
Integrating Configuration Management into a Generic Environment

Axe1 Mahler and Andreas Lampen
axel@comu.cs.tu-berlin.de, andy@coma.cs.tu-berlin.de

Technische Universitit Berlin
Sekr. FR 5-6

Franklinstrak 28/29
D-1000 Berlin 10, Germany

Abstract

The software development process consists of a
number of complex activities for work coordination, organ-
ization, communication, and disciplines that are essential
for achieving quality software, maintaining system
integrity, and keeping the software process manageable.
Software Engineering Environments can be helpful instru-
ments in pursuing these goals when they are integrated,
open to extension, and capable of adapting to real processes
as they occur in software development projects.

Adaptability and the ability to perform adaptations
rapidly are crucial features of SEES. In this paper we are
presenting an approach to rapid environment extension that
provides the means to capture characteristics of software
development processes and realize environment support for
these processes by using existing tools. An object oriented
environment infrastructure is the basis for achieving these
goals while providing and maintaining an integrated
behavior of the environment. The presented approach is
demonstrated by defining a set of classes for version con-
trol and configuration management that model the behavior
of an existing configuration management toolkit.

1. Introduction

The purpose of Software Engineering Environments
(SEE) is to increase the efficiency of software production,
and to enhance the quality of the developed software. The
key concept in achieving this goal is a comprehensive sup-
port for the software developmentprocess.

In theory the effect of an environment would be to
relieve the members of a project team from having to be
aware of complex procedures and behavior protocols that
are essential for the functioning of a project. The environ-
ment ensures automatically that these protocols are fol-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1990 ACM 0-89791-418-X/90/0012-0229...$1.50

lowed. Programmer productivity is increased because the
programmer can better concentrate on the problem he/she is
working on.

1.1. Software Engineering Environments must be
adaptable

For some reason SEES tend to not satisfy the expecta-
tions that are associated with them. Despite the recent
“CASEmania” many integrated toolsystems and environ-
ments suffer from low acceptance or simply don’t perform
as expected. It has even been noted that environments even-
tually happen to be counterproductive[6]. Over the last
decade substantial research has been (and still is) conducted
to attack these problems and to generally improve the use-
fulness of SEES.

While early SEES were normally centered around a
static model of the software development process (derived
from a software development method) it has been learned
that software development projects are highly dynamic
processes, strongly dependent on the people involved, the
size and complexity of the developed system, as well as
external constraints such as customer relations. Today, it is
understood that the actual process of developing software is
more or less different for every project[l6]. SEES must be
able to cope with changing characteristics of the software
development processes that have to be supported.

What is needed is a customizable, highly flexible,
and extensible SEE-frame/kernel, Some of the more obvi-
ous reasons for the necessity of SEE extensibility are:

l different projects need different kinds of support

l an environment should adapt to real (social) processes
instead of forcing the teamwork structure to adapt to the
environment

l fault-tolerance against environment design flaws

l support for environment evolution according to evolving
requirements when a project proceeds (for example from
implementation to maintenance phase)

l allowing partial completeness of an environment, imply-
ing delayed functional completion when suitable tools

229

become available (rather than integrating insufficient
tools “just to be complete”)

During the last years, it has been widely accepted
that good SEES should be integrated, yet open and highly
extensible[8,9,15]. Recent research has furthermore led to
an increased awareness that in order to make the extension
approach feasible, the extension of a SEE can be performed
rapidly.

A good SEE shall combine the integrated Iook and
feel of - for example - Smalltalk or Lisp systems with the
general scope and applicability of tool collections as in the
Unix environment. The initial establishment of .a stable,
basic environment infrastructure for a given project shall be
a matter of days. To apply major changes/extensio,ns (such
as adding new classes of software objects to the system)
shah be a matter of hours, and to apply minor changes (for
example set user preferences, or fine tune certain object
behavior) shall be a matter of minutes.

1.2. Recent approaches to environment integration

Many recent research projects have adopted the
notion of Software Object as central for environment exten-
sion mechanisms[2,4,181. The specifics of the software
development process are captured by classifying the pieces
of information evolving in a project, and describing related
behavior of these information objects (we will refer to them
as software objects).

