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Authors’ Abstract

Current approaches to software configuration management and system building
do not scale up to support large-scale software engineering; common practice in-
volves numerous stopgap measures to work around this shortcoming. The Vesta
system is designed to eliminate this problem, by providing (1) a language de-
signed to support complete, concise system descriptions and (2) a novel caching
mechanism that permits efficient system building.

The Vesta system uses a functional programming language to describe con-
figurations. This language provides the flexibility and power needed to describe
large software components. The system descriptions are specific and complete,
and include all of the sources that are used to build the system and all of the
instructions that tell how the sources are composed. Only information written
down in the description can influence construction of the system. Nevertheless,
the descriptions are concise and easy to read and write.

The language evaluator caches the results of evaluating function applications,
which are the expensive operations in the Vesta language. Caching in Vesta is
automatic and persistent. Because the language is functional and there are no
side-effects, caching is conceptually straightforward. Vesta caches the result of
all function applications—from those at the leaves (e.g., compiling one source
file), to those in the middle (e.g., packaging up a library), all the way to the top.
Caching function applications at all levels permits Vesta to build and rebuild
large software systems efficiently.
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1 INTRODUCTION 1

1 Introduction

The development of large-scale software systems requires effective configuration
management—the organization of software elements into systems. Configura-
tion management must cope with a wide variety of development difficulties,
including parallel development and testing, portability and cross-platform de-
velopment, and inter-component consistency control. For small systems, these
issues can often be addressed manually; for large systems, automation is essen-
tial.

Vesta is a system that provides the automation to solve these problems.
Central to the solution is a comprehensive mechanism for describing and con-
structing a large software system, which is the subject of this paper.

More specifically, the Vesta system is organized as follows:

e The repository [Chiu and Levin] names and stores objects.

e The Vesta language is used to write system models (or models, for short)
that describe how the components fit together to form a resulting software
system.

e The language evaluator processes the models to build software systems.

e Bridges [Brown and Ellis] provide the connection between the Vesta eval-
uator and program development fools. Vesta is extensible and bridges are
the way it is integrated with existing preprocessors, compilers, linkers, etc.

Figure 1 presents a simple example that illustrates the user’s view of these
pieces. The user provides Vesta with the files A. ¢, B. ¢, and the system model
Model, and gets back the executable AB. The system model describes how A.c
and B.c are compiled and linked to produce AB. Figure 2 is an elaboration of
Figure 1; it shows how the work flows internally through the components of the
Vesta system.

As the example suggests, a Vesta model describes how the components of a
software system fit together. Models correspond roughly to the makefiles of
Unix—Dboth describe how to build a software object from its components. But
Vesta models do so far more precisely and comprehensively than makefiles do
[Levin and Mcjones].

Unlike make (and most existing configuration management systems), Vesta
uses a real programming language to describe configurations. Other systems,
including make, use an ad-hoc approach with many system-building concepts
hard-wired into the description language. While some of these system descrip-
tion languages have simple control structures, they have nothing like the ab-
straction facilities provided by functions. Vesta’s programming language pro-
vides the flexibility and power needed to scale up to describe large-scale software
development.
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The Vesta language is functional; it is essentially typed lambda calculus
with a small number of additional features. An operation like “compile” 1is
represented in the language as a function; the function inputs are the source
files and the compilation options, and the result is the object file. A software
system is built by a series of function applications. Part I of this paper explains
the language in detail and shows how these system models are constructed.

Using a functional language simplifies the language evaluator. A software
system 1s compiled and linked whenever a model is evaluated. To do this fast
enough, the evaluator must cache the results of expensive sub-evaluations so
that next time the results may be reused. It would be quite complicated to
cache expression results if the modelling language permitted side-effects, but
in a functional language caching is conceptually straightforward to implement.
Nevertheless, an implementation that actually works for a large system is quite
challenging to construct, which is the subject of Part II of this paper.

Because Vesta underwent an extended trial managing large software systems
[Levin and Mcjones], there is considerable experience that supports the work-
ability of this approach. Part III of the paper evaluates that experience as it
applies to the language design and implementation, and identifies opportunities
for further enhancements.



Part 1
Vesta models

2 Organizing software using models

This section presents Vesta’s approach to organizing software. It provides back-
ground for the rest of the paper. This background is particularly relevant to the
discussion of the language, because the language was designed to support the
approach described in this section.

2.1 Model properties

All models share two fundamental properties:
e a model logically contains all the “text” of a system
e a model uses functions to describe software construction

The next two sections discuss these properties in detail.

