Overview

Overview of

Software Development
Environments

Susan A. Dart, Robert J. Ellison, Peter H. Feiler, and A. Nico Habermann

Edited by Peter Fritzson

Overview

1 Introduction

Environment refers to the collection of hardware and software tools a system
developer uses to build software systems. As technology improves and
user expectations grow, an environment's functionality tends to change.
Over the last 20 years the set of software tools available to developers has
expanded considerably.

We can illustrate this change by observing some distinctions in the termi-
nology. Programming environment and software development environment are
often used synonymously, but here we will make a distinction between the
two. By "programming environment" we mean an environment that sup-
ports only the coding phase of the software development cycle—that is,
programming-in-the-small tasks such as editing and compiling. By software
development environment we mean an environment that augments or auto-
mates the activities comprising the software development cycle, including
programming-in-the-large tasks such as configuration management and
programming-in-the-many tasks such as project and team management. We
also mean an environment that supports largescale, long-term maintenance
of software.

The evolution of environments also demands that we distinguish basic op-
erating system facilities—fundamental services such as memory, data, and
multipleprogram management—rfrom the enhanced functionality that
characterizes state-of-the-art environments. This enhanced functionality is
typically achieved through tools such as browsers, window managers, con-
figuration managers, and task managers. In a sense, environments have
evolved in concert with the software engineering community's understand-
ing of the tasks involved in the development of software systems.

To better understand the technological trends that have produced state-of-
the-art environments, we here present a taxonomy of these trends. We cite
examples of research and commercial systems within each class. We intend
the taxonomy to show the description of the trends and to suggest where
more work needs to be done.

Overview

The taxonomy comprises four categories, each representing trends having a
significant impact on environments—on their tools, user interfaces, and ar-
chitectures. The four categories are:

= Language-centered environments

These are built around one language, thereby providing a tool set suited to
that language. These environments are highly interactive and offer limited
support for programming-in-the-large.

= Structure-oriented environments

These incorporate techniques that allow the user to manipulate structures
directly. The language independence of the techniques led to the notion of
generators for environments.

= Toolkit environments

These provide a collection of tools that includes language-independent sup-
port for programming-in-the-large tasks such as configuration manage-
ment and version control. There is little, if any, environment-defined control
and management of tool usage.

= Method-based environments

These incorporate support for a broad range of activities in the software de-
velopment process, including tasks such as team and project management
(programming-in-the-many). These environments also incorporate tools for
particular specification and design methods

We could discuss the trends from several perspectives. For example, we
could take a tool builder's perspective, focusing on techniques for tool inte-
gration. We could take an expert system builder's perspective, focusing on
the automation of the software development process by means of a pro-
grammer's assistant that uses knowledge-based concepts. However, we dis-
cuss the trends from the user's perspective; that is, we examine how the
trends affect the user's perception of, and interaction with, an environment.

User requirements for environments cover a broad spectrum. The function-
ality of environments includes support for a single user for programming-
in-the-small, coordination and management of multiple users for program-
ming-in-the-large, and management of the software development cycle.
The nature of the user interface is of considerable importance. Undoubted-
ly, the user of an environment needs to be able to customize it, either by tai-
loring or extending a particular tool or by creating specialized tools via
generation facilities. To support this, the environment must be implement-
ed so as to allow tools to be easily integrated into it. The user also needs fa-
cilities to support incremental development of software to aid prototyping.
In essence, the user requires support for the entire software development
cycle—from specification through coding to maintenance—including the
ability to trace information across phases. This spectrum of needs is ad-
dressed across all the categories of four taxonomy, though no single catego-
ry deals with them all. We do not attempt to survey all existing
environments nor do we provide detailed descriptions or evaluations of

Language-centered Environments

Language-centered
Environments

them. Neither do we advocate any particular environment. In fact, because
users have varying levels of expertise, different application requirements,
and different hardware, no single environment can satisfy all users.

The significance of our taxonomy is in its clarification of trends rather than
in categorization of particular environments. A particular environment
may fit into a number of categories. These categories do not represent com-
peting viewpoints; instead, they represent areas of effort that have provided
fertile feedback and inspired further research and development.

2 Language-centered Environments

Language-centered environments are those in which the operating system
and tool set are specially built to support a particular language. Examples
of language-centered environments are Interlisp for the Lisp language, Ce-
dar for Mesa/Cedar, Smalltalk for Smalltalk, and the Rational Environment
for Ada. Initial implementations of Lisp environments emerged in the late
1960s. Researchers at Xerox worked concurrently on the Cedar, Smalltalk,
and Interlisp environments in the mid-1970s. The Lisp activities culminated
in the early 1980s with the definition of the Common Lisp language. The
Rational Environment emerged in the early 1980s.

Lisp environments were the most influential in the development of tech-
niques suited for language-centered environments. They contributed the
notion of an exploratory style of programming and demonstrated the bene-
fits of making semantic information available to the user. Subsequent envi-
ronments for imperative languages extended these notions toward
supporting programming-in-the-large to meet large-scale software devel-
opment requirements.

2.1 Exploratory Style

Environments in the language-centered category encourage an exploratory
style of programming to aid rapid production of software. The develop-
ment environment and the runtime environment are the same. Code can be
developed, executed, tested, debugged, and changed quickly; small code
changes can be made executable in a matter of seconds. Programs can be
built interactively in increments, allowing the user to experiment with soft-
ware prototypes. Implementation techniques for these environments result
in a coupling between the application program and the environment. This
coupling makes all the facilities of the environment available to the user
building an application.