The object oriented paradigm is used to specify
external properties of software objects, and to provide for
formally defined access protocols to be followed when
manipulating these objects. Use of type inheritance makes
it possible to specify general functionality on an abstract
level (abstract superclasses), making the functionality
available for use/reuse in application specific class
definitions (specialized classes). The specified functional-
ity is turned into action by corresponding process pro-
grams, formal (and executable) descriptions of particular
software engineering activities, enacted by a process pro-
gram interpreter. These process programs are the methods
associated with a given software object class[3,17]. Later
in this paper, we will demonstrate how this technique is
used to integrate such vital services as version control and
configuration management into an environment, and how
this functionality is (re-)used in specialized object classes.

Another interesting, yet entirely different, approach
to environment integration has been taken with the Field
environment[I4]. Field integrates existing tools under a
consistent graphical user-interface framework. Tools com-
municate via messages, representing information and com-
mands intended for other tools. Messages are sent to a cen-
tral environment message server which dispatches the mes-
sages to all tools possibly interested in them (selective
broadcasting). The technique permits to integrate unre-
lated tools by adding a message interface to them. While
this approach makes it possible to create moderately highly

integrated environments from existing tools without a great
deal of work, it requires some modifications to the tools’
source code.

The most advanced approaches (for example [3]) are
using knowledge based technology as main extension
mechanism for SEES. Today, we are moving towards a
point where a SEE is basically a system that allows to store
knowledge about how a particular project is working, and
functionality that is intelligently applied according to the
project specific work patterns stored in the knowledge base.

In the remainder of this paper we will briefly intro-
duce the STONE project, a research project aiming at
development of a generic SEE kernel especially suited for
environment education, and outline STONE’s approach to
rapid tool integration. The subsequent description of the
shape toolkit, a Unix-based set of integrated tools for ver-
sion control and configuration management, marks one of
the starting points for the STONE project. In the final sec-
tion we will integrate the functionality of this toolkit into a
STONE system environment.

2. The STONE Project

The work described in this paper is part of the
STONE-project? aiming at development of a generic SEE
kernel, open to extension and integration of new as well as
existing tools. Some of the covered research areas, such as
object management, software process modeling, and user
interfaces are similar to those of the Arcadia project[l7].
As environments must be adaptable to particular project
structures, there must also be people, qualified to perform
the adaptation. STONE’s special agenda is support of
environment education. Education will be supported in two
principal ways:

1) providing a simple and well structured, yet highly func-
tional environment kernel suitable for education in con-
struction of software engineering environments, and

2) providing a basis for research and education in practical
software engineering.

While the object oriented paradigm is more and more
used to provide a formal framework for the specification of
software process characteristics, it has rarely been
described how these formalisms are used for actually
integrating a complex tool suite into an environment. The
purpose of this paper is to describe how the functionality of
an existing toolkit for software configuration management
(SCM) is integrated and made accessible in the STONE
environment.

t STONE - a STructured and OpN Environment, a research project
supported by the German Ministry of Research and Technology
(BMFT) under grant ITS-8902E8

230

2.1. Rapid Tool Integration

Within the STONE project, a number of environment
integration strategies are researched. Besides user-interface
integration[5] and fine-grain data-integration based on an
object oriented data management facility[l9], there is also
research in rapid tool integration mechanisms. The main
goal of this integration approach is to be able to very
rapidly integrate existing Unix-tools into an integrated
environment. The concept is based on software objects
modeled after the file notion of Unix but which are based
on a consistent, general purpose type system. The typed
software object abstraction is built on top of a general attri-
bution mechanism for Unix files and versions[lO].

The type system allows to describe classes of
software objects that are more than just files. For example,
a C-language source object would not just be an ordinary
file that happens to contain C source code but would be
associated with properties (attributes and methods) that are
characteristical for C code modules. The type system is
defined in an object oriented specification language called
CHieF (Class Hierarchy Definition Facility[20]), featuring
multiple inheritance, generic classes, method overloading,
dynamic identification, and easy schema modification.
This specification mechanism allows to easily describe the
properties of the various software objects encountered in
the software development process, such as relations to other
software objects, or dependencies. The specified methods
for a given object class are implemented by Unix-tools or a
combination of Unix-tools (shell scripts).

