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Abstract 

The software development process consists of a 
number of complex activities for work coordination, organ- 
ization, communication, and disciplines that are essential 
for achieving quality software, maintaining system 
integrity, and keeping the software process manageable. 
Software Engineering Environments can be helpful instru- 
ments in pursuing these goals when they are integrated, 
open to extension, and capable of adapting to real processes 
as they occur in software development projects. 

Adaptability and the ability to perform adaptations 
rapidly are crucial features of SEES. In this paper we are 
presenting an approach to rapid environment extension that 
provides the means to capture characteristics of software 
development processes and realize environment support for 
these processes by using existing tools. An object oriented 
environment infrastructure is the basis for achieving these 
goals while providing and maintaining an integrated 
behavior of the environment. The presented approach is 
demonstrated by defining a set of classes for version con- 
trol and configuration management that model the behavior 
of an existing configuration management toolkit. 

1. Introduction 

The purpose of Software Engineering Environments 
(SEE) is to increase the efficiency of software production, 
and to enhance the quality of the developed software. The 
key concept in achieving this goal is a comprehensive sup- 
port for the software developmentprocess. 

In theory the effect of an environment would be to 
relieve the members of a project team from having to be 
aware of complex procedures and behavior protocols that 
are essential for the functioning of a project. The environ- 
ment ensures automatically that these protocols are fol- 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, and notice is given 
that copying is by permission of the Association for Computing 
Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
@ 1990 ACM 0-89791-418-X/90/0012-0229...$1.50 

lowed. Programmer productivity is increased because the 
programmer can better concentrate on the problem he/she is 
working on. 

1.1. Software Engineering Environments must be 
adaptable 

For some reason SEES tend to not satisfy the expecta- 
tions that are associated with them. Despite the recent 
“CASEmania” many integrated toolsystems and environ- 
ments suffer from low acceptance or simply don’t perform 
as expected. It has even been noted that environments even- 
tually happen to be counterproductive[6]. Over the last 
decade substantial research has been (and still is) conducted 
to attack these problems and to generally improve the use- 
fulness of SEES. 

While early SEES were normally centered around a 
static model of the software development process (derived 
from a software development method) it has been learned 
that software development projects are highly dynamic 
processes, strongly dependent on the people involved, the 
size and complexity of the developed system, as well as 
external constraints such as customer relations. Today, it is 
understood that the actual process of developing software is 
more or less different for every project[l6]. SEES must be 
able to cope with changing characteristics of the software 
development processes that have to be supported. 

What is needed is a customizable, highly flexible, 
and extensible SEE-frame/kernel, Some of the more obvi- 
ous reasons for the necessity of SEE extensibility are: 

l different projects need different kinds of support 

l an environment should adapt to real (social) processes 
instead of forcing the teamwork structure to adapt to the 
environment 

l fault-tolerance against environment design flaws 

l support for environment evolution according to evolving 
requirements when a project proceeds (for example from 
implementation to maintenance phase) 

l allowing partial completeness of an environment, imply- 
ing delayed functional completion when suitable tools 
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become available (rather than integrating insufficient 
tools “just to be complete”) 

During the last years, it has been widely accepted 
that good SEES should be integrated, yet open and highly 
extensible[8,9,15]. Recent research has furthermore led to 
an increased awareness that in order to make the extension 
approach feasible, the extension of a SEE can be performed 
rapidly. 

A good SEE shall combine the integrated Iook and 
feel of - for example - Smalltalk or Lisp systems with the 
general scope and applicability of tool collections as in the 
Unix environment. The initial establishment of .a stable, 
basic environment infrastructure for a given project shall be 
a matter of days. To apply major changes/extensio,ns (such 
as adding new classes of software objects to the system) 
shah be a matter of hours, and to apply minor changes (for 
example set user preferences, or fine tune certain object 
behavior) shall be a matter of minutes. 

1.2. Recent approaches to environment integration 

Many recent research projects have adopted the 
notion of Software Object as central for environment exten- 
sion mechanisms[2,4,181. The specifics of the software 
development process are captured by classifying the pieces 
of information evolving in a project, and describing related 
behavior of these information objects (we will refer to them 
as software objects). 

