extreme case that requires all input to
be read before any output is produced.

The following is an example of a typical pipeline:

nroff - m m text] co i l reform

Nroff is a text formatter whose output may contain reverse line
motions; col converts them to a form that can be printed on a
terminal lacking reverse motion, and reform is used here to speed
printing by converting the (tab-less) output of col to one contain-
ing horizontal tab characters. The flag " - m m " indicates one Of
many possible formatting options, and " text" is the name of the
file to be formatted.

A simple command in a pipeline may be replaced by a com-
mand line enclosed in parentheses "()" ; in this case, another
instance of the shell is spawned to execute the command line so
enclosed. This action is helpful in combining the output of
several sequentially executed commands into a stream to be pro-
cessed by a pipeline. The following line prints two separate
documents in a way similar to the previous example.

(nroff - m m text l ; nroff - m m text2) [coil reform

If the last command in a pipeline is terminated by a semicolon
(" ;") or new-line, the shell waits for the command to finish
before continuing execution. It does not wait if the command is
terminated by an ampersand ("&") ; both sequential and asyn-
chronous execution are thus allowed. An asynchronous pipeline
continues execution until it terminates voluntarily, or until it is
killed (by one of various means). A command line consists of zero
or more pipelines separated by Semicolons or ampersands.

For example, the following command line is used to run tim-
ing tests on an empty system. Makeload is a cyclic shell pro-
cedure used to generate a heavy, repeatable load of disk accesses,
and testl performs timing tests on various prog~:ams. The shell
runs testl with no load on the system, then starts one makeload
to create a single unit of disk load for the second testl. Another
makeload is invoked to yield two units of load for the last test1.

test l ; makeload & test l ; make load & testl

Each makeload runs until explicitly killed by the .user. A
minimum of three processes are active by the time the final test1
is run (two makeloads and one testl). In this particular case, all
commands are implemented as shell procedures, so there is a
separate invocation of the shell for each of the five commands
on the above line, and each shell may well spawn hundreds of
additional processes. Thus, a single user may consume all sys-
tem resources by creating large numbers of long-lived asynchro-
nous processes) More typical uses o f "&" include off-line print-
ing, background compilation, and generation of large jobs to be
sent to remote computers.

3. Lockout of other users in this way occurs several times pei- year on PWB
systems; it is usualty caused by overly enthusiastic beginning users.

3.4 Redirection of Input and Output

When a command begins execution, it usually expects three files
to be already open, a "standard input," a "standard output," and
a "diagnostic output." When the user's original shell is started,
all three are opened to the user's terminal. A child process nor-
mally inherits these files from its parent. The shell permits them
to be redirected elsewhere before control is passed to an invoked
command.

An argument of the form " < f i l e " or " > f i l e " opens the
specified file as standard input or output, respectively. An argu-
ment of the form " > >f i le" opens the standard output to the
end of the file, thus providing a way to append data to it. In
either output case, the shell creates the file if it did not already
exist.

These forms of I/O redirection complement that of piping:
files and programs can both be used as data "sources" and
"sinks."

In general, most commands neither know nor care whether
their input (output) is coming from (going to) a terminal, file, or
pipe. Commands are thus easily used in many different contexts.
A few commands vary their actions depending on the nature of
their input or output, either for etiiciency's sake, or to avoid use-
less actions (such as attempting random-access I/O on a terminal
or pipe).

3.5 Generation of Argument Lists

Many command arguments are names of files. When certain
characters are found in an argument, they cause replacement of
that argument by a sorted list of zero or more file names
obtained by pattern-matching on the contents of directories.
Most characters match themselves. The " ? " matches any single
character; the " * " matches any string of any characters other
than " / " , including the null string. Enclosing a set of characters
within square brackets "[...]" causes the construct to match any
single one of the characters in that set. Inside brackets, a pair of
characters separated by " - " includes in the set all characters lex-
ically within the inclusive range of that pair.

For example, " * " matches all names in the current directory,
" * t e m p * " matches any names containing " temp", "] a - f] * "
matches all names beginning with "a" through " f ' , and
" /u0 / tnds / t f /b in /?" matches all single-character names found in
" /u0/ tnds/ t f /b in" .

This capability saves much typing, and more importantly, pro-
vides convenience in organizing files for various purposes. It
allows convenient use of large numbers of small files.