Language-centered environments use language-specific implementation
techniques. To support the rapid production of software for research proto-
types, Interlisp uses a large virtual memory space, for example. The tools
are engineered as a monolithic system in one address space, and the appli-
cation program is embedded in the same address space. Thus, the environ-

Language-centered Environments

ment does not need to context-switch between tools and the application
program. Execution of the application program can be halted, and change
can be made to source that are then dynamically linked into the executable
image. Such use of memory created the need for garbage collection of un-
used, expired objects.

The embedding of the application in environment code allows the applica-
tion writer to use all the facilities in the environment when constructing an
application. Since the environment and the application program share the
same language, the application has all the features of the environment
available to it as building blocks. For example, InterLisp is a ’residential
system” in which the Lisp program resides in the runtime system as a data
structure [1]. As a result, the user is able to quickly prototype an application
by reusing code available as part of the environment. In the same manner,
the user is able to extend the environment with tools to satisfy specific
needs. This approach is particularly evident in Smalltalk, in which the user
can create objects and operations that default to or inherit the properties of
other objects.

Since the close coupling of application and environment results in a lack of
clear separation between the host environment and the target runtime envi-
ronment, in cases such as cross-machine development special efforts have
to be made to deliver an application program without the full development
environment.

2.2 Semantic Information

Language-centered environments support the exploratory, interactive
mode of programming by recording and making available semantic infor-
mation. Language-centered environments maintain syntactic and semantic
information about programs in a particular program representation format.
For example, the Rational Environment uses a DIANA format to represent
Ada programs. It creates this structure when parsing program text and at-
taches semantic properties to the structure. Semantic information is typical-
ly symboltable information such as information about the definition and
use of variables and procedures and information about types. By making
this information available through such tools as browsers, the environment
helps the user understand the status and structure of code under develop-
ment. Browsing involves navigating through the set of program objects
(functions or modules, for example) and making queries about the objects
and their relationships. Interlisp's Masterscope was one of the first brows-
ers to make semantic information available to the user during program de-
velopment.

Browsers have been accepted as fundamental powerful tools for explorato-
ry program development. They also have the potential of being very effec-
tive during program maintenance. Maintainers are usually not the original
developers of a program and often can depend only on the source code as
the up-to-date documentation. Before making changes to a large, unfamiliar
program, maintainers usually spend considerable time understanding the
program structure and the interconnection of its components. Browsers
help maintainers determine the scope of a change by allowing them to in-

Language-centered Environments

teractively examine the program structure and ask which components may
be affected by a change.

2.3 Programming-in-the-large

High-level programming languages do not adequately support the activi-
ties involved in constructing large systems. For example, Ada provides
packages to support modularization, but it does not permit alternative im-
plementations or successive versions of code to be attached to a package
specification. For that reason, language-centered environments have added
facilities to support programming-in-the-large.

Techniques for controlling and managing multiple versions of modules
among multiple users have also been developed. These techniques inspired
more formal definitions of version control and configuration management.
For example, Cedar pioneered a paradigm for system modeling. It allows
the user to define a blueprint—that is, a system model. The model is a de-
scription of the modules that make up a program. Given the model, the en-
vironment can maintain a history of the user's selection of various versions
in forming a program.The environment can also determine the recompila-
tion needs of a program and can recomile modules to maintain consistency
among them.

The Rational Environment supports multiple users. It provides facilities for
building and maintaining versions of groups of modules (subsystems). It
can enforce a check-in/check-out procedure that prevents programmers
from overwriting each other's modifications. It also controls access to pro-
gram components.

2.4 Observations

Language-centered environments give the user a one-language universe of
discourse. These environments are well-suited to the coding phase of the
software development cycle. They provide incremental compilation or in-
terpretation techniques to help reduce the impact of small code changes
during maintenance. The exploratory style of programming they support
helps the user experiment with software prototypes. Tools such as browsers
not only are extremely helpful to the user during exploratory program de-
velopment but can be quite effective for maintenance of large software sys-
tems.

Because of the specialized techniques used to implement them, these envi-
ronments generally do not support multiple languages and, in some cases,
do not facilitate the porting of application programs. Also, language-cen-
tered environments can become too large for one person to comprehend
and extend.

The environments for imperative languages support programming-in-the-
large facilities such as version control. But they do not currently support
programming-in-the-many tasks such as project management nor do they
provide support for development tasks other than coding. It is not clear
whether such environments can scale up their facilities to fulfill these re-
quirements, but they will probably form one component of future environ-

Structure-oriented Environments

Structure-oriented
Environments

ments that will support the entire software life cycle. The specialized,
handcrafted nature of these environments makes it difficult to adapt them
to phases other than coding.

Developers of commercial software systems are trying to refine their imple-
mentation techniques to improve performance. They are building lan-
guage-centered environments for imperative languages such as C and
Modula-2 and are attempting to scale up these environments to support the
design phase and to incorporate some project management techniques. The
research community is applying language-centered techniques to languag-
es such as Prolog and to specification languages. Commercial application
builders so far have used language-centered environments mainly for de-
veloping prototype systems.

3 Structure-oriented Environments

The initial motivation for structure-oriented environments was to give the
user an interactive tool—a syntax-directed editor—for entering programs
in terms of language constructs. This capability was extended to provide
single-user programming environments that support interactive semantic
analysis, program execution, and debugging. The editor is the central com-
ponent of such environments; it is the interface through which the user in-
teracts and through which all structures are manipulated. Efforts were
continued to support programming-in-the-small and programming-in-the-
large and to support structures such as history logs and access control lists.
Thus the term "syntax-directed" has gradually been replaced by "structure-
oriented.

Structure-oriented environments have made several contributions to envi-
ronment technology—they have provided direct manipulation of program
structures, multiple views of programs generated from the same program
structure, incremental checking of static semantics and semantic informa-
tion accessible to the user, and most important, the ability to formally de-
scribe the syntax and static semantics of a language from which an instance
of a structure editor can be generated.