The type system is enacted by OShell, an object
oriented command interpreter resembling the Unix Shell.
OShell allows to send objects messages that trigger invoca-
tions of object specific methods. In that the system is not
unlike Budd’s osh idea described in[l]. A similar concept
is present in Odin’s [23 request language, but lacks a
sufficient inheritance mechanism.

The type system and the object shell allow to capture
the external behavior of Unix tool processes, such as vi,
awk, or cc if they are described as methods. Such behavior
would for example be the creation of certain new objects
(files) or the type of data that will be read from standard
input or sent to standard output. This in turn makes it possi-
ble to construct type-safe pipelines within the object shell.

Adding support for a new kind of software object
basically consists of defining the respective class, possibly
using preclefined functionality (such as version control) via
the inheritance mechanism, and implementing the
corresponding methods in form of calls to Unix tools (e.g.
version control programs), or (0)Shell scripts that are also
stored in the object base as special software objects of type
Method. By applying this idea, we are able to amalgamate
the prototyping power of Unix-typical tool combination
(shell scripts, pipelines) with a formally integrated behavior
of the environment.

While OShell itself is not a graphical user interface,
it can be used to interact with a graphical environment
shell-tool. In fact, the object shell represents an abstraction
that has a well defined syntactical interface, suitable for for-
mally communicating with a user interface process that
presents the concepts of the object shell in a graphical way
on a workstation.

User Interface
Management System

A

.

I
I OShell
I

Object Management
System

‘. \ . a -. \-

Fig. 2.1. Rapid tool integration in STONE

With its loosely coupled tool integration concept and
the rather simple way of dealing with object-base schema
data, OShell is easily extensible for use in distributed
environments. The flexibility that is known from using
remote shells will directly be obtainable from a concept of
remote OShell.

The concept of an object-oriented command inter-
preter provides the framework for integrating unrelated
tools on top of a software object base into a moderately
highly integrated SEE. The described work is unique in its
consequent use of object oriented principles and techniques
that are almost seamlessly combined with the well-known
concepts of the UNIX environment.

STONE’s generic environment kernel provides the
basic technology to build comprehensive, highly integrated
environments with reasonable effort. The simplicity, ortho-
gonality, and expressiveness makes the described approach
a good basis for environment education. The student (as
well as the teacher) can concentrate on the process that
shall be supported, rather than being concerned with the
intricacies of adapting any existing, closed, special purpose
SEES as used in the commercial environment,

231

3. The Shape Toolkit

Shupetools[l2] is a collection of programs for ver-
sion control and configuration management adhering to the
Unix toolbox philosophy. It is basically a traditionall toolset
that supports general functions for a particular problem area
but doesn’t care about the particular needs of individual
projects and therefore must be customized for non-trivial
project settings.

The toolkit consists of a set of version control com-
mands and shape, a configuration building tool similar to
Make[7]. Shape and the version control commands are
integrated on top of AtFS (Attributed File System), a dedi-
cated version object base. The system features a
configuration identification and -build process that has full
access to all revisions in the object base (other than make
which only knows about plain files). AtFS also lsupports
derived object management, i.e. it maintains a cache of
multiple versions of compiled object-files (for lexample
compiled c-files with different compile switches).

The Shapefile, shape’s system description file, uses
Makefile-style dependencies as (versionless) abstract sys-
tem model and employs configuration selection rules to
dynamically bind unique object versions in the object base
to the names listed in the system model. The version selec-
tion mechanism exploits AtFS’ ability to maintain any
number of arbitrary object attributes. This yields a
configuration identification mechanism similar to DSEE’s
configuration threads[1 I].

One of the most useful features of shape is its support
of various variant administration techniques. Shape makes
no assumptions about the semantics of the variant notion
other than having alternative (conceptually equivalent)
instances of the same concept (e.g. module). Despite the
particular semantics of application specific variant-
concepts, there is a small number of techniques to physi-
cally handle variants. These techniques are what shape sup-
ports. Most commonly used techniques are:

l equally named files in different directories

l one source file representing multiple variants that are
extracted by a preprocessor using different preprocessor
switches (e.g. conditional compilation)

l one source fiIe processed by different tools or different
tool versions/variants (e.g. cross compilation, different
coders)

9 combinations of the above.

