
The Shell as a Service

Glenn Fowler
gsf@research.att.com

AT&T Bell Laboratories

Murray Hill, NJ 07974

Abstract

Abstract

This paper explores the design history of the nmake shell coprocess. Originally a special purpose uniprocessor
executor, the coshell has evolved into a general purpose service that automatically executes shell actions on lightly
loaded hosts in a local network. A major thrust of this work has been ease of use. The only privilege required for
installation, administration or use is rsh access to the local hosts.

nmake and GNU-make users can take advantage of network execution with no makefile modifications. Shell level
access is similar to but more efficient than rsh and allows host expression matching to replace the explicit host name
argument. Also provided is a C programming library interface with five primitive operations that follow the fork-
exec-wait process model.

Beside the speedups attained by parallelizing computations in a homogeneous network, coshell also supports
heterogeneous configurations. This presents novel solutions to traditional cross-compilation problems. It also
allows the user to view a new network host as a compute engine rather than yet another architecture on which to port
the home environment and tools.

coshell runs on most S5R4 and BSD UNIX* operating system variants.

1 Introduction

make [Fel79][SUN87][SV84] is a natural candidate for
parallelization. It generates a directed graph of file
dependencies with nodes as files and edges as
dependency relationships. Edge direction points from
target nodes to prerequisite nodes. Target nodes are
optionally labeled with shell script actions. If any
prerequisite is newer than its target then the target
action may be executed by a shell [Bour78][BK89] to
bring the target up to date. make’s job is to traverse
the graph from a given root node and execute the
actions for all targets that are out of date.

* UNIX is a registered trademark of USL.

If the dependency graph specified by the input
makefile is complete (no omitted dependencies) then
the shell actions for some nodes can be executed in
parallel. In the simplest case sibling prerequisites of
the same target may be made concurrently:

a : b c d

Here the actions for b, c and d may execute
concurrently, but the action for a must wait until its
prerequisite actions b, c and d complete.

There is a catch in parallelizing old makefiles: because
make implementation details have crept into the user
interface, some old makefiles rely on the implied

ordering that b is made before c and c is made before
d. Parallel make implementations take one of two
approaches to compensate. The first promotes the
implied ordering to a feature that must be overridden
by explicitly listing prerequisites that can be
parallelized:

a :& b c d

The second breaks the old implicit model and lets the
user discover missing prerequisites by trial and error,
as in:

y.tab.c : a.y
b.o : y.tab.h
a : y.tab.o b.o

Here a.y generates y.tab.c and y.tab.h, b.c
includes y.tab.h and generates b.o. If the b.o
action executes before y.tab.o then the compilation
will fail because y.tab.h will not have been
generated yet (or worse, the compilation will succeed
by using an old and possibly incompatible y.tab.h).

A fundamental feature of nmake [Fowl85][Fowl90],
GNU-make [SM89] and mk [Hume87] is that
prerequisite lists are not ordered. In contrast to other
makes, nmake also provides automatic #include
prerequisite analysis that prevents errors of omission
as in the previous makefile example. Because of this
all nmake makefiles are by default parallelizable.

Handling the details of concurrent execution is only
the first step towards network execution. A study of
how various make implementations execute actions
illustrates the next step.

2 Uniprocessor Implementation

The original make model divides each action into lines
that are sent off, in order, to a separate shell invocation
(sh –e –c "line"). This is why shell constructs
like

a : b
cd c; if test –d d; echo ok d; fi
cd c; doit

are common in old makefiles. Besides complicating
action syntax and semantics (why should an action be
that much different from a shell script?), sending each
line to a separate shell is inefficient. A simple
command like cc –e –c t.c requires a fork and
exec for the sh –e –c and another fork and
exec by the shell for the cc (although some shell
implementations like ksh optimize out the second
fork). Most make implementations avoid the double
fork by checking each line for shell metacharacters

*?;[]()’"‘$\ and skipping the shell exec when
no metacharacters are present. Although the shell may
be bypassed make must still duplicate the shell PATH
command search rules. And, unless make becomes the
shell itself, the exec optimization ignores shell
functions and aliases.

Why not drop the line-by-line semantics and send
entire actions to the shell? The counter reasoning lies
in the old make execution model. First, old make
allows action lines to be prefixed by the special
characters @ and –, where @ means do not trace this
line and – means ignore command errors from this
line. If actions were not split into lines then make
would have to do a shell parse to determine if an
occurrence of @ or – were special. Second, some
actions taken as a unit would simply be too big to send
to the shell via sh –e –c. Finally, as with
parallelization above, make is nailed by a backwards
compatible implementation detail: the previous
example fails when executed as a unit.