3.6 Quoting Mechanisms

If a character has a special meaning to the shell, that meaning
may be removed by preceding the character with a backslash
(" \ ") ; the " \ " acts as an escape and disappears. Sequences of
characters enclosed in double (") or single (.') quotes are in gen-
eral taken literally, except that substitution of shell arguments
and variables is normally performed.

A " \ " followed by a new-line is treated as a blank, permitting
convenient continuation of multi-line commands.

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES

4.1 Invoking the Shell

The shell may be invoked explicitly in various ways:

sh - The new shell reads the standard input, but does
not prompt. This is often used to let the shell

" act as filter, i.e., it can be used in a pipeline to
read and execute a dynamically-generated
stream of commands.

1 7 1

sh file [args] A new instance of the shell is created to begin
reading the file. Arguments can be manipulated
as described in the next section.

file [args] As noted in Section 3.1, if the file is marked
executable, and is neither a directory nor a load
module, the effect is the same as "sh file [args]".

4.2 Passing Arguments to the Shell

When a command line is scanned, any character sequence of the
form $n is replaced by the nth argument to the shell, counting
the name of the file being read as $0. A procedure may possess
several different names and can check $0 to determine the
specific name being used, then vary its actions accordingly.

This notation permits up to 10 arguments to be referenced.
Additional arguments can be processed using the shift command.
It shifts arguments to the left; i.e., the value of $1 is thrown
away, $2 replaces $1, $3 replaces $2, etc. For example, consider
the file " loopdump" below. Echo writes its arguments to the
standard output; if, exit, and goto are discussed later, but perform
fairly obvious functions.

: loop
if "$1" = exit
echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift
goto loop

If the file is invoked by "loopdump a b c" it would print:

a b c
b c
C

The form "shift n" has no effect on the arguments' to the left of
the nth argument; the nth argument is discarded, and higher-
numbered ones shifted. Thus, shift is equivalent to ' ~ h ~ 1."

4.3 Shell Variables

Adding i f and goto commands (described later) to the existing
facilities permits convenient expression of some kinds of pro-
cedures: repetitive ones that perform a given set of actions for
each argument and those that use simple conditional logic. Clear
expression of many procedures requires at least a few shell vari-
ables.

The PWB shell provides 26 string variables, $a through Sz.
Those in the first half of the alphabet are guaranteed to be ini-
tialized to null strings at the beginning of execution and are
never modified except by explicit user request. On the other
hand, some variables in the range $m through $z have specific
initial values, and may possibly be changed implicitly by the shell
during execution. As will be seen later, few shell procedures
ever use more than a few variables. A variable is given a value
as follows:

= letter [argument]

If argument is given, its value is assigned to the variable given by
letter. As an example of common usage, the procedure below
expects to be called with a list of file names, optionally preceded
by a flag " - w " . If the first argument is " - w " , the fact is
recorded by setting $a to "w", and the argument is shifted off
the argument list, leaving only file names. If the first argument
is not " - w " , $a is left unchanged, i.e., it is a null string.

if~"$1" = - w then
m a w

shift
endif
... code to process file names, using $a as needed

If no argument follows the letter in the " = " command, a single
line is read from the standard input, and the resulting string •
(with the trailing new-line, if any, r emoved) becomes the value

172

of the variable. A common use is to capture the output of a pro-
gram. For example, date writes the current t ime and date to its
standard output. The following line saves this value in $d:

date I = d

Thus, $d would be set to a value such as:

Tue Jul 13 19:06:02 EDT 1976

A second use is in writing of interactive shell procedures, which
are heavily used in PWB work. The following example is part of a
procedure to ask the user what kind of terminal is being used, so
that tabs can be set, delays changed, and other useful actions
taken. The " < / d e v / t t y " indicates a redirection of the standard
input to the user's terminal; it is not seen as an argument to " = " ,
but rather causes the variable to be set to the next line typed by
the user.

: loop
echo "terminal?"
= a < /dev / t t y
if "$a" = ti goto ti
if "$a" = hp goto hp

echo "$a no good; try ti or hp"
goto loop

: hp
... processing for terminal type "hp"
exit
: ti
... processing for terminal type "t i"

Currently, five variables are assigned special meanings:

Sn records the number of arguments passed to the shell, not
counting the name of the shell procedure itself. Thus,
"sh file argl arg2 arg3" sets $n to 3. Shift never changes
the value of $n.

