
Jasmine: A Software System Modelling Facility

Keith Marzullo
Xerox Information Systems Division

Douglas Wiebe
University of Washington

ABSTRACT

jasmine is a programming-in-the-large system designed by the authors at Xerox Information

Systems Division. Jasmine consists of workstation tools and network services that help
programmers develop, release, and maintain large software systems. Jasmine has three primary
parts: (1) system models that describe the structure and versions of software, (2) context-relative,
distributed naming of software components (supporting replication), and (3) a collection of tools
that use (1) and (2) to manipulate software systems. We present an overview of these parts of

Jasmine.

1. INTRODUCTION

Jasmine is a distributed, production quality

programming-in-the-large system developed by

the authors for use by software developers at
Xerox Information Systems Division. We consider
programming-in-the-large to consist of two parts:
(1) the description of software systems by system
models, and (2) the manipulation of software based

on the information in system models. Jasmine
system models describe software using a simple but
powerful algebra based on sets and functions.
Jasmine tools perform software manipulations
such as copying and archiving files, compiling
sources, generating releases, and browsing.

Current addresses: Keith Marzullo, Department of Computer

Science, Cornell University, Ithaca, NY 14853 and Doug

Wiebe, Department of Computer Science, University of

Washington, Seattle, WA 98195.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its dale appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

01986 ACM O-89791-212~8/86/0012/121 7%

1.1 Related Systems

Jasmine shares features with other

programming-in-the-large systems. For example,

Jasmine uses a hierarchical module interconnection
language, as do Tichy (TiSO] and the Cedar System
Modeller [Sc82]. Jasmine’s method of referencing

versions of system components resembles the
approach used by the DSEE Configuration Manager
[LC84]. Jasmine most closely resembles systems
designed to be used in an actual production
environment, such as [Fe79, Le83, LC84].

1.2 Jasmine Background

Like the Cedar System Modeller, Jasmine is

based on experience with the DF software
developed at Xerox PARC [Sc82]. The DF software
has been used by the product divisions of Xerox to
control software systems containing thousands of
modules [Le83]. Inadequacies and inefficiencies in
the DF software led to the development of
Jasmine.

Jasmine tools have been developed for the
Xerox Development Environment (XDE), a
programming support environment that runs on
Xerox personal workstations [Sw85]. Although XDE
is written in the Mesa programming language
[M*79], Jasmine makes no assumptions that the
software it models is Mesa code.

Jasmine tools communicate with Jasmine

network services via Courier remote procedure
calls [Xe811. At the present time, Courier depends
on the Xerox Network Services (XNS)
communications protocol family [Xe85] and hence
is implemented only on systems that support XNS
(this includes Berkeley 4.3850 Unix). Efforts are
currently underway to implement Courier on other
communications protocols such as TCP/IP and IS0
[Ar86]. Jasmine tools and services should then be

portable to a wide variety of systems.

2. JASMINE SYSTEM MOOELS

Programming-in-the-large systems usually
maintain a database of information that describes
the software being managed. For example, the
well-known Unix program Make [Fe791 reads as
input makefiles that describe the components of a
system, the dependencies between components,
and the shell commands needed to rebuild the

system. Other descriptive mechanisms include
functional languages [Sc82], attributed directories
[Th83, KH83], attributed graphs [K*85], descriptive

data objects [GSSO], and special-purpose databases
[C*85,ZW85, TL85, Es85].

The description of software systems by
mechanisms such as these is now commonly
referred to as system modelling [La80]. The
elements of the descriptive database (be they
programs, objects, graphs, or attributes) are called

system models. A programming-in-the-large
system generates and stores system models as
software is developed. Development tools access

the system models to perform manipulations on
the software such as copying and archiving files,
compiling sources, generating releases, and

browsing.

Jasmine system models consist of data objects
called templates and images that are grouped into
families and evaluated in contexts. The next
section describes the kinds of information that are
represented in Jasmine system models. Following

sections explain Jasmine system models in detail.