To work around this inefficiency some
implementations offer a .MULTILINE phony target
for selective multi-line execution. Others, like mk and
nmake execute actions as a unit by default and force
makefile conversion for old makefiles (in practice
line-at-a-time execution has not been a conversion
problem).

Executing actions as a unit is not a prerequisite for
parallelization, but it does provide a convenient
abstraction for make actions as jobs. Another benefit
is that it eliminates the need for extra ; and \
characters to force shell actions into old make syntax.
Actions also form a natural, localized grouping for
network execution.

The size limitation of passing an action as an argument
to sh –e –c can be avoided by piping the action to
the shell instead. For example, the following two
command lines are equivalent:

sh –e –c ’{ echo hi; echo lo; }’
echo ’{ echo hi; echo lo; }’ | sh –e

Connecting to the shell by a pipe not only removes
action size limitations, it also makes it possible for a
single shell to execute a sequence of actions:

{
echo ’action1’
echo ’action2’
} | sh –e

Up to this point all semantics of the original make
model, except for line-at-a-time execution, have been
preserved. This includes entities passed across exec,

such as the environment and open file descriptors.
Since make typically does not change these between
action executions, it is possible to eliminate a shell
fork/exec for each action by using a single shell to
handle all actions. Using one shell requires another
pipe to allow execution after failure. This pipe
provides status information from the shell back to the
caller. The action encapsulation, written to the shell
command pipe, becomes:

{ action; } && echo 0 >&status || echo $? >&status

Here status is the shell side file descriptor of the status
pipe. It is interesting to note that this encapsulation
transforms fork/exec into a write on the shell
command pipe and wait into a read on the status pipe
(unintentionally similar to the original UNIX system
wait implementation).

A final detail completes the sequential execution
encapsulation: if action contains shell syntax errors
then the shell will either exit or hang (e.g., waiting for
" or fi on the command pipe). eval fixes this:

eval ’action’ && echo 0 >&status || echo $? >&status

As for concurrent execution the shell side is easy --
just use ‘‘&’’. The caller, however, must maintain a
table that associates a job id with each outstanding
action so that the exit status messages can be
identified:

{ eval ’action’ && echo jobid 0 >&status || echo jobid $? >&status; }&

No problems are evident at first glance, but the coshell
design process has been an ongoing education in shell
internals. Lesson number one: shells with job control
disabled (non-interactive shells like the one above)
may not reap (wait for) child processes. This means
that given enough & commands, even though all may
have completed, the shell may exceed its process limit.
So the coshell encapsulation must manually track
action pids and execute wait commands to reap
zombies. Lesson number two: the shell $$ variable
(process id) is set once at shell startup and is not reset
when the shell forks (i.e., it is not the pid of the
current process). Taking this into account results in:

{ eval ’action’ && echo x jobid 0 >&status || echo x jobid $? >&status; }&
echo j jobid $! >&status

This encapsulation has two status messages: the j
message associates a process id with a jobid and the x
message associates an exit status with a jobid. After
the x status message is received the caller can send a
wait pid command to the shell to reap the terminated
action process.

A side effect of concurrency is that only one job (the
foreground job) may read from the terminal at any one
time. For job control shells the foreground job is
manually determined. Rather than complicate the user
interface and implementation, coshell disables
interactive input for each action by redirecting the
standard input from /dev/null. Any interactive
actions must explicitly redirect input from the terminal
by name, e.g., </dev/ttyxxnn. This has not been
an inconvenience in practice. Figure 1 illustrates the
concurrent execution model.

Figure 1. Concurrent execution model

3 Library Interface

The coshell library interface, declared in
<coshell.h>, completes the concurrent execution
model and hides action encapsulation issues from the
user. It also makes coshell a publicly available
resource rather than just another special purpose make
hack. The interface routines are:

• Coshell_t* coopen(char* shell, int
flags, char* attributes): This function
opens a connection to the coshell and returns a
coshell handle to be used in the remaining library
calls. The handle points to a structure of readonly
coshell accounting data. shell is the coshell
process name and defaults to ksh. The environment
variable COSHELL overrides the default value.
flags controls job execution: CO_SILENT turns
off job command tracing, CO_IGNORE ignores
command errors within each job, and CO_LOCAL
disables remote job execution. attributes is a
string that is interpreted by the coshell and is
ignored by all but the remote coshell described in
the next section. If attributes is NULL then the
value of the environment variable
COATTRIBUTES provides a default value.

