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ABSTRACT 

jasmine is a programming-in-the-large system designed by the authors at Xerox Information 

Systems Division. Jasmine consists of workstation tools and network services that help 
programmers develop, release, and maintain large software systems. Jasmine has three primary 
parts: (1) system models that describe the structure and versions of software, (2) context-relative, 
distributed naming of software components (supporting replication), and (3) a collection of tools 
that use (1) and (2) to manipulate software systems. We present an overview of these parts of 

Jasmine. 

1. INTRODUCTION 

Jasmine is a distributed, production quality 

programming-in-the-large system developed by 

the authors for use by software developers at 
Xerox Information Systems Division. We consider 
programming-in-the-large to consist of two parts: 
(1) the description of software systems by system 
models, and (2) the manipulation of software based 

on the information in system models. Jasmine 
system models describe software using a simple but 
powerful algebra based on sets and functions. 
Jasmine tools perform software manipulations 
such as copying and archiving files, compiling 
sources, generating releases, and browsing. 
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1.1 Related Systems 

Jasmine shares features with other 

programming-in-the-large systems. For example, 

Jasmine uses a hierarchical module interconnection 
language, as do Tichy (TiSO] and the Cedar System 
Modeller [Sc82]. Jasmine’s method of referencing 

versions of system components resembles the 
approach used by the DSEE Configuration Manager 
[LC84]. Jasmine most closely resembles systems 
designed to be used in an actual production 
environment, such as [Fe79, Le83, LC84]. 

1.2 Jasmine Background 

Like the Cedar System Modeller, Jasmine is 

based on experience with the DF software 
developed at Xerox PARC [Sc82]. The DF software 
has been used by the product divisions of Xerox to 
control software systems containing thousands of 
modules [Le83]. Inadequacies and inefficiencies in 
the DF software led to the development of 
Jasmine. 

Jasmine tools have been developed for the 
Xerox Development Environment (XDE), a 
programming support environment that runs on 
Xerox personal workstations [Sw85]. Although XDE 
is written in the Mesa programming language 
[M*79], Jasmine makes no assumptions that the 
software it models is Mesa code. 



Jasmine tools communicate with Jasmine 

network services via Courier remote procedure 
calls [Xe811. At the present time, Courier depends 
on the Xerox Network Services (XNS) 
communications protocol family [Xe85] and hence 
is implemented only on systems that support XNS 
(this includes Berkeley 4.3850 Unix). Efforts are 
currently underway to implement Courier on other 
communications protocols such as TCP/IP and IS0 
[Ar86]. Jasmine tools and services should then be 

portable to a wide variety of systems. 

2. JASMINE SYSTEM MOOELS 

Programming-in-the-large systems usually 
maintain a database of information that describes 
the software being managed. For example, the 
well-known Unix program Make [Fe791 reads as 
input makefiles that describe the components of a 
system, the dependencies between components, 
and the shell commands needed to rebuild the 

system. Other descriptive mechanisms include 
functional languages [Sc82], attributed directories 
[Th83, KH83], attributed graphs [K*85], descriptive 

data objects [GSSO], and special-purpose databases 
[C*85,ZW85, TL85, Es85]. 

The description of software systems by 
mechanisms such as these is now commonly 
referred to as system modelling [La80]. The 
elements of the descriptive database (be they 
programs, objects, graphs, or attributes) are called 

system models. A programming-in-the-large 
system generates and stores system models as 
software is developed. Development tools access 

the system models to perform manipulations on 
the software such as copying and archiving files, 
compiling sources, generating releases, and 

browsing. 

Jasmine system models consist of data objects 
called templates and images that are grouped into 
families and evaluated in contexts. The next 
section describes the kinds of information that are 
represented in Jasmine system models. Following 

sections explain Jasmine system models in detail. 

2.1 Categories of System Model Information 

Four categories of information are represented 
in Jasmine system models: (1) relations between 
system components, (2) version information, (3) 
construction rules, and (4) verification rules. 