The object oriented paradigm is used to specify 
external properties of software objects, and to provide for 
formally defined access protocols to be followed when 
manipulating these objects. Use of type inheritance makes 
it possible to specify general functionality on an abstract 
level (abstract superclasses), making the functionality 
available for use/reuse in application specific class 
definitions (specialized classes). The specified functional- 
ity is turned into action by corresponding process pro- 
grams, formal (and executable) descriptions of particular 
software engineering activities, enacted by a process pro- 
gram interpreter. These process programs are the methods 
associated with a given software object class[3,17]. Later 
in this paper, we will demonstrate how this technique is 
used to integrate such vital services as version control and 
configuration management into an environment, and how 
this functionality is (re-)used in specialized object classes. 

Another interesting, yet entirely different, approach 
to environment integration has been taken with the Field 
environment[I4]. Field integrates existing tools under a 
consistent graphical user-interface framework. Tools com- 
municate via messages, representing information and com- 
mands intended for other tools. Messages are sent to a cen- 
tral environment message server which dispatches the mes- 
sages to all tools possibly interested in them (selective 
broadcasting). The technique permits to integrate unre- 
lated tools by adding a message interface to them. While 
this approach makes it possible to create moderately highly 

integrated environments from existing tools without a great 
deal of work, it requires some modifications to the tools’ 
source code. 

The most advanced approaches (for example [3]) are 
using knowledge based technology as main extension 
mechanism for SEES. Today, we are moving towards a 
point where a SEE is basically a system that allows to store 
knowledge about how a particular project is working, and 
functionality that is intelligently applied according to the 
project specific work patterns stored in the knowledge base. 

In the remainder of this paper we will briefly intro- 
duce the STONE project, a research project aiming at 
development of a generic SEE kernel especially suited for 
environment education, and outline STONE’s approach to 
rapid tool integration. The subsequent description of the 
shape toolkit, a Unix-based set of integrated tools for ver- 
sion control and configuration management, marks one of 
the starting points for the STONE project. In the final sec- 
tion we will integrate the functionality of this toolkit into a 
STONE system environment. 

2. The STONE Project 

The work described in this paper is part of the 
STONE-project? aiming at development of a generic SEE 
kernel, open to extension and integration of new as well as 
existing tools. Some of the covered research areas, such as 
object management, software process modeling, and user 
interfaces are similar to those of the Arcadia project[l7]. 
As environments must be adaptable to particular project 
structures, there must also be people, qualified to perform 
the adaptation. STONE’s special agenda is support of 
environment education. Education will be supported in two 
principal ways: 

1) providing a simple and well structured, yet highly func- 
tional environment kernel suitable for education in con- 
struction of software engineering environments, and 

2) providing a basis for research and education in practical 
software engineering. 

While the object oriented paradigm is more and more 
used to provide a formal framework for the specification of 
software process characteristics, it has rarely been 
described how these formalisms are used for actually 
integrating a complex tool suite into an environment. The 
purpose of this paper is to describe how the functionality of 
an existing toolkit for software configuration management 
(SCM) is integrated and made accessible in the STONE 
environment. 

t STONE - a STructured and OpN Environment, a research project 
supported by the German Ministry of Research and Technology 
(BMFT) under grant ITS-8902E8 
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2.1. Rapid Tool Integration 

Within the STONE project, a number of environment 
integration strategies are researched. Besides user-interface 
integration[5] and fine-grain data-integration based on an 
object oriented data management facility[l9], there is also 
research in rapid tool integration mechanisms. The main 
goal of this integration approach is to be able to very 
rapidly integrate existing Unix-tools into an integrated 
environment. The concept is based on software objects 
modeled after the file notion of Unix but which are based 
on a consistent, general purpose type system. The typed 
software object abstraction is built on top of a general attri- 
bution mechanism for Unix files and versions[lO]. 

The type system allows to describe classes of 
software objects that are more than just files. For example, 
a C-language source object would not just be an ordinary 
file that happens to contain C source code but would be 
associated with properties (attributes and methods) that are 
characteristical for C code modules. The type system is 
defined in an object oriented specification language called 
CHieF (Class Hierarchy Definition Facility[20] ), featuring 
multiple inheritance, generic classes, method overloading, 
dynamic identification, and easy schema modification. 
This specification mechanism allows to easily describe the 
properties of the various software objects encountered in 
the software development process, such as relations to other 
software objects, or dependencies. The specified methods 
for a given object class are implemented by Unix-tools or a 
combination of Unix-tools (shell scripts). 