The readonly accounting data in Coshell_t is:

• int outstanding: The number of jobs that
can be waited for by cowait(). Some of these
may have already completed execution.

• int running: The number of jobs currently
executing in the coshell.
Coshell_t.outstanding –
Coshell_t.running is the number of jobs
that have completed execution but have not been
reaped by cowait().

• int total: The total number of jobs sent to
coexec().

• unsigned long user: The total user time
in 1 / CO_QUANT second increments for all
jobs that have been reaped by cowait().

• unsigned long sys: The total system time
in 1 / CO_QUANT second increments for all
jobs that have been reaped by cowait().

• Cojob_t* coexec(Coshell_t* sh,
char* cmd, int flags, char* out,
char* err, char* att): This sends the shell
command cmd to the coshell for execution and
returns a job handle that points to a structure of
readonly job accounting data. flags are the
same as in coopen() and are used to augment the
default settings from coopen(). out is the
standard output file name and defaults to stdout if
NULL. err is the standard error file name and
defaults to stderr if NULL. att, if non-NULL,
contains job attributes that are appended to the
attributes from coopen() before being sent to the
coshell. Job status may be checked after a call to
cowait(). Application specific data can be
attached to the Cojob_t user modifiable field
void* local. The same Cojob_t handle is
returned by cowait() and the local field is
retained for additional user access.

• Cojob_t* cowait(Coshell_t* sh,
Cojob_t* job): This returns the status for job,
or for the next job that completes if job is NULL.
cowait() blocks until the specified job(s)
complete; NULL is returned when all jobs have
completed. (sh–>outstanding –
sh–>running) is the number of jobs that may be
waited for without blocking. job->status is
the shell exit code for the job. The return value data
is valid until the next coexec(), cowait() or
coclose().

• int cokill(Coshell_t* sh, Cojob_t*
job, int sig): This sends the signal sig to
job in the coshell sh. If job is NULL then the
signal is sent to all jobs in the coshell.

• int coclose(Coshell_t* sh): This closes
the connection to sh and returns the coshell exit
status if available.

4 Network Implementation

Most UNIX systems provide shell level remote
execution via rsh or remsh. Both require an explicit
host name argument: rsh host action. A network
coshell could be implemented by adding rsh to the
action encapsulation:

{ rsh host eval ’action’ && echo x jobid 0 >&status || echo x jobid $? >&status; }&

where host would be selected by coexec() to be the
‘‘best’’ host on the local network. This has the
advantage that actual remote execution is deferred to a
widely available implementation that requires no
special privileges. On the downside:

• each action incurs the overhead of rsh setup

• coexec() must somehow implement a ‘‘best
host’’ ranking

• an rsh design flaw that fails to report the remote
action exit status complicates error detection

• rsh executes in the caller’s remote home directory
with a minimal default environment

These counter arguments lead the way to a different
network coshell implementation. The key point is
illustrated by the concurrent execution model in figure
1. Since all communication between the coshell and
caller is by the command and status pipes, one could
replace the sh process with one that acts as if it were
sh and the caller would be none the wiser. Figure 2
illustrates this model.

Figure 2. Network execution model

In this model the shell processes are distributed to
hosts on the local network and a special coshell
process sends user jobs to these shells. Instead of
requiring privileged execution servers to be running on
each host as some remote execution systems do
[AC92][HP90], coshell uses rsh to establish a single
shell process on each candidate host. And, in order to
minimize the overhead of establishing these network
shell connections, the network coshell process is
implemented as a daemon. Security is maintained by
making the coshell daemon a per-user process. The
effect is that a network coshell user has no more or
less privilege than that provided by rsh. From an
efficiency viewpoint rsh is only used to establish
remote shell processes. Once the shell is running the
rsh process exits, so that in the steady state a coshell
daemon consumes one process for itself and one
process for each active network shell connection.

