
Smart Recompilation

WALTER F. TICHY

Purdue University

With current compiler technology, changing a single line in a large software system may trigger
massive recompilations. If the change occurs in a file with shared declarations, all compilation units
depending upon that file must be recompiled to assure consistency. However, many of those
recompilations may be redundant, because the change may affect only a small fraction of the overall
system.

Smart recompilation is a method for reducing the set of modules that must be recompiled after a
change. The method determines whether recompilation is necessary by isolating the differences
among program modules and analyzing the effect of changes. The method is applicable to languages
with and without overloading. A prototype demonstrates that the method is efficient and can be
added with modest effort to existing compilers.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-
modules and interfaces, software libraries; D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.7 [Software Engineering]: Distribution and Maintenance-uersion control; D.3.4
[Programming Languages]: Processors-compilers

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Intelligent software tools, overloading, separate compilation,
type checking

1. INTRODUCTION

Modern compilers use contexts for performing type checking across module
boundaries. A context specifies which external items a compilation unit may
reference, or which internal items the compilation unit must provide. A context
is either prepared manually or automatically, stored in the program library, and
read in by the compiler during processing of a compilation unit. Examples of
manually created contexts are Ada package specifications [11, Mesa and Modula
definition modules [8, 151, and “include-files” in C, Berkeley Pascal, and other
languages. Automatically generated contexts are computed by the compiler from
an existing program unit. For instance, if a block-structured programming
language permits an inner block to be compiled separately, compiling the

An extended abstract of this paper appeared in the Conference Record of the 12th ACM Symposium
on the Principles of Programming Languages, New Orleans, La., January 1985.
Author’s current address: Carnegie Group Inc., 650 Commerce Court, Station Square, Pittsburgh,
PA 15219.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0164-0925/86/0700-0273 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986, Pages 273-291.

274 - Walter F. Tichy

enclosing block generates a context that specifies the items which the inner block
may reference. When the inner block is processed, the compiler initializes its
symbols table by reading the context it had produced earlier. Ada subunits and
Simula classes [3] can be implemented with automatic contexts.

Contexts have three major uses. First, contexts are effective for implanting
common declarations into multiple compilation units, without having to retype
them in every unit. Thus, contexts permit the sharing of a single copy of
declarations, with the obvious advantages for updates. Second, contexts assure
global type correctness for separate compilation. Using the proper contexts, the
compiler can check that each unit uses its imported interfaces properly, and
implements its exported interface as expected. The value of checking interfaces
can hardly be underestimated, because programmers must routinely deal with
the interfaces of complex and unfamiliar subsystems. Interfacing to an unfamiliar
system is more prone to error than working within one’s own system. For this
reason, type checking of interfaces is more likely to detect errors than intramodule
type checking.

A third use of contexts applies only to automatically generated contexts. An
automatic context transmits symbol table information to nested, separately
compiled blocks. It contains declarations of all objects visible to the nested
blocks, plus additional code generation attributes. These attributes are typically
block levels, offsets, and sizes of data structures. Thus, automatic contexts also
perform some of the functions traditionally implemented by linkers. A survey of
compilation mechanisms using contexts appears in [ll].

With current compiler technology, contexts have a serious drawback. To
guarantee consistency, all compilation units using a changed context must be
recompiled, no matter how small the change. For instance, changing a comment
or adding a new declaration to a pervasive context may cause the unnecessary
recompilation of the entire system. Similarly, revising a context item that is used
in only a few units triggers the recompilation of all units using that context,
rather than the few units using the item.

With modern high-level languages, redundant compilations are a serious ob-
stacle. The processing cost of making a minor change or adding a few declarations
to a large system may be so great that it retards the growth and evolution of the
system. At the very least, it imposes hours of idle time on development teams
while everything is periodically recompiled from scratch [6]. High compilation
costs also tend to convolute system structure, because they force programmers
to incorporate changes in ways that minimize the number of recompilations,
rather than preserve well-structuredness.

In effect, guaranteeing system-wide type consistency with contexts may nullify
the time savings that separate compilation is supposed to provide. The reason is
that the usage relation among contexts and compilation units is too coarse. By
refining this relation, this paper arrives at a simple and effective mechanism that
causes recompilation of only those units that are affected by a given context
change. The next section presents the basic idea of this mechanism, while Section
3 discusses the mechanism in detail. Section 4 describes a prototype implemen-
tation using the Berkeley Pascal compiler, and presents some performance
results. An extension for languages that permit overloading of identifiers follows.
Additional refinements appear in Section 6.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 19SS.

Smart Recompilation l 275

2. OVERVIEW OF SMART RECOMPILATION

Consider a single compilation unit and a set of contexts. We say that a compi-
lation unit “depends” on a context if it may reference identifiers declared in that
context. The following recompilation rule applies.

Conventional Recompilation Rule: A compilation unit must be recompiled whenever

(1) the compilation unit changes, or
(2) a context changes upon which the compilation unit depends.

The purpose of part (1) of the rule is obvious. Part (2) guarantees that any
context modifications propagate into the dependent units. It also has the effect
of checking for syntactic or semantic errors that the change might have intro-
duced. The MAKE program [5] implements the rule. The Ada [l] and Mesa [B]
language manuals prescribe similar rules, with the additional aspect that each
context is a compliation unit in its own right.

Compilations triggered by part (2) may be redundant. The smart recompilation
mechanism presented here eliminates most redundant recompilations. The basic
idea is as follows. If a context is modified, a change analysis of the old and new
contexts produces a change set, which is intersected with the reference set of each
dependent compilation unit. The change set consists of those context items that
were either added, changed, or deleted. The reference set of a compilation unit
records which context identifiers were used outside their declaring contexts. If
the intersection of these two sets is empty, then the compilation unit need not
be reprocessed.