Shape includes a variant definition facility that allows flexi-
ble, and convenient handling of all of the above variant
administration techniques.

While the version control system is straightforward
to use, it can be tricky to make ultimate use of shape.
Besides lots of options and switches, Shapefiles aren’t as
easy to write as Makefiles. To help with this problem, we
have introduced an include-mechanism into shape. ‘The idea

is that parts of the Shapefile that could be shared among all
developers (such as version selection rules or variant
definitions that are tricky to write but rarely need to be
modified - if well designed) can be written once for a par-
ticular project, and be placed in a standard-location from
where they can be included in the individual developers’
Shapefiles. This technique not only facilitates Shapefile-
writing but also helps to implement project-wide standards
for structuring the Shapefiles.

We used this technique for setting up a teamwork
support environment to manage development., releases, and
maintenance of the shape toolkit itself. Although the
evolving release management system proved to be very use-
ful for implementing project wide software management
standards, and automatization of the tedious job of creating
system distributions, it became clear that a much more sys-
tematic way to describe a particular project setup is
needed[131.

The use of object oriented techniques to define
software process object properties and a corresponding
command language appeared very appealing. Using such a
model, it would for example be possible to call for the crea-
tion of a system model object as system management handle
with well defined properties. Functions that are now
defined as standard targets will then be methods of a class
SystemModel.

In the following section we will describe how project
wide configuration management policies can be con-
sistently enforced by the environment while making it actu-
ally much easier to use (and adhere to) these principles
without using red tape. Special care has been taken to retain
the flexibility of the shape program.

4. A Class System for Version Control and Configu-
ration Management

This section describes the integration of support for
version control and configuration management into the
STONE environment. Version control and configuration
management functions are highly relevant for nearly all
software objects evolving during the development of a
software system. Nevertheless, integration of these func-
tions into a generic environment should not impose any res-
trictions to the integration of further parts into the environ-
ment. The work described in this section can also be seen
as a case study to test how capable the rapid tool integration
mechanism of STONE is.

As described earlier, our work will mostly consist of
defining appropriate classes with corresponding methods
and attributes. Due to limited space, we cannot provide a
complete formal definition of each class in this paper. We
will rather give a sketch of a class hierarchy (see figure 4.1)
that contains the essential classes for version and
configuration control. We will describe most classes infor-
mally. Just for a few of them, we will give a CHieF like
definition containing the most important attributes and

232

methods. For reasons of comprehensiveness, we will not
stick strictly to the CHieF syntax.

Fig. 4.1. The Class Hierarchy

typical property of Labeled objects is the location in a
hierarchically structured name space (directory tree).

Source objects are all objects, that are produced and
manipulated directly by a human. They share a method
edit which allows the developer to manipulate the contents
of the source object. The method browse serves for show-
ing the contents of a source object in a human readable
representation. At the abstract level of Source, edit and
browse are virtual methods without concrete implementa-
tion (tool binding). Specialized source classes rely on
redefinition of the edit and browse methods. A source
class like eg. AsciiText can be manipulated with a normal
text editor while for example LineArtGraphics requires a
special draw tool as editor.

class Source
1

inherits: Labeled;
features:

USER author;
TIME lastModified;
virtual edit ()

II
virtual browse ()

0

The presented class hierarchy shall be capable of cap-
turing characteristics of the software development process
and tie them to existing tool processes in UNIX. In our
model we define a set of foundation classes and specialized
classes. Foundation classes are abstract classes that are not
intended to have instances. Their only purpose is defining
abstract functionality corresponding to general procedures
of the software development process. Specialized classes,
classes that have instances in the software developers
workspace, are derived from the foundation classes by
using multiple inheritance.

4.1. The foundation classes

The root class Object describes the basic properties
shared by all objects. This implies, that all objects have a
network wide unique identijier. Unique identifiers can be
used to realize references from one object to another. With
Object we also define a create and a destroy method as
default for all derived classes. The edges in the graph in
figure 4.1 display the inherits-to relation. So, all classes in
the graph inherit the unique identifier and the default create
and destroy method.