The coshell daemon’s job is to:

Accept user connections via coopen(): daemon
connections are based on the standard UNIX
operating system networking IPC paradigms
[LFJ83][Ritc84][Stev90]. One difference is that
connections are initiated by the coshell process that
is executed by coopen() rather than in the
coopen() routine itself. This is a minor detail,
but it means that there is no networking IPC code in

the coshell library. In fact, network coshell was
developed and tested without re-compiling or re-
linking any of the coshell library based commands.
Network execution was enabled by merely
exporting COSHELL=coshell in the
environment.

Send coexec() jobs to the best hosts on the local
network: determining the ‘‘best’’ host is the hardest
component to implement efficiently. Since it
involves scheduling it is also an area ripe with
support from the literature [Bers85][DO91]. Each
network shell connection is considered a resource (it
takes time to establish a new connection) so old
connections are kept active to minimize job
overhead. Greed is counterproductive, however, as
each shell connection accounts for a remote process
slot and local file descriptor that must be polled.
Not only is the ‘‘best host’’ of interest for assigning
jobs to hosts, information on the top hosts is also
necessary for optimizing the number of active
network shell connections. As the host rankings
change sub-par host connections are dropped to
make room for better ones.

The literature tends towards centralized scheduling
to provide an accurate basis for load balancing
across the network. The problem is that a central
scheduler becomes a communications bottleneck
and potential security loophole: if the central
scheduler also executes jobs then it must run as root
and verify the identity of each request; if it only
determines the best host then it must verify that the
job is eventually executed on that host.

An alternative, used by coshell, is to use
decentralized scheduling based on random
smoothing. In this algorithm the hosts are ordered
by a non-linear ranking function that is
parameterized by the 1 minute load average, relative
mips rating, and minimum idle time for all
interactive users. The load average and mips rating
give a measure of the capacity to execute new jobs
whereas the minimum interactive idle time is used
to make coshell a good citizen. After all, the goal
should be to grab idle cycles rather than to sap your
colleague’s mouse and keyboard interactions. This
is such a strong component of the ranking that by
default no jobs are run on hosts with less than 15
minutes interactive idle time. A random component
is added to the ranking to break ties. The effect is
that unrelated coshell daemons will most likely have
different rank orders, and, should both schedule jobs
at the same time, different hosts will most likely be
selected.

Host status is generated by a per-host status daemon
supplied by the coshell library. Each status daemon
posts the status to a host-specific file that is visible
to all hosts on the local network. For efficiency the
information is compressed into 8 bytes and stored in
the access and modify time fields of the file status.
stat() implements host status query and
utime() implements host status update. Both of
these operations on NFS requires at most 1 RPC --
the same efficiency that a hand-coded
implementation could have attained, but with the
added benefit of the file system abstraction.

Special system boot-time entries (e.g., /etc/rc)
are not required. Instead the status daemon for each
host is initiated by the first status request for that
host. One daemon per host is maintained by
keeping track of the ctime of the host-specific file.
If the ctime has changed since the last status
update then the daemon exits on the assumption that
another daemon has taken over. This also provides
a clean mechanism for killing status daemons:
remove the corresponding host status file. The
status update frequency is 40 seconds plus a random
part of 10 seconds. The random component tends to
evenly distribute the update times of all status
daemons on the local network.

The coshell status daemon configuration scales
linearly with the number of hosts as opposed to the
widely used rwho/ruptime that uses an n-squared
broadcast algorithm.

Multiplex the standard output and standard error IO
streams from the remote shells to the local user
processes: this is the only coshell feature that
requires a special shell extension. The standard
output and standard error for each job must be
redirected to network pipes that are intercepted by
coshell. Data appearing on these pipes is then
transferred to the appropriate file descriptors in the
user processes on the originating host.

The extension allows connections to network pipes
at the shell level. ksh, since the 88g release, has
been modified to accept redirections to files of the
form /dev/tcp/n.n.n.n/port. A redirection to
such a file results in a connection request to the
socket named by the host address n.n.n.n and port
number port. coshell creates a tcp socket on the
host address n.n.n.n and port port and listens for
connections on the socket. The job encapsulation
redirects standard output and standard error to this
socket and initiates the coshell connection by
sending a one line message on the connected socket
that identifies the user process and file descriptor.

This one simple extension makes it possible to use
the shell for remote job execution rather than a
special purpose process or daemon, as in Remote
UNIX [Litz87].