Figure 1 illustrates. File f.cxt is a context containing declarations for a hypo-
thetical traffic light control program. File prog.p is a compilation unit dependent
upon context f.cxt. All examples are formulated in Berkeley Pascal, which is
equipped for separate compilation. The directive #include instructs the compiler
to read in a context.

Assume the following sequence of events. File prog.p is compiled, which
produces a reference set for f.cxt and an object module. The reference set is
(NumOfStreets, NumOfAvenues, PrimaryIntersect, TrafficLights 1. This set is
determined by computing the transitive closure of dependencies among declara-
tions. For instance, the variable Grid depends directly upon the first three
declarations in the set, and indirectly upon the fourth. Note that the enumeration
literal red, though referenced in prog.p, is not included. Enumeration literals are
subordinate to the declaration of the enumeration type, and including the
identifier of the enumeration type suffices. Whenever anything about an enu-
meration literal is changed, the entire enumeration type is considered changed,
and recompilation will be triggered properly. Record types are treated in a similar
way: Reference and change sets summarize access to, and change of, record fields,
by listing the corresponding record types.

Now assume that we redefine the type TrafficLights (by adding, say, the literal
RedBlink). When the program is reprocessed, the smart compiler detects that
prog.p depends on a changed context. It therefore computes the change set by
comparing the old and new versions of the context. (The comparison also assures
that the new context is syntactically and semantically correct.) The change set
contains TrafficLights. Its intersection with the previously computed reference

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

276 l Walter F. Tichy

File fxxt:
const

NumOfStreets = 40;
NumOfAvenues = 20;

type
TrafficLights = (red, amber, green);
MorningRush = 7 . . 9;
EveningRush = 16 . 18;
PrimaryIntersect = record S, N, E, W: TrafficLights end;

File progp :
#include “f.cxt”
var

Grid: array[l . . NumOfStreets, 1 . . NumOfAvenues] of PrimaryIntersect;
. .

Grid[i, j]. S := red;

Fig. 1. Compilation unit prog.p with one context.

set is not empty, and the smart compiler therefore reprocesses prog.p. No
recompilation would occur if instead we had changed the type of MorningRush,
added a new declaration, inserted a comment, or rearranged the textual layout.

The procedure outlined above still has two flaws. First, it may mask redeclar-
ations and overloading errors. For instance, adding another declaration for Grid
to the file f.cxt will trigger no recompilation and therefore no error message,
although the program would obviously be illegal. Second, a context may reference
free identifiers, but supply no indication where the corresponding declaration
can be found. For example, it is legal to split f.cxt into two files and include them
both in prog.p. In this case, the second context may refer to an item that is not
declared in it. The problem with this situation is that the semantic correctness
of the reference to the free identifier cannot be checked by analyzing the second
context alone. The following section shows how to eliminate these problems.

3. SMART RECOMPILATION WITHOUT OVERLOADING

This section states precisely how smart recompilation works. Overloading of
identifiers and qualification of referenes are not permitted, but Section 5 will lift
these restrictions. Overloading means that there may be more than one declara-
tion for the same identifier in the same scope. Qualification means that an
identifier reference is syntactically associated with the identifier’s declaring
context. Usually, this association is made by simply concatenating context name
and identifier or by special syntax in import-clauses. Qualification prevents
conflicts if two or more contexts introduce the same identifier. Simple file
inclusion, for example, works without qualification and can lead to errors caused
by multiply declared identifiers. We first describe smart recompilation without
qualification, and then outline the simplifications possible with qualification.

To avoid unnecessary detail, we assume that separate compilation is only
permitted at the global level. Removing this restriction is merely a matter of
bookkeeping and involves automatically generated contexts for each separately
compiled, inner block as outlined in the Introduction.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 277

3.1 The Multiversion Model

We assume that “changing” a program module (i.e., a context or a compilation
unit) does not really change it; instead, a new one is created. Normally, the newly
created module starts out as a copy of an existing one and can be modified with
an editor until the editing session terminates. At this time, the new module
becomes immutable.

We postulate the presence of a version control system that composes configu-
rations. The version controller decides which version of a module to pass to the
compiler for processing. For this purpose, the controller keeps track of a special
relation among modules, called the Reuision-Of relation. This relation specifies
for each module, from which other module (or modules) it was created by manual
editing. This relation is important for implementing version selection rules. For
example, a selection rule useful during software development is to always choose
the newest revision of a module. More sophisticated rules appear in [7, 121.

Of course, the version control system must be able to store arbitrarily many
revisions per module. By saving only the differences between successive revisions,
the space requirements are modest, as has been demonstrated by a number of
systems [9, 7, 13, 141.

3.2 The Compilation Model

Contexts and compilation units contain a number of declarations. The term
declaration stands for any named construct that can be defined in a programming
language. Examples are symbolic constants, types, variables, macros, generics,
subprograms, subprogram headers, processes, and abstract data types. A decla-
ration introduces an identifier and associates that identifier with a body. The
body can be accessed elsewhere (in particular, in the body of another declaration)
by using the identifier in some referencing construct (for instance, in an assign-
ment statement).

A declaration may introduce subordinate identifiers. Examples are enumera-
tion literals, record fields, keyword parameters, and operations of abstract data
types. The following definition allows us to summarize references to subordinate
identifiers as references to the main identifier.

Definition: Declaration A depends on declaration B iff the body of A references
the identifier of B or one of B’s subordinate identifiers.

For example, if procedure P assigns to field F of variable V, if V is of type R,
and if R is a record type with a field F of type T, then P depends on V, which
depends on R, which depends on T. Obviously, the summarization discards some
information. Section 6 discusses a more sensitive smart recompilation mechanism
that retains this information.

Transitive dependencies of declarations are important for determining the
effect of changes. In the above example, if T changes, P must be recompiled.
Note that circular dependencies are permitted. Circularities are needed, for
instance, for declaring records containing pointers to each 0ther.l

r Ada and Mesa prohibit circular dependencies to cross context boundaries by imposing a partial
ordering on contexts. However, simple text file inclusion can easily lead to intercontext circularities.
The mechanism described here treats circular references properly.

