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With current compiler technology, changing a single line in a large software system may trigger 
massive recompilations. If the change occurs in a file with shared declarations, all compilation units 
depending upon that file must be recompiled to assure consistency. However, many of those 
recompilations may be redundant, because the change may affect only a small fraction of the overall 
system. 

Smart recompilation is a method for reducing the set of modules that must be recompiled after a 
change. The method determines whether recompilation is necessary by isolating the differences 
among program modules and analyzing the effect of changes. The method is applicable to languages 
with and without overloading. A prototype demonstrates that the method is efficient and can be 
added with modest effort to existing compilers. 
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1. INTRODUCTION 

Modern compilers use contexts for performing type checking across module 
boundaries. A context specifies which external items a compilation unit may 
reference, or which internal items the compilation unit must provide. A context 
is either prepared manually or automatically, stored in the program library, and 
read in by the compiler during processing of a compilation unit. Examples of 
manually created contexts are Ada package specifications [ 11, Mesa and Modula 
definition modules [8, 151, and “include-files” in C, Berkeley Pascal, and other 
languages. Automatically generated contexts are computed by the compiler from 
an existing program unit. For instance, if a block-structured programming 
language permits an inner block to be compiled separately, compiling the 
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enclosing block generates a context that specifies the items which the inner block 
may reference. When the inner block is processed, the compiler initializes its 
symbols table by reading the context it had produced earlier. Ada subunits and 
Simula classes [3] can be implemented with automatic contexts. 

Contexts have three major uses. First, contexts are effective for implanting 
common declarations into multiple compilation units, without having to retype 
them in every unit. Thus, contexts permit the sharing of a single copy of 
declarations, with the obvious advantages for updates. Second, contexts assure 
global type correctness for separate compilation. Using the proper contexts, the 
compiler can check that each unit uses its imported interfaces properly, and 
implements its exported interface as expected. The value of checking interfaces 
can hardly be underestimated, because programmers must routinely deal with 
the interfaces of complex and unfamiliar subsystems. Interfacing to an unfamiliar 
system is more prone to error than working within one’s own system. For this 
reason, type checking of interfaces is more likely to detect errors than intramodule 
type checking. 

A third use of contexts applies only to automatically generated contexts. An 
automatic context transmits symbol table information to nested, separately 
compiled blocks. It contains declarations of all objects visible to the nested 
blocks, plus additional code generation attributes. These attributes are typically 
block levels, offsets, and sizes of data structures. Thus, automatic contexts also 
perform some of the functions traditionally implemented by linkers. A survey of 
compilation mechanisms using contexts appears in [ll]. 

With current compiler technology, contexts have a serious drawback. To 
guarantee consistency, all compilation units using a changed context must be 
recompiled, no matter how small the change. For instance, changing a comment 
or adding a new declaration to a pervasive context may cause the unnecessary 
recompilation of the entire system. Similarly, revising a context item that is used 
in only a few units triggers the recompilation of all units using that context, 
rather than the few units using the item. 

With modern high-level languages, redundant compilations are a serious ob- 
stacle. The processing cost of making a minor change or adding a few declarations 
to a large system may be so great that it retards the growth and evolution of the 
system. At the very least, it imposes hours of idle time on development teams 
while everything is periodically recompiled from scratch [6]. High compilation 
costs also tend to convolute system structure, because they force programmers 
to incorporate changes in ways that minimize the number of recompilations, 
rather than preserve well-structuredness. 

In effect, guaranteeing system-wide type consistency with contexts may nullify 
the time savings that separate compilation is supposed to provide. The reason is 
that the usage relation among contexts and compilation units is too coarse. By 
refining this relation, this paper arrives at a simple and effective mechanism that 
causes recompilation of only those units that are affected by a given context 
change. The next section presents the basic idea of this mechanism, while Section 
3 discusses the mechanism in detail. Section 4 describes a prototype implemen- 
tation using the Berkeley Pascal compiler, and presents some performance 
results. An extension for languages that permit overloading of identifiers follows. 
Additional refinements appear in Section 6. 
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2. OVERVIEW OF SMART RECOMPILATION 

Consider a single compilation unit and a set of contexts. We say that a compi- 
lation unit “depends” on a context if it may reference identifiers declared in that 
context. The following recompilation rule applies. 

Conventional Recompilation Rule: A compilation unit must be recompiled whenever 

(1) the compilation unit changes, or 
(2) a context changes upon which the compilation unit depends. 

The purpose of part (1) of the rule is obvious. Part (2) guarantees that any 
context modifications propagate into the dependent units. It also has the effect 
of checking for syntactic or semantic errors that the change might have intro- 
duced. The MAKE program [5] implements the rule. The Ada [l] and Mesa [B] 
language manuals prescribe similar rules, with the additional aspect that each 
context is a compliation unit in its own right. 

Compilations triggered by part (2) may be redundant. The smart recompilation 
mechanism presented here eliminates most redundant recompilations. The basic 
idea is as follows. If a context is modified, a change analysis of the old and new 
contexts produces a change set, which is intersected with the reference set of each 
dependent compilation unit. The change set consists of those context items that 
were either added, changed, or deleted. The reference set of a compilation unit 
records which context identifiers were used outside their declaring contexts. If 
the intersection of these two sets is empty, then the compilation unit need not 
be reprocessed. 

Figure 1 illustrates. File f.cxt is a context containing declarations for a hypo- 
thetical traffic light control program. File prog.p is a compilation unit dependent 
upon context f.cxt. All examples are formulated in Berkeley Pascal, which is 
equipped for separate compilation. The directive #include instructs the compiler 
to read in a context. 