2.1 Categories of System Model Information

Four categories of information are represented
in Jasmine system models: (1) relations between
system components, (2) version information, (3)
construction rules, and (4) verification rules.

(1) System relations. Three kinds of relations
between software system components are
represented in Jasmine system models. The first
kind is the modukr decomposition of a system
into a hierarchy of subsystems and modules
[Pa72]. The decomposition relation can be
represented by a directed acyclic graph.

Second is the general class of dependency
relations. For example, a build dependency is a
partial ordering of the modules of a system,
indicating precedence in the order in which

modules can be compiled and linked to
generate an executable form of the system. As
another example, there might be a
dependency between sections of the user’s

manual for a system and the source code for
the public interfaces of the system (so that the
manual gets updated when an interface

changes). Dependency relations can be
represented by directed graphs.

A third kind of system relation is the

grouping of modules based on properties
associated with the modules. For instance, the
exported interfaces of a system may be
grouped together for public release. In this
case, the group contains those modules that
have the properties of being interfaces and

being exported. Module groupings may be
represented by sets.

Version information. The system relations

above describe the structure of a particular
version of a system. As a system evolves, new
versions of modules and subsystems are
generated. Version families describe the
succession of such versions.

At times, parallel development may occur.

For example, new features may be added to a
software package at the same time debugging
edits are made to the original version of the

(3)

(4)

.
package. Thus development forks from the
original package to the enhanced and
debugged versions. Eventually the parallel
development lines may be merged into a single
version. Version histories can be represented
by directed acyclic graphs.

Construction rules. Operations such as
compilation generate new system components
from existing ones. Construction rules record
how existing components were generated and
how future components should be

constructed. For example, a typical
construction rule might apply the “Mesa
compiler of September 3, 1986 2:28 PM, with
debugging and without optimization” to a

source module.

Verification rules. It is generally important

that certain constraints be met by a system in
order for the system to be considered “valid”.

For example, one such constraint might be that
all interfaces in a system have a corresponding
implementation in the system. Another

constraint might specify that the sources and
binaries in a system version agree, that is, that
the binaries were compiled from the versions

of the sources found in the system version.
Verification rules are used to specify and
record structural and organizational
constraints on software.

2.2 Templates

Jasmine defines a module interconnection

language [DK76] used to describe software
systems. Descriptions written in the Jasmine
description language are called templates.
Templates have a simple declarative syntax that is

used to represent the relations between software
components. There are only two kinds of
constructs that may be declared in templates: sets
and functions.

The template in Figure 1 describes a B-tree
package. The package consists of four files:
BTree.mesa and BTree.bcd (the source and binary
for the BTree interface, respectively), plus

BTreelmpl.mesa and BTreelmpl.bcd (the

implementation).

The “BTree: TEMPLATE” construct names the
template (and hence the system described) as
“BTree”. The rest of the template consists of set

and function declarations. Sets and functions are

described in the next paragraphs.

Three special sets are present in most
templates: the COMPONENTS, IMPORTS, and
EXPORTS sets. The COMPONENTS set enumerates

the modules and subsystems that make up a
system. Each of these components must in turn be
described elsewhere by a template with that
component’s name. For example, the BTree.mesa

module might be described by the foliowing
template.

tfTree.mesa: TEMPLATE = BEGIN END.

This template is null, since no internal structure
of BTree.mesa is described. Components with null
templates are atomic components, and are
considered to be indivisible. The choice of the

granularity of atomic components is left open. For
example, BTree.mesa could alternatively be

described as the set of constants, types, and
procedures found in the BTree.mesa interface.

BTree.mesa: TEMPLATE = BEGIN . . .

COMPONENTS: SET = (Constl, ConstZ, . . . ,

. . . ,Typetl, Type2, . , . , Prod, Prod, . . .);

. . . END.

Proceeding in the other direction, the BTree
package could itself be a subsystem of a larger
system.