(1) System relations. Three kinds of relations 
between software system components are 
represented in Jasmine system models. The first 
kind is the modukr decomposition of a system 
into a hierarchy of subsystems and modules 
[Pa72]. The decomposition relation can be 
represented by a directed acyclic graph. 

Second is the general class of dependency 
relations. For example, a build dependency is a 
partial ordering of the modules of a system, 
indicating precedence in the order in which 

modules can be compiled and linked to 
generate an executable form of the system. As 
another example, there might be a 
dependency between sections of the user’s 

manual for a system and the source code for 
the public interfaces of the system (so that the 
manual gets updated when an interface 

changes). Dependency relations can be 
represented by directed graphs. 

A third kind of system relation is the 

grouping of modules based on properties 
associated with the modules. For instance, the 
exported interfaces of a system may be 
grouped together for public release. In this 
case, the group contains those modules that 
have the properties of being interfaces and 

being exported. Module groupings may be 
represented by sets. 

Version information. The system relations 

above describe the structure of a particular 
version of a system. As a system evolves, new 
versions of modules and subsystems are 
generated. Version families describe the 
succession of such versions. 

At times, parallel development may occur. 

For example, new features may be added to a 
software package at the same time debugging 
edits are made to the original version of the 



(3) 

(4) 

. 
package. Thus development forks from the 
original package to the enhanced and 
debugged versions. Eventually the parallel 
development lines may be merged into a single 
version. Version histories can be represented 
by directed acyclic graphs. 

Construction rules. Operations such as 
compilation generate new system components 
from existing ones. Construction rules record 
how existing components were generated and 
how future components should be 

constructed. For example, a typical 
construction rule might apply the “Mesa 
compiler of September 3, 1986 2:28 PM, with 
debugging and without optimization” to a 

source module. 

Verification rules. It is generally important 

that certain constraints be met by a system in 
order for the system to be considered “valid”. 

For example, one such constraint might be that 
all interfaces in a system have a corresponding 
implementation in the system. Another 

constraint might specify that the sources and 
binaries in a system version agree, that is, that 
the binaries were compiled from the versions 

of the sources found in the system version. 
Verification rules are used to specify and 
record structural and organizational 
constraints on software. 

2.2 Templates 

Jasmine defines a module interconnection 

language [DK76] used to describe software 
systems. Descriptions written in the Jasmine 
description language are called templates. 
Templates have a simple declarative syntax that is 

used to represent the relations between software 
components. There are only two kinds of 
constructs that may be declared in templates: sets 
and functions. 

The template in Figure 1 describes a B-tree 
package. The package consists of four files: 
BTree.mesa and BTree.bcd (the source and binary 
for the BTree interface, respectively), plus 

BTreelmpl.mesa and BTreelmpl.bcd (the 

implementation). 

The “BTree: TEMPLATE” construct names the 
template (and hence the system described) as 
“BTree”. The rest of the template consists of set 

and function declarations. Sets and functions are 

described in the next paragraphs. 

Three special sets are present in most 
templates: the COMPONENTS, IMPORTS, and 
EXPORTS sets. The COMPONENTS set enumerates 

the modules and subsystems that make up a 
system. Each of these components must in turn be 
described elsewhere by a template with that 
component’s name. For example, the BTree.mesa 

module might be described by the foliowing 
template. 

tfTree.mesa: TEMPLATE = BEGIN END. 

This template is null, since no internal structure 
of BTree.mesa is described. Components with null 
templates are atomic components, and are 
considered to be indivisible. The choice of the 

granularity of atomic components is left open. For 
example, BTree.mesa could alternatively be 

described as the set of constants, types, and 
procedures found in the BTree.mesa interface. 

BTree.mesa: TEMPLATE = BEGIN . . . 

COMPONENTS: SET = (Constl, ConstZ, . . . , 

. . . ,Typetl, Type2, . , . , Prod, Prod, . . .); 

. . . END. 

Proceeding in the other direction, the BTree 
package could itself be a subsystem of a larger 
system. 

Jasmine: TEMPLATE = BEGIN . . . 