Assume the following sequence of events. File prog.p is compiled, which 
produces a reference set for f.cxt and an object module. The reference set is 
(NumOfStreets, NumOfAvenues, PrimaryIntersect, TrafficLights 1. This set is 
determined by computing the transitive closure of dependencies among declara- 
tions. For instance, the variable Grid depends directly upon the first three 
declarations in the set, and indirectly upon the fourth. Note that the enumeration 
literal red, though referenced in prog.p, is not included. Enumeration literals are 
subordinate to the declaration of the enumeration type, and including the 
identifier of the enumeration type suffices. Whenever anything about an enu- 
meration literal is changed, the entire enumeration type is considered changed, 
and recompilation will be triggered properly. Record types are treated in a similar 
way: Reference and change sets summarize access to, and change of, record fields, 
by listing the corresponding record types. 

Now assume that we redefine the type TrafficLights (by adding, say, the literal 
RedBlink). When the program is reprocessed, the smart compiler detects that 
prog.p depends on a changed context. It therefore computes the change set by 
comparing the old and new versions of the context. (The comparison also assures 
that the new context is syntactically and semantically correct.) The change set 
contains TrafficLights. Its intersection with the previously computed reference 
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File fxxt: 
const 

NumOfStreets = 40; 
NumOfAvenues = 20; 

type 
TrafficLights = (red, amber, green); 
MorningRush = 7 . . 9; 
EveningRush = 16 . 18; 
PrimaryIntersect = record S, N, E, W: TrafficLights end; 

File progp : 
#include “f.cxt” 
var 

Grid: array[l . . NumOfStreets, 1 . . NumOfAvenues] of PrimaryIntersect; 
. . 

Grid[i, j]. S := red; 

Fig. 1. Compilation unit prog.p with one context. 

set is not empty, and the smart compiler therefore reprocesses prog.p. No 
recompilation would occur if instead we had changed the type of MorningRush, 
added a new declaration, inserted a comment, or rearranged the textual layout. 

The procedure outlined above still has two flaws. First, it may mask redeclar- 
ations and overloading errors. For instance, adding another declaration for Grid 
to the file f.cxt will trigger no recompilation and therefore no error message, 
although the program would obviously be illegal. Second, a context may reference 
free identifiers, but supply no indication where the corresponding declaration 
can be found. For example, it is legal to split f.cxt into two files and include them 
both in prog.p. In this case, the second context may refer to an item that is not 
declared in it. The problem with this situation is that the semantic correctness 
of the reference to the free identifier cannot be checked by analyzing the second 
context alone. The following section shows how to eliminate these problems. 

3. SMART RECOMPILATION WITHOUT OVERLOADING 

This section states precisely how smart recompilation works. Overloading of 
identifiers and qualification of referenes are not permitted, but Section 5 will lift 
these restrictions. Overloading means that there may be more than one declara- 
tion for the same identifier in the same scope. Qualification means that an 
identifier reference is syntactically associated with the identifier’s declaring 
context. Usually, this association is made by simply concatenating context name 
and identifier or by special syntax in import-clauses. Qualification prevents 
conflicts if two or more contexts introduce the same identifier. Simple file 
inclusion, for example, works without qualification and can lead to errors caused 
by multiply declared identifiers. We first describe smart recompilation without 
qualification, and then outline the simplifications possible with qualification. 

To avoid unnecessary detail, we assume that separate compilation is only 
permitted at the global level. Removing this restriction is merely a matter of 
bookkeeping and involves automatically generated contexts for each separately 
compiled, inner block as outlined in the Introduction. 
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3.1 The Multiversion Model 

We assume that “changing” a program module (i.e., a context or a compilation 
unit) does not really change it; instead, a new one is created. Normally, the newly 
created module starts out as a copy of an existing one and can be modified with 
an editor until the editing session terminates. At this time, the new module 
becomes immutable. 

We postulate the presence of a version control system that composes configu- 
rations. The version controller decides which version of a module to pass to the 
compiler for processing. For this purpose, the controller keeps track of a special 
relation among modules, called the Reuision-Of relation. This relation specifies 
for each module, from which other module (or modules) it was created by manual 
editing. This relation is important for implementing version selection rules. For 
example, a selection rule useful during software development is to always choose 
the newest revision of a module. More sophisticated rules appear in [7, 121. 

Of course, the version control system must be able to store arbitrarily many 
revisions per module. By saving only the differences between successive revisions, 
the space requirements are modest, as has been demonstrated by a number of 
systems [9, 7, 13, 141. 

3.2 The Compilation Model 

Contexts and compilation units contain a number of declarations. The term 
declaration stands for any named construct that can be defined in a programming 
language. Examples are symbolic constants, types, variables, macros, generics, 
subprograms, subprogram headers, processes, and abstract data types. A decla- 
ration introduces an identifier and associates that identifier with a body. The 
body can be accessed elsewhere (in particular, in the body of another declaration) 
by using the identifier in some referencing construct (for instance, in an assign- 
ment statement). 

A declaration may introduce subordinate identifiers. Examples are enumera- 
tion literals, record fields, keyword parameters, and operations of abstract data 
types. The following definition allows us to summarize references to subordinate 
identifiers as references to the main identifier. 

Definition: Declaration A depends on declaration B iff the body of A references 
the identifier of B or one of B’s subordinate identifiers. 

For example, if procedure P assigns to field F of variable V, if V is of type R, 
and if R is a record type with a field F of type T, then P depends on V, which 
depends on R, which depends on T. Obviously, the summarization discards some 
information. Section 6 discusses a more sensitive smart recompilation mechanism 
that retains this information. 