The type system is enacted by OShell, an object 
oriented command interpreter resembling the Unix Shell. 
OShell allows to send objects messages that trigger invoca- 
tions of object specific methods. In that the system is not 
unlike Budd’s osh idea described in[l]. A similar concept 
is present in Odin’s [23 request language, but lacks a 
sufficient inheritance mechanism. 

The type system and the object shell allow to capture 
the external behavior of Unix tool processes, such as vi, 
awk, or cc if they are described as methods. Such behavior 
would for example be the creation of certain new objects 
(files) or the type of data that will be read from standard 
input or sent to standard output. This in turn makes it possi- 
ble to construct type-safe pipelines within the object shell. 

Adding support for a new kind of software object 
basically consists of defining the respective class, possibly 
using preclefined functionality (such as version control) via 
the inheritance mechanism, and implementing the 
corresponding methods in form of calls to Unix tools (e.g. 
version control programs), or (0)Shell scripts that are also 
stored in the object base as special software objects of type 
Method. By applying this idea, we are able to amalgamate 
the prototyping power of Unix-typical tool combination 
(shell scripts, pipelines) with a formally integrated behavior 
of the environment. 

While OShell itself is not a graphical user interface, 
it can be used to interact with a graphical environment 
shell-tool. In fact, the object shell represents an abstraction 
that has a well defined syntactical interface, suitable for for- 
mally communicating with a user interface process that 
presents the concepts of the object shell in a graphical way 
on a workstation. 

User Interface 
Management System 

A 

. 

I 
I OShell 
I 

Object Management 
System 

‘. \ . a -. \- 

Fig. 2.1. Rapid tool integration in STONE 

With its loosely coupled tool integration concept and 
the rather simple way of dealing with object-base schema 
data, OShell is easily extensible for use in distributed 
environments. The flexibility that is known from using 
remote shells will directly be obtainable from a concept of 
remote OShell. 

The concept of an object-oriented command inter- 
preter provides the framework for integrating unrelated 
tools on top of a software object base into a moderately 
highly integrated SEE. The described work is unique in its 
consequent use of object oriented principles and techniques 
that are almost seamlessly combined with the well-known 
concepts of the UNIX environment. 

STONE’s generic environment kernel provides the 
basic technology to build comprehensive, highly integrated 
environments with reasonable effort. The simplicity, ortho- 
gonality, and expressiveness makes the described approach 
a good basis for environment education. The student (as 
well as the teacher) can concentrate on the process that 
shall be supported, rather than being concerned with the 
intricacies of adapting any existing, closed, special purpose 
SEES as used in the commercial environment, 
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3. The Shape Toolkit 

Shupetools[l2] is a collection of programs for ver- 
sion control and configuration management adhering to the 
Unix toolbox philosophy. It is basically a traditionall toolset 
that supports general functions for a particular problem area 
but doesn’t care about the particular needs of individual 
projects and therefore must be customized for non-trivial 
project settings. 

The toolkit consists of a set of version control com- 
mands and shape, a configuration building tool similar to 
Make[7]. Shape and the version control commands are 
integrated on top of AtFS (Attributed File System), a dedi- 
cated version object base. The system features a 
configuration identification and -build process that has full 
access to all revisions in the object base (other than make 
which only knows about plain files). AtFS also lsupports 
derived object management, i.e. it maintains a cache of 
multiple versions of compiled object-files (for lexample 
compiled c-files with different compile switches). 

The Shapefile, shape’s system description file, uses 
Makefile-style dependencies as (versionless) abstract sys- 
tem model and employs configuration selection rules to 
dynamically bind unique object versions in the object base 
to the names listed in the system model. The version selec- 
tion mechanism exploits AtFS’ ability to maintain any 
number of arbitrary object attributes. This yields a 
configuration identification mechanism similar to DSEE’s 
configuration threads[ 1 I]. 

One of the most useful features of shape is its support 
of various variant administration techniques. Shape makes 
no assumptions about the semantics of the variant notion 
other than having alternative (conceptually equivalent) 
instances of the same concept (e.g. module). Despite the 
particular semantics of application specific variant- 
concepts, there is a small number of techniques to physi- 
cally handle variants. These techniques are what shape sup- 
ports. Most commonly used techniques are: 

l equally named files in different directories 

l one source file representing multiple variants that are 
extracted by a preprocessor using different preprocessor 
switches (e.g. conditional compilation) 

l one source fiIe processed by different tools or different 
tool versions/variants (e.g. cross compilation, different 
coders) 

9 combinations of the above. 