Retain most of the semantics of the concurrent
execution model: user environment, processor type
and remote file systems are the main issues. Most
user environments contain at least 1K of data that
seldom changes from the login values set by
.profile. Passing the entire environment for
each action would be prohibitive in communication
and initialization overhead. coshell handles this
situation by reading the user .profile and
$ENV files to initialize remote shell connections.
This increases the shell initialization overhead, and
adds to the importance of active shell connection
management. For the rare cases where some
environment variables change between coshell
invocations the environment variable COEXPORT is
provided. Its value is a : separated list of
environment variable names whose values are
checked and exported by each coexec(). The
COATTRIBUTES, COEXPORT, FPATH, NPROC,
PATH, PWD and VPATH variables are always
exported.

On the remote side the environment variables
HOSTNAME and HOSTTYPE are automatically
defined. As an aid to heterogeneous execution any
occurrence of /hosttype/ in the export variable
values is changed to /$HOSTTYPE/ and evaluated
in the remote job context. For instance, if the local
host type is sun4 and
PATH=/home/bozo/arch/sun4/bin:/bin
then remote jobs will evaluate
PATH=/home/bozo/arch/$HOSTTYPE/bin:/bin.

Host attributes are maintained in a central host
description file:

local busy=2m pool=9
bunting type=sgi.mips rating=60
dodo type=sun4 rating=9 idle=15m
gryphon type=sun4 rating=18 cpu=3 os=solbourne
knot type=sol.sun4 rating=4 idle=15m
lynx type=hp.pa rating=40
parker type=sun4 rating=21 idle=15m
quail type=att.i386 rating=5 idle=15m
toucan type=sun4 rating=22 cpu=4

Each line describes a single host; the first field is the
host name followed by a list of name=value
attributes. The attributes used by coshell are:

• name: the host name in the local domain (i.e., no
.’s in the name).

• type: the host type that differentiates different
processor types. Normally hosts with the same
.o and a.out format have the same type.

• rating: the mips rating relative to the other hosts
on the network. This is usually the observed
rating rather than the one in the vendor’s
advertisements.

• cpu: the number of cpus for multi-processor
hosts.

• idle: the minimum interactive idle time before
jobs will be scheduled on the host. idle is usually
15m for workstations and is not specified (i.e.,
always available) for compute servers.

The special host name local defines default
scheduling parameters for the coshell daemon:

• busy: a job running on a host that has become
busy (non-idle) is allowed to continue running for
this amount of time, after which it is stopped via
SIGSTOP. The job is restarted via SIGCONT
when the host once again becomes idle. Busy job
status messages are posted to the tty where the
coshell daemon was started, allowing the user to
manually restart busy jobs if necessary. The
reader may recognize this as a lazy alternative to
process checkpointing and migration. Although
far short of what a migration would provide, this
method has the advantage that it preserves most
process semantics (e.g., time is not preserved)
and places no restrictions on processes that can
run under coshell [BLL91]. In practice (mostly
nmake users) with busy=2m this method has
been activated only during tests to verify that it
actually works.

• pool: a soft upper limit for the number of shell
connections the daemon maintains. The limit
may be exceeded to handle requests for host that
otherwise would not have been added to the shell
pool.

By default jobs are only scheduled on hosts that
have the same type as the originating host. The
environment variable COATTRIBUTES overrides
this default by specifying a C-style host selection
expression. For example,
COATTRIBUTES=’(type=="sun4|hp" &&
rating>10.0)’. User specified attributes of the
form name=value may also be specified and
queried, as in
COATTRIBUTES=’(floating_point_accelerator==1)’.
Given the HOSTTYPE environment variable
translation from above, cross-compilation with

nmake is as simple as exporting
COSHELL=coshell and
COATTRIBUTES=’(type=="cross-compiler-
type")’.

The most important semantic to preserve is the file
system. Any host used by coshell must be able to
access the same files as the originating host. This
requires administrative cooperation between the
hosts but is not a problem in practice since most
coshell hosts are workstations that share a small
group of common file servers. Notice, however,
that readonly files like those in /usr/include
need only follow the as if rule.