$p permits alteration of the names and order of directory path
names used when searching for commands. It contains a
sequence of directory names (separated by colons) that are
to be used as search prefixes, in order from left to right.
The current directory is indicated by a null string. The
string is normally initialized to a value producing the effect
described in Section 3.2: " : / b i n : /usr /b in" . A user could
possess a personal directory of commands (e.g.,
" /u2 /pw/b in") and cause it to be searched before the other
three directories by using:

= p /u2/pw/bin : : /b in : /usr /b in

$r gives the value of the return code of the most recent com-
mand executed by the shell. When the shell terminates, it
returns the current value of $r as its own return code.

Ss is initialized to the name of the user's Iogin directory, i.e., the
directory that becomes the current directory upon comple-
tion of a login. Users can avoid embedding unnecessary
absolute path names in their procedures by using this vari-
able. This is of great benefit when path names are changed
either to balance disk loads or to reflect project organiza-
tional changes.

$t is initialized to the user's terminal identification, a single
letter or digit.

In addition to these variables, the following is provided:

$$ contains a 5-digit number that is the unique process
number of the current shell. In some circumstances, it is
necessary to know the number of a process, in order to kill
it, for example. However, its most common use to date has
been that of generating unique names for temporary files.

4.4 Extended Order of Search for Commands

The user may request automatic initialization of each shell's Sp
by creating a fi.le named ". path" in the login directory. This file
Should contain a single line of the form shown for $p. Every
instance of the shell looks for this file and initializes its own Sp
from it, if it exists; otherwise " : / b i n : / u s r / b i n " is used. Thus,
the ". path" value propagates through all of the user's shells, but
changing $p in one shell has no effect on the $p of any other.

This facility is heavily used in large projects. It greatly
simplifies the sharing of procedures, and can be quickly changed
to adapt to changing organizational requirements.

4.5 Control Structures

The more complex shell control structures are actually imple-
mented as independent commands that cooperate with the shell,
but are not actually part of it. They are designed specifically for
use in shell procedures, but are treated as ordinary commands.
This separation of function allows the shell to remain a small
program, efficient for on-line use, but still able to support power-
ful control structures in procedures.

4.5.1 Labels and Goto. The command " : " is recognized by the
shell and treated as a comment. The most common use of
is to define a label to act as a target for goto. Goto is a separate
command. Using "goto label" causes the following actions:

1. A seek is performed to move the read/write pointer to the
beginning of the command file.

2. The file is scanned from the beginning, searching for
": name" on a line, either alone or followed by a blank or a
tab.

3. The read/write pointer is adjusted (via the seek) to point at
the line following the labeled line.

Thus, the only effect of goto is the adjustment of the shell's file
read/write pointer to cause the shell to resume interpreting com-
mands starting at the line following the labeled line.

4.5.2 I f

if expr command [args]

I f is also a separate command. If the conditional expression expr
is found to be true, t f executes the command (via exec system
call), passing the arguments to it. If it is f a l se , / fmere ly exits.

The following primaries are used to construct the expression:

- r file true if the file exists and is readable by the user.

- w file true if the file exists and is writable by the user.

s l = s2 true if strings s l and s2 are equal.

s l != s2 true if the strings are not equal.

n l - e q n2 true if the integers nl and n2 are algebraically
equal. Other algebraic comparisons are indicated
by " - n e " , " - g t " , " - g e " , " - I t " , and " - l e " .

{ command } the command is executed; a return code of 0 is
considered true, any other value is considered
false. Most commands return 0 to indicate suc-
cessful complelion.

These primaries may be combined with the following operators:

unary negation operator.

- a binary logical and operator.

- o binary logical or operator: it has lower precedence
than " - a ' .

(expr) parentheses for grouping. They must be escaped
(as \ (or ")", for example) to remove their
significance to the shell.

All of the operators, flags, and values are separate arguments
to ~ and must be separated by blanks. The following are typical
argument-testing operations:

: check a file argument to make sure it exists
if ! - r "$1" echo "can't read $1"

: assure either that: $1 is a and $3 is either b or c
: or that: $1 is d and $2 is e
if "$1" = a - a "(" "$3" = b - o "$3" = c ")" \

- o "$1" = d - a "$2" = e goto legal

Recall that the effect of the " \ " at the end of the line is that of a
blank. It is generally desirable to quote arguments when they
might possibly contain blanks or other characters having special
meaning to the shell.