Jasmine: TEMPLATE = BEGIN . . .

COMPONENTS: SET = { . . . , BTree, . . .};

. . . END.

The declaration of components in the
COMPONENTS sets is used to represent the module

decomposition hierarchy of the system, as
described in section 2.1. When a system is
decomposed into subsystems and modules, the
names of the subsystems and modules must appear
in the COMPONENTS set. A shared subsystem is

123

represented by naming the subsystem as a
component in two distinct templates.

The IMPORTS set lists components of other

subsystems that are referenced in the template. For
example, the name Heap/Heap.bcd refers to the
Heap.bcd interface in the Heap subsystem.
Heap.bcd must be present in the IMPORTS set,
since it is not a component of Nree, but is used in
the declaration of IsCompiledlmporting. The
EXPORTS set specifies components that can be
imported by other subsystems. For example, the
name BTree/BTree.bcd can appear in other
templates, whereas BTree/BTreeimpl.mesa cannot,
since BTreelmpl.mesa does not appear in the
fXPORTS set. The 1MPORTS and EXPORTS sets
ensure that templates are themselves modular.

Collectively, the COMPONENTS and /MPORTS
sets make up the naming domain of the template.
For a template to be semantically correct, all of the
names that appear in the remaining sets and

functions must first appear in one of these two
sets.

User-declared sets are used to group
components that share a common property, as
described in item (1) of section 2.1. For example, all
of the elements of the user-declared Sources set
are Mesa source modules. Set expressions
containing the union, intersection, and difference
operators can be used in the declaration of sets, as
illustrated in the declaration of the Binaries set.

Functions represent relationships among the
elements of a template. For example, the
lsCompi/edUsing function shows the dependency
relation between a compiled binary and the files
needed to prdduce it. Functional expressions may
appear on the right side of function declarations,
as in the definitions of IsCompiledUsing, IsUsedSy,
and InducesRebuildOf. Several functional
operators are available (e.g., PLUS, INVERSE OF,

and CLOSURE OF). The PLUS operator merges two
functions into one, thus the declaration of

&Wee: TEMPLATE =

BEGIN

COMPONENTS: SET = {lTree.mesa, BTree.bcd. BTreelmpLmesa. BTreelmplhcd);

IMPORTS: SET = {FileSystem/File.bcd, CommonSoftware/String.bcd, Heap/Heap&d);

EXPORTS: SET = (BTreekd);

Sources: SET = (8Tree.mesa.6Treelmpl.mesa);

Binaries : SET = COMPONENTS - Sources;

/sCompiledFrom : FUNCTION =

BEGIN

BTree.bcd =$ {BTree.mesa),

ETreelmpl.bcd =+ (BTreelmpl.mesa)

END IsCompiledFrom;

/sCompiled/mporting : FUNCTION =

BEGIN

ETree.bcd * (Filekd),

Bfreelmpkbcd * {BTree.bcd, Heapkd, Stringhcd)

END lsCompiledlmporting;

/sCompi/edUsing : FUNCTION = IsCompiledFrom PLUS IsCompiledlmpwiing;

/slJsedBy : FUNCTION = INVERSE OF IsCompiledUsing;

hducesRebui/dOf : FUNCTION = CLOSURE OF IsUsed8y;

END #Tree.

Figure 1. Template for a B-Tree Subsystem

I.24

/sCompi/edUsing in Figure 1 is identical to the
following one.

IsCompiledUsing: FUNCTION =

BEGIN

BTree.bcd =# {BTree.mesa, File.bcd),
BTreelmpLbcd =# (BTreelmpl.mesa, BTree.bcd,

Heap.bcd, Stringhd)

END bCompiledUsing;

INVERSE OF and CLOSURE OF are unary functionals
that create a new function from an existing one.

INVERSE OF may be, thought of as an operation
that reverses the direction of the arcs in the
dependency graph described by the argument
function. CLOSURE OF computes a new function
that is the transitive closure of the argument
function with respect to the naming domain of the
template.