COMPONENTS: SET = { . . . , BTree, . . .}; 

. . . END. 

The declaration of components in the 
COMPONENTS sets is used to represent the module 

decomposition hierarchy of the system, as 
described in section 2.1. When a system is 
decomposed into subsystems and modules, the 
names of the subsystems and modules must appear 
in the COMPONENTS set. A shared subsystem is 
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represented by naming the subsystem as a 
component in two distinct templates. 

The IMPORTS set lists components of other 

subsystems that are referenced in the template. For 
example, the name Heap/Heap.bcd refers to the 
Heap.bcd interface in the Heap subsystem. 
Heap.bcd must be present in the IMPORTS set, 
since it is not a component of Nree, but is used in 
the declaration of IsCompiledlmporting. The 
EXPORTS set specifies components that can be 
imported by other subsystems. For example, the 
name BTree/BTree.bcd can appear in other 
templates, whereas BTree/BTreeimpl.mesa cannot, 
since BTreelmpl.mesa does not appear in the 
fXPORTS set. The 1MPORTS and EXPORTS sets 
ensure that templates are themselves modular. 

Collectively, the COMPONENTS and /MPORTS 
sets make up the naming domain of the template. 
For a template to be semantically correct, all of the 
names that appear in the remaining sets and 

functions must first appear in one of these two 
sets. 

User-declared sets are used to group 
components that share a common property, as 
described in item (1) of section 2.1. For example, all 
of the elements of the user-declared Sources set 
are Mesa source modules. Set expressions 
containing the union, intersection, and difference 
operators can be used in the declaration of sets, as 
illustrated in the declaration of the Binaries set. 

Functions represent relationships among the 
elements of a template. For example, the 
lsCompi/edUsing function shows the dependency 
relation between a compiled binary and the files 
needed to prdduce it. Functional expressions may 
appear on the right side of function declarations, 
as in the definitions of IsCompiledUsing, IsUsedSy, 
and InducesRebuildOf. Several functional 
operators are available (e.g., PLUS, INVERSE OF, 

and CLOSURE OF). The PLUS operator merges two 
functions into one, thus the declaration of 

&Wee: TEMPLATE = 

BEGIN 

COMPONENTS: SET = {lTree.mesa, BTree.bcd. BTreelmpLmesa. BTreelmplhcd); 

IMPORTS: SET = {FileSystem/File.bcd, CommonSoftware/String.bcd, Heap/Heap&d); 

EXPORTS: SET = (BTreekd); 

Sources: SET = (8Tree.mesa.6Treelmpl.mesa); 

Binaries : SET = COMPONENTS - Sources; 

/sCompiledFrom : FUNCTION = 

BEGIN 

BTree.bcd =$ {BTree.mesa), 

ETreelmpl.bcd =+ (BTreelmpl.mesa) 

END IsCompiledFrom; 

/sCompiled/mporting : FUNCTION = 

BEGIN 

ETree.bcd * (Filekd), 

Bfreelmpkbcd * {BTree.bcd, Heapkd, Stringhcd) 

END lsCompiledlmporting; 

/sCompi/edUsing : FUNCTION = IsCompiledFrom PLUS IsCompiledlmpwiing; 

/slJsedBy : FUNCTION = INVERSE OF IsCompiledUsing; 

hducesRebui/dOf : FUNCTION = CLOSURE OF IsUsed8y; 

END #Tree. 

Figure 1. Template for a B-Tree Subsystem 
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/sCompi/edUsing in Figure 1 is identical to the 
following one. 

IsCompiledUsing: FUNCTION = 

BEGIN 

BTree.bcd =# {BTree.mesa, File.bcd), 
BTreelmpLbcd =# (BTreelmpl.mesa, BTree.bcd, 

Heap.bcd, Stringhd) 

END bCompiledUsing; 

INVERSE OF and CLOSURE OF are unary functionals 
that create a new function from an existing one. 