4.5.3 If-then-else-endif To improve the readability and speed of
shell procedures, / f was extended to provide the "if-then-else-
endif" form. The general form is:

if expr then
... commands

else
... commands

endif

The "else" and the commands following it may be omitted, and
it is legal to nest if's within the commands.

When tf is called with a command, using the form of Sec-
tion 4.5.2, it acts as described there, directly executing (or not)
the supplied command. When called with then instead of a com-
mand, t f simply exits on a true condition, allowing the shell to
read (and interpret) the immediately following lines. On a false
condition, t f reads the file until it finds the next unmatched else
or endif, thus skipping it and the lines in between. Else reads to
the next unmatched endif, and endifis a null command.

These commands work together in a way that produces the
appearance of a familiar control structure, although they do little
but adjust read/write pointers.

4.5.4 Switch-breaksw-endsw. The switch command manipulates
the input file in a way quite similar to /f. It is modeled on the
corresponding "switch" statement of the C language [RIT75Al,
and like it, provides an etticient multi-way branch:

switch value
: labell

... commands
label2

... commands

default
... commands

endsw

Switch reads the input until it finds:

• value used as a statement label, or
• "default" used as a statement label (optional), or
• the next unmatched endsw command.

Again, from the shell's viewpoint, the only effect of switch is to
adjust the read/write pointer so that the shell effectively skips
over part of the procedure, then continues executing commands
following the chosen label or endsw.

Value is obtained from an argument or variable; if the label
"default" is present, it must be the last label in the list; i.e., it
indicates a default action to be taken if value matches none of
the preceding labels. This construct may be nested; labels
enclosed by interior "switch-endsw" pairs are ignored.

173

The command breaksw reads the input until the next
unmatched endsw, and commonly ends the sequence of com-
mands associated with a label. Endsw is a null command like
endif.

4.5.5 End-of-file and Exit. When the shell reaches the end-of-file,
it terminates execution, returning to its parent the return code
found in Sr. The exit command simply seeks to the end-of-file
and returns~ setting the return code to the value of its argument,
if any. Thtis, a procedure can be terminated normally by using
"exit 0". The fact that exit is not part of the shell permits
straightforward use of it as an argument for

4.5.6 The Missing Loop. Conspicuous by its absence is s o m e
form of while or do. All of the control structures described so far
are implemented outside the shell; it appears that any useful
looping construct requires significant changes to the shell itself.
In any case, the most frequently observed kind of loop is that
used to process arguments one at a time. For example, the fol-
lowing applies the first argument as a command to every remain-
ing argument:

: loop
if 052 - 0 exit
$1 $2
shift 2
goto loop

The "2" causes shift to leave the first argument in place.

4.5.7 Transfer to Another Command File--Next. The command
"next name" causes the shell to abandon the current procedure
and begin reading from file name. Next with no argume~lts
causes the shell to read from the user's terminal. The idea of
next is to permit the use of a file to initialize variables for use at
the terminal:

= a /u2/pw/mash/art icles
= b " n r o f f - r T 2 - m m "

. . .

next .

I f this text were stored in file "init", it could be invoked by
using "next init", causing the current shell to process it and
return to the terminal. The user can then reference Sa and Sb
appropriately. The user could of course use " = " to accomplish
this directly, but at the cost of more typing.

Next is an attempt to obtain an effect like that of a subroutine
call with a shared environment. I t handles some problems well,
but will probably be changed somewhat to make it more useful.
Its most common application has actually been in very complex
procedures that analyze their arguments, set up variables, then
pass control to one of several successor procedures.

4.6 Interrupt Handling in Shell Procedures

Many PWB users have taken advantage of the ease and speed of
writing shell procedures to automate various operations. In
many cases, such procedures need to be used by clerical person-
nel who have no knowledge of these procedures' inner workings.
A terminal interrupt (depression of " rubout" or "del" key) can
be. ignored or intercepted by a compiled program, or can cause
termination of that program. The lack of interrupt-handling
facilities in the shell quickly led to the usual p rob lems :

• No procedure could use a terminal interrupt as a control
haechanism.

• Any procedure that created files for temporary use left them
in existence if interrupted before it could remove them. In
practice, any procedure that prints very much information is
likely to be interrupted sooner or later.

• Some procedures need to temporarily ignore interrupts so
they can guarantee consistency among files making up data
bases. The PWB supports a profusion of packages that consist
of file groupings a.ccessed only through shell procedures.