Shape includes a variant definition facility that allows flexi- 
ble, and convenient handling of all of the above variant 
administration techniques. 

While the version control system is straightforward 
to use, it can be tricky to make ultimate use of shape. 
Besides lots of options and switches, Shapefiles aren’t as 
easy to write as Makefiles. To help with this problem, we 
have introduced an include-mechanism into shape. ‘The idea 

is that parts of the Shapefile that could be shared among all 
developers (such as version selection rules or variant 
definitions that are tricky to write but rarely need to be 
modified - if well designed) can be written once for a par- 
ticular project, and be placed in a standard-location from 
where they can be included in the individual developers’ 
Shapefiles. This technique not only facilitates Shapefile- 
writing but also helps to implement project-wide standards 
for structuring the Shapefiles. 

We used this technique for setting up a teamwork 
support environment to manage development., releases, and 
maintenance of the shape toolkit itself. Although the 
evolving release management system proved to be very use- 
ful for implementing project wide software management 
standards, and automatization of the tedious job of creating 
system distributions, it became clear that a much more sys- 
tematic way to describe a particular project setup is 
needed[ 131. 

The use of object oriented techniques to define 
software process object properties and a corresponding 
command language appeared very appealing. Using such a 
model, it would for example be possible to call for the crea- 
tion of a system model object as system management handle 
with well defined properties. Functions that are now 
defined as standard targets will then be methods of a class 
SystemModel. 

In the following section we will describe how project 
wide configuration management policies can be con- 
sistently enforced by the environment while making it actu- 
ally much easier to use (and adhere to) these principles 
without using red tape. Special care has been taken to retain 
the flexibility of the shape program. 

4. A Class System for Version Control and Configu- 
ration Management 

This section describes the integration of support for 
version control and configuration management into the 
STONE environment. Version control and configuration 
management functions are highly relevant for nearly all 
software objects evolving during the development of a 
software system. Nevertheless, integration of these func- 
tions into a generic environment should not impose any res- 
trictions to the integration of further parts into the environ- 
ment. The work described in this section can also be seen 
as a case study to test how capable the rapid tool integration 
mechanism of STONE is. 

As described earlier, our work will mostly consist of 
defining appropriate classes with corresponding methods 
and attributes. Due to limited space, we cannot provide a 
complete formal definition of each class in this paper. We 
will rather give a sketch of a class hierarchy (see figure 4.1) 
that contains the essential classes for version and 
configuration control. We will describe most classes infor- 
mally. Just for a few of them, we will give a CHieF like 
definition containing the most important attributes and 
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methods. For reasons of comprehensiveness, we will not 
stick strictly to the CHieF syntax. 

Fig. 4.1. The Class Hierarchy 

typical property of Labeled objects is the location in a 
hierarchically structured name space (directory tree). 

Source objects are all objects, that are produced and 
manipulated directly by a human. They share a method 
edit which allows the developer to manipulate the contents 
of the source object. The method browse serves for show- 
ing the contents of a source object in a human readable 
representation. At the abstract level of Source, edit and 
browse are virtual methods without concrete implementa- 
tion (tool binding). Specialized source classes rely on 
redefinition of the edit and browse methods. A source 
class like eg. AsciiText can be manipulated with a normal 
text editor while for example LineArtGraphics requires a 
special draw tool as editor. 

class Source 
1 

inherits: Labeled; 
features: 

USER author; 
TIME lastModified; 
virtual edit () 

II 
virtual browse () 

0 

The presented class hierarchy shall be capable of cap- 
turing characteristics of the software development process 
and tie them to existing tool processes in UNIX. In our 
model we define a set of foundation classes and specialized 
classes. Foundation classes are abstract classes that are not 
intended to have instances. Their only purpose is defining 
abstract functionality corresponding to general procedures 
of the software development process. Specialized classes, 
classes that have instances in the software developers 
workspace, are derived from the foundation classes by 
using multiple inheritance. 

4.1. The foundation classes 

The root class Object describes the basic properties 
shared by all objects. This implies, that all objects have a 
network wide unique identijier. Unique identifiers can be 
used to realize references from one object to another. With 
Object we also define a create and a destroy method as 
default for all derived classes. The edges in the graph in 
figure 4.1 display the inherits-to relation. So, all classes in 
the graph inherit the unique identifier and the default create 
and destroy method. 