Labeled objects are objects that have a visible
representation at the user interface. They have a name attri-
bute, and - for use in graphical interfaces - an icon.
Labeled objects are objects that the user can directly send
messages to. They roughly correspond to (UNIX) files. A

The class CSource is a typical specialized source
class derived from Source. Objects of class CSource
contain program source code written in C.

class CSource
1

inherits: Source;
features:

INT status;
validate ()

1
command: “lint $self”

1
edit ()

1
command: “emacs $self”

1
browse ()

1
command: “more $self”

1
1

4.2. Controlling revisions of source objects

In a STONE based SEE, a developer shall be able to
keep track of source object revisions representing different
stages of development. Revisions of source objects are

233

created explicitly by the user when the status of a work-
piece shall for any reasons be saved for later backup. The
design of the functionality of the revision mana.gement is
oriented at the shape-toolkit’s version control system. It
includes automatic revision numbering, a state model for
source revisions, and symbolic names for single revisions.

The concept of the class History is to offer revision
control capabilities on an abstract level, intended for com-
bination with specialized Source class behavior in order to
add a memory to a source class. SourceHistory objects are
able to remember their state at certain points in time
(method save), These remembered states correspond to
revisions in traditional version control systems. Memor-
ized states of source objects are not themselves objects but
part of the internal state of the corresponding SourceHis-
tory object. History objects have the capability of mimic-
ing a source object in all of its remembered states. Each
History object carrys the attribute currentversion that
points to the remembered state to be addressed when
receiving a message.

History is a generic class that is patametetizable by
any source class. The following box shows the (incom-
plete) definition of the History class in CHieF.

class History [SOURCETYPE]
Source SOURCETYPE

{
inherits: Labeled;
features:

VERSIONID: currentversion;
SOURCETYPE: tmpSrcObject;
save ()

{
command: “save $self”

1
bindToVersion (SelectionRule: rule)

I ... I
recall (VERSIONID: vid)

{
yields SOURC ETY PE;
command:

“vcat -V$vid $self > $tmpSrcObject”
I

1

The method bindToVersion interprets a given
SelectionRule object in order to get a new version binding
(version number) to be set as currentversion. Up to now,
evaluation of selection rules is internal functiondlity of the
shape program rather than being an own, callable tool.
Insofar the implementation of bindToVersion is quite
complicated (a special Shapefile has to be constructed) and
we left it out here.

It is always possible, to clone (method recall) new
objects of a certain Source class from object versions.

Such a cloned object has the type of the source class that
was combined with History by the parameterizing
mechanism.

The class CSourceHistory is an example for a spe-
cialized class, the user deals with. It is constructed from
History and CSource by using multiple inheritance. From
the user’s point of view, instances of the class CSour-
ceHistory behave like CSource objects but additionally
are able to maintain a history of revisions. When an
instance of the class CSou rceH istory receives the message
edit (inherited from CSource) it looks up the actual
currentVersion (inherited from History) in order to select
the revision that acts as baseline for the edit method.

class CSourceHistory
{

inherits: CSource,
History [CSource];

features:
browse ()

I
command: t

“recall $self, -V$currentVersion;
browse $tmpSrcObject;
destroy $tmpSrcObject”

I

The browse method, like most other methods inher-
ited from the corresponding source object class has to be
redefined by adding a preceding revision reconstmction.
According to the current version, browse recalls the
appropriate revision and applies the method browse of the
parent source class to the recalled revision. This is illus-
trated in the previous example. Remember that tmpSrcOb-
ject is an instance of class CSource, so that browse is not
recursive.

4.3. Configuring Systems

The process of configuring systems splits into two
tasks.
. Identification of all components and component ver-

sions that go into the system and
. the actual build process of performing the necessary

transformations.

In the shape approach, all information about how to
configure a system is concentrated in the Shapefile. The
information stored in the Shapefile divides into three parts.
These three parts - system model, version selection rules,
and variant definitions - correspond to three classes in our

t The command body in this example is written in OShell command
syntax which is basically:
<message> <recipients> , <arguments>

234

new model. The system model part of a Shapefile describes
an acyclic graph of dependencies between the components,
the system consists of. Nodes in the graph representing
components that do not depend on any other component,
must be source objects. All other nodes represent derived
objects. Derived objects can be produced automatically
from the (source or derived) objects, they depend on. With
each dependency in the system model, a script describing
the necessary derivation, may be associated.