5 Command Interface

The coshell package includes 3 user level commands.
cs (for connect stream) provides information on the
active coshells and supports queries on the local host
attributes. cs –h lists the host specific
environment attributes for the local host. This is
particularly useful for setting up PATH and viewpaths
in .profile:

$ cs –h
HOSTNAME=dodo HOSTTYPE=sun4
$ eval $(cs –h)
$ print $HOSTNAME $HOSTTYPE
dodo sun4

cs –a attr lists host attribute information:

$ cs –a type local
sun4
$ cs –a – gryphon
type=sun4 rating=18 cpu=3 os=solbourne addr=135.3.113.106

ss (for system status) lists host system status
generated by the daemon ssd and is similar to
ruptime:

$ ss
bluejay up 2w00d, 1 user, idle 2h56m, load 0.56, %usr 0, %sys 0

cardinal up 2w00d, 1 user, idle 19h33m, load 0.00, %usr 0, %sys 0

condor up 2w00d, 1 user, idle 34m00s, load 0.08, %usr 0, %sys 0

dgk down 1d17h, 0 users, idle 0, load 0.00, %usr 0, %sys 0

dodo up 2w00d, 4 users, idle 1.00s, load 0.32, %usr 0, %sys 2

...

$ ss local
local up 2w00d, 4 users, idle 3.00s, load 0.32, %usr 0, %sys 4

Finally, coshell provides access to the coshell
daemon. coshell + starts the per-user coshell
daemon if one is not already running. coshell -
enters an interactive coshell daemon query interpreter:

$ coshell –
coshell> t
SHELLS USERS JOBS CMDS UP REAL USER SYS CPU LOAD RATING

6/7 1/9 0/38 60 1d17h 2m36s 4m41s 1m36s 9/9+0 1.75 18.88

coshell> s
CON JOBS TOTAL USER SYS IDLE CPU LOAD RATING BIAS TYPE HOST

8 0 6 55.18s 11.89s 7h06m 1 0.00 21.00 1.00 sun4 kiwi

7 0 12 1m16s 16.38s 2.00s 3 1.20 18.00 1.00 sun4 gryphon

13 0 8 1m03s 17.79s % 1 1.36 21.00 1.00 sun4 parker

17 0 8 1m04s 13.97s 6h13m 1 1.44 21.00 1.00 sun4 condor

9 0 4 22.95s 36.24s % 2 4.48 22.00 1.00 sun4 toucan

6 0 0 0 0 1.00s 1 0.40 9.00 4.00 sun4 dodo

coshell> j
JOB USR RID PID TIME HOST LABEL
6 15 1 16577 7.00s gryphon make main.o
7 15 2 18940 7.00s toucan make job.o
8 15 3 8348 7.00s condor make schedule.o
9 15 4 1385 7.00s kiwi make shell.o
10 15 5 12952 7.00s parker make command.o
11 15 6 16578 7.00s gryphon make misc.o
12 15 7 18942 7.00s toucan make init.o

alias on="coshell –r" provides a command
level equivalent to rsh:

execute hostname on ‘‘best’’ host
$ on – hostname
toucan
execute hostname on the ‘‘best’’ host of a different type
$ on ’(!type@local)’ hostname
lynx

6 Performance

Figure 3 shows empirical timings of nmake building
itself using various combinations of local and network
coshells and concurrency levels. The nmake build
compiles and links 18 C files into a single executable.

The network configuration includes many idle sparc
2’s rated at 21 mips, more than double the local sparc
1’s rating of 10 mips. Compensating for the rating
differences, the network coshell provided a factor of 4
improvement in compile time. Empirical timings for
other projects ranging in size from 10K lines of source
(like nmake) to 1M lines of source show an average 5
times build time improvement. In particular, the 1M
line project build time went from 10 hours down to 2
hours. This factor of 5 has also been noted in other
network build implementations.

A detailed study of the limitations on performance has
not been done yet, but NFS/RFS network file traffic
saturation most certainly plays a role.

sun sparc 1, 10 mips, 1 cpu, concurrency 1, local coshell
real 9m30.28s
user 5m44.31s
sys 1m26.10s

solbourne sparc 2, 18 mips, 3 cpus, concurrency 1, local coshell
real 5m27.63s
user 3m02.70s
sys 0m34.75s

solbourne sparc 2, 18 mips, 3 cpus, concurrency 3, local coshell
real 2m26.56s
user 3m16.66s
sys 0m38.41s

sun sparc 1, 10 mips, 1 cpu, concurrency 10, network coshell, 8 hosts
real 1m33.35s
user 0m04.80s
sys 0m04.10s

Figure 3. Empirical coshell timings

coshell has been operational since mid 1990 and
statistics for the author’s personal usage have been
maintained since November 1990. These are listed in
figure 4.

number of coshell daemons 134
number of active shell connections 3426

number of user connections to daemon 22459
number of executed jobs 199010

total daemon up time 1Y01M
total real time while jobs executing 4w01d

total job user time 4d19h
total job sys time 3d13h

Figure 4. Author’s coshell usage from 11/90 to 4/93

7 Conclusion

The network coshell has consistently provided factors
of 5 improvement in build times for nmake users. Its
simple, non-privileged administration makes it easy to
maintain and port and allows any user to take
advantage of idle network cycles.