Transitive dependencies of declarations are important for determining the 
effect of changes. In the above example, if T changes, P must be recompiled. 
Note that circular dependencies are permitted. Circularities are needed, for 
instance, for declaring records containing pointers to each 0ther.l 

r Ada and Mesa prohibit circular dependencies to cross context boundaries by imposing a partial 
ordering on contexts. However, simple text file inclusion can easily lead to intercontext circularities. 
The mechanism described here treats circular references properly. 
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An identifier introduced in a context by a declaration is said to be “declared” 
in that context. An identifier that is referenced in a context, but not declared in 
it, is said to be “free” in that context. There are two ways of supplying declarations 
for free identifiers. The first one is if the context itself contains nested inclusion 
directives for obtaining missing declarations from other contexts. This approach 
is taken in Ada, Mesa, and Modula. Alternatively, a context may inherit decla- 
rations from the compilation unit or other contexts in which it is used. Include- 
files are typically applied in this fashion. A problem with free identifiers is that 
they complicate the process of computing differences between contexts and 
ascertaining the semantic correctness of contexts. Another problem is that it 
is generally impossible to compute the transitive closure of dependencies by start- 
ing a search in the context with the free identifiers. The complete transitive 
closure is only available when all contexts are combined during compilation. 
The mechanism introduced here permits nested context inclusion as well as 
free declarations. 

The following restriction guarantees that extra declarations can be added to 
contexts and that unused declaration can be removed or changed, without 
affecting already generated code. This restriction is important because it allows 
contexts to be changed without necessarily forcing recompilations. 

Restriction 1. Code generated for referencing some declaration D declared in a 
context may only be derived from D itself and from declarations that D depends 
on transitively. 

This restriction precludes optimization techniques that add dependencies 
which are not apparent from explicit references in the source program. Interpro- 
cedural optimization usually adds a great number of such dependencies. As an 
alternative for Restriction 1, one could record all the additional dependencies 
introduced and add them to the reference sets. This technique is not difficult to 
implement, but since it is strongly language- and compiler-dependent, we chose 
the more general approach reflected by Restriction 1. Furthermore, note that the 
restriction only applies to declarations in contexts. Hidden dependencies among 
declarations appearing in compilation units are allowed. For a compilation unit 
(not a context), any change requires reprocessing, which reanalyzes embedded, 
hidden dependencies. Thus Restriction 1 is not as severe as it appears at first. 
(See also the discussion of attribute dependencies in Section 6.) 

A subtle example where the restriction applies is the following. The address of 
a global variable introduced by a context should not be assigned by the compiler, 
since that address may depend on the size and number of preceding, unrelated 
variables. The address must either be determined by a later phase (e.g., the 
loader), or must be made an explicit part of the declaration. For global variables, 
the former approach is the one taken by most language systems; automatically 
generated contexts employ the latter technique. As an example for the latter, 
suppose a subprogram P at block level n(n 2 2) is compiled separately. When 
compiling the block enclosing P, a context is generated that contains all decla- 
rations visible to P, with associated code generation attributes. In particular, 
each visible variable Vat block level b( 15 b < n) has the address (b, d) associated 
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with it, where d is the offset of V in its activation record. If the block containing 
V is changed, recompilation of that block produces a new context with a possibly 
altered address for V. The determination of whether P needs to be recompiled 
must take into account the entire declaration of V, including the old and new 
addresses. 

Restriction 2. Within a context, directives for context inclusion must appear 
before declarations. 

This restriction is needed for two reasons: First, it makes it easier to determine 
whether context inclusion, and therefore system structure, have changed. Second, 
it makes it feasible to deal with inherited declarations and their effects on 
semantic correctness. Without the restriction, the directives could be intermixed 
with declarations, making it difficult to determine whether a context remains 
semantically correct when the directives are moved around, deleted, or added. 

Note that Restriction 2 is easily satisfied, because a context with an inclusion 
directive in the middle can always be split. Moreover, the restriction applies only 
to contexts, and not to compilation units. The restriction is already enforced by 
some programming languages, for example Ada, Mesa, and Modula. 

3.3 Problem Statement 

Given a compilation unit MO and contexts Ml, . . . , M,,, assume that the 
configuration C = (MO, . . . , M,) is legal and was compiled successfully. The 
compilation resulted in a translation with an associated history attribute con- 
taining the following sets: 

DECLi: 
REFiI 

The identifiers declared in Mi(0 5 i 5 n); 
The identifiers declared in Mi and transitively referenced in some 
other context or compilation unit Mj(1 I i I n, 0 5 j 5 n, i # j). 
(REF, is not needed.) 

Given a new context mX(l % x 5 n), inspect only M,, i%!X and the sets DECLi 
and REFi to determine the following: 

(a) Is the configuration C = (MO, . . . , Mx, . . . , M,J legal, that is, syntactically 
and semantically correct? 

(b) Are the translations generated by the compiler for C and c functionally 
equivalent? 

3.4 Solution 

The following decision procedure answers the two questions above by performing 
a change analysis. 

Change Analysis 1 (No Over/.oading, No Qualification) 

Test 1. Analyze li;i syntactically, as specified by the programming language manual. 
If there are any errors, then c is illegal. 

Test 2. Compare the context inclusion directives (if any) in M, and li&. If they are not 
identical, recompile. 
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Test 3. 

Test 4. 

Test 5. 

Test 6. 

Test 7. 

Test 8. 

Waiter F. Tichy 

Analyze mX semantically. The rules specified by the programming language 
manual apply, except that occurrences of free identifiers are legal. If there are 
any other errors then c is illegal. 
Compare M, and mz and determine the following sets. 