Any grouping of a system’s components can be

described by a set, and any relation between
components can be described by a function. Our
example describes only compilation dependencies,

but other relationships can be similarly defined.

Also, we are able to construct relatively complex
sets and functions from simpler ones using set and
functional operators. For example, given the
simple functions /sCompiledFrom and
Iscompiledlmporting (which can be derived
mechanically from the software being modelled)
we defined a function /sCompi/edUsing that tells
us what components are needed to rebuild a
binary file. We then defined another function
/nducesRebui/dOf that answers the question “lf I
change d particular component, what other
components are affected?”

2.3 Images

Specific versions of software components are
represented in Jasmine by images. A version of a
module is typically an immutable file (sometimes
called a revision (Ti82]). For example, a version of
BTreemesa might be the file “BTree.mera created
on August 5, 1983 11:01:57 A.M.“. A version of a
system is a collection of versions of its subsystems
and its modules.

Every atomic component (typically, a module)
in a system is represented by an atomic image. An

atomic image binds the template that describes the
module to a specific version of the module. For
example, an image of BTree.mesa binds the
template for BTree.mesa to the’file of August 5.

Subsystems are represented by composite
images. A composite image is constructed by
binding each name in the COMPONENS and

IMPORTS sets to images for versions of these
elements. For example, an image of the BTree
template binds the names BTree.mesa, BTree.bcd,

File&d, etc., to images for specific versions of
these files. As another example, an image for
Jasmine would bind the name BTree to a composite
image describing a version of the BTree package.

An image has attributes associated with it. An
attribute is a (name,va/ue) pair, for example
(Create date, 5Aug-83 11:01:57). Attributes
describe properties of the system or module
described by the image.

2.4 Families

It is often convenient to refer to all versions of
a system component. Typically one does this to
select one or more of the images that meet certain
criteria, such as being created on a given date,
containing a bug fix, or being compiled by a given
version of the compiler. In Jasmine, the collection
of all images (that is, all versions) of a component is
called a family. A family contains the version
history information described in item (2) of section
2.1. A family can be thought of as a table with a
row for each image in the family and columns for
the attributes of the images. Images are selected by
queries across the table, in analogy to selections in
a relational database.

Figure 2 shows a family for BTree.bcd. The
family has five versions of BTree.bcd, BTree.bcd!l
through BTree.bcd!S. Each version has its creation
date-time, its author, and its “action report
number” as attributes.

Histories may be imposed on families. A history
is a sequence of images in a family. There may be
several histories associated with a given family. A
history represents (successive) versions of the
component that are available to particular classes

Members of Wee

Family:

BTroe.bcd I 1 4-Jan-82 9: 15:42 Johnsson AR15

BTree.bcd I 2 14-Feb-83 10:22:06 Lauer AR 543

BTree.bcd 1 3 5-Aug.83 11:01:57 Karlton AR 672

BTree.bcd ! 4 22-Sep-85 16:47: 13 Davirro AR 1272

BTree.bcd 1 5 2-Jan-86 22: 11:04 Fontes --

Histories:

.

: :

:..................i i..................: :............“....i

; Development ; : Project0 ; I System Test i i Private ;

; BTree.bcd I4 i i 8Tree.bcd t 4 i i 8Tree.bcd I4 j i 8Tree.bccli 5 :

i BTree.bcd I3 : : BTree.bcd I3 i i BTree.bcd 12 i i BTree.bcd I3 i

i BTree.bcd!Z f
. :..................: :..................:

; BTree.bcd 1 1 i
.

Figure 2. BTreeAcdFamily, with Development, Project, Test and Private Hbtories

of customers. For example, an operating system
kernel family could have a development history for

kernel programmers and a customer history for
groups using the kernel to build applications.

Figure 2 shows four histories for BTree.bcd, the
Development, Project D, System Test, and Private
histories. As shown, a version of BTree.bcd can
belong to several histories.