Instances of class SystemModel will act as
representatives of a system and take the place of the system
model part of the Shapefile. The syntax for describing the
dependencies is basically the same as in shape (and make),
where dependencies can either be expressed explicitly, or
implicitly by giving generic dependencies. In make/shape,
generic dependencies (single/double suffix rules) rely on
filename suffixes that should indicate the type of the files
involved. In our model, generic dependencies base on
object types which provide much more reliable information
about the objects.

Going further than the scope of the system model
part in a usual Shapefile (requiring only the dependency
graph) a SystemModel object will also define a list of all
source components and a list of all derived components
associated with the system it describes. Normally, not all
source objects have a corresponding node in the depen-
dency graph (for example manuals and documentation).
We will discuss the role of SystemModel objects more
deeply in the chapter about the system build process.

4.3.1. Version Identification

The class corresponding to the version selection part
in a Shapefile is SelectionRule. SelectionRule objects
drive the version selection in a History object by setting the
currentVersion attribute before sending any messages to
it. The contents of a SelectionRule object is a regular ver-
sion selection rule like in shape. Selection rules in shape
are based on expressions describing a set of required attri-
butes, the version to be selected has to have.

An important advantage of having selection rules as
autonomous objects (rather than being just another part in a
system description file) is the ease of sharing selection rules
between different developers and projects. According to
our experiences with shape, selection rules need not to be
changed very frequently and it is very likely that a standard
set of selection rules can be used for most developments.
Specially customized SelectionRule objects containing
specific rules, for example rules based on a single unique
attribute like version number or symbolic name, can be
created quickly when needed.

The variant definition part in a Shapefile has its coun-
terpart in the Variant class. As for version selection rules,
we can easily adopt the shape syntax for the contents of
objects of class Variant. So a Variant object contains the
description of a variant family that has multiple targets

corresponding to different variants of the environment. A
shape variant class might eg. be interface language with the
targets German, English and French. Each target describes
the variant properties of the environment by means of attri-
bute definitions interpreted (used) by the build process.

Typically, variant definitions should be made for a
whole project, as a means to anticipate the evolution of the
system to be capable to run in a predefined set of target
environments. Experience with shape showed, that the
variant mechanism is used extensively. Variant families
address porting systems to different environments, use of
different tools, and controlling the derivation process for
example to generate compiler output with different quality
for debug or release purposes. Especially the latter two
cases led to a default variant raster, that can be used with
only small modifications in most projects.

With the classes defined above, we are able to pro-
duce a SCM environment that systematically enforces the
conventions we invented for the usage of shape in coopera-
tive work (see section 3). With respect to version selection
rules and variant definitions, we have a more flexible and
reliable mechanism than that of include files.

4.3.2. The build process

Building a complex software system usually requires
a certain number of derivations to be performed. In this
context, we introduce the classes Derivable and Derived
into our class hierarchy. A Derivable object can be
automatically transformed into a Derived. Each Derived
object is associated with the Derivable it was constructed
from. When a Derivable object is modified, the
corresponding Derived needs to be updated. For this pur-
pose, the Derived object carries a method build, suitable to
create a current instance of itself by performing a transfor-
mation of the corresponding Derivable object.

At the first glance, the class Derivable seems to be
similar to Source. In fact, not each Source object is a
Derivable. For example shell scripts or other interpreted
program text need not to be compiled. Other examples are
objects of the classes SelectionRules and Variants as
presented before. Additionally, a Derivable needs not be a
Source. In this case it is an intermediate derived, i.e. it is
both Derivable and Derived. An example for this is C
code generated automatically as intermediate code from
any other language (eg. yacc, Eiffel, C++).

Each Derivable object is associated with a system
model, either an implicit or an explicit one. A system
model describes dependencies between Derived and
Derivable(s), and the tools to be invoked for performing
the derivation. This information is necessary for properly
creating corresponding Derived objects together witch
upcoming Derivable objects.

An implicit system model is comparable to a generic
dependency rule known from shape. It describes simple

235

dependencies and derivation processes on rype Zevel
without referring certain objects. This is tylpically a
Source - Derived dependency like for example
CSource - LinkableCode. Implicit system models can be
(but are not necessarily) represented by objects of class
SystemModel. On creation of a Derivable object associ-
ated with an implicit system model, the corresponding
Derived will automatically be created too.