ADD,: The identifiers declared in az but not in n/r,. 
DEL,: 
MOD,: 

The identifiers declared in M, but not in &f=. 
The identifiers declared in both M, and M, whose declarations 
differ. 

FREE,: 
AMREF,: 

The identifiers free in Mz. 
The identifiers transitively referenced by declarations in ADD, 
and MOD,. 

If AMREF, FU FREE, # 0, then an added or modified declaration references a 
free identifier and recompilation is necessary. 
If DEL, n FREE, # 0, then a deleted identifier is referenced in ii&., and C is 
illegal. 
If MOD, FU REF, # 0, then a local declaration changed that is referenced 
elsewhere, and recompilation is necessary. 
If ADD, fl DECLj # 0 for some j, 0 I j 5 n, j # X, the mX introduced a 
declaration that conflicts with an external one, and c is illegal. 
If DEL, n REF, # 0, the RX is missing a declaration that is referenced 
externally, and (5 is illegal. 

End Change Analysis 1 

The purpose of Test 1 is obvious. Test 2 is rather conservative, in that it 
triggers recompilation whenever inclusion directives change. This test could be 
refined to allow addition of inclusion directives if no multiple declarations arise. 
Tests 1 and 3 combined determine whether the context is legal internally, as far 
as that is possible. Although free identifiers are permitted, the rule “declaration 
before reference” applies, if the programming language specifies it. 

Free identifiers in MX present a problem since their use cannot be checked 
locally for legality. However, M, is legal by assumption. Thus, if a free identifier 
is referenced in exactly the same way in both M, and iWX, then the use of that 
free identifier is correct in both. Otherwise, only a recompilation can check 
legality. Test 4 implements this analysis. 

Deletions can result in free identifiers that are not necessarily included in 
AMREF,; Test 5 checks for those. Test 6 causes a recompilation if a referenced 
declaration was modified. Test 7 assures that any new declaration does not 
interfere with existing ones. This check must be relaxed if overloading is permit- 
ted. Test 8 prints an error message if a deleted declaration is still referenced 
externally.’ 

THEOREM. If Change Analysis 1 detects no errors (Tests 1, 3, 5, 7, and 8) and 
triggers no recompilation (Tests 2, 4, and 6), then 

(i) C is a legal configuration and 
(ii) the translations of C and c are functionally equivalent. 

‘The tests do not have to be executed in the order implied by their numbers. For example, Test 1 

(syntax analysis) and Test 3 (semantic analysis) may be performed in an overlapped fashion as is 
usual in modern compilers. Tests 4 through 8 are independent and may be performed in any order. 
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Table I. Classes of Changes and Possible Errors Introduced 

A. 
B. 
C. 
D. 

E. 
E.l. 
E.2. 
E.3. 
E.3. 
E.4. 
F. 
F.l. 
F.2. 
F.3. 
F.3. 
F.4. 
G. 
G.1. 
G.2. 

Difference 

Textual layout (spacing, comments) 
Syntax errors 
Inclusion directives 
Order of declarations 
Declaration before reference (if applicable) 
Modified declaration 
Modified declaration references local declarations 
Modified declaration references external declarations 
Modified declaration introduces undeclared identifiers 
Modified declaration is referenced locally 
Modified declaration is referenced externally 
Additional declaration 
Additional declaration references local declarations 
Additional declaration references external declarations 
Additional declaration introduces undeclared identifiers 
Redeclaration of existing local declaration 
Redeclaration of existing external declaration 
Deleted declaration 
Deleted declaration is referenced locally 
Deleted declaration is referenced externally 

Test 

No effect 
Test 1 
Test 2 

Tests 3, 4 

Test 3 
Test 4 
Test 4 
Test 3 
Test 6 

Test 3 
Test 4 
Test 4 
Test 3 
Test I 

Test 5 
Test 8 

PROOF. (i) Consider how M, and ii;i, may differ. The simplest differences are 
(A) different textual layout and (B) syntactic errors in j@,. Clearly, change of 
textual layout like spacing and commenting has no effect in free-form languages, 
as long as the order of the individual tokens is the same. Syntactic errors are 
detected by parsing. 

In the absence of syntactic errors, the only other differences are (C) different 
inclusion directives, (D) different order of declarations, (E) declarations that 
have the same identifier but different bodies, (F) additional declarations in i%iz, 
and (G) declarations missing from aI. Table I classifies the possible differences, 
and shows which test in Change Analysis 1 determines whether a difference 
constitutes an error. 

(ii) Consider configurations C and C. By (i), both are legal. C differs from C 
in that it may have deleted, added, or modified declarations. By Tests 5 and 8, 
deleted declarations are not referenced anywhere in C. By Restriction 1, code 
generated for accessing other declarations is not affected. Consequently, c’s 
translation differs from C’s translation only in that some “deadwood” was 
eliminated. 

Added declarations are not referenced externally because of Test 7 and because 
C is legal. Modified declarations are not referenced externally because of Test 6. 
Added and modified declarations may be referenced locally, though. (For example, 
there may be a declaration in mz that references a modified declaration in the 
same context.) However, since REF, reflects the transitive closure, the locally 
referencing declarations cannot be referenced externally. Thus they are all 
“deadwood,” and can be left uncompiled. Recompilation will be triggered if a 
reference to one of them is inserted later. 0 
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File flat: 
const 

NumOfStreets = 40; 
NumOfAvenues = 20; 

File f2.cxt: 
#include “f l.cxt” 
type 

TrafficLights = (red, amber, green); 
StopLights = (redblink, yellowblink); 
MorningRush = 7 . 9; 
EveningRush = 16 . 18; 

File f3. at: 
type 

PrimaryIntersect = record S, N, E, W: TrafficLights end; 
SecondaryIntersect = record S, N, E, W: StopLights end; 

File prog.p: 
#include “f 2.cxt” 
#include “f3.cxt” 
var 

Grid: array[l . . NumOfStreets, 1 . NumOfAvenues] of PrimaryIntersect; 
. 