3.1 Manipulation of Structure and Text

Structure-oriented environments support the concept of direct structure
manipulation. The user interacts directly with program constructs and
avoids the tedium of remembering the details of the syntax. While program
text is displayed on the screen, the user directly modifies the underlying
structure. Early environments such as Emily used parse trees as program
structures. Most current environments use abstract syntax trees, which
were introduced in the Mentor environment.

Structure-oriented environments take several approaches to the manipula-
tion of structures. One involves purely structural editing; it can be viewed

Structure-oriented Environments

as primarily template-driven editing. An example of this approach is the
Aloe editor in the Gandalf project. Aloe provides editing operations only on
structural elements and does not permit the user to construct syntactically
incorrect programs. To overcome the difficulties in entering and modifying
language expressions, some environments such as the Cornell Program
Synthesizer represent expressions as text.

Another approach is mixed-mode operation, which is being used in several
commercial structure-oriented environments. For example, in the Rational
Environment the user can operate on the textual representation and on the
structure. The user enters program fragments as text and asks the environ-
ment to complete the processing as far as possible. Using incremental pars-
ing techniques [2], the environment converts the text fragment into a
program structure. The user can edit the program using commands applied
to both the program structure and the program text. The environment
keeps the two representations consistently updated.

3.2 Multiple Views of Program Structures.

Structure-oriented environments generate the textual representation of a
program from its structure. Thus, different representations can be generat-
ed from the same structure. This property allows users of structure-oriented
environments to view programs at different levels of abstraction and detail.
Browsing of large program structures is provided by showing views of dif-
ferent levels of detail in different display windows. The user can select a
program component in one window and have it displayed in more detail in
another. This capability can be found in research environments such as the
Gandalf prototype and in commercial products such as the Rational Envi-
ronment. Moreover, research prototypes such as the Pecan environment
have demonstrated that it is feasible to produce graphical representations
from program structures.

3.3 Semantics and Incremental Processing

After the first syntax-directed editors were built, it was quickly recognized
that enforcing correct syntax is only one way of supporting the program-
mer. Analysis of static semantics was added to editors. The semantic ana-
lyzer processes the program structure and decorates it with semantic
information. The user can access the semantic information—such as the
definition of identifiers and the locations of their use—and type informa-
tion through the editor. For example, as the user programs a procedure call,
the editor can display the specification of the procedure and, as soon as the
procedure name has been entered, provide a template for the procedure pa-
rameters.

A structure-oriented environment is an interactive tool. Therefore, it should
not only give the user immediate feedback on syntax errors but also report
static semantic errors before the user moves on to edit other parts of the
program. This means that the environment must track the user's changes to
the program (that is, know its structure) and reanalyze only those parts that
are affected, doing this upon explicit user request or when the user leaves
the modified program unit. Proven compiler technology, such as attribute
grammars, has been successfully extended to support such incremental

Structure-oriented Environments

processing. Environments such as LOIPE demonstrate that the notion of in-
cremental processing can also be applied to code generation and linking.
There is a trade-off between processing as small a unit as possible and the
complexity of the algorithm for doing so. Different types of processing can
be done at different levels of granularity. For example, syntactic correctness
can be enforced at the language construct level while static semantics is
checked at the program unit level (at the level of a procedure, for example)
and code is generated at the module level.

3.4 Generation of Structure-oriented Environments

One of the major contributions of structure-oriented environments is the
ability to support manipulation of program structures in a language-inde-
pendent manner. The environment developer achieves this by encapsulat-
ing the syntactic and semantic properties of a language in a grammatr.
Given this declarative description of the language, generation tools can au-
tomatically produce instances of structure-oriented environments. This is
more efficient than building an environment from scratch. Proven compiler
technology such as parser generation has paved the way for progress in this
area. The Aloe editor introduced the capability of describing the syntax of a
language. The Cornell Synthesizer Generator is a well-known example of
supporting the description of semantic properties in terms of attribute
grammars, and of providing incremental analysis algorithms as part of the
generated structure-oriented environment instance.

The language-specific information can be kept in a form that can be loaded
into the language-independent environment kernel at runtime, permitting
one instance of the structure-oriented environment to understand several
program structures simultaneously. The environment can be adapted and
tailored through changes in the declarative description.

3.5 Observations

Structure-oriented environments support direct manipulation and multiple
textual views of program structures. Research has shown how static seman-
tic information can be attached to program structures and made available to
the user. Algorithms that can incrementally analyze this information have
been developed. Instances of structure-oriented environments can be gener-
ated automatically from descriptions of the language to be supported.
These descriptions specify both syntactic and static semantic information in
a declarative manner.

Structure-oriented environments have become mature enough that they are
becoming available in commercial products. Environment builders can gen-
erate instances of structure editors for different languages with little effort.
In many cases, the capabilities of these generated editors are restricted to
syntactic checking. Semantic analyzers are often constructed manually.

Structure-oriented environments have been accepted primarily as teaching
aids. Universities have been using them to teach introductory program-
ming courses. Despite their availability, they have found little acceptance in
industry. Structure editors are being used to support only the coding phase
and are being viewed as tools for programming-in-the-small. So far, little

Tookit Environments

Tookit Environments

empirical data has been collected to indicate whether structure-oriented en-
vironments actually increase productivity.

Initial attempts to scale up structure-oriented environments to support pro-
gramming-in-the-large and programming-in-the-many have encountered
difficulties. Techniques currently used in many structure-oriented environ-
ments have shortcomings in terms of providing efficient, persistent storage
for large structures and in coordinating concurrent access to the structures
for multiple users or tools. Furthermore, for different tools to be integrated
in a structure-oriented environment, they must either be adapted to under-
stand a common structural representation or there must be mechanisms for
consistent updating of structures through multiple views.