Usually SystemModel objects contain an explicit
system model, describing a (more or less) complex system
built from a number of components. Dependencies
described in an explicit system model normally are associ-
ated with derivations transforming multiple components to
one (or more) Derived. Mostly the components are them-
selves derived objects.

Typically, an explicit system model is needed when
the system consists of an executable object that is to be
constructed by linking together a number of LinkableCode
objects. Furthermore, the same system model may contain
a description on how to produce a “ready-to-distribute”
archive file (eg. a tar file) from all sources. Speaking in
terms of make/shape, a SystemModel may contain multi-
ple targets. These are represented by multiple Derived
objects in our new model. In the case of explicit system
models, the SystemModel object takes the place of the
Derivable object, the Derived objects mentioned above
are constructed from.

SystemModel objects have a method establish, that
creates all anticipated Derived objects in an initial state,
ready to receive the build message. Remember, for objects
associated with implicit system models establishing the
derived objects is done automatically on creation. This is
not feasible for explicit system models. Due to
modifications of the system model, the number of Derived
objects to be produced may change. In this case, subse-
quent activations of the establish method are necessary to
carry over the changes to the system model to the real
object world.

On execution of the build method of Derived objects
derived from a SystemModel, build messages are sent
recursively to all objects the Derived depends on. The real
derivation (eg. linking all LinkableCodes) is performed
after this. During the build process, unnecessary deriva-
tions are avoided. A system is rebuilt only if one of the
derived objects it depends on, was newly created. A
derived object depending on a source object, is newly pro-
duced if the corresponding source object was modified
since the derived object had been built the last time. This
algorithm is basically the shape/make algorithm.

Similarly to Historys, Derived objects maintain a
number of versions, or better virtual objects. These virtual
objects are different representations of (conceptually) the
same derived object. Virtual derived objects come into
being by modifying certain parameters of the derivation
process. Inspired by the variant handling mechanism of

shape, the build method of a Derivable is merely a method
prototype containing macros to be expanded by arguments
passed together with the method activation. To give an
example, a LinkableCode object generated by a cross
compiler with multiple back ends may contain target code
for different machines (VAXen, MIPS or 680Xx) depend-
ing on the an argument passed to the compiler. Each vir-
tual object is associated with a description of the derivation
process context that was in effect when it was built. Addi-
tionally, each virtual object carrys information about the
version of the Derivable it was built from.

Derived objects produced from other derived objects
(eg. a program linked together from several LinkableCode
objects) also get marked, in order to be able to reconstruct
which versions they evolved from and in which context
they were produced. This has the form of a set of refer-
ences to all objects (versions of derived objects) they were
generated from.

Derived objects are maintained as a cache with lim-
ited size. Due to the potentially large number of different
virtual objects (the cross product of all variant families
multiplied with the number of versions), only a certain
number of versions are stored. When the limit is reached,
the oldest virtual object will be deleted when introducing a
new one.

5. Conclusion

Get a box full of useful tools and some kind of glue
to put in between the tools. Stick the tools together and put
a smooth surface on top of the whole thing. This is the
basic idea of the mechanism for constructing integrated
software engineering environments, presented in this paper.
Does this really work ?

To prove this, we tried to smoothly integrate an exist-
ing complex toolset supporting version and configuration
management into our generic environment. The concept
looks fine, as always! But we are sure that the ongoing
implementation will uncover weaknesses. Although it is
quite clear, how the presented concept will be implemented
by using CHieF and OShell, experiences with day to day
use have to bring up a lot of fine tuning, making the system
really usable.

A first prototype of the CHieF compiler and the
access routines for the class directory are implemented.
OShell and a new version of AtFS (featuring unique
identifiers and network support) are currently under con-
struction.

236

References October 1990.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Timothy A. Budd, “The Design of an Object
Oriented Command Interpreter,” Sofhvare -Practice
and Experience, vol. 19, no. 1, pp. 35-51, January
1989.

Geoffrey M. Clemm, “The Odin System: An Object
Manager for Extensible Software Environments,”
CU-CS-314-86, The University of Colorado,
Boulder, Colorado, February 1986.