Labeled objects are objects that have a visible 
representation at the user interface. They have a name attri- 
bute, and - for use in graphical interfaces - an icon. 
Labeled objects are objects that the user can directly send 
messages to. They roughly correspond to (UNIX) files. A 

The class CSource is a typical specialized source 
class derived from Source. Objects of class CSource 
contain program source code written in C. 

class CSource 
1 

inherits: Source; 
features: 

INT status; 
validate () 

1 
command: “lint $self” 

1 
edit () 

1 
command: “emacs $self” 

1 
browse () 

1 
command: “more $self” 

1 
1 

4.2. Controlling revisions of source objects 

In a STONE based SEE, a developer shall be able to 
keep track of source object revisions representing different 
stages of development. Revisions of source objects are 
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created explicitly by the user when the status of a work- 
piece shall for any reasons be saved for later backup. The 
design of the functionality of the revision mana.gement is 
oriented at the shape-toolkit’s version control system. It 
includes automatic revision numbering, a state model for 
source revisions, and symbolic names for single revisions. 

The concept of the class History is to offer revision 
control capabilities on an abstract level, intended for com- 
bination with specialized Source class behavior in order to 
add a memory to a source class. SourceHistory objects are 
able to remember their state at certain points in time 
(method save), These remembered states correspond to 
revisions in traditional version control systems. Memor- 
ized states of source objects are not themselves objects but 
part of the internal state of the corresponding SourceHis- 
tory object. History objects have the capability of mimic- 
ing a source object in all of its remembered states. Each 
History object carrys the attribute currentversion that 
points to the remembered state to be addressed when 
receiving a message. 

History is a generic class that is patametetizable by 
any source class. The following box shows the (incom- 
plete) definition of the History class in CHieF. 

class History [SOURCETYPE] 
Source SOURCETYPE 

{ 
inherits: Labeled; 
features: 

VERSIONID: currentversion; 
SOURCETYPE: tmpSrcObject; 
save () 

{ 
command: “save $self” 

1 
bindToVersion (SelectionRule: rule) 

I ... I 
recall (VERSIONID: vid) 

{ 
yields SOURC ETY PE; 
command: 

“vcat -V$vid $self > $tmpSrcObject” 
I 

1 

The method bindToVersion interprets a given 
SelectionRule object in order to get a new version binding 
(version number) to be set as currentversion. Up to now, 
evaluation of selection rules is internal functiondlity of the 
shape program rather than being an own, callable tool. 
Insofar the implementation of bindToVersion is quite 
complicated (a special Shapefile has to be constructed) and 
we left it out here. 

It is always possible, to clone (method recall) new 
objects of a certain Source class from object versions. 

Such a cloned object has the type of the source class that 
was combined with History by the parameterizing 
mechanism. 

The class CSourceHistory is an example for a spe- 
cialized class, the user deals with. It is constructed from 
History and CSource by using multiple inheritance. From 
the user’s point of view, instances of the class CSour- 
ceHistory behave like CSource objects but additionally 
are able to maintain a history of revisions. When an 
instance of the class CSou rceH istory receives the message 
edit (inherited from CSource) it looks up the actual 
currentVersion (inherited from History) in order to select 
the revision that acts as baseline for the edit method. 

class CSourceHistory 
{ 

inherits: CSource, 
History [CSource]; 

features: 
browse () 

I 
command: t 

“recall $self, -V$currentVersion; 
browse $tmpSrcObject; 
destroy $tmpSrcObject” 

I 

The browse method, like most other methods inher- 
ited from the corresponding source object class has to be 
redefined by adding a preceding revision reconstmction. 
According to the current version, browse recalls the 
appropriate revision and applies the method browse of the 
parent source class to the recalled revision. This is illus- 
trated in the previous example. Remember that tmpSrcOb- 
ject is an instance of class CSource, so that browse is not 
recursive. 

4.3. Configuring Systems 

The process of configuring systems splits into two 
tasks. 
. Identification of all components and component ver- 

sions that go into the system and 
. the actual build process of performing the necessary 

transformations. 

In the shape approach, all information about how to 
configure a system is concentrated in the Shapefile. The 
information stored in the Shapefile divides into three parts. 
These three parts - system model, version selection rules, 
and variant definitions - correspond to three classes in our 

t The command body in this example is written in OShell command 
syntax which is basically: 
<message> <recipients> , <arguments> 
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new model. The system model part of a Shapefile describes 
an acyclic graph of dependencies between the components, 
the system consists of. Nodes in the graph representing 
components that do not depend on any other component, 
must be source objects. All other nodes represent derived 
objects. Derived objects can be produced automatically 
from the (source or derived) objects, they depend on. With 
each dependency in the system model, a script describing 
the necessary derivation, may be associated. 