3. NAME EXPRESSIONS

Templates define hierarchical name spaces

based on the modular decomposition of a system.

For example, suppose templates exist for Jasmine,

BTree, and BTree.mesa, where BTree is a subsystem
of Jasmine and BTree.mesa is a module in BTree.
Then Jasmine/BTree/BTree.mesa is a path name
from the root of the system hierarchy (Jasmine) to

a leaf module (BTree.mesa). This is entirely
analogous to the path names imposed by
hierarchical file systems.

More general path names are available in
Jasmine than in most file systems. We call these
name expressions. Here are two examples of name
expressions involving sets.

(1) BTreehources

(2) BTree/((Binaries n EXPORTS) U Sources)

Evaluating expression (1) gives the set
{BTree.mesa, BTreelmpl.mesa}, as defined in the

BTree template. The evaluation of expression (2)

computes a new set {BTree.bcd, BTree.mesa,
BTreelmpl.mesa}.

Function applications can also appear in name
expressions. The application of a function F to an
argument x is indicated by the expression F[x). The
result of function application is a set of names.

(3) Blree/lsCompLdUsing(BTree.~dl

(4) BTree/(lsCompkffrom

PLUS IsCompiledlmporung)[BTree.bcd]

Expression (3) results in the set {Bfree.mesa,
File.bcd} as declared in the BTree template.

Expression (4) resembles a lambda expression. The
function to be applied is dynamically computed

from the expression (IsCompiledfrom PLUS

/sCompi/edlmpofting).

Functions may be applied to arguments that
are sets (in fact, the application F[x] of a function F
to a name x is just a shorthand for F[{x}]).
Expressions (5) through (7) are equivalent.

(5) BTree/lsCompi/edUsingfI8Tree.~d, BTreclmpl.bcd}I

(6) BTree/lsCompi/edUsing[Biruriesl

(7) 6tree/lsC~piledUs;~COM~NEN~S - Sources]

The result of evaluating a function against a set is
the union of the results of applying the function to
the elements of the set (that is, functions are
homomorphisms with respect to set union). For

example,

/sUsed8y[{BTreehcd, BTreelmpl.bcd}]

I26

evaluates to the same result as the expression
*

/sUsed8y[BTree.bcd] U IsUsed8y[BTree~pLbcdl

4. CONTEXT-RELATIVE NAME EVALUATION

Name expressions are intended to be used
wherever file path names are normally used. For
example, in Unix a user can type,the command

cp aTree/* .

which copies all the files in the BTree subdirectory
to the current directory (indicated by the period).
Our goal is to eventually integrate the Jasmine
name space with existing file systems, so that users
can also issue commands such as the following one,
which fetches all of the files needed to recompile
the BTree binaries to the current directory.

cp BTree/lsCompiledUsing[Binaries] .

Name expressions such as these are evaluated
against contexts. A context is a search path of
images and sub-contexts. A name expression is
treated as a pattern to be matched against the
name spaces defined by the templates bound to
the images in the context. The result of the
evaluation of a name expression is a set of images,

for example, the images for the files needed to

recompile the BTree binaries. Here is an example of
a “release” context.

10.0 Release: Context = [

-Image for Mesa 10.0 Release”,

‘Image for Pilot 10.0 Release”,

‘Image for Services 10.0 Release”]

Suppose the expression Pilot/VM/Swapper.bcd is
evaluated against this context. First, the expression
is matched against the template for the Mesa 10.0
release image (this match fails), and then against
the template for the Pilot 10.0 release image
(which succeeds). The result is an image for a
specific version of Swapper.bcd.

Jasmine contexts are similar to distributed file
systems (e.g., [W*83, 5*85]), in that they allow a
user to find and access files that have been
distributed on many different network sites.
Contexts differ from distributed file systems in the
following way. Distributed file systems offer a

single global name space, whereas contexts link

together many disjoint global name spaces. The
disjoint name spaces are those defined by the
templates bound to the images in contexts.