4 Toolkit environments

Toolkit environments consist of a collection of small tools and are intended
primarily to support the coding phase of the software development cycle.
They provide little environment-defined control or management over the
ways in which the tools are applied. The toolkit approach starts with the
operating system and adds coding tools such as a compiler, editor, assem-
bler, linker, and debugger, as well as tools to support large-scale software
development tasks such as version control and configuration management.
The toolkit approach was motivated by the need to be language-indepen-
dent while supporting programming-in-the-large facilities. The toolkit ap-
proach uses simple data modeling to aid the extensibility and portability of
tools. Examples of commercial toolkit systems are the Unix Programmer's
Workbench (Unix/PWB), the DEC VMS VAX-set, and the Apollo Domain
Software Engineering Environment (DSEE). Examples of prototype toolkit
environments are the Portable Common Tool Environment (PCTE) and the
Common APSE Interface Set (CAIS).

4.1 Extensibility and Portability

Unix is an operating system that has encouraged extensions. It has a very
simple data model for tool interaction and persistent data storage: an ASCI|I
byte stream. This uniform model enables the user to tailor the Unix envi-
ronment by adding new tools or modifying existing ones. Tools interact via
ASCII files or communication channels called pipes, which encourages re-
use of existing tools and tool fragments. Each tool or tool fragment must
parse the text stream to extract a structured representation of the data; that
is, no structure or semantic information is recorded with the data. This re-
sults in tools with few incremental processing capabilities. The Unix/PWB
places few, if any, restrictions on when and how tools can be used. Such a
model gives the user considerable latitude but provides little support in
terms of consistently and automatically managing user activities. The sim-
plicity of the tools and their interactions makes them portable across similar
environments.

Tookit Environments

The simple ASCII model lacks support for typing stored data and for uni-
formly describing and processing the structure of data. It provides very lim-
ited typing of objects other than the use of file name extensions.
Developments are in progress to extend file systems to include some of this
support. Apollo's Extensible Stream package provides a mechanism that
supports typed files and permits the introduction of user-defined file types.
DSEE has facilities embedded in its file system to provide a version control
mechanism that is transparent to the environment user and the tools. Envi-
ronments such as PCTE and CAIS support persistent, typed objects with an
extensible set of object attributes, while the Arcadia research project ad-
dresses tool integration and extensibility as well as object management.

4.2 Operating System Extensions

To provide more environment-defined control facilities while retaining tai-
lorability features, commercial environment builders such as Atherton
Technology are placing higher-level interfaces on top of the normal operat-
ing system user command interface. Such environments allow the user to
work within the context of the high-level functions of the environment,
such as those for project management, but also to jump into the native oper-
ating system command level, such as that for Unix or VMS, when needed.
These higher-level "shells" try to place more controls on tool usage in toolkit
environments. They can also provide a uniform interface independent of
the underlying operating system. Not only can the user be shielded from
the operating system itself but he or she can have transparent access to dis-
tributed computing facilities. Similarly, the user can add new tools to the
toolkit environment without needing to have a knowledge of the underly-
ing hardware and operating system.

4.3 Programming-in-the-large

Toolkit environments provide programming-in-the-large tools that are in-
dependent of a particular programming language. These tools try to ease
the programmer's managing of code by providing mechanisms for record-
ing version numbers for source code. Some file systems append a version
number to a file name and increment it each time the file is rewritten. The
Unix/PWB and VMS VAXset provide explicit tools-the SCCS (Source Code
Control System) and the CMS (Code Management System), respectively-to
perform version control. Such tools simply record versions and coordinate
access to them; the user must decide how to use the version information.
For configuration management, systems such as OSEE build a consistent
software system as described and requested by the user.

4.4 Observations

Toolkit environments use operating system facilities to "glue” tools into a
collection. The intent is to provide a language-independent environment
that supports multiple languages with appropriate tools. Such environ-
ments allow a high degree of tailoring but provide few environment-de-
fined management or control techniques for using the collection of tools.
The user must establish management policies to ensure that tools will be
used correctly. Although very popular because of the tailorability and port-

10

Method-based Environments

Method-based
Environments

ability of their tools, toolkit environments do not greatly assist the mainte-
nance of large software systems.

The current generation of toolkit environments uses a fairly mature technol-
ogy. Research on extensions to operating systems is continuing. Extensions
include a better data model to support persistent storage and distributed
data access, and uniform operating-system-independent user interfaces.

5 Method-based Environments

Method-based environments each support a particular method for develop-
ing software. The methods fall into two broad classes: development meth-
ods for particular phases in the software development cycle, and methods
for managing the development process. Development methods are those
used by individual developers in phases such as requirements analysis, sys-
tem specification, and design. Methods for managing the process are those
that support orderly development of a software system via product man-
agement procedures for consistent evolution of the product by a number of
developers, and via models for organizing and managing people and activ-
ities.

5.1 Support for Development Methods

Development methods address various steps in the software development
cycle. They include but are not limited to methods for specification, design,
validation and verification, and reuse. Different methods exhibit various
degrees of formality: a method may be informal, as in written text; semifor-
mal, as in textual and graphical descriptions with limited checking facili-
ties; or formal, with an underlying theoretical model against which a
description can be verified. Examples of semiformal methods for specifica-
tion and design are SREM, IORL, CORE, SADT, SDL, PSL/PSA, variations
of data flow diagrams and control flow diagrams, and entity-relationship
(ER) diagrams. Examples of more formal methods for specification are Petri
nets, state machines, and specification languages such as GiST, Refine,
VDM, and Anna. While several of the semiformal methods have been prac-
ticed to some degree since the mid- 1970s, formal methods are less used. In
many cases, they were initially practiced with paper and pencil.