Grid[i, j].S := red; 

Fig. 2. Compilation unit prog.p and three contexts. 

( f l.cxt) NumOfStreets, NumOfAvenues ) 
(f2.cxt) TrafficLights, StopLights 1 MorningRush, EveningRush 
(f3.cxt) PrimaryIntersect 1 SecondaryIntersect 
(prog.p) Grid 1 

Fig. 3. History attribute generated for prog.p. 

3.5 Example 

Consider Figure 2, a contrived example using three contexts. For simplicity, we 
assume that contexts can only be requested at the outermost block level. It does 
not matter whether a context is included by the compilation unit or another 
context; the inclusion directives can always be rearranged such that they appear 
in the compilation unit only. In fact, automatically “flattening” the file inclusion 
in this manner is the best way to handle inherited free identifiers. 

Figure 3 shows the history attribute generated by compiling progp. The sets 
DECL and REF of a context can be represented overlapped, because the former 
is a superset of the latter. The vertical bar ( 1 ) separates the reference set from 
the rest of the declarations. 

The reader is encouraged to check what happens if declarations in the contexts 
are added, deleted, or modified. For instance, removing or changing the constant 
EveningRush has no effect, whereas removing the constant NumOfAvenues 
causes an error message, and changing it triggers a recompilation. Similarly, 
changing StopLights causes a recompilation. Note that the only reference to 
StopLights is in the unreferenced declaration SecondaryIntersect. However, since 
SecondayIntersect appears in a different context, recompilation is necessary to 
check the legality of the change. 
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3.6 Putting It All Together 

When comparing two contexts during change analysis, the textual layout of 
declarations and other syntactic variations should have no effect. Comparing 
abstract syntax trees filters out these differences. Two declarations are identical 
if they have the same identifier and their abstract syntax trees are identical. This 
test can be carried out by a simple, recursive program. 

The version control system maintains a pool of object modules which were 
compiled previously. Whenever the object module of a compilation unit is 
requested, the version controller checks whether one already exists. If so, saving 
the recompilation may be possible. First the version controller inspects the 
history attribute of the candidate object module to determine which contexts 
were used to generate it. If an exact match with the desired configuration is 
found, the object module can be used as is. Otherwise change analysis of the old 
and the new configurations is necessary. If this analysis finds no errors and 
triggers no recompilation, the existing object module can be reused. 

When an object module is reused, a new history attribute is added to it. The 
new history attribute is the same as the old one, except that the set DECL, is 
updated to reflect the replaced context. The reference sets remain unchanged. 
This approach guarantees that future change analyses operate reliably. 

When more than one context is replaced, the contexts are handled one after 
the other, producing a new history attribute after every step. If declarations are 
moved from one context to another, this technique may generate spurious error 
messages. For example, Tests 5 or 8 would find an error in the context from 
which the declartion was removed, whereas a fresh recompilation would not 
report that error. Thus, during multicontext changes, errors detected by Tests 5, 
7, and 8 should actually trigger a recompilation. Saving the potentially redundant 
compilation is possible with a more detailed analysis that checks whether errors 
reported by these tests cancel. This analysis needs data structures that record 
precisely where each identifier is referenced. The details are left to the reader. 

A similar inefficiency results from the fact that reference sets do not contract 
after suppressed compilations. For example, suppose declaration A in context M 
is not referenced, and is the only declaration that references B in context N. 
When A is deleted, no recompilation is necessary, but the reference set of N still 
lists B as in use. When B is deleted at a later time, an unnecessary recompilation 
(or error message) results. This slight inefficiency could be corrected by associ- 
ating a reference count with each element in the reference sets, or by using the 
method mentioned in the previous paragraph. Note, however, that the mechanism 
is safe in that it will never omit a necessary recompilation. 

4. PROTOTYPE 

We implemented a prototype by modifying the Berkeley Pascal Compiler, pc, 
running on the UNIX@ operating system. Version control was provided by 
MAKE[5] and RCS[14]. RCS, short for Revision Control System, collects revi- 
sions of modules into revision groups. It conserves space by storing only deltas. 

ep UNIX is a trademark of AT&T. 
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4.1 Implementation 

Adding the generation of the reference sets to the Pascal compiler was straight- 
forward. Each symbol table entry was expanded with a reference bit and a pointer 
to the file name in which the declaration appeared. The lexical analyzer of the 
compiler turns on the reference bit whenever it encounters an identifier that had 
been declared in a different context. Computing the transitive closure of depend- 
encies is simply a matter of following all links emanating from a symbol table 
entry, and setting the reference bit in the reached declarations. For example, if 
an array variable is used, the declaration of that variable, the type of the array 
elements, and the index type(s) are marked. If compilation succeeds, a simple 
program scans the symbol table and writes the sets DECL and REF of each 
context into a file. 