5. LOCATING AND TRANSFERRING FILES

When a name expression is evaluated (as
described in section 4), the result is a set of images
that specify versions of the desired files. It is then

necessary to locate these files on network file
services.

We have chosen not to embed file location
information in images. This decision was based on
our experience with the DF software, where we
found that embedding file location information in

system models seriously hampers the replication of
software files. Instead, we name images with
network-wide unique identifiers (UIDs). By

associating the UID of an image with the file
described by the image, we in effect provide a
universal name space for files.

Recall that we assume that versions of files are
immutable. Xerox file services directly support
immutable versions of files; on other systems, such
as Unix, version control systems like RCS [Ti82) are

needed. When a version of a file is replicated, the
(identical) replicas can all be named by the same

UID, since the replicas are immutable.

We maintain a simple distributed database
(which we call #i/e) that maps UlDs to file
locations. The mapping is one-to-many, that is,
one UID can map to the locations of several replicas
of the file. In a network there may be several types
of file service, each with different file naming
conventions. For example, the syntax used to name
files on Xerox file services differs from the Unix

naming convention. Therefore a JFile entry may
contain file locations with different formats.

The JFile entry below shows a UID for
BTree.mesa mapped to a location on a Xerox file
service (called Orion) and a location on a Unix
machine (called Wally). The Xerox location includes
a version identifier (“!3”). The Unix location

includes an RCS file (“6Tree.mesa.v”) and RCS
version number (” 1.3”).

(Orion:CS:UWarh)Jasmine/Efree/BTree.mesa13,

UW-Wally:/ul/jsm/btreelBTree.mesa.v - (1.3) >

It may be necessary to transfer files between
different file systems, for example, from a Unix
system to a Xerox workstation. To do so, “plug-in”

Fetch and Store procedures are registered with the
file transfer mechanism on the workstation. These
procedures encapsulate the file system specific
information that is required to transfer files
between a pair of file system types.

6. JASMINE TOOLS

There are several primitive operations that
reference and manipulate Jasmine system models.
For example, Jasmine supplies operations for
constructing a template, evaluating a name

expression relative to a context, and constructing
an image with reference to a context and a
template. Jasmine tools are built on top of these
primitives.

We have designed a suite of tools that support

a development methodology currently in use at
Xerox. These tools include:

The Browser allows a user to browse system
models. The system structure and
dependencies can be shown in both textual
and graphical representations.

The BringOver tool retrieves the files specified
by a name expression to the local workstation.

This tool is used by developers to construct and
maintain systems, and by clients to retrieve

tools produced by a group (for example, the
latest released compiler).

The StoreBack tool is used in conjunction with
BringOver. Once a developer has built a version
of a system, StoreBack is used to define new

images with appropriate attributes and to
store files onto public file servers.

The ReleaseTool is used to generate system

releases. Once a development group has
completed the development of a version of a

system, the ReleaseTool is used to check the
system for consistency, to set attributes, and to
distribute files to customers.

7. COMPARISON WITH RELATED SYSTEMS

In this section, we compare Jasmine’s main
abstractions with those found in other
programming-in-the-large systems. The systems
used for comparison are Make [Fe79], DSEE [LC84],
SML [Sc82], Adele [EsSS], and the DF software
[Le83].

b Templates do not closely resemble any
other module interconnection language.
Templates allow arbitrary groupings and
relationships to be defined via sets and
functions, respectively. Functional operators
(including functional composition) provide an
unusually powerful mechanism for defining
and computing complex relationships from

existing relations.