ACM Transactions en Programming Languages and Systems, Vol. 8, No. 3, July 1986.

278 l Walter F. Tichy

An identifier introduced in a context by a declaration is said to be “declared”
in that context. An identifier that is referenced in a context, but not declared in
it, is said to be “free” in that context. There are two ways of supplying declarations
for free identifiers. The first one is if the context itself contains nested inclusion
directives for obtaining missing declarations from other contexts. This approach
is taken in Ada, Mesa, and Modula. Alternatively, a context may inherit decla-
rations from the compilation unit or other contexts in which it is used. Include-
files are typically applied in this fashion. A problem with free identifiers is that
they complicate the process of computing differences between contexts and
ascertaining the semantic correctness of contexts. Another problem is that it
is generally impossible to compute the transitive closure of dependencies by start-
ing a search in the context with the free identifiers. The complete transitive
closure is only available when all contexts are combined during compilation.
The mechanism introduced here permits nested context inclusion as well as
free declarations.

The following restriction guarantees that extra declarations can be added to
contexts and that unused declaration can be removed or changed, without
affecting already generated code. This restriction is important because it allows
contexts to be changed without necessarily forcing recompilations.

Restriction 1. Code generated for referencing some declaration D declared in a
context may only be derived from D itself and from declarations that D depends
on transitively.

This restriction precludes optimization techniques that add dependencies
which are not apparent from explicit references in the source program. Interpro-
cedural optimization usually adds a great number of such dependencies. As an
alternative for Restriction 1, one could record all the additional dependencies
introduced and add them to the reference sets. This technique is not difficult to
implement, but since it is strongly language- and compiler-dependent, we chose
the more general approach reflected by Restriction 1. Furthermore, note that the
restriction only applies to declarations in contexts. Hidden dependencies among
declarations appearing in compilation units are allowed. For a compilation unit
(not a context), any change requires reprocessing, which reanalyzes embedded,
hidden dependencies. Thus Restriction 1 is not as severe as it appears at first.
(See also the discussion of attribute dependencies in Section 6.)

A subtle example where the restriction applies is the following. The address of
a global variable introduced by a context should not be assigned by the compiler,
since that address may depend on the size and number of preceding, unrelated
variables. The address must either be determined by a later phase (e.g., the
loader), or must be made an explicit part of the declaration. For global variables,
the former approach is the one taken by most language systems; automatically
generated contexts employ the latter technique. As an example for the latter,
suppose a subprogram P at block level n(n 2 2) is compiled separately. When
compiling the block enclosing P, a context is generated that contains all decla-
rations visible to P, with associated code generation attributes. In particular,
each visible variable Vat block level b(15 b < n) has the address (b, d) associated

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 279

with it, where d is the offset of V in its activation record. If the block containing
V is changed, recompilation of that block produces a new context with a possibly
altered address for V. The determination of whether P needs to be recompiled
must take into account the entire declaration of V, including the old and new
addresses.

Restriction 2. Within a context, directives for context inclusion must appear
before declarations.

This restriction is needed for two reasons: First, it makes it easier to determine
whether context inclusion, and therefore system structure, have changed. Second,
it makes it feasible to deal with inherited declarations and their effects on
semantic correctness. Without the restriction, the directives could be intermixed
with declarations, making it difficult to determine whether a context remains
semantically correct when the directives are moved around, deleted, or added.

Note that Restriction 2 is easily satisfied, because a context with an inclusion
directive in the middle can always be split. Moreover, the restriction applies only
to contexts, and not to compilation units. The restriction is already enforced by
some programming languages, for example Ada, Mesa, and Modula.

3.3 Problem Statement

Given a compilation unit MO and contexts Ml, . . . , M,,, assume that the
configuration C = (MO, . . . , M,) is legal and was compiled successfully. The
compilation resulted in a translation with an associated history attribute con-
taining the following sets:

DECLi:
REFiI

The identifiers declared in Mi(0 5 i 5 n);
The identifiers declared in Mi and transitively referenced in some
other context or compilation unit Mj(1 I i I n, 0 5 j 5 n, i # j).
(REF, is not needed.)

Given a new context mX(l % x 5 n), inspect only M,, i%!X and the sets DECLi
and REFi to determine the following:

(a) Is the configuration C = (MO, . . . , Mx, . . . , M,J legal, that is, syntactically
and semantically correct?

(b) Are the translations generated by the compiler for C and c functionally
equivalent?

3.4 Solution

The following decision procedure answers the two questions above by performing
a change analysis.

Change Analysis 1 (No Over/.oading, No Qualification)

Test 1. Analyze li;i syntactically, as specified by the programming language manual.
If there are any errors, then c is illegal.

Test 2. Compare the context inclusion directives (if any) in M, and li&. If they are not
identical, recompile.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

280 .

Test 3.

Test 4.

Test 5.

Test 6.

Test 7.

Test 8.

Waiter F. Tichy

Analyze mX semantically. The rules specified by the programming language
manual apply, except that occurrences of free identifiers are legal. If there are
any other errors then c is illegal.
Compare M, and mz and determine the following sets.

ADD,: The identifiers declared in az but not in n/r,.
DEL,:
MOD,:

The identifiers declared in M, but not in &f=.
The identifiers declared in both M, and M, whose declarations
differ.

FREE,:
AMREF,:

The identifiers free in Mz.
The identifiers transitively referenced by declarations in ADD,
and MOD,.

If AMREF, FU FREE, # 0, then an added or modified declaration references a
free identifier and recompilation is necessary.
If DEL, n FREE, # 0, then a deleted identifier is referenced in ii&., and C is
illegal.
If MOD, FU REF, # 0, then a local declaration changed that is referenced
elsewhere, and recompilation is necessary.
If ADD, fl DECLj # 0 for some j, 0 I j 5 n, j # X, the mX introduced a
declaration that conflicts with an external one, and c is illegal.
If DEL, n REF, # 0, the RX is missing a declaration that is referenced
externally, and (5 is illegal.