GeoErey M. Clemm, “The Workshop System - A
Practical Knowledge-Based Software Environment,”
Software Engineering Notes, Vol. 13, No. 5, pp. 55-
64, ACM Press, Boston, Mass., November 1988.

William Courington, “The Network Software
Environment,” A Sun Technical Report, Sun
Microsystems, Inc., Mountain View, CA., May 1989.

D. Eckardt, W. Htibner, and G. Lux-Miilders,
“Konzeption der STONE-Benutzungsoberfi%he
THESEUS++,” STONE Technical Report
ZGDV.OO6.1, Zentrum fiir Graphische Datenverar-
beitung, Darmstadt, December 1989.

Peter F. Elzer, “Management von Softwareprojek-
ten,” Informatik Spektrum, vol. 12, no. 4, pp. 181-
198, Springer Verlag, Berlin, August 1989.

Stuart I. Feldman, “MAKE - A Program for Main-
taining Computer Programs,” Software - Practice
and Experience, vol. 9, no. 3, pp. 255-265, March
1979.

A. Goldberg, Smalltalk-80, The Interactive Program-
ming Environment, Addison Wesley Publ. Company,
Reading, Menlo Park, London, Amsterdam, 1984.

A. Nice Haberman and David Notkin, “Gandalfi
Software Development Environments,” IEEE Tran-
suctions on SofhYare Engineering, vol. 12, no. 12,
pp. 1117-1128, December 1986.

Andreas Lampen and Axe1 Mahler, “An Object Base
for Attributed Software Objects,” Proceedings of the
Fall 1988 EUUG Conference, pp. 95-106, European
Unix systems User Group, Lisbon, Portugal, October
1988.

David B. Leblang and Robert P. Chase, “Computer-
Aided Software Engineering in a Distributed Works-
tation Environment,” SIGPLAN Notices, vol. 19, no.
5, pp. 104-113, ACM, Pittsburgh, PA,, April 1984,

Axe1 Mahler and Andreas Lampen, “An Integrated
Toolset for Engineering Software Configurations,”
Sofhvare Engineering Notes, Vol. 13, No. 5, pp. 191-
200, ACM Press, Boston, Mass., November 1988.

Ulrich Pralle, “Driving the Software Release Process
with Shape,” Proceedings of the Fall 1990 EUUG
Conference (submitted to EUUG conference), pp. O-
0, European Unix systems User Group, Nice, France,

14.

15.

16.

17.

18.

19.

20.

Steven P. Reiss, “Connecting Tools Using Message
Passing in the Field Environment,” IEEE Software,
vol. 7, no. 4, pp. 57-66, IEEE Computer Society, July
1990.

G. Snelting, “Experiences with the PSG - Program-
ming System Generator,” Lecture Notes in Com-
puter Science, vol. 186, no. 2, pp. 148-162, Springer
Verlag, Berlin, March 1985.

Vie Stenning, “On the Role of an Environment,”
Proceedings of the 9th International Conference on
Software Engineering, pp. 30-34, IEEE, Monterey,
California, March 1987.

Richard N. Taylor, Richard W, Selby, Michael
Young, Frank C. Belz, Lori A. Clarke, Jack C.
Wileden, Leon Osterweil, and Alex L. Wolf, “Foun-
dations for the Arcadia Environment Architecture,”
Software Engineering Notes, Vol. 13, No. 5, pp. 1-13,
ACM Press, Boston, Mass., November 1988.

Walter F. Tichy, “Tools for Software Configuration
Management,” Proceedings of the International
Workshop on Software Version and Configuration
Control, pp. l-20, German Chapter of the ACM,
Grassau, FRG, January 1988.

Jtlrgen Uhl, Bernhard Schiefer, Emil Sekerinski,
Simone Rehm, Thomas Raupp, Michael Ranft,
Richard Langle, and Karol Abramowicz, “The
Object Management System of STONE - SOS
Release 1.0 -,” STONE Technical Report FZl.001.2,
Forschungszentrum Informatik, Karlsruhe, April
1990.

Burkhard M. Wiegel. “Entwicklung eines Klassen-
systems fiir attributierbare Softwareobjekte,”
Diplomarbeit, Technische Universitit Berlin, Institut
fiir angewandte Informatik, Berlin, Februar 1990.

237