INVERSE OF may be, thought of as an operation 
that reverses the direction of the arcs in the 
dependency graph described by the argument 
function. CLOSURE OF computes a new function 
that is the transitive closure of the argument 
function with respect to the naming domain of the 
template. 

Any grouping of a system’s components can be 

described by a set, and any relation between 
components can be described by a function. Our 
example describes only compilation dependencies, 

but other relationships can be similarly defined. 

Also, we are able to construct relatively complex 
sets and functions from simpler ones using set and 
functional operators. For example, given the 
simple functions /sCompiledFrom and 
Iscompiledlmporting (which can be derived 
mechanically from the software being modelled) 
we defined a function /sCompi/edUsing that tells 
us what components are needed to rebuild a 
binary file. We then defined another function 
/nducesRebui/dOf that answers the question “lf I 
change d particular component, what other 
components are affected?” 

2.3 Images 

Specific versions of software components are 
represented in Jasmine by images. A version of a 
module is typically an immutable file (sometimes 
called a revision (Ti82]). For example, a version of 
BTreemesa might be the file “BTree.mera created 
on August 5, 1983 11:01:57 A.M.“. A version of a 
system is a collection of versions of its subsystems 
and its modules. 

Every atomic component (typically, a module) 
in a system is represented by an atomic image. An 

atomic image binds the template that describes the 
module to a specific version of the module. For 
example, an image of BTree.mesa binds the 
template for BTree.mesa to the’file of August 5. 

Subsystems are represented by composite 
images. A composite image is constructed by 
binding each name in the COMPONENS and 

IMPORTS sets to images for versions of these 
elements. For example, an image of the BTree 
template binds the names BTree.mesa, BTree.bcd, 

File&d, etc., to images for specific versions of 
these files. As another example, an image for 
Jasmine would bind the name BTree to a composite 
image describing a version of the BTree package. 

An image has attributes associated with it. An 
attribute is a (name,va/ue) pair, for example 
(Create date, 5Aug-83 11:01:57). Attributes 
describe properties of the system or module 
described by the image. 

2.4 Families 

It is often convenient to refer to all versions of 
a system component. Typically one does this to 
select one or more of the images that meet certain 
criteria, such as being created on a given date, 
containing a bug fix, or being compiled by a given 
version of the compiler. In Jasmine, the collection 
of all images (that is, all versions) of a component is 
called a family. A family contains the version 
history information described in item (2) of section 
2.1. A family can be thought of as a table with a 
row for each image in the family and columns for 
the attributes of the images. Images are selected by 
queries across the table, in analogy to selections in 
a relational database. 

Figure 2 shows a family for BTree.bcd. The 
family has five versions of BTree.bcd, BTree.bcd!l 
through BTree.bcd!S. Each version has its creation 
date-time, its author, and its “action report 
number” as attributes. 

Histories may be imposed on families. A history 
is a sequence of images in a family. There may be 
several histories associated with a given family. A 
history represents (successive) versions of the 
component that are available to particular classes 



Members of Wee 

Family: 

BTroe.bcd I 1 4-Jan-82 9: 15:42 Johnsson AR15 

BTree.bcd I 2 14-Feb-83 10:22:06 Lauer AR 543 

BTree.bcd 1 3 5-Aug.83 11:01:57 Karlton AR 672 

BTree.bcd ! 4 22-Sep-85 16:47: 13 Davirro AR 1272 

BTree.bcd 1 5 2-Jan-86 22: 11:04 Fontes -- 

Histories: 

. . . . . . . . . . . . . . . . . . . . . . 

: : 

:..................i i..................: :............“....i 

; Development ; : Project0 ; I System Test i i Private ; 

; BTree.bcd I4 i i 8Tree.bcd t 4 i i 8Tree.bcd I4 j i 8Tree.bccli 5 : 

i BTree.bcd I3 : : BTree.bcd I3 i i BTree.bcd 12 i i BTree.bcd I3 i 

i BTree.bcd!Z f 
. . . . . . . . . . . . . . . . . . . . :..................: :..................: 

; BTree.bcd 1 1 i 
. . . . . . . . . . . . . . . . . . . . . 

