
TECHNICAL CORRESPONDENCE 

Tichy’s Response to R. W. Schwanke and 
G. E. Kaiser’s “Smarter Recompilation” 

Schwanke and Kaiser’s extension of smart recompilation is an intriguing idea. 
Their mechanism aims at delaying recompilation work by permitting “harmless” 
compilation inconsistencies to remain after changes. Full consistency can be 
reestablished at a later time, after the change has been tested in a subpart of the 
system. If the change was inadequate, then no needless compilation work was 
performed. This strategy is used frequently in practice, by exploiting loopholes 
in system generation tools. Schwanke and Kaiser’s mechanism is novel in that it 
makes this practice safe. The compiler is aware of the inconsistencies, and will 
not overlook dangerous ones. Furthermore, it can help reestablish full consistency 
once a change is deemed acceptable. 

Smarter recompilation defines a harmless inconsistency as follows. If a decla- 
ration is changed, this action is treated as introducing a new version of the 
declaration. The coexistence of both the old and new versions in the same 
configuration is a harmless inconsistency as long as the uses of the two versions 
do not conflict. The system must be separable into two partitions, one that uses 
the old version and the other the new one, such that the interface between the 
two depends on neither. Since the inconsistent declarations do not cross the 
interface, the two partitions may even communicate with each other. Of course, 
inconsistencies not captured by the type system cannot be treated in this way. 

Schwanke and Kaiser’s note leaves a few minor questions unanswered. For 
instance, a new or changed declaration might cause a redeclaration or overloading 
error that can only be detected by recompilation. Is this potential problem left 
undetected until full consistency is desired, or is it checked immediately? If a 
declaration is deleted that is still in use, is the deletion treated as an error or as 
a delayed deletion that will take effect after the last use disappears? If the old 
and new versions of a procedure operate on the same data structure, is it always 
desirable to let both versions coexist, or can the programmer indicate that the 
old version should be eliminated before the next program execution? Perhaps a 
future paper about an implementation will clarify these points. 

Smarter recompilation also opens the door for more powerful programming 
tools. For example, since the mechanism maintains cross-reference information, 
a tool like Masterscope [l] could be built relatively easily. The tool would have 
the advantage that cross-reference information is immediately available once a 
module has been compiled. Only little additional data would be needed to classify 
the uses of symbols. The information could also be exploited by a Maintainer’s 
Assistant. This program helps with reestablishing consistency after changes by 
suggesting corrections of the affected program parts. For example, it could 
attempt to make call sites of changed procedures consistent with their headers, 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988, Pages 633-634. 



634 l FL W. Schwanke and G. E. Kaiser 

update operations on changed record fields, or perform some simple program 
transformations in response to data structure changes. 

WALTER F. TICHY 
Informatik II 

University of Karlsruhe 
D-7500 Karlsruhe 1 

FR Germany 

REFERENCE 

1. KAISLER, S. H., Interlisp, The Language and Its Usage. John Wiley, New York, 1986. 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988. 