Originally, tools for development methods were provided on mainframes
and textual notations or special graphics terminals were used. Examples of
such systems are TAGS and DCDS. The availability of computers to a larger
number of developers and the advent of affordable graphical facilities on
personal computers and workstations have encouraged the development of
a large number of commercial tools— especially for semiformal methods of
schematic design—often called computer-aided software engineering, or
CASE, tools. Examples of such products are Index Technology's Excelerator,
Nastec's CASE 2000, Cadre's Teamwork, and Interactive Development En-
vironments' Software Through Pictures. Such tools support individual us-

11

Method-based Environments

ers in drawing and updating graphical designs interactively, help organize
the design into a hierarchy of abstraction levels, and perform certain consis-
tency checks. Users can invoke analyzers such as level checkers that check
for consistent use of names and for connections between levels of the de-
sign. Cross-reference information is derived by the analyzer (in most cases
not incrementally) and is stored in data dictionaries that can be queried in-
teractively.

Many CASE vendors have realized that it is desirable for their tool to sup-
port more than one design method and for customers to adapt the tool to
their own methods. Recent releases of commercial tools allow users to de-
fine their own graphical symbols for the graphical editor and to write and
interface their own analyzers. In some cases, instances of a tool can be gen-
erated for different methods. Integration of different methods is limited to
instances of graphical editors and analyzers that can be invoked from the
same system menu. For methods that differ only in the shape of symbols,
such as Merise diagrams and ER-Chen diagrams, a tool can display the de-
sign with either set of symbols. All instances of the tool store the cross-refer-
ence information in the same data dictionary.

5.2 Support for Managing the Development Process

Managing software development consists of managing the product under
development as well as managing the process for developing and maintain-
ing the product. Support of product management includes facilities for ver-
sion, configuration, and release management along with procedures and
standards for performing these tasks consistently. Support for managing
the development process includes facilities for project management (project
planning and control), task management (helping developers organize and
track their tasks), communication management (knowing and controlling
the communication patterns in the project organization), and process mode-
ling.

Initially, tools to support particular management functions such as schedul-
ing, cost estimation, or change request control were built in isolation. Re-
cently, research has tried to take a more global approach to understanding
and formalizing the software development process and its management.
This is evidenced in the literature [3-5]. Research prototypes of environ-
ments such as IPSE 2.5, Genesis, and PMA investigate the feasibility of sup-
porting various aspects of encoding and supporting a process model.
ISTAR, a commercial development, centers the environment around a par-
ticular model—the contract model—rather than around a particular tool.
The environment supports planning and management of tasks and man-
agement of products as they are being built by teams of developers. It also
provides facilities to integrate specification, design, coding, testing, and
documentation tools. One of the challenges for such environments is to
support process models and management styles without disturbing those
in place at a particular organization. The practicality of such environments
has yet to be shown.

12

User Interfaces

User Interfaces

5.3 Observations

Method-based environments support particular development methods and
the management of the development process. A number of tools for single
users that support semiformal graphical development methods have be-
come available. Instead of encoding particular methods in these tools, their
developers have engineered them to be more general purpose. Instances of
design tools can be created through a tailoring and generation process.
Generally, isolated tools are available to support version and configuration
management and project management.

The distance between existing tools and those of an ideal software develop-
ment environment is great. Progress must occur in several areas and these
are the target of long-term research activities. Research efforts such as
MCC's Leonardo project are investigating the feasibility of bringing the ex-
ploratory style of language-centered environments to specification and de-
sign environments. This requires a better understanding of the specification
and design process and the development of formal methods that appropri-
ately capture information and decisions. A supportive environment must
capture and reason about the semantics embedded in the method, and must
process information incrementally to assist the designer in exploring design
alternatives. A better formal understanding of the derivation of efficient im-
plementations from a specification permits more automation of this pro-
cess. Research in formal and executable specifications, program
transformations, and program synthesis is making progress, but solutions
can be expected initially only in particular application domains. Examples
of such research efforts are the Prospectra project sponsored by Esprit and
projects at USC/ISI [6] and Kestrel Institute [7]. Finally, an environment
that helps manage the development process requires research into formal
models for capturing the process, reasoning about it, and supporting the
dynamics of its execution.

6 User Interfaces

Major developments in hardware technology such as bitmapped displays
and mouse devices have made novel user interfaces possible. It seems quite
natural to use a pointing device as the user interface for object-oriented lan-
guages such as Smalltalk. The Smalltalk language-centered environment re-
places the textual user interface—command lines—with pop-up menus, a
window manager, and a pointing device, thereby providing a very "friend-
ly" interface. On-line tutoring is provided by means of tools such as "ex-
plain” and "example" facilities and through on-line documentation.

Cedar is also recognized for its user interface, which uses techniques simi-
lar to those of Smalltalk and incorporates icon management. Cedar pro-
vides a level of abstraction by defining an imaging model to handle
complex graphics on different hardware. This model defines graphic objects
by their semantics rather than by their representation. The implementation
then maps these graphic objects onto the hardware constraints. Cedar dem-

13

User Interfaces

onstrates how a nontextual interface can be abstracted from the operating
system functions.