The change analysis consists of two separate phases. The program cdiff(short 
for context difference) implements the first phase. It takes a pair of context 
revisions and performs Tests 1, 2, 3, 4, and 5. It also assures that the inclusion 
directives are at the beginning of the context. Furthermore, cdiff produces the 
sets ADD, DEL, and MOD as output. The collection of these sets is called the 
change set. The change set is needed for Tests 6,7, and 8 later. Essentially, these 
tests compare the change set with the history attribute of an object module. This 
arrangement has the advantage that the change set is computed once and can 
then be matched against the history attributes of several object modules. This 
division saves time, because a context change normally affects several compilation 
units which must all be brought up to date. If cdiff detects any errors, it produces 
no change set and triggers a recompilation if the user wants to have more detailed 
error messages. 

Cdiff was easy to build. It is essentially the declaration parser of the Pascal 
compiler. It reads in two contexts, say M and @, builds up a symbol table for 
each, and then compares individual entries. Each entry in the symbol tables is 
the abstract syntax tree of a declaration. To produce the change set, the symbol 
table for context M is traversed. For each identifier declared in M, the corre- 
sponding identifier is looked up in the symbol table for context li;i. If the two 
declarations are not identical, then the identifier is included in the set MOD; if 
the identifier is not declared in M, it is added to the set DEL. In order to detect 
declarations that have been added, identifiers are marked as they are looked up 
in the symbol table for M. Any entries still unmarked in ii? after scanning M’s 
table are part of the set ADD. Hashing looks up entries quickly. 

A controlling program, called spc (for Smart Pascal Compiler), provides the 
mechanism for comparing the change set with the history attribute. The job of 
determining which contexts and compilation units must be analyzed is left to 
MAKE. If anything appears out of date, MAKE invokes spc, which retrieves old 
contexts from RCS, computes the change sets, intersects them with the reference 
sets, and, if necessary, starts the modified Pascal compiler. 

4.2 Performance 

Performance of the implementation was surprisingly good. Measurements on 
about 20 compilation units (of up to 700 lines, with an average of 200 lines) and 
3 contexts (of up to 190 lines, with an average of 140 lines) were performed on a 
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VAX/780 running the Berkeley UNIX system 4.2. Results consistently indicated 
that saving a single compilation more than amortizes the cost of the extra 
analysis; any additional recompilation that is suppressed constitutes a net saving. 

For calculating the potential savings achievable with spc, consider the following 
costs: (a) generating the history attribute, (b) generating the change set, and 
(c) comparing change set and history attributes. The time for generating the 
history attribute was not measurable with the limited accuracy of the UNIX 
clock. Given a clock accuracy of 0.1 seconds and an average compilation time of 
about 20 seconds per module, it follows that writing the history attribute takes 
less than 1 percent of the total compilation time. This is not surprising, since 
compilers are basically I/O bound, and the history attribute represents a tiny 
fraction of total I/O. The additional file space needed is also quite small, and 
could be nearly eliminated by redesigning the object module format. Much of the 
information contained in the history attribute is already buried in the object 
module, where it is needed for the debugger. 

The cost of producing the change set is, on the average, less than a third of 
the cost of a compilation. The reason is that the amount of input is small, and 
output is even less. Furthermore, producing the change set is a one-time cost: It 
is computed once, but will be intersected with the history attributes of many 
object modules. 

Finally, computing the intersections is fast. For nonempty change sets, the 
average time was about 0.2 seconds (less if the change set was empty). This is a 
mere 1 percent of compilation cost. Stated another way, determining whether 
recompilation is necessary is two orders of magnitude faster than compiling. 

In summary, the only nonnegligible cost is in computing the change set. 
However, this cost is already more than amortized by suppressing a single 
compilation. Thus, substantial savings can be obtained even in systems of 
moderate size. Note that the contexts used for measurement were fairly large; in 
languages like Ada or Modula, contexts are probably smaller, reducing the cost 
of computing the change set. Furthermore, the compilation units were small; 
with larger units, the advantage of saving compilations becomes more pro- 
nounced. One should also consider that the Berkeley Pascal compiler is already 
reasonably fast. Highly optimizing compilers or compilers for complicated lan- 
guages are slower, and even greater savings are possible. 

5. OVERLOADING 

A number of programming languages allow overloading of identifiers (i.e., several 
declarations for the same identifier in the same scope). This section describes 
how to extend smart recompilation for overloading. 

Languages that permit overloading also specify rules for overload resolution 
(i.e., for resolving the ambiguities introduced by overloading). For each identifier 
reference, overload resolution inspects all alternative declarations of that iden- 
tifier and succeeds if it can unambiguously select a single declaration from this 
set. Overload resolution may fail in two ways: A reference of an identifier may 
be unresolvable, that is, there may not exist a declaration that overload resolution 
can select (there simply may be no declaration of that identifier, or there may be 
several, none of which fit the constraints of the reference) or a reference may 
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be ambiguous, that is, there may exist two or more candidate declarations that 
could be selected equally well. An efficient algorithm for overload resolution in 
Ada appears in [2]. 

A complicating factor is that in most languages, overloading is restricted to 
certain classes of identifiers. In Ada, for example, only subprogram identifiers, 
operators, enumeration literals, and entry identifiers may be overloaded. For 
clarity, we first consider unrestricted overloading (i.e., languages in which any 
identifier may be overloaded) and then outline the changes for restricted over- 
loading. 

5.1 Unrestricted Overloading 

Assume that configuration C has been compiled successfully, and that the sets 
DECLi and REFi have been computed as before. Because of overloading, the sets 
DECLi may have pairwise nonempty intersections. Although overload resolution 
inspects all declarations with the same identifier, a set REFj records an identifier 
only if a declaration in Mj with that identifier was actually selected. 

A case analysis similar to the proof in Section 3 yields the decision procedure 
for smart recompilation. An important consideration is that the identifier of any 
added, modified, or deleted declaration, as well as any identifier referenced by 
added or modified declarations, may be overloaded. Furthermore, overloading 
may be caused by a context other than the one being analyzed. 