Unlike some other systems (for example,

Make and DSEE), templates do not contain
explicit construction rules and system
constraints (see section 9). Nor do templates
contain version or file location information as

do SML and the DF software. This allows
templates to be used as system structure
descriptions with unbound component
parameters and construction semantics.

b Images are similar to abstractions found in
other programming-in-the-large systems; for
example, bound configuration threads in DSEE,
bound models in SML, and released DF’s. The
notion of a binding between a system model

and versions of the components in the model
occurs in all of the systems compared.

b families in Jasmine most closely resemble
Adele families. SML and DF rely on an
underlying versioning file system to group
component versions in directories. Make
requires a supplementary version control
system such as RCS (Ti82].

b Contexts are used together with families to
provide a version selection mechanism similar

to DSEE configuration threads and the
selection mechanism of Adele.

b lFi/e provides the functionality of a
distributed replicated file system, while relying
on existing file services for the actual storage
mechanisms. JFile allows the underlying file

servers to differ in type. None of the systems
compared offer this combination of features.

8. STATUS

An implementation of Jasmine is currently
under way. We have chosen a modest set of goals
for this first implementation. For example, the
JFile implementation is simplified, attributes of
images are not fully implemented, and there is
only a simple selection mechanism for families. We
chose this strategy to obtain early experience with
the basic Jasmine mechanisms. By the end of this

year (1986), Jasmine will be managing the
development of several projects, including Jasmine

itself.

Our early experience with the utility of Jasmine has
been very encouraging. For example, our
microcode development group has never been
able to effectively use existing system modelling
facilities, since the microcode programming
languages they use lack many features (such as

enforced consistent compilation [M*79]). We have
been able to develop the semantics necessary (as
discussed in section 8) to support their
development methodology.

9. FUTURE WORK

We are exploring extensions to the Jasmine
design presented here:

b Construction and Consistency Verification.
Currently, the sets and functions in templates
have no explicit semantics (except the
COMPONENTS, EXPORTS and IMPORTS sets).
They have implicit semantics, however. For
example, the IsCompiledFrom function shown
in the Brree template implies the dependency
between a binary file and its source.

Construction rules can be represented in
Jasmine by attaching explicit semantics to sets

and functions. Construction rules specify the
operations used to construct versions of a
system. For example, when modelling Mesa
systems, the /sCompi/edfrom function can be
associated with a construction rule that applies
a version of the Mesa compiler (with
appropriate switches) to the source file.

A related problem is consistency

verification. Consistency verification ensures
that the properties and dependencies implied
by the system’s templates are consistent with
the actual system components. (By verification,
we do not mean the process of checking that a
component meets a functional specification,
nor do we mean verification of algorithmic
correctness). For example, the IsCompiledFrom
function can be verified by checking that a
binary was compiled from the appropriate
version of its source. Verification rules are

operations associated with sets and functions
that verify the system’s consistency.

We are investigating distributed
construction and consistency verification.

b Heterogeneity. Programming-in-the-large.
becomes more difficult when forms of
heterogeneity are encountered. In a multi-
lingual environment, a system may contain
modules written in several programming

languages, where each language has its own
notion of module interconnectivity. In a
computer network, files may reside on a variety
of file systems, with possibly inconsistent file
formats, naming conventions, and access
interfaces. Fully general solutions to these

problems seem difficult, but experiments with
partial solutions are underway.

ACKNOWLEDGMENTS

Brad Davirro, Dan Conde, W.David Elliott, and
Joyce Sawai of the Jasmine working group have all
made important contributions to the Jasmine
design and implementation.’

BIBLIOGRAPHY

[A&61 Armstrong, 5. Factored Courier. Xerox Corporation

internal memorandum, Palo Alto, CA (March 1986).

IC”851

[DK76]

[Es851

Fe791

IGS801

[KH83]

(K’851

[La801

ILC841

ILe831

iM.791

[Pa721

[Sc82]

Clemm, G., lieimbigner, D., Osterweil, L., and

Williams, 1. “KEYSTONE: A Federated Software

Environment.” Workshop on Software Engineering

Environments for Programming-in-the-large,

Harwichport, MA (June 1985).

DeRemer. F., and Kron, H. ‘Programming-in-the-

Large vs. Programming-in-the-Small.” tEEE

Transactions on Software Engineering, volume 2,

number 2, (June, 1976).