Instances of class SystemModel will act as 
representatives of a system and take the place of the system 
model part of the Shapefile. The syntax for describing the 
dependencies is basically the same as in shape (and make), 
where dependencies can either be expressed explicitly, or 
implicitly by giving generic dependencies. In make/shape, 
generic dependencies (single/double suffix rules) rely on 
filename suffixes that should indicate the type of the files 
involved. In our model, generic dependencies base on 
object types which provide much more reliable information 
about the objects. 

Going further than the scope of the system model 
part in a usual Shapefile (requiring only the dependency 
graph) a SystemModel object will also define a list of all 
source components and a list of all derived components 
associated with the system it describes. Normally, not all 
source objects have a corresponding node in the depen- 
dency graph (for example manuals and documentation). 
We will discuss the role of SystemModel objects more 
deeply in the chapter about the system build process. 

4.3.1. Version Identification 

The class corresponding to the version selection part 
in a Shapefile is SelectionRule. SelectionRule objects 
drive the version selection in a History object by setting the 
currentVersion attribute before sending any messages to 
it. The contents of a SelectionRule object is a regular ver- 
sion selection rule like in shape. Selection rules in shape 
are based on expressions describing a set of required attri- 
butes, the version to be selected has to have. 

An important advantage of having selection rules as 
autonomous objects (rather than being just another part in a 
system description file) is the ease of sharing selection rules 
between different developers and projects. According to 
our experiences with shape, selection rules need not to be 
changed very frequently and it is very likely that a standard 
set of selection rules can be used for most developments. 
Specially customized SelectionRule objects containing 
specific rules, for example rules based on a single unique 
attribute like version number or symbolic name, can be 
created quickly when needed. 

The variant definition part in a Shapefile has its coun- 
terpart in the Variant class. As for version selection rules, 
we can easily adopt the shape syntax for the contents of 
objects of class Variant. So a Variant object contains the 
description of a variant family that has multiple targets 

corresponding to different variants of the environment. A 
shape variant class might eg. be interface language with the 
targets German, English and French. Each target describes 
the variant properties of the environment by means of attri- 
bute definitions interpreted (used) by the build process. 

Typically, variant definitions should be made for a 
whole project, as a means to anticipate the evolution of the 
system to be capable to run in a predefined set of target 
environments. Experience with shape showed, that the 
variant mechanism is used extensively. Variant families 
address porting systems to different environments, use of 
different tools, and controlling the derivation process for 
example to generate compiler output with different quality 
for debug or release purposes. Especially the latter two 
cases led to a default variant raster, that can be used with 
only small modifications in most projects. 

With the classes defined above, we are able to pro- 
duce a SCM environment that systematically enforces the 
conventions we invented for the usage of shape in coopera- 
tive work (see section 3). With respect to version selection 
rules and variant definitions, we have a more flexible and 
reliable mechanism than that of include files. 

4.3.2. The build process 

Building a complex software system usually requires 
a certain number of derivations to be performed. In this 
context, we introduce the classes Derivable and Derived 
into our class hierarchy. A Derivable object can be 
automatically transformed into a Derived. Each Derived 
object is associated with the Derivable it was constructed 
from. When a Derivable object is modified, the 
corresponding Derived needs to be updated. For this pur- 
pose, the Derived object carries a method build, suitable to 
create a current instance of itself by performing a transfor- 
mation of the corresponding Derivable object. 

At the first glance, the class Derivable seems to be 
similar to Source. In fact, not each Source object is a 
Derivable. For example shell scripts or other interpreted 
program text need not to be compiled. Other examples are 
objects of the classes SelectionRules and Variants as 
presented before. Additionally, a Derivable needs not be a 
Source. In this case it is an intermediate derived, i.e. it is 
both Derivable and Derived. An example for this is C 
code generated automatically as intermediate code from 
any other language (eg. yacc, Eiffel, C++). 

Each Derivable object is associated with a system 
model, either an implicit or an explicit one. A system 
model describes dependencies between Derived and 
Derivable(s), and the tools to be invoked for performing 
the derivation. This information is necessary for properly 
creating corresponding Derived objects together witch 
upcoming Derivable objects. 