Change Analysis 2 (Unrestricted Overloading, No Qualification) 

Test 1’. Syntax analysis of M, (same as in Change Analysis 1). 
Test 2’. Comparison of context inclusion directives in M, and ii& (same as in Change 

Analysis 1). 
Test 3’. Semantic analysis of RX. The rules specified by the programming language 

manual apply, except that occurrences of unresolvable identifiers are legal. If 
there are any other errors, then c is illegal. 
Compare M, and mX and determine the following sets. 

ADD,: The identifiers declared in i%?= but not in M,. 
DEL,: The identifiers declared in M, but not in ii?=. 
MOD,: Consider the set of identifiers declared in both M, and ii?,. To 

obtain MOD,, delete from this set every identifier ID for which 
the following holds: For every declaration of ID in M, there is 
an identical declaration of ID in &&, and vice versa. 

UNRES,: The identifiers unesolvable in li?=; 
AMREF,: The identifiers transitively referenced by declarations in ADD, 

and MOD,. 
CREF,: The indices of those contexts other than && whose declarations 

can be referenced in ii&. (This set is determined by the context 
inclusion directives.) 

Test 4’. If (AMREF, n UNRES, # 0) V (AMREF, fl DECLj # 0) for some j E 
CREF,, then recompile. 

Test 5’. If DEL, fl UNRES, # 0, then recompile. 
Test 6’. If (MOD, fl REF, # 0) V (MOD, n DECLj # 0) for some j, 0 5 j 5 n, j # x, 

then recompile. 
Test 7’. If (ADD, fl REF, # 0) V (ADD, n DECLj # 0) for some j, 0 5 j 5 n, j # X, 

then recompile. 
Test 8’. If DEL, fl REF, # 0, then cf is illegal. 

End Change Analysis 2 
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As an example, consider modified declaration D in context i@%. If D is 
referenced externally (first half of Test 6’), or if the body of D references an 
unresolvable identifier (first half of Test 4’), then recompilation is necessary as 
in Change Analysis 1. If D is overloaded with declarations in other contexts 
(second half of Test 6’), recompilation checks whether D introduced an over- 
loading error (whether actually selected or not). Finally, recompilation is required 
if D references an identifier for which there are competing declarations in 
other contexts, even if the reference could have been resolved locally (second 
half of Test 4’). The recompilation checks whether the competing declara- 
tions cause ambiguities in the body of D. Semantic analysis of iiZX (Test 3’) 
merely checks the legality of strictly local overloading of D and the identifiers 
referenced by D. 

Added declarations are handled in exactly the same way as modified ones. 
Deleted declarations do not necessarily introduce errors, because they may be 
overloaded. Unchanged declarations need not be reanalyzed. 

For single context changes, Test 5’ can be accelerated as follows. If 
the declaration deleted from BX is not overloaded in c (i.e., the last declara- 
tion of that identifier was removed), then c is known to be illegal without a 
recompilation. 

In general, overloading requires more recompilations. However, if added, de- 
leted, and modified declarations are not overloaded and reference no overloaded 
identifiers, then Change Analysis 2 produces no more compilations than Change 
Analysis 1. The correctness proof of Change Analysis 2 is left as an exercise. 

5.2 Restricted Overloading 

Restricted overloading means that only certain identifiers may be overloaded. 
For example, identifiers of variables are usually not overloadable. Accordingly, 
the sets DECLi, REFip ADDi, DELiy and MODi must each be split into two 
classes: one containing the overloadable identifiers, the other the nonoverloadable 
identifiers. Smart recompilation executes Change Analysis 2 on the overloadable 
identifiers, and Change Analysis 1 on the rest. 

A further complication arises because the same identifier may not simultane- 
ously be both overloadable and nonoverloadable. For example, the identifier of a 
variable in one context may not be used as a subprogram identifier in another 
context. Although compilation of configuration C guarantees that C is free from 
such overlaps, li;i, may introduce them into C. The following simple steps guard 
against these errors. First, if a declaration is changed so that it becomes over- 
loadable though it was nonoverloadable before (or vice versa), this modification 
is treated like an addition to the overloadable identifiers and a deletion from the 
nonoverloadable identifiers (or vice versa). Thus, before the two change analyses 
are executed, the sets MOD, and DEL, must be set up to reflect the migration 
of identifiers from one class to another. Second, no overlap is permitted 
between the nonoverloadable and overloadable identifiers. This test, although 
seemingly expensive, can be executed efficiently by observing that significant 
changes can only be introduced by ADD, and MOD,. The details are again 
left to the reader. 
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5.3 Qualification of References 

Recall that qualification means that every identifier reference must be syntacti- 
cally associated with the context declaring the identifier. Qualification simplifies 
smart recompilation because it eliminates intercontext conflicts. Change Analysis 
I becomes both simpler and faster, because Test 7 can be eliminated. In Change 
Analysis 2, the second halves of Tests 4’, 6’, and 7’ can be removed, since 
overload resolution cannot cross context boundaries. A minor complication is 
that locally declared identifiers normally must be referenced unqualified. A simple 
solution is to add the qualification implicitly to all local references. 

Some programming languages provide facilities for both qualified and unqual- 
ified references, for example Modula and Ada. However, Modula’s import-clause 
satisfies our criterion for qualification. The clause uniquely specifies from which 
context an identifier is taken, even if it is not preceded by a context name. Thus 
the missing qualification can be added implicitly, and the simpler form of Change 
Analysis 1 applies. 