End Change Analysis 1

The purpose of Test 1 is obvious. Test 2 is rather conservative, in that it
triggers recompilation whenever inclusion directives change. This test could be
refined to allow addition of inclusion directives if no multiple declarations arise.
Tests 1 and 3 combined determine whether the context is legal internally, as far
as that is possible. Although free identifiers are permitted, the rule “declaration
before reference” applies, if the programming language specifies it.

Free identifiers in MX present a problem since their use cannot be checked
locally for legality. However, M, is legal by assumption. Thus, if a free identifier
is referenced in exactly the same way in both M, and iWX, then the use of that
free identifier is correct in both. Otherwise, only a recompilation can check
legality. Test 4 implements this analysis.

Deletions can result in free identifiers that are not necessarily included in
AMREF,; Test 5 checks for those. Test 6 causes a recompilation if a referenced
declaration was modified. Test 7 assures that any new declaration does not
interfere with existing ones. This check must be relaxed if overloading is permit-
ted. Test 8 prints an error message if a deleted declaration is still referenced
externally.’

THEOREM. If Change Analysis 1 detects no errors (Tests 1, 3, 5, 7, and 8) and
triggers no recompilation (Tests 2, 4, and 6), then

(i) C is a legal configuration and
(ii) the translations of C and c are functionally equivalent.

‘The tests do not have to be executed in the order implied by their numbers. For example, Test 1

(syntax analysis) and Test 3 (semantic analysis) may be performed in an overlapped fashion as is
usual in modern compilers. Tests 4 through 8 are independent and may be performed in any order.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 281

Table I. Classes of Changes and Possible Errors Introduced

A.
B.
C.
D.

E.
E.l.
E.2.
E.3.
E.3.
E.4.
F.
F.l.
F.2.
F.3.
F.3.
F.4.
G.
G.1.
G.2.

Difference

Textual layout (spacing, comments)
Syntax errors
Inclusion directives
Order of declarations
Declaration before reference (if applicable)
Modified declaration
Modified declaration references local declarations
Modified declaration references external declarations
Modified declaration introduces undeclared identifiers
Modified declaration is referenced locally
Modified declaration is referenced externally
Additional declaration
Additional declaration references local declarations
Additional declaration references external declarations
Additional declaration introduces undeclared identifiers
Redeclaration of existing local declaration
Redeclaration of existing external declaration
Deleted declaration
Deleted declaration is referenced locally
Deleted declaration is referenced externally

Test

No effect
Test 1
Test 2

Tests 3, 4

Test 3
Test 4
Test 4
Test 3
Test 6

Test 3
Test 4
Test 4
Test 3
Test I

Test 5
Test 8

PROOF. (i) Consider how M, and ii;i, may differ. The simplest differences are
(A) different textual layout and (B) syntactic errors in j@,. Clearly, change of
textual layout like spacing and commenting has no effect in free-form languages,
as long as the order of the individual tokens is the same. Syntactic errors are
detected by parsing.

In the absence of syntactic errors, the only other differences are (C) different
inclusion directives, (D) different order of declarations, (E) declarations that
have the same identifier but different bodies, (F) additional declarations in i%iz,
and (G) declarations missing from aI. Table I classifies the possible differences,
and shows which test in Change Analysis 1 determines whether a difference
constitutes an error.

(ii) Consider configurations C and C. By (i), both are legal. C differs from C
in that it may have deleted, added, or modified declarations. By Tests 5 and 8,
deleted declarations are not referenced anywhere in C. By Restriction 1, code
generated for accessing other declarations is not affected. Consequently, c’s
translation differs from C’s translation only in that some “deadwood” was
eliminated.

Added declarations are not referenced externally because of Test 7 and because
C is legal. Modified declarations are not referenced externally because of Test 6.
Added and modified declarations may be referenced locally, though. (For example,
there may be a declaration in mz that references a modified declaration in the
same context.) However, since REF, reflects the transitive closure, the locally
referencing declarations cannot be referenced externally. Thus they are all
“deadwood,” and can be left uncompiled. Recompilation will be triggered if a
reference to one of them is inserted later. 0

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

282 . Waiter F. Tichy

File flat:
const

NumOfStreets = 40;
NumOfAvenues = 20;

File f2.cxt:
#include “f l.cxt”
type

TrafficLights = (red, amber, green);
StopLights = (redblink, yellowblink);
MorningRush = 7 . 9;
EveningRush = 16 . 18;

File f3. at:
type

PrimaryIntersect = record S, N, E, W: TrafficLights end;
SecondaryIntersect = record S, N, E, W: StopLights end;

File prog.p:
#include “f 2.cxt”
#include “f3.cxt”
var

Grid: array[l . . NumOfStreets, 1 . NumOfAvenues] of PrimaryIntersect;
.

Grid[i, j].S := red;

Fig. 2. Compilation unit prog.p and three contexts.

(f l.cxt) NumOfStreets, NumOfAvenues)
(f2.cxt) TrafficLights, StopLights 1 MorningRush, EveningRush
(f3.cxt) PrimaryIntersect 1 SecondaryIntersect
(prog.p) Grid 1

Fig. 3. History attribute generated for prog.p.

3.5 Example

Consider Figure 2, a contrived example using three contexts. For simplicity, we
assume that contexts can only be requested at the outermost block level. It does
not matter whether a context is included by the compilation unit or another
context; the inclusion directives can always be rearranged such that they appear
in the compilation unit only. In fact, automatically “flattening” the file inclusion
in this manner is the best way to handle inherited free identifiers.