6.1 Structure-oriented Environments

In structure-oriented environments, the user interface is ruled by the se-
mantics of the language being edited. The Aloe editor of the Gandalf project
is a prime example of a pure structure-oriented editor. For example, when
the user gives the command if, the editor constructs the if node in the struc-
ture, displays the template for the if construct in the program, and places
the cursor at the condition of the construct. The syntax is enforced because
the user can only apply the if command when the placement of the con-
struct is syntactically correct. The user moves the cursor according to the
structure. The cursor is shown on the screen as a highlight of the textual
area that represents the substructure to which the cursor refers. For exam-
ple, moving the cursor up from the condition of an if construct highlights
the text of the whole if construct. To modify existing programs, editing op-
erations such as cut and paste and structural transformation operations are
provided. This allows the user to change, delete, or move syntactic program
fragments rather than single characters or lines of text. Transformation op-
erations allow the user to convert, for example an if statement into a while
loop or to nest a sequence of statements into a for loop. Despite these edit-
ing operations, using a purely structural editor to modify expressions is
awkward. Therefore, some structure editors (the Cornell Program Synthe-
sizer, for example) treat expressions as text rather than as structure—that is,
they allow the expressions to be entered and edited as text and then they
parse them.

6.2 The Rational Environment

The Rational ADA Environment works in a mixed mode that allows the
user to edit a program both structurally and textually. After the user enters
a program fragment in text form the environment constructs a structure
representing the text entered and places the cursor at the first place to be
completed. For example, asking the editor to complete the "if" results in the
construction of the if statement presented. The user can move the cursor
and edit according to the structure (for example, move to the next statement
or delete a statement) and according to the text (for example, move down a
line or delete the rest of the line).

6.3 Elision

A technique known as elision displays a marker such as "..." (three dots) or
a label Instead of the actual program. Elision markers are used to compact
source code below a particular nesting level. For example, when the user
places the cursor at the first statement of a procedure, only the specification
and not the body of the procedure is seen. Constructs such as for while, or if
may be similarly compacted. However, when the user moves the cursor to
the vicinity of an elision marker, the text is automatically expanded.

14

Conclusions

Conclusions

6.4 Browsing

Browsing is provided in a similar manner. In one window, the user sees a
high-level view of a program, for example the a list of all Ada package
names in a program library. The details of the packages are hidden. The
user can select a package and open it for viewing. This results in a textual
representation of the selected component in more detail in a separate win-
dow. The user may see, for example, a list of procedure specifications con-
tained in the package. As before, the user can select one of the structural
elements and examine it in more detail or modify it.

6.5 Method-based environments

Method-based environments consisting of CASE tools have powerful
graphics editing facilities. Interfaces appear similar to the menu-based ones
for language-centered environments. The difference lies in the manipula-
tion of graphical symbols based on the syntactical constraints of particular
programming technique. Symbols and links can be created, deleted, and
changed. This is done by positioning the cursor with a pointing device and
selecting a particular item from the available menu.

7 Conclusions

The four types of environment in our taxonomy represent the major techni-
cal directions that software development environments have taken. We
have discussed the work in each area primarily from the user environments
are interactive, incremental environments suited to an exploratory style of
programming. Structure-oriented environments generalize and formalize
these techniques and provide generators. Both types of environments show
the advantages of making semantic information available. Toolkit environ-
ments stress user tailorability and the reuse of a fairly generic tool set, while
method-based environments concentrate on providing support for devel-
opment activities such as requirements analysis and design, and manage-
ment activities such as guiding a team of programmers during the
development process. While it would seem straightforward to merge these
capabilities to achieve a highly interactive, tailorable, multiple-user, full-
life-cycle environment, the implementation strategies used for each type of
environment cannot be easily combined to produce such a result. We con-
clude by examining what we consider to be the primary issues when we
combine or extend the advantages offered by each category.

7.1 Data Management

Language-centered and structure-oriented environments can incrementally
maintain executable objects and static semantic information about program
units. This functionality is very dependent on the underlying program-

ming-language foundations. There are formal means to define the language
units, the constraints on those objects, and the relationships between them.
Such information is used to maintain a consistent state after a modification

15

Conclusions

(such as the state after a modification changing of a variable name or the
deleting of a statement).

Method-based environments do not yet support such incremental analysis
and do not seem to have theoretical foundations as mature as those of lan-
guage-centered and structure-oriented environments. The development
methods they support often take an operational or control-flow approach to
the development process. Most process models are more oriented to man-
aging user activity rather than to managing objects. The object management
architecture used by structure-oriented environments is not directly appli-
cable to method-based environments. It is a research question as to whether
it should or can be applied.

The kind of tool integration and incremental processing found in structure-
oriented environments and in many language-centered environments de-
pends on using a shared data store. The underlying representations for
those environments, and for the tools found in the method-based environ-
ments, are very specialized. A generalization of a shared data store is a da-
tabase management system. Commercial databases have been used to
support configuration and project management information, but typically
have not been used for tool-related data management. Generalization of the
features that users like in individual tools in the language-centered and
method-based environments requires a solution to the shared data storage
problem. The file system extensions discussed earlier may offer a partial so-
lution to this problem.

7.2 Programming-in-the-large/programming-in-the-many

As tools for supporting development methods become more readily avail-
able, they are being applied to larger projects. This requires scaling up a
method—that is, incorporating into its notation and supporting tools tech-
niques for managing large descriptions. Techniques for scaling up are well
known in the programming language field and appear in both the toolkit
and language-centered environments. They include partitioning mecha-
nisms (such as modularization, data encapsulation, and interface checking)
and management mechanisms (such as version control). These concepts are
not used as extensively by the method-based environments, which concen-
trate on the operational aspects of the development process. The subtasks of
the programmer are described primarily in terms of actions in which infor-
mation hiding and data dependencies play no significant role. The issue
here may be a simple one of maturity, since there is considerable commeri-
cal activity in this area

7.3 Tailorability

There are a variety of ways to achieve tailorability. Toolkit environments
take advantage of generic tools defined on relatively unstructured data. In
the other categories, the information maintained is much more complex.
Thus, tailorability is more likely to be achieved by tool generators. For
method-based environments, we need to consider the tailorability of indi-
vidual tools (such as editors) for a specific design method, and the tai-
lorability of project or configuration management policies. Structure-
oriented environments provide generators for tools such as semantically

16

A Sampler of Environments

A Sampler of
Environments

based editors. Generators are also appearing in method-based environ-
ments, where they have been used to build graphical editors for a variety of
design methods. Tailoring the environment to a specific management policy
or process development model is more difficult than tailoring a specific tool
and will depend on better formalisms for describing the software process.