8 Acknowledgements

coshell has been in development since early 1990 and
my colleagues in the Advanced Software Technology
Department have suffered through its evolution.
Included were innumerable kernel crashes caused by
buggy socket implementations (these have all been
compensated for) and bad job scheduling parameters
that brought the sparcs to their knees.* Also of great

help were the handful of beta users that put coshell to
work in the real world.

References
[AC92] NetMake, Aggregate Computing, Inc., 1992.

[Bers85] Brian Bershad, Load Balancing with Maitre
d’ , Computer Systems Research Group, UC
Berkeley, December 1985.

[BK89] Morris Bolsky and David G. Korn, The
KornShell Command and Programming
Language , Prentice Hall, 1989.

[BLL91] Allan Bricker, Michael Litzgow, Miron
Livny, Condor Technical Summary , University
of Wisconsin Computer Sciences Department
Technical Report #1069, October 1991.

[Bour78] S. R. Bourne, The UNIX Shell , AT&T Bell
Laboratories Technical Journal, Vol. 57 No. 6
Part 2, pp. 1971-1990, July-August 1978.

[DO91] Fred Douglis and John Ousterhout,
Transparent Process Migration: Design
Alternatives and the Sprite Implementation ,
Software – Practice and Experience, Vol. 21
No. 8, pp. 757-785, August 1991.

[Feld79] S. I. Feldman, Make – A Program for
Maintaining Computer Programs , Software –
Practice and Experience, Vol. 9 No. 4, pp.
256-265, April 1979.

[Fowl85] Glenn S. Fowler, The Fourth Generation
Make, Proc. of Summer 1985 USENIX Conf.,
Portland, 1985.

[Fowl90] Glenn S. Fowler, A Case for make , Software
– Practice and Experience, Vol. 20 No. S1, pp.
30-46, June 1990.

[HP90]Task Broker for Networked Environments
Based on the UNIX Operating System ,
technical data booklet, Hewlett Packard, 1990.

[Hume87] Andrew G. Hume, Mk: a successor to
make, Proc. of Summer 1987 USENIX Conf.,
Phoenix, 1987.

[KK90] David G. Korn and Eduardo Krell, A New
Dimension for the Unix File System , Software
– Practice and Experience, Vol. 20 No. S1, pp.
19-33, June 1990.

[LFJ83] A 4.2BSD Interprocess Communication
Primer , Computer Systems Research Group,
UC Berkeley, 1983.

[Litz87] Michael J. Litzkow, Remote UNIX: Turning
Idle Workstations into Cycle Servers , Proc. of
Summer 1987 USENIX Conf., Phoenix, 1987.

[Ritc84] D. M. Ritchie, A Stream Input-Output
System, AT&T Bell Laboratories Technical
Journal, Vol. 63, No. 8, Part 2, October 1984.

[SM89] R. M. Stallman and R. McGrath, GNU Make –
A Program for Directing Recompilation ,
Edition 0.1 Beta, March 1989.

[Stev90] UNIX Network Programming , W. Richard
Stevens, Prentice Hall, 1990.

[SUN87] SunPro: The Sun Programming
Environment, Sun Technical Report, make:
Keeping Files Up-to-Date , ch. 5, pp 67-83,
Sun Microsystems, 1987.

[SV84]Augmented Version of Make , UNIX System V
– Release 2.0 Support Tools Guide, pp. 3.1-
3.19, April 1984.

Glenn Fowler is a distinguished member of technical
staff in the Software Engineering Research
Department at AT&T Bell Laboratories in Murray
Hill, New Jersey. He is currently involved with
research on configuration management and software
portability, and is the author of nmake, a configurable
ANSI C preprocessor library, and the coshell network
execution service. Glenn has been with Bell Labs
since 1979 and has a B.S.E.E., M.S.E.E., and a Ph.D.
in electrical engineering, all from Virginia Tech,
Blacksburg Virginia.

* I haven’t seen a lynch party since 1991.