Figure 2. BTreeAcdFamily, with Development, Project, Test and Private Hbtories 

of customers. For example, an operating system 
kernel family could have a development history for 

kernel programmers and a customer history for 
groups using the kernel to build applications. 

Figure 2 shows four histories for BTree.bcd, the 
Development, Project D, System Test, and Private 
histories. As shown, a version of BTree.bcd can 
belong to several histories. 

3. NAME EXPRESSIONS 

Templates define hierarchical name spaces 

based on the modular decomposition of a system. 

For example, suppose templates exist for Jasmine, 

BTree, and BTree.mesa, where BTree is a subsystem 
of Jasmine and BTree.mesa is a module in BTree. 
Then Jasmine/BTree/BTree.mesa is a path name 
from the root of the system hierarchy (Jasmine) to 

a leaf module (BTree.mesa). This is entirely 
analogous to the path names imposed by 
hierarchical file systems. 

More general path names are available in 
Jasmine than in most file systems. We call these 
name expressions. Here are two examples of name 
expressions involving sets. 

(1) BTreehources 

(2) BTree/((Binaries n EXPORTS) U Sources) 

Evaluating expression (1) gives the set 
{BTree.mesa, BTreelmpl.mesa}, as defined in the 

BTree template. The evaluation of expression (2) 

computes a new set {BTree.bcd, BTree.mesa, 
BTreelmpl.mesa}. 

Function applications can also appear in name 
expressions. The application of a function F to an 
argument x is indicated by the expression F[x). The 
result of function application is a set of names. 

(3) Blree/lsCompLdUsing(BTree.~dl 

(4) BTree/(lsCompkffrom 

PLUS IsCompiledlmporung)[BTree.bcd] 

Expression (3) results in the set {Bfree.mesa, 
File.bcd} as declared in the BTree template. 

Expression (4) resembles a lambda expression. The 
function to be applied is dynamically computed 

from the expression (IsCompiledfrom PLUS 

/sCompi/edlmpofting). 

Functions may be applied to arguments that 
are sets (in fact, the application F[x] of a function F 
to a name x is just a shorthand for F[{x}]). 
Expressions (5) through (7) are equivalent. 

(5) BTree/lsCompi/edUsingfI8Tree.~d, BTreclmpl.bcd}I 

(6) BTree/lsCompi/edUsing[Biruriesl 

(7) 6tree/lsC~piledUs;~COM~NEN~S - Sources] 

The result of evaluating a function against a set is 
the union of the results of applying the function to 
the elements of the set (that is, functions are 
homomorphisms with respect to set union). For 

example, 

/sUsed8y[{BTreehcd, BTreelmpl.bcd}] 
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evaluates to the same result as the expression 
* 

/sUsed8y[BTree.bcd] U IsUsed8y[BTree~pLbcdl 

4. CONTEXT-RELATIVE NAME EVALUATION 

Name expressions are intended to be used 
wherever file path names are normally used. For 
example, in Unix a user can type,the command 

cp aTree/* . 

which copies all the files in the BTree subdirectory 
to the current directory (indicated by the period). 
Our goal is to eventually integrate the Jasmine 
name space with existing file systems, so that users 
can also issue commands such as the following one, 
which fetches all of the files needed to recompile 
the BTree binaries to the current directory. 

cp BTree/lsCompiledUsing[Binaries] . 

Name expressions such as these are evaluated 
against contexts. A context is a search path of 
images and sub-contexts. A name expression is 
treated as a pattern to be matched against the 
name spaces defined by the templates bound to 
the images in the context. The result of the 
evaluation of a name expression is a set of images, 

for example, the images for the files needed to 

recompile the BTree binaries. Here is an example of 
a “release” context. 

10.0 Release: Context = [ 

-Image for Mesa 10.0 Release”, 

‘Image for Pilot 10.0 Release”, 

‘Image for Services 10.0 Release”] 

Suppose the expression Pilot/VM/Swapper.bcd is 
evaluated against this context. First, the expression 
is matched against the template for the Mesa 10.0 
release image (this match fails), and then against 
the template for the Pilot 10.0 release image 
(which succeeds). The result is an image for a 
specific version of Swapper.bcd. 