There has been progress in software development environments—their
support of coding is particularly well understood. Environments are slowly
improving, but combining technologies to better address the entire soft-
ware life cycle remains an area for active research.

8 A Sampler of Software Development
Environments

Listed here are the languages, methods, and environments discussed in the
text. They are grouped into the four categories of our taxonomy; a citation
to the literature appears for each.

8.1 Language oriented environments

Ada
Ada Programming Language, American National Standards Institute, New
York,1983.

Cedar

D.C. Swinehart, P.T. Zellweger, and R.B. Hagmann, "The Structure of Ce-
dar,"” SIGPLAN Notices (Proc. ACM SIGPlan Symp. Language Issues in Pro-
gramming Environments), July 1985, pp. 230-244.

Common Lisp
G.L. Steele Jr., Common Lisp—The Language, Digital Press, Burlington,
Mass.,1984.

DIANA
G. Goos et al., eds., DIANA—AnN Intermediate Language for Ada (Lecture Notes
in Computer Science, Vol.161), Springer Verlag, Berlin,1983.

Interlisp

W. Teitelman and L. Masinter, "The Interlisp Programming Environment,"
in Tutorial: Software Development Environments, Computer Society Press, Los
Alamitos, Calif.,1981, pp. 73-81.

ObjectMath

P. Fritzson, ObjectMath—Object Oriented mathematical Modeling in Scientific
Computing, Applied to Machine Elements Analysis, Report LiTH-IDA-R-91-06,
March 1991.

P. Fritzson, D. Fritzson, L. Viklund, J. Herber: "Transformation of Equation-

17

A Sampler of Environments

Based Real-World Models to Efficient Code, Applied to Machine Elements
Geometry", In Proc. of the 1:st National Swedish Symposium on Real-Time Sys-
tems, Uppsala, August 19-20, 1991

The Rational Environment

J.E. Archer, Jr., and MT Devlin, "Rational’s Experience Using Ada for Very
Large Systems," Proc. First Int*l Conl. Ada Programming Language Applications
for the NASA Space Station, NASA, June 1986, pp. B2.5.1-B2.5.12.

Smalltalk

A. Goldberg, "The Influence of an Object-oriented Language on the Pro-
gramming Environment,” in Interective Programming Environments, D.R. Bar-
stow, H.E. Shrobe, and E. Sandewall, eds., McGraw-Hill, New York,1984,
pp. 141-174.

8.2 Structure-oriented environments

Aloe
PH. Feiler and R. Medine-Mora, "An Incremental Programming Environ-
ment," IEEE Trans. Software Englneering, Sept. 1981, pp. 472-482.

Synthesizer Generator
T. Reps and T. Teitelbaum, "The Synthesizer Generator,"” SIGPLAN Notices
(Proc. ACM SIGSoft/SIGPLAN Software Engineering Symp. on Practical
Software Development Environments), May 1984, pp. 42-48.
Also by the same authors:

The Synthesizer Generator— A System for Constructing Language-Based Edi-
tors, Springer Verlag, 1989.

The Synthesizer Generator Reference Manual, Springer Verlag, Third edition
1989.

DICE
P. Fritzson: "Symbolic Debugging through Incremental Compilation in an Inte-
grated Environment”, J. Systems and Software Vol. 3, 1983, pp. 285-294.

Emily

W.J. Hansen, "User Engineering Principles for Interactive Environments”, in
Interactive Programming Environments, D.R. Barstow, H.E. Shrobe, and E.
Sandewall, eds., McGrawHIIIl, New York, 1984, pp. 217-231.

Gandalf
A.N. Habermann and D. Notkin, "Gandalf: Software Development Envi-
ronments," IEEE Trans. Soltware Engineering, Dec.1988, pp. 1117-1127.

LOIPE

D. Notkin, "The Gandalf Project," J. Systems and Software, May 1985, pp. 81-
105.

Mentor
V Donzeque-gouge et al., "Programming Environments Based on Struc-
tured Editors: The Mentor Experience,” In Interactive Programming Environ-

18

A Sampler of Environments

ments, D.R. Barstow, H.E. Shrobe, and E. Sandewall, eds., McGraw-Hill,
New York, 1984, pp. 12&140.

Mjglner/Orm

G. Hedin and B. Magnusson: "The Mjglner Environment - Direct Interaction
with Abstractions”, Proc. of ECOOP’88, Oslo, Norway, August 1988, (LNCS
322, Springer-Verlag).

Pecan

S.F Reiss, "Graphical Program Development with PECAN Program Deve-
lopment Systems,"” SIGPLAN Notices (Proc. ACM SIGSoft/SIGPlan Software
Engineering Symp. on Practical Software Development Environments),
May 1984, pp. 31-41.

8.3 Toolkit enviroments:

Apollo DSEE

D.B. Leblang and R.P Chase, Jr., "Computer-aided Software Engineering In
a Distributed Workstation Environment,” SIGPLAN Notices (Proc. ACM
SIGSoft/SIGPlan Software Engineering Symp. on Practical Software Deve-
lopment Environments), May 1984, pp. 104-112.