2.1.1 Models logically contain all the system text

A model logically contains all the text used to build a software system. This
means that it contains all the program code that goes into the system, as well
as all the building instructions that tell how to put the code together. Ev-
ery element that was used in producing the system 1s explicitly specified in
the model, including the interface modules and/or header files, the software
libraries, versions of the compilers, compiler options, and hardware platform.
Only information written in the model can influence building. Vesta controls
the environment in which compilation and linking occurs so that implicit depen-
dencies not included in the model, such as Unix environment variables, cannot
influence building.

Because all the information used to build the system 1s written in a model,
the model gives an exhaustive record of how the system was constructed. This
means that exactly the same system may be rebuilt whenever necessary.

A model for a C program logically contains every line of C code that goes
into the program, including all the source code in the C libraries. Actually
including all this code in the model, however, would make the model difficult to
manage and manipulate. Instead, this code is almost always stored in separate
source objects. A source object is something that is hand-crafted and cannot
be mechanically reproduced. Sources are named in the model by a unique
repository identifier or UID. To maintain strict control over each source that
logically appears in the model, source files are immutable and immortal; the
same UID always refers to the same contents.
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System models also logically contain all the building instructions for a given
system, including how to build all the tools and libraries used by the application.
Of course, 1t would be impractical for every model to include the construction
instructions for the entire environment. Instead, models are modular, and the
instructions for constructing different parts of the system are written in differ-
ent models. Modularity allows a software system to be sensibly divided into
subsystems by providing a way to compose the subsystems into a larger sys-
tem. Models are (almost always) source objects, and one model can reference
another.

2.1.2 Functions describe software construction

Models are written to help localize the binding of choices of how a system is
built. When a choice is localized, changing it means making a change in a single
place. To achieve this, models use highly parameterized functions in which most
of the choices are passed as parameters to the functions.

For example, by calling a function that describes an application program
with different parameters, one can build the program for a variety of hardware
platforms, or with various versions of the compiler and libraries. Moreover,
models are generally organized so that one umbrella model calls functions in
many others, passing the same parameter values to each. This makes it easy
to change the values used in all the models by changing only the umbrella; one
can build a new system release for a different platform by changing just one line
in the umbrella release model. Figure 3 shows the structure of the SRC release
umbrella model and some of the models that 1t invokes; note that the bootfile
model and the Vesta model are themselves also umbrellas.

The localization of choices means that the amount of work that one person
must do to modify a system is proportional to the size of the change, not pro-
portional to the size of the system. Building a new system release for a different
platform is a conceptually simple change that does not require more human
effort than changing the appropriate line in the system description. Of course,
a substantial amount of machine time may be needed to complete this build.

2.2 Model structure

A model has two sections:

e the sources section names the source files that compose the system,

e the construction instructions tell how to process the source files to build
the system.

Figure 4 shows an outline of the sections of a model.
The sources section has two parts. The first names the source files that are
local to the subsystem described by the model. The second (followed by the
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Figure 3: SRC release model

keyword IMPORT) names the models that come from the surrounding environ-
ment.

The construction instructions section also has two parts. The first, the func-
tions, provides the highly parameterized functions that describe how the sources
are composed during building. The second, the testing expression, contains ap-
plications of these functions to actually build a system. This is called a “testing
expression” because 1t builds a component for local testing.

Figure 5 shows a simple Vesta model that builds a “hello” program. The de-
tails of the model aren’t important here; they are discussed in the next chapter.
The model is here simply to show the basic model structure.

The sources section in Figure 5 contains two source files. hello.c is the
source file local to the model; building-env.v is an imported model that pro-
vides the environment necessary to build the program. Both sources are named
by their UIDs, which are abbreviated here with as uid-n.

The construction instructions contains two components. The component
labeled build is one function that defines the compilation and linking of the
“hello” program. The second component labeled test applies the build func-
tion, as well as a function from building-env.v called default, which supplies
the default environment in which to build the program.

The test expression is used by the developer of this model to test his pro-
gram using a given version of the environment. This program may also be built
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Figure 4: Outline of a Vesta model

DIRECTORY
hello.c = wid-1
IMPORT
building-env.v = wid-2
IN {
build =
FUNCTION ... IN {

hello = C$Prog((C$Compile(hello.c), libc.a)) };
test =
LET building-env.v$default() IN build()

1

Figure 5: Vesta model for the “hello” program.
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for a system release. In this case, the build function will be called from the
release umbrella model, perhaps using a different environment. This is why
the model separates the build function from the test expression; the build
function may be called from multiple different contexts. A function like build,
which may be called from outside the model, is written to assume that a building
environment has already been established before it 1s applied.