Ada’s context inclusion facilities are more complex. They have two parts, a 
with-clause and a use-clause. The with-clause introduces qualified identifiers 
from a context. If the use-clause is added, qualification may (but need not) be 
omitted. Unqualified references may introduce intercontext conflicts. For exam- 
ple, adding a declaration to a context causes an error if (1) there is another 
declaration with the same identifier in a competing context, (2) at least one of 
the declarations makes the identifier not overloadable, and (3) the identifier is 
referenced unqualified. This situation is similar to simple file inclusion, except 
that two conflicting declarations may coexist in separate contexts as long as all 
references are qualified. The simplest solution is to treat qualified and unqualified 
references separately. The qualified references are handled with the simplified 
analyses described above. For the unqualified references, Change Analyses 1 and 
2 are executed, but only for those contexts that appear in use-clauses, and 
restricted to those identifiers that are actually referenced unqualified. 

A further complication in Ada comes from the interaction between overloading 
and qualification. For example, it is legal to have the same identifier simultane- 
ously overloadable and not overloadable, provided the corresponding declarations 
are in separate contexts. However, in that case, all references to that identifier 
must be qualified. This rule involves the treatment of identifiers that migrate 
from one class to the other, and the test for the intersection among the two 
classes. It appears that the interaction between restricted overloading and 
unqualified references in Ada is unnecessarily complex. 

6. REFINEMENTS AND EXTENSIONS 

The mechanisms described here do not eliminate all redundant compilations. 
Several improvements are possible, even beyond the ones already discussed in 
Sections 4 and 5. First, the handling of free or unresolvable identifiers could be 
more sophisticated. It is usually possible to derive some information about a free 
identifier from its use. For instance, if it is obvious from context that a certain 
declaration is a range type, then using it as a range in a new declaration need 
not trigger recompilation (Tests 4 and 4’). Note also that the history attribute 
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contains enough information to determine where missing declarations can be 
found, and an exact legality check could be done, possibly saving redundant 
recompilations. Further experimentation is necessary to determine whether the 
gain outweighs the cost. 

Another refinement would be to replace declaration dependencies with attri- 
bute dependencies, as proposed by Dausmann [ 41. Attribute dependencies record 
which attributes of declarations were actually used during compilation. For 
instance, assume a compilation unit uses only information about certain fields 
in a record, but never the record’s size attribute. Then recompilation is not 
needed if a new field is appended to the record type. Similarly, adding a default 
parameter to a subprogram need not trigger recompilation of all calling units, 
provided subprograms are implemented such that default parameters are supplied 
by the callee and not the call site. Clearly, this refinement is strongly 
language- and compiler-dependent, and the code generator must be designed with 
smart recompilation in mind. 

A smart recompilation mechanism using attribute dependencies and exact 
legality checks may achieve the theoretical optimum of never causing an unnec- 
essary recompilation. However, only experimentation can answer the question 
whether the potential savings justify the cost of the additional analysis. Perhaps 
the simple mechanism described here is already so close to the optimum in the 
majority of cases that only marginal gains can be accomplished, or perhaps the 
additional analysis is so expensive in storage and runtime costs as to completely 
overwhelm the incremental improvement. On the other hand, very large software 
projects might benefit. 

The Desoto project [lo] attempted to build a smart recompilation mechanism 
for Mesa. The basic ideas were similar, but the project failed, partly because of 
the lack of an adequate version control system. A system for storing multiple 
revisions of source code reliably and economically is indispensable. Furthermore, 
each object module must carry a history attribute that unambiguously specifies 
how the object module was produced. In the prototype discussed here, the decision 
of when to start spc was based on MAKE’s timestamp mechanism rather than 
on inspecting history attributes. Timestamps are an approximation of history 
attributes, and it is possible to construct situations where MAKE does not start 
spc although it should. Further development in version control systems is needed. 

An important extension of smart recompilation helps programmers update 
modules after changes, Recompilation is often not sufficient to bring a system 
back up to date; some reprogramming may be necessary. For example, recompi- 
lation suffices if a record type is expanded or the fields are reordered. However, 
if a parameter is added to a subprogram, or the type of a variable changes, then 
an adaptation of the using compilation units is required. The following, somewhat 
more sophisticated change analysis can help with the updating. 

Suppose the change analysis examines changed declarations in old and new 
contexts, and determines whether recompilation is sufficient or not. In conjunc- 
tion with the history attributes, the analysis can then offer two services. First, 
the programmer revising a context can be informed (or warned) about the impact 
his changes may have on the rest of the system, in terms of the number of 
modules to be recompiled and the number of modules to be edited. Second, if the 
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change is to be carried out, change information is passed to an editor, which 
steps the programmer through the discrepancies, displaying the old and new 
revisons of the appropriate declarations, and perhaps even proposing corrections. 
Furthermore, if the programmer accepts a change regarding a particular item, 
the editor can apply a similar change throughout. 

This functionality would form the basis for a maintainer’s o-.&ant, an intelli- 
gent program that helps a maintainer carry out changes. The programmer would 
do the creative work of initiating modifications, whereas the machine would 
perform the task of bringing the system into a consistent state. This latter task 
is tedious and error prone for humans, and therefore a prime candidate for 
automation. 

7. CONCLUSIONS 

The smart recompilation mechanism described here eliminates most redundant 
compilations. It is simple and efficient, and the potential time savings in large 
systems are significant. The mechanism is based on change analysis, which can 
be added with modest effort to existing compilers, since almost all of the data 
structures are already present, and syntactic and semantic analyses can be reused. 
The mechanism can be extended for languages with overloading and with facilities 
that help programmers bring a system up to date. 
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