The onintr command was added to solve these problems. It takes
three forms: "onintr label" causes the effect of "goto label" to
occur upon receipt of an interrupt; "onintr - " causes interrupts
to be ignored completely; "onintr" alone causes normal interrupt
action to be restored. A typical use of onintr is:

onintr cleanup
: create temporary file
ls -ll tee temp$$a [grep - c "^d" [= d
grep - c "^-" temp$$a I = f
echo "directories: Sd, files: Sf"
: cleanup
rm temp$$a

This procedure displays the numbers of subdirectories and ordi~
nary files in the current directory. The output of the ls com-
mand is a listing of the current directory; it is passed to tee,
which m a k e s a n extra copy of it in " temp$$a", but also passes it
to grep, which, in this instance, counts the number of lines
whose first character is "d". This is the number of subdirec-
tories, and is saved in variable $d. The ordinary files (whose list-
ing entries begin with " - ") are counted in a similar way, and
both counts are displayed. If the process is interrupted by the
user, control transfers to "cleanup", where the temporary file is
removed.

4.7 Additional Supporting Commands

4. 7.1 Evaluation of Expressions. Expr supports arithmetic and log-
ical operators on integers, and PL/I-like " subs t f ' , " length", and
" index" operators for string manipulation. It evaluates a single
expression and writes the result to the standard output, typically
piped into " = " to be assigned to a variable. Typical examples
are:

: increment Sa
expr Sa + 1 I = a

: strip off first 2 chars, of $1 and put result in Sb
: expr substr abcde 3 999 returns cde
expr substr "$1" 3 9991 = b

: obtain length of $1
expr length "$1" I = c

The most common uses of expr are counting (for loops) and
using "substr" to pick apart strings (such as the output from
date, as in Section 4.3).

4. 7.2 Ec/~o. The echo command, invoked as "echo [args]", copies
its arguments to the standard output, each separated from the
preceding one by a blank, with a new-line appended to the last
argument. It is often used to perform prompting or issue diag-
nostics in shell procedures, to add a few lines to an output
stream in the middle of a pipeline, and to create editing scripts;
" \n '''. yields a new-line and "\On" yields the ASCII character
given by the octal number n; " \ c " is used to get rid of unwanted
new-lines. For example, the following code prompts the user for
some input and allows the user to type on the same line as the
prompt:

echo "enter name:\c"
= a < /dev / t ty

4.8 Creation of Shell Procedures

A shell procedure can be created in twos imp le steps. The first
step is that of building an ordinary text file, normally using the
UNIX text editor ed. The second step is that of changing the
mode of the file to make it executable, thus permitting it to be
invoked by "name args", rather than "sh name args", as dis-
cussed in Section 3.1. The second step may be omitted for a pro-
cedure to be used once or twice and then discarded, but is
recommended for longer-lived procedures.

174

The following shows the entire user input needed to set up a
simple procedure to format text files according to a standard for-
mat and print the output on a particular type of terminal:

ed
a

nroff - rT1 - r C 3 - m m $1 $2 $3 $4 $5 $6 $7 $8 $9 1 gsi +12

w draft
q
chmod 755 draft

In the sequence above, the user called the text editor, entered a
single line of text, wrote that line (creating the new file "draf t") ,
and finally changed its mode to make it executable. The uffer
may then invoke this command as "draft filel file2", for exam-
ple. The procedure calls the formatter with certain fixed argu-
ments and any others supplied by the user; the formatter output
is passed to gsi to convert it to a form that is appropriate for the
user's terminal (in this case, a GSI-300).

If the sequence above were performed in a directory ipcluded
in the user's ". path" file,-Ihe user could change directories and
still use the "draft" command. Other people might makeluse of
it also, especially if it were placed in a shared directory of com-
mands.

The command sequence above could itself be stored as a shell
procedure, although this particular sequence is an unlikely candi-
date for such an action. Note that the five lines following the ed
call are processed by ed rather than the shell. It is quite reason-
able to include data for other programs inside shell procedures,
as long as those programs are careful in their method of reading,
i.e., do not read beyond their own data. This- method has
beneficial results for performance, because I /O buffers can be
shared without need for separate temporary files.