Figure 3 shows the history attribute generated by compiling progp. The sets
DECL and REF of a context can be represented overlapped, because the former
is a superset of the latter. The vertical bar (1) separates the reference set from
the rest of the declarations.

The reader is encouraged to check what happens if declarations in the contexts
are added, deleted, or modified. For instance, removing or changing the constant
EveningRush has no effect, whereas removing the constant NumOfAvenues
causes an error message, and changing it triggers a recompilation. Similarly,
changing StopLights causes a recompilation. Note that the only reference to
StopLights is in the unreferenced declaration SecondaryIntersect. However, since
SecondayIntersect appears in a different context, recompilation is necessary to
check the legality of the change.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 283

3.6 Putting It All Together

When comparing two contexts during change analysis, the textual layout of
declarations and other syntactic variations should have no effect. Comparing
abstract syntax trees filters out these differences. Two declarations are identical
if they have the same identifier and their abstract syntax trees are identical. This
test can be carried out by a simple, recursive program.

The version control system maintains a pool of object modules which were
compiled previously. Whenever the object module of a compilation unit is
requested, the version controller checks whether one already exists. If so, saving
the recompilation may be possible. First the version controller inspects the
history attribute of the candidate object module to determine which contexts
were used to generate it. If an exact match with the desired configuration is
found, the object module can be used as is. Otherwise change analysis of the old
and the new configurations is necessary. If this analysis finds no errors and
triggers no recompilation, the existing object module can be reused.

When an object module is reused, a new history attribute is added to it. The
new history attribute is the same as the old one, except that the set DECL, is
updated to reflect the replaced context. The reference sets remain unchanged.
This approach guarantees that future change analyses operate reliably.

When more than one context is replaced, the contexts are handled one after
the other, producing a new history attribute after every step. If declarations are
moved from one context to another, this technique may generate spurious error
messages. For example, Tests 5 or 8 would find an error in the context from
which the declartion was removed, whereas a fresh recompilation would not
report that error. Thus, during multicontext changes, errors detected by Tests 5,
7, and 8 should actually trigger a recompilation. Saving the potentially redundant
compilation is possible with a more detailed analysis that checks whether errors
reported by these tests cancel. This analysis needs data structures that record
precisely where each identifier is referenced. The details are left to the reader.

A similar inefficiency results from the fact that reference sets do not contract
after suppressed compilations. For example, suppose declaration A in context M
is not referenced, and is the only declaration that references B in context N.
When A is deleted, no recompilation is necessary, but the reference set of N still
lists B as in use. When B is deleted at a later time, an unnecessary recompilation
(or error message) results. This slight inefficiency could be corrected by associ-
ating a reference count with each element in the reference sets, or by using the
method mentioned in the previous paragraph. Note, however, that the mechanism
is safe in that it will never omit a necessary recompilation.

4. PROTOTYPE

We implemented a prototype by modifying the Berkeley Pascal Compiler, pc,
running on the UNIX@ operating system. Version control was provided by
MAKE[5] and RCS[14]. RCS, short for Revision Control System, collects revi-
sions of modules into revision groups. It conserves space by storing only deltas.

ep UNIX is a trademark of AT&T.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

284 l Walter F. Tichy

4.1 Implementation

Adding the generation of the reference sets to the Pascal compiler was straight-
forward. Each symbol table entry was expanded with a reference bit and a pointer
to the file name in which the declaration appeared. The lexical analyzer of the
compiler turns on the reference bit whenever it encounters an identifier that had
been declared in a different context. Computing the transitive closure of depend-
encies is simply a matter of following all links emanating from a symbol table
entry, and setting the reference bit in the reached declarations. For example, if
an array variable is used, the declaration of that variable, the type of the array
elements, and the index type(s) are marked. If compilation succeeds, a simple
program scans the symbol table and writes the sets DECL and REF of each
context into a file.

The change analysis consists of two separate phases. The program cdiff(short
for context difference) implements the first phase. It takes a pair of context
revisions and performs Tests 1, 2, 3, 4, and 5. It also assures that the inclusion
directives are at the beginning of the context. Furthermore, cdiff produces the
sets ADD, DEL, and MOD as output. The collection of these sets is called the
change set. The change set is needed for Tests 6,7, and 8 later. Essentially, these
tests compare the change set with the history attribute of an object module. This
arrangement has the advantage that the change set is computed once and can
then be matched against the history attributes of several object modules. This
division saves time, because a context change normally affects several compilation
units which must all be brought up to date. If cdiff detects any errors, it produces
no change set and triggers a recompilation if the user wants to have more detailed
error messages.

Cdiff was easy to build. It is essentially the declaration parser of the Pascal
compiler. It reads in two contexts, say M and @, builds up a symbol table for
each, and then compares individual entries. Each entry in the symbol tables is
the abstract syntax tree of a declaration. To produce the change set, the symbol
table for context M is traversed. For each identifier declared in M, the corre-
sponding identifier is looked up in the symbol table for context li;i. If the two
declarations are not identical, then the identifier is included in the set MOD; if
the identifier is not declared in M, it is added to the set DEL. In order to detect
declarations that have been added, identifiers are marked as they are looked up
in the symbol table for M. Any entries still unmarked in ii? after scanning M’s
table are part of the set ADD. Hashing looks up entries quickly.

A controlling program, called spc (for Smart Pascal Compiler), provides the
mechanism for comparing the change set with the history attribute. The job of
determining which contexts and compilation units must be analyzed is left to
MAKE. If anything appears out of date, MAKE invokes spc, which retrieves old
contexts from RCS, computes the change sets, intersects them with the reference
sets, and, if necessary, starts the modified Pascal compiler.

4.2 Performance

Performance of the implementation was surprisingly good. Measurements on
about 20 compilation units (of up to 700 lines, with an average of 200 lines) and
3 contexts (of up to 190 lines, with an average of 140 lines) were performed on a
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 285

VAX/780 running the Berkeley UNIX system 4.2. Results consistently indicated
that saving a single compilation more than amortizes the cost of the extra
analysis; any additional recompilation that is suppressed constitutes a net saving.