2.3 Updating a model

Since models and other programming modules are usually source objects, they
are immutable. To make a “change” to a source object, a new version of the
object must be created. For example, say that a user has the following model,
called 1ib.v.3%:

DIRECTORY
A.c = wid-1,
A.h = wd-2,
B.c = wd-3,
B.h = wid-4,

IN

C$Compile(A.c, A.h),
C$Compile(B.c, B.h),

If the user wants to “change” A.h, he must produce a new version of A.h with a
new UID, and use that new UID in a new version of the model, called 1ib.v.4:

DIRECTORY
A.c = wid-1,
A.h = wd-5,
B.c = wd-3,
B.h = wid-4,

IN

C$Compile(A.c, A.h),
C$Compile(B.c, B.h),

Because a user must explicitly indicate that the original version of a source
is to be updated to a newer version, he has complete control over incorporating

IThis is a slight simplification of the naming scheme used for sources in the Vesta system.
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other’s changes into his own model. For example, the model in Figure 5 imports
a particular version of the building-env.v model. One user may modify the
environment and release a new version of the model, but a second user work-
ing on the “hello” model is completely insulated from these changes. The old
versions continue to exist, and the second user may continue to import the old
versions until he is ready to change to the newer ones. In this way, users are
protected from arbitrary changes in their environment. Tools are available in
Vesta to help users create updated versions of existing models, both for source
objects local to their model and for imported models.

2.4 Evaluating a model

Most configuration management systems do not incorporate the concept of a
specific system configuration. Instead, they use descriptions that refer to mu-
table files whose contents may change. Their building tools must determine
whether any of the mutable files named in the description changed, and then
what to do about it. With make, for example, the rule 1s that if file Y depends
upon file X, changing X requires Y to be recomputed. If a makefile records
that the file A.c depends upon a header file A.h, then A.c must be recompiled
when A.h changes.

Vesta cannot use such an approach to rebuilding. Vesta lacks the very idea
of a “change” since Vesta’s models are immutable. As discussed in Section 2.3,
if a new version of A.h is produced, then a new version of the model, 1ib.v.4,
may be created to incorporate the new file. Source objects in a model don’t
change because a model describes a particular immutable state.

Objects in Vesta don’t change, but they do stay the same, and the Vesta
evaluator takes advantage of this. In particular, the evaluator notices when
two functions applications are the same, even in different models; this occurs
when the function and the values of its parameters are identical. For example,
consider the models 1ib.v.3 and 1ib.v.4 from Section 2.3. The application

C$Compile(B.c, B.h)

1s the same in both models because the function and parameters are identical.
If the result of this function was computed when evaluating 1ib.v.3, the same
result can be reused during the evaluation of 1ib.v.4. Reusing the result of
a function already evaluated is the job of the caching machinery, discussed in
detail in Part II.

On the other hand, in 1ib.v.4, the function application

C$Compile(A.c, A.h)
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is different from the similar one in 1ib.v.3, since the parameter A.h has a
different value between the two applications. When the evaluator first analyzes
1ib.v.4 it decides that this result doesn’t yet exist, so the function application
is performed. In general, a function application is performed when the result of
that application doesn’t already exist in the cache.

2.5 Constructing the environment

A model’s construction instructions describe the entire software system. Evalu-
ating those instructions builds the entire software system. Each time the system
is built the entire model 1s evaluated and whatever must be built, is built.

In the “hello” model in Figure 5, the instructions for constructing the envi-
ronment are executed when the building-env.v§default function is applied.
Every time the “hello” model is evaluated the entire environment is built. This
means that instead of evaluating a 4-line program (hello.c), the evaluator an-
alyzes a system with many thousands of lines (the code for the libraries and the
compiler and linker, and for hello.c). This may seem unnecessarily aggressive,
but caching makes the parts of this that have been done before very fast.

Since the environment is built upon every application, a consistent build is
always produced. A user may write a new model specifying a new component
of a library, even the lowest level interface, and know that every function appli-
cation with that component as a parameter will be evaluated and a consistent
environment will result. Also, a tool maintainer can build a new version of a
tool, and incorporate it in the environment, knowing that all necessary process-
ing with that new version will be performed. (There is a separate way for a
tool maintainer to assert that one version of a tool is upward compatible with
an older version, so that all results produced using the old tool may be reused;
details are given in the paper on Vesta bridges [Brown and Ellis].)