Shell procedures may be dynamically created by other shell
procedures. A procedure may generate .a file of commands,
invoke another instance of the shell to execute that file, then
remove it. An alternate approach is that of using next to make
the current shell execute the new command file, allowing use o f
existing values of shell variables and avoiding the spawning of an
additional process for another shell. In some cases, the use, of a
temporary file may be eliminated by using .the shell in a pipeline.
For example:

Is a* I sod "s/.*/cp & x&/" I s h -

The output of Is is a list of all file names in the currem directory
whose names begin with "a", one per line. Sed (a "stream edi-
tor") converts each line of the form " n a m e " into the form
"cp name xname~, 4 and passes it to ashe l l to be interpreted. A
copy of each named file is generated under the name prefixed by
~¢X ~'. . .

Implied in the above discussion are several reasons why users
like shell procedures better than compiled code. First, it is trivi-
ally easy to create and maintain a shell procedure, since it is only
a file of ordinary text. Second, it has no corresponding object
program that must be generated and maintained. Third, it is
easy to create procedures "on the fly," use them, and remove
them, without having to worry about managing libraries or about
allocating disk storage. Finally, because such procedures are
short in length, written at a high programming level, and kept in
their source-language form, they are generally easy to find,
understand, and modify.

4. Cp copies the file named by its first argument Onto that named by the
second, creating the latter, if necessary.

175

5. PATrERNS OF USAGE

5.1 Survey Methodology

A survey of PWB shell procedures was conducted, with the fol-
lowing goals:

• Discovery of procedures that could easily be redone in better
ways, mainly to help users learn better ways of using existing
tools, but also to improve system performance.

• Analysis of usage patterns, in order to improve existing PWB
tools or build new ones. Rearrangements of command func-
tions often occur when people recognize that the functions
should be combined in different patterns. Examining user
code is a good way to discover real needs.

• Determination of overall properties of procedures ~to help in
redesign or enhancement to the shell and its supporting com-
mands. This is part of an educational process aimed at put-
ting existing tools to better use.

A program was written to find accessible shell procedures and
print them for analysis by the author. Two facts made this a
simple program. First, shell procedures are easy to manipulate
because they are stored as simple text files. Second, the UNIX
directory structure supports simple methods of traversal that per-
mit easy investigation of all accessible files.

The files summarized in the next section represent a sample
taken over a user population of more than 500 people. The data
was collected in March, 1976.

5.2 Survey Results

A total of 1,725 procedures was analyzed. Table 1 summarizes
the different forms of overall structure.

TABLE 1. Control Flow Summary

Category Number Percentage •

1: single line 369 21
2. straight-line 935 54
3. argument loop only 83 5
4. bi'anching, no loops 201 12
51 more complex 137 8

Procedures in category 1 consist of a single command line. Pro-
cedures in category 2 possess no control logic, but contain more
than one line of text. The distribution of lines per procedure
clearly favored small files, with a long "tail" of larger ones. This
indicates that users find it helpful to "can" even one-line
sequences. The large number of small procedures found on the
PWB is at least partly due to the ease of creating them.

Thus, most procedures (75%) contain no control logic, but
consist instead of straight-line scripts. The remaining 25% con-
tain significant use of control logic, This percentage Will prob-
ably increase with time, as more people become familiar with the
shell's programming ability. In any case, it does indicate a
significant need for control structures not provided conveniently
in many CLS.

Procedures in category 3 are those whose Control flow con-
sists only of a single loop for processing the argument list, one a t
a time, such as:

: loop ,
"if :"$1" = exit

... commands
shift

g o t o loop-

Procedures in category 4 are those possessing conditional branch-
ing, but no loops. Those in category 5 thus have at least one
loop and at least one conditional branch in addition to the one
implementing the loop.

Each entry in Table 2 gives the number of shell procedures
and the percentage of the total in which the specified construct
was found. These figures were obtained by visual inspection of
the files, and should probably be taken as lower bounds on the
number of occurrences.