For calculating the potential savings achievable with spc, consider the following
costs: (a) generating the history attribute, (b) generating the change set, and
(c) comparing change set and history attributes. The time for generating the
history attribute was not measurable with the limited accuracy of the UNIX
clock. Given a clock accuracy of 0.1 seconds and an average compilation time of
about 20 seconds per module, it follows that writing the history attribute takes
less than 1 percent of the total compilation time. This is not surprising, since
compilers are basically I/O bound, and the history attribute represents a tiny
fraction of total I/O. The additional file space needed is also quite small, and
could be nearly eliminated by redesigning the object module format. Much of the
information contained in the history attribute is already buried in the object
module, where it is needed for the debugger.

The cost of producing the change set is, on the average, less than a third of
the cost of a compilation. The reason is that the amount of input is small, and
output is even less. Furthermore, producing the change set is a one-time cost: It
is computed once, but will be intersected with the history attributes of many
object modules.

Finally, computing the intersections is fast. For nonempty change sets, the
average time was about 0.2 seconds (less if the change set was empty). This is a
mere 1 percent of compilation cost. Stated another way, determining whether
recompilation is necessary is two orders of magnitude faster than compiling.

In summary, the only nonnegligible cost is in computing the change set.
However, this cost is already more than amortized by suppressing a single
compilation. Thus, substantial savings can be obtained even in systems of
moderate size. Note that the contexts used for measurement were fairly large; in
languages like Ada or Modula, contexts are probably smaller, reducing the cost
of computing the change set. Furthermore, the compilation units were small;
with larger units, the advantage of saving compilations becomes more pro-
nounced. One should also consider that the Berkeley Pascal compiler is already
reasonably fast. Highly optimizing compilers or compilers for complicated lan-
guages are slower, and even greater savings are possible.

5. OVERLOADING

A number of programming languages allow overloading of identifiers (i.e., several
declarations for the same identifier in the same scope). This section describes
how to extend smart recompilation for overloading.

Languages that permit overloading also specify rules for overload resolution
(i.e., for resolving the ambiguities introduced by overloading). For each identifier
reference, overload resolution inspects all alternative declarations of that iden-
tifier and succeeds if it can unambiguously select a single declaration from this
set. Overload resolution may fail in two ways: A reference of an identifier may
be unresolvable, that is, there may not exist a declaration that overload resolution
can select (there simply may be no declaration of that identifier, or there may be
several, none of which fit the constraints of the reference) or a reference may

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

286 l Walter F. Tichy

be ambiguous, that is, there may exist two or more candidate declarations that
could be selected equally well. An efficient algorithm for overload resolution in
Ada appears in [2].

A complicating factor is that in most languages, overloading is restricted to
certain classes of identifiers. In Ada, for example, only subprogram identifiers,
operators, enumeration literals, and entry identifiers may be overloaded. For
clarity, we first consider unrestricted overloading (i.e., languages in which any
identifier may be overloaded) and then outline the changes for restricted over-
loading.

5.1 Unrestricted Overloading

Assume that configuration C has been compiled successfully, and that the sets
DECLi and REFi have been computed as before. Because of overloading, the sets
DECLi may have pairwise nonempty intersections. Although overload resolution
inspects all declarations with the same identifier, a set REFj records an identifier
only if a declaration in Mj with that identifier was actually selected.

A case analysis similar to the proof in Section 3 yields the decision procedure
for smart recompilation. An important consideration is that the identifier of any
added, modified, or deleted declaration, as well as any identifier referenced by
added or modified declarations, may be overloaded. Furthermore, overloading
may be caused by a context other than the one being analyzed.

Change Analysis 2 (Unrestricted Overloading, No Qualification)

Test 1’. Syntax analysis of M, (same as in Change Analysis 1).
Test 2’. Comparison of context inclusion directives in M, and ii& (same as in Change

Analysis 1).
Test 3’. Semantic analysis of RX. The rules specified by the programming language

manual apply, except that occurrences of unresolvable identifiers are legal. If
there are any other errors, then c is illegal.
Compare M, and mX and determine the following sets.

ADD,: The identifiers declared in i%?= but not in M,.
DEL,: The identifiers declared in M, but not in ii?=.
MOD,: Consider the set of identifiers declared in both M, and ii?,. To

obtain MOD,, delete from this set every identifier ID for which
the following holds: For every declaration of ID in M, there is
an identical declaration of ID in &&, and vice versa.

UNRES,: The identifiers unesolvable in li?=;
AMREF,: The identifiers transitively referenced by declarations in ADD,

and MOD,.
CREF,: The indices of those contexts other than && whose declarations

can be referenced in ii&. (This set is determined by the context
inclusion directives.)

Test 4’. If (AMREF, n UNRES, # 0) V (AMREF, fl DECLj # 0) for some j E
CREF,, then recompile.

Test 5’. If DEL, fl UNRES, # 0, then recompile.
Test 6’. If (MOD, fl REF, # 0) V (MOD, n DECLj # 0) for some j, 0 5 j 5 n, j # x,

then recompile.
Test 7’. If (ADD, fl REF, # 0) V (ADD, n DECLj # 0) for some j, 0 5 j 5 n, j # X,

then recompile.
Test 8’. If DEL, fl REF, # 0, then cf is illegal.

End Change Analysis 2

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 287

As an example, consider modified declaration D in context i@%. If D is
referenced externally (first half of Test 6’), or if the body of D references an
unresolvable identifier (first half of Test 4’), then recompilation is necessary as
in Change Analysis 1. If D is overloaded with declarations in other contexts
(second half of Test 6’), recompilation checks whether D introduced an over-
loading error (whether actually selected or not). Finally, recompilation is required
if D references an identifier for which there are competing declarations in
other contexts, even if the reference could have been resolved locally (second
half of Test 4’). The recompilation checks whether the competing declara-
tions cause ambiguities in the body of D. Semantic analysis of iiZX (Test 3’)
merely checks the legality of strictly local overloading of D and the identifiers
referenced by D.