2.6 Repository functionality

The Vesta repository provides management and naming of the different versions
of objects; details are given in the Vesta repository paper [Chiu and Levin].
There are two kinds of objects, source and deriwed. Source objects were intro-
duced in Section 2.1.1; they are hand-written objects. Derived objects are those
mechanically produced, from sources or other deriveds. Like source objects,
derived objects are named by UlDs.

There are four repository functions that are needed for the rest of this paper:

e NameSource() —> UID: This function produces a new source UID. The
only requirement for a source UID is that it be unique. UIDs produced
by NameSource are distinct from those produced by NameDerived.

e NameDerived(inp: LONGINT) -> UID: This function produces a new de-
rived UID. The derived UID is completely determined by the value of inp.
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If NameDerived is called twice with the same value for inp, it will produce
the same UID. UlIDs produced by NameSource are distinct from those
produced by NameDerived.

e Write(uid: UID, t: Text): This function takes a UID and a Vesta
text value and associates the UID with the text.

e Read(uid: UID) -> Text: This function takes a UID and returns the
Vesta text value associated with that UID.

3 The Vesta language

The language 1s typed lambda calculus with a few additional features needed
for configuration management. It does not include many traditional features of
general-purpose functional languages, such as explicit support for recursion and
data abstraction. This section gives a brief overview of the features that the
language does contain.

The language is a purely functional, modular language. It 1s composed of
expressions which when evaluated produce values.

The type system is simple, with a few basic types: boolean, integer, text,
function, opaque, binding, and list. Lists are like LISP lists; bindings are sets
of name-value pairs.

Opaque types are associated with language bridges, which provide a way
to invoke compilers and other tools from a model, and which can extend the
language’s type system. A bridge is the intermediary between the evaluator and
an individual compiler or tool. Bridges produce values with opaque types; only
the bridge that produces a value of a specific opaque type can manipulate it.

The language is dynamically typed; that is, types are associated with values
instead of with names and expressions. Type-checking occurs as the model is
evaluated: that is, as the software system is being compiled and linked.

Even without static type checking, the language is strongly typed: an exe-
cuting model cannot breach the language’s type system. The expected types of
parameters to language primitives are defined in the language documentation,
and actual parameters to primitive functions are checked when the model is
evaluated. Bridges cooperate in the implementation of strong typing by type-
checking the parameters to the functions that they export.

The basic scoping mechanism is static (or lexical). The language also has dy-
namic scoping for free variables in appropriately-defined functions. Dynamically
scoped names are not lexically distinct from statically scoped ones.

There are a just a few kinds of expressions. Sets of name-value pairs (or
bindings) are introduced into the environment via a LET expression. The value
paired with a particular name is selected from a binding with a selection ex-
pression binding$name. Functions are defined with the FUNCTION expression
and used in function application. There is a traditional IF conditional. The
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DIRECTORY expression resembles LET, but introduces name-value bindings into
the environment in which each value represents an object in the repository ob-
ject store.

There are also about 50 built-in functions, which perform arithmetic and
boolean operations and provide basic manipulation on texts, lists, and bindings.

The language supports higher-order functions: functions which return func-
tions.

The language provides a way of defaulting actual parameters at function
application. The language also permits defaulting of formal parameters at the
point of function definition (which is simply another way of saying that it sup-
ports dynamic scoping).

The language discussion that follows emphasizes why the language design
turned out as it did. It focuses on the configuration management demands that
the language had to satisfy. Each subsection presents one demand and discusses
why it 1s important. The Language details portion of a subsection describes the
Vesta language features that must satisfy the demand. This approach does not
present the language features in the most orderly fashion and it omits some of its
fine points. The Appendix contains a semi-formal specification of the language
semantics.

3.1 A model describes a specific, complete configuration

A model refers immutably to particular versions of source files and imported
models. Once a model is created it never changes.

A model describes the construction of an entire software system, including
the construction of the environment used by the system. To make it feasible to
write and modify such descriptions, the Vesta language is modular: a system
description can be broken into several lexically separate parts that build on each
other. Modularity also supports abstraction; one programmer can build upon
the work of another without needing to understand all of its details.

Language details: DIRECTORY and UID expressions

In the language, each model is a module: a lexically separate piece of
text, stored in the repository as a source object and named by a UID.
The DIRECTORY expression is the only top-level expression of a
model, and it may appear only as the top-level expression. Figure 4
in Section 2.2 shows the structure of the DIRECTORY expression.

The sources section has two parts: one for objects local to the
model’s component and one for objects that come from its envi-
ronment. These two parts are evaluated identically by the language
interpreter, but other tools that process models may treat them dif-
ferently.
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The only expressions that may appear in the sources section are
sequences of explicit bindings separated by commas. The left-hand
side of an explicit binding is an identifier and the right-hand side is
a UID: a unique repository identifier.