TABLE 2. Occurrence of Shell Constructs

Shell Construct Number Percentage

switch (or obvious use for it) 45 3

non-shell commands in file 514 30

pipe into shell 32 2
(command I sh -)

parenthesized commands 39 2
(i.e., implicit sh call)

explicit sh calls or obvious 170 14
shell procedure calls

= a < /dev / t t y 81 5
(read line from terminal)

command [= a 124 7
(assign output of
command to variable)

= a string 146 8
(assign string to
variable)

onintr label 35 2
(intercept interrupt)

onintr - 14 1
(ignore interrupt)

expr substr 33 2

expr + or - 24 1

next 13 1

The figures indicate the frequent intermingling (30%) of shell
and non-shell commands in the same file, utilizing the fact that
the shell and other programs share the same input. This inter-
mingling occurs most often in the straight-line scripts. At least
14% of the procedures invoke another level of shell, in one or
more of the three ways listed. When CL subroutines are avail-
able, people do make use of them, and tend to become
extremely irritated with any CL that does not provide them. At
least 5% of the procedures expect to write prompts to the user
and read from the terminal; the figure would be much higher if
it included prompts issued by programs other than the shell.

Despite the fact that expr supports multiplication and division,
no serious uses of these operations were found. 5 From observa-
tion of the procedures, it is clear that users are doing much more
string manipulation than arithmetic. Although tf can perform
arithmetic comparisons, the bulk of the operations performed by
tf were string comparisons. Likewise, the string operations of
expr occurred more frequently than the arithmetic ones. It
appears that CL arithmetic is a helpful facility, but string manipu-
lation is a necessity, an ordering contrary to that of some existing
CLS [COL76AI.

Multi-person projects often possess several sets of directories
used to store shared procedures, and individuals may well have
their own directories in addition. For example, project " tnds"
may use " /u0/ tnds /b in" as a repository for procedures needed by
the entire project. Group " t f" within " tnds" • may use
" /u0/ tnds / t f /b in" for procedures needed only by the group, and
individual " j tb" might use another directory for personal com-
mands. The ". path" file used in this case might contain:

: / u O / t n d s / t f / j t b / b in : / u O / t n d s / t f /b in : l u O / t n d s / b i n : /b in : / u s r lb in

In general, people use this type of sharing mechanism to adapt
the system to their own organizational needs.

5.4 Command Usage

Although the survey concentrated on static analysis, a few
dynamic usage statistics may be of interest. Each of the larger
PWB computers execute 25,000-40,000 commands per day.
Approximately 80% of these commands are executed within shell
procedures. These figures provide clear evidence that people
utilize the shell programming capabilities to a very large degree.

6. AN ASSESSMENT

In the environment described in this paper, advances occur in
three distinct ways: improving old tools, building new ones, and
improving the framework used to put them together. Work is
under way in all three areas, including most of the following:

• Addition of while to the shell.
• Creation of a "high-speed" shell that includes the bulk of the

control structure code.
• Addition of different methods of manipulating pipes. For

example, one would like to use programs that can have
several input or output pipes, rather than only one of each.

• Cleanup of the overall syntax, which has its ugly aspects.
• Better ways of handling variables, including more powerful

default and substitution mechanisms.
• Commands to perform argument processing without loops.

It is clearly recognized that the PWB CL does not do everything
that its users would like it to do, so it is likely to continue evolv-
ing at a rapid rate. This paper has attempted to present a con-
sistent view of the PWB CL as it has existed for a relatively long
time (about nine months). It has emphasized the description of
existing facilities whose usage patterns are well known~ rather
than the forecasting of things to come.

7. CONCLUSIONS

This paper has described a minicomputer-based CL that is more
powerful and convenient to use than many of those available on
much larger systems. It is a real CL used daily by people doing
production work under tight schedules. Although much work
remains to be done On it, it has definitely shown its worth as a
programming language for many applications, and has made
major contributions to the ability of users to get their work done
with a minimum of effort and irritation.

5.3 Informal Observations

In many cases, a shell procedure is kept in a directory with the
files that it manipulates, and is never used except in that direc-
tory. This is convenient in practice, and allows the user to forget
about possible naming conflicts with procedures in other direc-
tories. It also supports the common practice of packaging related
files in a separate directory.

5. Multiplication was used in two procedures, but they were ignored in the
survey because they were obviously "'play'~ procedures, i.e., two versions of
a procedure to compute factorials, one iterative and the other recursive.

ACKNOWLEDGEMENTS

The shell was originally written by K. Thompson; that it has
been so adaptable to a wide variety of uses and machine
configurations is a great tribute to its creator. Many of the addi-
tions were implemented by R. C. Haight and A. L. Glasser.

REFERENCES

All references cited in this paper appear at the end of "An Intro-
duction to the Programmer's Workbench. '" by Dolotta, T. A., and
Mashey, J. R., in these Proceedings.

176