Added declarations are handled in exactly the same way as modified ones.
Deleted declarations do not necessarily introduce errors, because they may be
overloaded. Unchanged declarations need not be reanalyzed.

For single context changes, Test 5’ can be accelerated as follows. If
the declaration deleted from BX is not overloaded in c (i.e., the last declara-
tion of that identifier was removed), then c is known to be illegal without a
recompilation.

In general, overloading requires more recompilations. However, if added, de-
leted, and modified declarations are not overloaded and reference no overloaded
identifiers, then Change Analysis 2 produces no more compilations than Change
Analysis 1. The correctness proof of Change Analysis 2 is left as an exercise.

5.2 Restricted Overloading

Restricted overloading means that only certain identifiers may be overloaded.
For example, identifiers of variables are usually not overloadable. Accordingly,
the sets DECLi, REFip ADDi, DELiy and MODi must each be split into two
classes: one containing the overloadable identifiers, the other the nonoverloadable
identifiers. Smart recompilation executes Change Analysis 2 on the overloadable
identifiers, and Change Analysis 1 on the rest.

A further complication arises because the same identifier may not simultane-
ously be both overloadable and nonoverloadable. For example, the identifier of a
variable in one context may not be used as a subprogram identifier in another
context. Although compilation of configuration C guarantees that C is free from
such overlaps, li;i, may introduce them into C. The following simple steps guard
against these errors. First, if a declaration is changed so that it becomes over-
loadable though it was nonoverloadable before (or vice versa), this modification
is treated like an addition to the overloadable identifiers and a deletion from the
nonoverloadable identifiers (or vice versa). Thus, before the two change analyses
are executed, the sets MOD, and DEL, must be set up to reflect the migration
of identifiers from one class to another. Second, no overlap is permitted
between the nonoverloadable and overloadable identifiers. This test, although
seemingly expensive, can be executed efficiently by observing that significant
changes can only be introduced by ADD, and MOD,. The details are again
left to the reader.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1986.

288 l Walter F. Tichy

5.3 Qualification of References

Recall that qualification means that every identifier reference must be syntacti-
cally associated with the context declaring the identifier. Qualification simplifies
smart recompilation because it eliminates intercontext conflicts. Change Analysis
I becomes both simpler and faster, because Test 7 can be eliminated. In Change
Analysis 2, the second halves of Tests 4’, 6’, and 7’ can be removed, since
overload resolution cannot cross context boundaries. A minor complication is
that locally declared identifiers normally must be referenced unqualified. A simple
solution is to add the qualification implicitly to all local references.

Some programming languages provide facilities for both qualified and unqual-
ified references, for example Modula and Ada. However, Modula’s import-clause
satisfies our criterion for qualification. The clause uniquely specifies from which
context an identifier is taken, even if it is not preceded by a context name. Thus
the missing qualification can be added implicitly, and the simpler form of Change
Analysis 1 applies.

Ada’s context inclusion facilities are more complex. They have two parts, a
with-clause and a use-clause. The with-clause introduces qualified identifiers
from a context. If the use-clause is added, qualification may (but need not) be
omitted. Unqualified references may introduce intercontext conflicts. For exam-
ple, adding a declaration to a context causes an error if (1) there is another
declaration with the same identifier in a competing context, (2) at least one of
the declarations makes the identifier not overloadable, and (3) the identifier is
referenced unqualified. This situation is similar to simple file inclusion, except
that two conflicting declarations may coexist in separate contexts as long as all
references are qualified. The simplest solution is to treat qualified and unqualified
references separately. The qualified references are handled with the simplified
analyses described above. For the unqualified references, Change Analyses 1 and
2 are executed, but only for those contexts that appear in use-clauses, and
restricted to those identifiers that are actually referenced unqualified.

A further complication in Ada comes from the interaction between overloading
and qualification. For example, it is legal to have the same identifier simultane-
ously overloadable and not overloadable, provided the corresponding declarations
are in separate contexts. However, in that case, all references to that identifier
must be qualified. This rule involves the treatment of identifiers that migrate
from one class to the other, and the test for the intersection among the two
classes. It appears that the interaction between restricted overloading and
unqualified references in Ada is unnecessarily complex.

6. REFINEMENTS AND EXTENSIONS

The mechanisms described here do not eliminate all redundant compilations.
Several improvements are possible, even beyond the ones already discussed in
Sections 4 and 5. First, the handling of free or unresolvable identifiers could be
more sophisticated. It is usually possible to derive some information about a free
identifier from its use. For instance, if it is obvious from context that a certain
declaration is a range type, then using it as a range in a new declaration need
not trigger recompilation (Tests 4 and 4’). Note also that the history attribute

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 289

contains enough information to determine where missing declarations can be
found, and an exact legality check could be done, possibly saving redundant
recompilations. Further experimentation is necessary to determine whether the
gain outweighs the cost.

Another refinement would be to replace declaration dependencies with attri-
bute dependencies, as proposed by Dausmann [41. Attribute dependencies record
which attributes of declarations were actually used during compilation. For
instance, assume a compilation unit uses only information about certain fields
in a record, but never the record’s size attribute. Then recompilation is not
needed if a new field is appended to the record type. Similarly, adding a default
parameter to a subprogram need not trigger recompilation of all calling units,
provided subprograms are implemented such that default parameters are supplied
by the callee and not the call site. Clearly, this refinement is strongly
language- and compiler-dependent, and the code generator must be designed with
smart recompilation in mind.