Jasmine contexts are similar to distributed file 
systems (e.g., [W*83, 5*85]), in that they allow a 
user to find and access files that have been 
distributed on many different network sites. 
Contexts differ from distributed file systems in the 
following way. Distributed file systems offer a 

single global name space, whereas contexts link 

together many disjoint global name spaces. The 
disjoint name spaces are those defined by the 
templates bound to the images in contexts. 

5. LOCATING AND TRANSFERRING FILES 

When a name expression is evaluated (as 
described in section 4), the result is a set of images 
that specify versions of the desired files. It is then 

necessary to locate these files on network file 
services. 

We have chosen not to embed file location 
information in images. This decision was based on 
our experience with the DF software, where we 
found that embedding file location information in 

system models seriously hampers the replication of 
software files. Instead, we name images with 
network-wide unique identifiers (UIDs). By 

associating the UID of an image with the file 
described by the image, we in effect provide a 
universal name space for files. 

Recall that we assume that versions of files are 
immutable. Xerox file services directly support 
immutable versions of files; on other systems, such 
as Unix, version control systems like RCS [Ti82) are 

needed. When a version of a file is replicated, the 
(identical) replicas can all be named by the same 

UID, since the replicas are immutable. 

We maintain a simple distributed database 
(which we call #i/e) that maps UlDs to file 
locations. The mapping is one-to-many, that is, 
one UID can map to the locations of several replicas 
of the file. In a network there may be several types 
of file service, each with different file naming 
conventions. For example, the syntax used to name 
files on Xerox file services differs from the Unix 

naming convention. Therefore a JFile entry may 
contain file locations with different formats. 

The JFile entry below shows a UID for 
BTree.mesa mapped to a location on a Xerox file 
service (called Orion) and a location on a Unix 
machine (called Wally). The Xerox location includes 
a version identifier (“!3”). The Unix location 



includes an RCS file (“6Tree.mesa.v”) and RCS 
version number (” 1.3”). 

(Orion:CS:UWarh)Jasmine/Efree/BTree.mesa13, 

UW-Wally:/ul/jsm/btreelBTree.mesa.v - (1.3) > 

It may be necessary to transfer files between 
different file systems, for example, from a Unix 
system to a Xerox workstation. To do so, “plug-in” 

Fetch and Store procedures are registered with the 
file transfer mechanism on the workstation. These 
procedures encapsulate the file system specific 
information that is required to transfer files 
between a pair of file system types. 

6. JASMINE TOOLS 

There are several primitive operations that 
reference and manipulate Jasmine system models. 
For example, Jasmine supplies operations for 
constructing a template, evaluating a name 

expression relative to a context, and constructing 
an image with reference to a context and a 
template. Jasmine tools are built on top of these 
primitives. 

We have designed a suite of tools that support 

a development methodology currently in use at 
Xerox. These tools include: 

The Browser allows a user to browse system 
models. The system structure and 
dependencies can be shown in both textual 
and graphical representations. 

The BringOver tool retrieves the files specified 
by a name expression to the local workstation. 

This tool is used by developers to construct and 
maintain systems, and by clients to retrieve 

tools produced by a group (for example, the 
latest released compiler). 

The StoreBack tool is used in conjunction with 
BringOver. Once a developer has built a version 
of a system, StoreBack is used to define new 

images with appropriate attributes and to 
store files onto public file servers. 

The ReleaseTool is used to generate system 

releases. Once a development group has 
completed the development of a version of a 

system, the ReleaseTool is used to check the 
system for consistency, to set attributes, and to 
distribute files to customers. 