Arcadia
R.N. Taylor et al., Arcadia: A Software Development Environment Research Pro-
ject, tech. report, Univ. of California, Irvine, Mar. 1986.

CAIS
Military Standard Common APSE Interface Set, Proposed MIL-STD-CAIS, Ada
Joint Program Office, Washington, D.C., Jan. 1985.

PCTE

F. Gallo, R. Minot, and I. Thomas, "The Object Management System of
PCTE as a Software Engineering Database Management System,” SIGPLAN
Notices (Proc. Second ACM SIGSOFT/SIGPLAN Software Engineering
Symp. on Practical Software Development Environments), Jan. 1987, pp. 12-
15.

Unix/PWB

TA. Dolotta, R.C. Haight, and J.R. Mashey, "Unix Time-sharing System: The
Programmer's Workbench," in Interactive Programming Environments, D.R.
Barstow, H.E. Shrobe, and E. Sandewall, eds., McGraw-Hill, New York,194,
pp. 353-369.

VMS VAXset CMS
User’s Introduction to VAX DEC/CMS, Digital Equipment Corp., Maynard,
Mass., 1984.

19

References

References

9

References

9.1

Main reference

Susan Dart, Robert Ellison, Peter Feiler, and Nico Habermann: "Software

Development Environments”, Computer, Nov 1987.

9.2 Other references

[1]

[2]

(3]

(4]

[5]

(6]

[7]

E. Sandewall, "Programming in an Interactive Environment: The Lisp
Experience,” in Interactive Programming Environments, D.R. Barstow
H.E. Shrobe, and E. Sandewall, eds., McGraw-Hill, New York, 1984,
pp. 31-80.

C. Ghezzi and D. Mandrioli, "Incremental Parsing," ACM Trans. Pro-
gramming Languages and systems, July 1979, pp. 58-70.

M.M. Lehman and L.A. Belady, Program Evolution—Processes of Software
Change, Academic Press, Orlando, Fla., 1985,

M. Dawson, "lteration in the Software Process: Review of the 3rd Int'l
Software Process Workshop," in Proc. 9:th Int’l Conf.on Software Enginee-
ring, Computer Society Press, Los Alamitos, Calif., 1987, pp. 36-4l.

Proc.9th Int’l Conf. on Software Engineering, Computer Society Press, Los
Alamitos, Calif.,1987.

R. Balzer, "A 15 Year Perspective on AUtomatic Programming", IEEE
Trans. Software Engineering, Nov. 1985, pp. 1257-1268.

D.R. Smith, G.B. Kotik, and S.J. Westfold, "Research on Knowledge-
based Software Environments at Kestrel Institute”, IEEE Trans. Software
Engineering, Nov. 1985, pp. 1278-1295.

20

	Overview of Software Development Environments
	Susan A. Dart, Robert J. Ellison, Peter H. Feiler, and A. Nico Habermann Edited by Peter Fritzson
	Overview
	1 Introduction

	Language-centered Environments
	2 Language-centered Environments
	2.1 Exploratory Style
	2.2 Semantic Information
	2.3 Programming-in-the-large
	2.4 Observations

	Structure-oriented Environments
	3 Structure-oriented Environments
	3.1 Manipulation of Structure and Text
	3.2 Multiple Views of Program Structures.
	3.3 Semantics and Incremental Processing
	3.4 Generation of Structure-oriented Environments
	3.5 Observations

	Tookit Environments
	4 Toolkit environments
	4.1 Extensibility and Portability
	4.2 Operating System Extensions
	4.3 Programming-in-the-large
	4.4 Observations

	Method-based Environments
	5 Method-based Environments
	5.1 Support for Development Methods
	5.2 Support for Managing the Development Process
	5.3 Observations

	User Interfaces
	6 User Interfaces
	6.1 Structure-oriented Environments
	6.2 The Rational Environment
	6.3 Elision
	6.4 Browsing
	6.5 Method-based environments

	Conclusions
	7 Conclusions
	7.1 Data Management
	7.2 Programming-in-the-large/programming-in-the-many
	7.3 Tailorability

	8 A Sampler of Software Development Environments

	A Sampler of Environments
	8.1 Language oriented environments
	Ada
	Cedar
	Common Lisp
	DIANA
	Interlisp
	ObjectMath
	The Rational Environment
	Smalltalk

	8.2 Structure-oriented environments
	Aloe
	Synthesizer Generator
	DICE
	Emily
	Gandalf
	LOIPE
	Mentor
	Mjølner/Orm
	Pecan

	8.3 Toolkit enviroments:
	Apollo DSEE
	Arcadia
	CAIS
	PCTE
	Unix/PWB
	VMS VAXset CMS

	References
	9 References
	9.1 Main reference
	9.2 Other references
	[1] E. Sandewall, "Programming in an Interactive Environment: The Lisp Experience," in Interactiv...
	[2] C. Ghezzi and D. Mandrioli, "lncremental Parsing," ACM Trans. Programming Languages and syste...
	[3] M.M. Lehman and L.A. Belady, Program Evolution—Processes of Software Change, Academic Press, ...
	[4] M. Dawson, "Iteration in the Software Process: Review of the 3rd Int'l Software Process Works...
	[5] Proc.9th Int'l Conf. on Software Engineering, Computer Society Press, Los Alamitos, Calif.,1987.
	[6] R. Balzer, "A 15 Year Perspective on AUtomatic Programming", IEEE Trans. Software Engineering...
	[7] D.R. Smith, G.B. Kotik, and S.J. Westfold, "Research on Knowledge- based Software Environment...