Estublier, 1. “A Configuration Manager: The Adele

Database of Programs.” Workshop on Software

Engineering Environments for Programming-in-the-

large, Hamichport, MA (June 1985).

Feldman, 5. “Make - A Program for Maintaining

Computer Programs.“, Software Practice and

Experience volume 9 number 4 (April 1979)

Goldstein, I., and Bobrow, D. A Layered Approsch to

SoBware Design. Technical Report CSL-80-5, Xerox

PARC, Palo Alto, CA, (December 1980).

Kaiser, G., and Habermann, N. “An Environment for

System Version Control.” COMPCON Spring 83, IEEE

Computer Society, San Francisco, (February 1983).

Kirslis. P., Terwilliger, R., and Campbell, R. “The SAGA

Approach to Large Program Development in an

Integrated Modular Environment.” Workshop on

Software Engineering Environments for

Programming-in-the-large, Harwichport. MA (June

1985).

Lampson, 8. System Modelling. Xerox Corporation

Internal Memorandum, (May 1980).

Leblang, D., and Chase, R. “Computer-Aided Software

Engineering in a Distributed Workstation

Environment.” ACM SIGSOFTISIGPLAN Software

Engineering Symposium on Practical Software

Development Environments, Pittsburgh (April 1984).

Lewis, 8. ‘Experience with a System for Controlling

Software Versions in a Distributed Environment.”

Symposium on Application and Assessment of

Automated Tools for Software Development, San

Francisco(November 1983).

Mitchell, 1.. Maybury, W., and Sweet, R. Mesa

Language Manual. Xerox PARC technical report CSL-

79-3 (April 1979).

Parnas, 0. “On the Criteria to be Used in

Decomposing Systems into Modules”, CACM, volume

15, number 12, (December 1972).

Schmidt. E. Controlhng Large Software Development

in a Dbtributed Environment. PhD Thesis, University

IS’85l

lSw85]

ITh82l

Vi801

ITi

]TL85]

IW’831

(Xe811

IXe851

[tW85]

of California, Berkeley (December, 1982). Also Xerox

PARC technical report CSL-82-7.

Schroeder, M., Gifford, 0.. Needham, R. ‘A Caching

File System for a Programmer’s Workstation.” 70th

Symposium on Operating Systems Principles, Orcas

Island, WA(December 1985).

Sweet, R. “The Mesa Programming Environment”.

ACM SIGPLAN 85 Symposium on Language Issues in
Programming Environments, Seattle (June 1985).

Thall. R. ‘Large Scale Software Development with the

Ada Language System.” 6th International Conference

on Software Enginetring, Tokyo (September 1982).

Tichy, W. Software Devtlopment Control Based on
System Structure Description. PhD thesis, Carnegie-

Mellon University, (January, 1980).

Tichy, W. “Design, Implementation, and Evaluation of

a Revision Control System.” 6th lnttrnational

Conference on Software Engineering, Tokyo

(September 1982).

Thomas, I., and Loerscher, J.. “MOSAIX: A Version

Control and History Management System” Workshop

on Software Engineering Environments for

Programming-in-the-large, Harwichport, MA (June

198s).

Walker, B., Popek, C., English, R., Kline, C., and Theil,

G. “The LOCUS Oistributed Operating System”. 9th

Symposium on Operating Systtms Principles, Bretton

Woods, NH (October 1983).

Xerox Corporation. Courier: Tht Remote Procedurt

Call Mechanism. Xerox Technical Report, XSIS 038112,

Stamford, CT (December 1981).

Xerox Corporation. Xerox Network Systems

Architecture. Xerox Technical Report, XNSG068504,

Palo Alto, CA (April 1985).

Zdonik, S., and Wegner, P. “A Database Approach to

Languages, Libraries, and Environments” Workshop

on Software Enginttring Environments for

Programming-in-the-large, Harwichport, MA (June

1985).

I30