7. COMPARISON WITH RELATED SYSTEMS 

In this section, we compare Jasmine’s main 
abstractions with those found in other 
programming-in-the-large systems. The systems 
used for comparison are Make [Fe79], DSEE [LC84], 
SML [Sc82], Adele [EsSS], and the DF software 
[Le83]. 

b Templates do not closely resemble any 
other module interconnection language. 
Templates allow arbitrary groupings and 
relationships to be defined via sets and 
functions, respectively. Functional operators 
(including functional composition) provide an 
unusually powerful mechanism for defining 
and computing complex relationships from 

existing relations. 

Unlike some other systems (for example, 

Make and DSEE), templates do not contain 
explicit construction rules and system 
constraints (see section 9). Nor do templates 
contain version or file location information as 

do SML and the DF software. This allows 
templates to be used as system structure 
descriptions with unbound component 
parameters and construction semantics. 

b Images are similar to abstractions found in 
other programming-in-the-large systems; for 
example, bound configuration threads in DSEE, 
bound models in SML, and released DF’s. The 
notion of a binding between a system model 

and versions of the components in the model 
occurs in all of the systems compared. 

b families in Jasmine most closely resemble 
Adele families. SML and DF rely on an 
underlying versioning file system to group 
component versions in directories. Make 
requires a supplementary version control 
system such as RCS (Ti82]. 

b Contexts are used together with families to 
provide a version selection mechanism similar 



to DSEE configuration threads and the 
selection mechanism of Adele. 

b lFi/e provides the functionality of a 
distributed replicated file system, while relying 
on existing file services for the actual storage 
mechanisms. JFile allows the underlying file 

servers to differ in type. None of the systems 
compared offer this combination of features. 

8. STATUS 

An implementation of Jasmine is currently 
under way. We have chosen a modest set of goals 
for this first implementation. For example, the 
JFile implementation is simplified, attributes of 
images are not fully implemented, and there is 
only a simple selection mechanism for families. We 
chose this strategy to obtain early experience with 
the basic Jasmine mechanisms. By the end of this 

year (1986), Jasmine will be managing the 
development of several projects, including Jasmine 

itself. 

Our early experience with the utility of Jasmine has 
been very encouraging. For example, our 
microcode development group has never been 
able to effectively use existing system modelling 
facilities, since the microcode programming 
languages they use lack many features (such as 

enforced consistent compilation [M*79]). We have 
been able to develop the semantics necessary (as 
discussed in section 8) to support their 
development methodology. 

9. FUTURE WORK 

We are exploring extensions to the Jasmine 
design presented here: 

b Construction and Consistency Verification. 
Currently, the sets and functions in templates 
have no explicit semantics (except the 
COMPONENTS, EXPORTS and IMPORTS sets). 
They have implicit semantics, however. For 
example, the IsCompiledFrom function shown 
in the Brree template implies the dependency 
between a binary file and its source. 

Construction rules can be represented in 
Jasmine by attaching explicit semantics to sets 

and functions. Construction rules specify the 
operations used to construct versions of a 
system. For example, when modelling Mesa 
systems, the /sCompi/edfrom function can be 
associated with a construction rule that applies 
a version of the Mesa compiler (with 
appropriate switches) to the source file. 

A related problem is consistency 

verification. Consistency verification ensures 
that the properties and dependencies implied 
by the system’s templates are consistent with 
the actual system components. (By verification, 
we do not mean the process of checking that a 
component meets a functional specification, 
nor do we mean verification of algorithmic 
correctness). For example, the IsCompiledFrom 
function can be verified by checking that a 
binary was compiled from the appropriate 
version of its source. Verification rules are 

operations associated with sets and functions 
that verify the system’s consistency. 

We are investigating distributed 
construction and consistency verification. 

b Heterogeneity. Programming-in-the-large. 
becomes more difficult when forms of 
heterogeneity are encountered. In a multi- 
lingual environment, a system may contain 
modules written in several programming 

languages, where each language has its own 
notion of module interconnectivity. In a 
computer network, files may reside on a variety 
of file systems, with possibly inconsistent file 
formats, naming conventions, and access 
interfaces. Fully general solutions to these 

problems seem difficult, but experiments with 
partial solutions are underway. 
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