An implicit system model is comparable to a generic 
dependency rule known from shape. It describes simple 
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dependencies and derivation processes on rype Zevel 
without referring certain objects. This is tylpically a 
Source - Derived dependency like for example 
CSource - LinkableCode. Implicit system models can be 
(but are not necessarily) represented by objects of class 
SystemModel. On creation of a Derivable object associ- 
ated with an implicit system model, the corresponding 
Derived will automatically be created too. 

Usually SystemModel objects contain an explicit 
system model, describing a (more or less) complex system 
built from a number of components. Dependencies 
described in an explicit system model normally are associ- 
ated with derivations transforming multiple components to 
one (or more) Derived. Mostly the components are them- 
selves derived objects. 

Typically, an explicit system model is needed when 
the system consists of an executable object that is to be 
constructed by linking together a number of LinkableCode 
objects. Furthermore, the same system model may contain 
a description on how to produce a “ready-to-distribute” 
archive file (eg. a tar file) from all sources. Speaking in 
terms of make/shape, a SystemModel may contain multi- 
ple targets. These are represented by multiple Derived 
objects in our new model. In the case of explicit system 
models, the SystemModel object takes the place of the 
Derivable object, the Derived objects mentioned above 
are constructed from. 

SystemModel objects have a method establish, that 
creates all anticipated Derived objects in an initial state, 
ready to receive the build message. Remember, for objects 
associated with implicit system models establishing the 
derived objects is done automatically on creation. This is 
not feasible for explicit system models. Due to 
modifications of the system model, the number of Derived 
objects to be produced may change. In this case, subse- 
quent activations of the establish method are necessary to 
carry over the changes to the system model to the real 
object world. 

On execution of the build method of Derived objects 
derived from a SystemModel, build messages are sent 
recursively to all objects the Derived depends on. The real 
derivation (eg. linking all LinkableCodes) is performed 
after this. During the build process, unnecessary deriva- 
tions are avoided. A system is rebuilt only if one of the 
derived objects it depends on, was newly created. A 
derived object depending on a source object, is newly pro- 
duced if the corresponding source object was modified 
since the derived object had been built the last time. This 
algorithm is basically the shape/make algorithm. 

Similarly to Historys, Derived objects maintain a 
number of versions, or better virtual objects. These virtual 
objects are different representations of (conceptually) the 
same derived object. Virtual derived objects come into 
being by modifying certain parameters of the derivation 
process. Inspired by the variant handling mechanism of 

shape, the build method of a Derivable is merely a method 
prototype containing macros to be expanded by arguments 
passed together with the method activation. To give an 
example, a LinkableCode object generated by a cross 
compiler with multiple back ends may contain target code 
for different machines (VAXen, MIPS or 680Xx) depend- 
ing on the an argument passed to the compiler. Each vir- 
tual object is associated with a description of the derivation 
process context that was in effect when it was built. Addi- 
tionally, each virtual object carrys information about the 
version of the Derivable it was built from. 

Derived objects produced from other derived objects 
(eg. a program linked together from several LinkableCode 
objects) also get marked, in order to be able to reconstruct 
which versions they evolved from and in which context 
they were produced. This has the form of a set of refer- 
ences to all objects (versions of derived objects) they were 
generated from. 

Derived objects are maintained as a cache with lim- 
ited size. Due to the potentially large number of different 
virtual objects (the cross product of all variant families 
multiplied with the number of versions), only a certain 
number of versions are stored. When the limit is reached, 
the oldest virtual object will be deleted when introducing a 
new one. 

5. Conclusion 

Get a box full of useful tools and some kind of glue 
to put in between the tools. Stick the tools together and put 
a smooth surface on top of the whole thing. This is the 
basic idea of the mechanism for constructing integrated 
software engineering environments, presented in this paper. 
Does this really work ? 

To prove this, we tried to smoothly integrate an exist- 
ing complex toolset supporting version and configuration 
management into our generic environment. The concept 
looks fine, as always! But we are sure that the ongoing 
implementation will uncover weaknesses. Although it is 
quite clear, how the presented concept will be implemented 
by using CHieF and OShell, experiences with day to day 
use have to bring up a lot of fine tuning, making the system 
really usable. 

A first prototype of the CHieF compiler and the 
access routines for the class directory are implemented. 
OShell and a new version of AtFS (featuring unique 
identifiers and network support) are currently under con- 
struction. 
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