A smart recompilation mechanism using attribute dependencies and exact
legality checks may achieve the theoretical optimum of never causing an unnec-
essary recompilation. However, only experimentation can answer the question
whether the potential savings justify the cost of the additional analysis. Perhaps
the simple mechanism described here is already so close to the optimum in the
majority of cases that only marginal gains can be accomplished, or perhaps the
additional analysis is so expensive in storage and runtime costs as to completely
overwhelm the incremental improvement. On the other hand, very large software
projects might benefit.

The Desoto project [lo] attempted to build a smart recompilation mechanism
for Mesa. The basic ideas were similar, but the project failed, partly because of
the lack of an adequate version control system. A system for storing multiple
revisions of source code reliably and economically is indispensable. Furthermore,
each object module must carry a history attribute that unambiguously specifies
how the object module was produced. In the prototype discussed here, the decision
of when to start spc was based on MAKE’s timestamp mechanism rather than
on inspecting history attributes. Timestamps are an approximation of history
attributes, and it is possible to construct situations where MAKE does not start
spc although it should. Further development in version control systems is needed.

An important extension of smart recompilation helps programmers update
modules after changes, Recompilation is often not sufficient to bring a system
back up to date; some reprogramming may be necessary. For example, recompi-
lation suffices if a record type is expanded or the fields are reordered. However,
if a parameter is added to a subprogram, or the type of a variable changes, then
an adaptation of the using compilation units is required. The following, somewhat
more sophisticated change analysis can help with the updating.

Suppose the change analysis examines changed declarations in old and new
contexts, and determines whether recompilation is sufficient or not. In conjunc-
tion with the history attributes, the analysis can then offer two services. First,
the programmer revising a context can be informed (or warned) about the impact
his changes may have on the rest of the system, in terms of the number of
modules to be recompiled and the number of modules to be edited. Second, if the

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

290 l Walter F. Tichy

change is to be carried out, change information is passed to an editor, which
steps the programmer through the discrepancies, displaying the old and new
revisons of the appropriate declarations, and perhaps even proposing corrections.
Furthermore, if the programmer accepts a change regarding a particular item,
the editor can apply a similar change throughout.

This functionality would form the basis for a maintainer’s o-.&ant, an intelli-
gent program that helps a maintainer carry out changes. The programmer would
do the creative work of initiating modifications, whereas the machine would
perform the task of bringing the system into a consistent state. This latter task
is tedious and error prone for humans, and therefore a prime candidate for
automation.

7. CONCLUSIONS

The smart recompilation mechanism described here eliminates most redundant
compilations. It is simple and efficient, and the potential time savings in large
systems are significant. The mechanism is based on change analysis, which can
be added with modest effort to existing compilers, since almost all of the data
structures are already present, and syntactic and semantic analyses can be reused.
The mechanism can be extended for languages with overloading and with facilities
that help programmers bring a system up to date.

ACKNOWLEDGMENTS

Many thanks go to Mark Baker, who built the prototype and performed the
measurements. He cheerfully implemented numerous versions until I finally got
the algorithm right. Insightful comments by Ellen Borrison, John Nestor, Erhard
Ploedereder, and a reviewer greatly improved the paper.

REFERENCES

1. Ada Programming Language, Military Standard. J. D. Ichbiah, United States Department of
Defense, 1983.

2. BAKER, T. P. A one-pass algorithm for overload resolution in Ada. ACM Trans. Program. Lang.
Syst. 4, 4 (Oct. 1982), 601-614.

3. BIRTWISTLE, G., ENDERIN, L., OHLIN, M., AND PALME, J. DECsystem-10 SimuZa Language
Handbook Part 1. C8398, Swedish National Defense Research Institute, Mar. 1976.

4. DAUSMANN, M. Reducing recompilation costs for software systems in Ada. In System Zmple-
mentation Languages: Experience and Assessment, Proceedings of the ZFZP WG2.4 Conference
(Canterbury, UK, 1984) North-Holland, Amsterdam.

5. FELDMAN, S. Make-A program for maintaining computer programs. Softw. Pratt. Exper. 9, 3
(Mar. 1979), 255-265.

6. LAUER, H. C. AND SATTERTHWAITE, E. H. The impact of Mesa on system design. In Proceedings
of the 4th International Conference on Software Engineering (Sept. 1979), ACM, IEEE, ERO, GI,
174-182.

7. LEBLANG, D. B., AND CHASE, R. P. Computer-aided software engineering in a distributed
workstation environment. SZGPLAN Not. 19,5 (May 1984), 104-112.

8. MITCHELL, J. G., MAYBURY, W., AND SWEET, R. Mesa Language Manual. Tech. Rep. Xerox
Palo Alto Research Center, Feb. 1978.

9. ROCHKIND, M. J. The source code control system. IEEE Trans. Softw. Eng. SE-l, 4 (Dec.
1975), 364-370.

10. SWEET, R. E. The Mesa programming environment. ACM SZGPLAN Not. 20, 7 (July 1985),
216-229.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

Smart Recompilation l 291

11. TICHY, W. F. Software development control based on module interconnection. In Software
Development Enuironments, A. I. Wasserman, Ed., IEEE Computer Society Press, 1981,
272-284. Also published in Proceedings of the 4th International Conference on Software
Engineering. (Sept. 1979), IEEE, New York.

12. TICHY, W. F. A data model for programming support environments and its application. In
Automated Tools for Information System Design and Development, H-J. Schneider and A. I.
Wasserman, Eds., North-Holland, Amsterdam, 1982.

13. TICHY, W. F. The string-to-string correction problem with block moves. ACM Trans. Comput.
Syst. 2,4 (Nov. 1984), 309-321.

14. TICHY, W. F. RCS-A system for version control. Softw. Pratt. Exper. 15, 7 (July 19851,
637-654.

15. WIRTH, N. Programming in Mod&a-2. Springer-Verlag, New York, 1985.

Received February 1985; revised November 1985; accepted December 1985

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986.