Each UID names a source file. Sources are either models or non-
models; these two cases are evaluated differently. If the UID names
a non-model, the UID is evaluated by reading the source using the
repository’s Read function (see Section 2.6); the Read returns a text
value. If the UID names a model, the model is read, parsed, and
evaluated. The result of evaluating a model UID is an arbitrary
Vesta value.

The UID may appear only in the sources section of a DIRECTORY
expression, on the right-hand side of an explicit binding. (This re-
striction makes it easy for tools to find all UIDs in a model.) In the
body of the model, the repository object is referenced by the name
to which it’s bound in the sources section.

The result of evaluating the sources section is a Vesta binding, which
becomes the initial environment for evaluating the construction sec-
tion.

3.2 All dependencies are captured in the model

The language permits a precise description that captures all of the dependencies
of the system-building operations. For each operation, the output is completely
determined by the inputs of the operation; these inputs must all be explicit in
the model. This approach is supported by a functional programming language,
since the system-building operations are pure functions with no side-effects; the
dependencies of the operation are the parameters to the functions.

Functions are at the core of the language; they provide a powerful abstraction
mechanism in which a user who wants to invoke a function needs to understand
only the function signature, not the details of the function body. There are
several different kinds of functions that may be used in a model. Bridge func-
tions supply the basic system-building operations like compilation and linking.
Primitive functions permit the manipulation of texts, lists, and bindings. User-
written functions let a user create his own abstractions by packaging together
related calls on other functions.

Language details: FUNCTION expression and closure value

A FUNCTION expression defines a function. The following model
contains a single FUNCTION expression which processes a Unix
man page:
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DIRECTORY
Printing.man = wid-1
IN {
doc = FUNCTION ComputeManPage IN
{ Printing.1 = ComputeManPage(Printing.man) }

1

The result of evaluating a FUNCTION expression is a closure value,
which contains the traditional pieces: the function’s formal param-
eters, the function body, and the static environment needed to eval-
uate the function body.

3.3 Models provide a single, uniform naming mechanism

In traditional programming environments there are several different name spaces
that a programmer must understand and manage. In a Unix environment the
name spaces include file system path names, environment variables, linker sym-
bols, target names in makefiles, etc. The rules for modifying these name spaces
vary, and interaction between them can be confusing.

Vesta provides a single, uniform naming mechanism, so that a programmer
needs to use only a single mechanism, with the familiar language features of
name binding and scoping.

Bridges also benefit from Vesta’s naming scheme. In most configuration
management systems, a tool like a compiler or linker must understand how to
access many different name spaces, and must make rules about how the name
spaces interact. With Vesta, all the names that a tool references are interpreted
in Vesta’s name scope.

Models add names to the environment using bindings, and bindings are the
basic structuring mechanism for the values in models. Many models chiefly ma-
nipulate bindings, since configuration management for a large system requires
moving around a lot of names along with their values. Bindings provide conve-
nient manipulation of large groups of names and their values.

Language details: binding expression and value

A binding expression is a list of binding components enclosed within
curly braces, { and }. A binding expression evaluates to a binding
value, which 1s a set of name-value pairs.

A binding component may be either an explicit binding or an arbi-
trary expression. The left-hand side of an explicit binding is a name,
followed by an equals sign, and the right-hand side is an arbitrary
expression. An explicit binding evaluates to a binding that contains
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a single name-value pair. If instead the binding component is an ar-
bitrary expression, the expression must evaluate to a binding value.
Consider the following binding expression:

{ Log = M2$Prog((M2$Compile(Log.mod))),
LogUtilities() }

The first binding component is an explicit binding. The second
binding component is a function application, which must return a
binding value.

If two binding components are separated by a comma, then each is
evaluated in the initial environment of the expression to produce two
binding values, bl and b2. The resulting binding value is produced
by merging the two bindings, after removing all elements from b1
for which an element with the same name exists in b2.

Semicolons are also permitted in bindings; the result of evaluating:

{x; v}

is equivalent to evaluating the expression

{x, LET x IN y}

So, for example, the result of evaluating the binding:

{a=3, b=4; a =plus(a, b) }

is a binding value with two name-value pairs: <a, 7> and <b, 4>.

Bindings are “opened” by the syntactic construct LET. The LET
expression adds new name-value pairs to the environment in which
the LET body is evaluated. In the expression LET E1 IN E2,it’s an
error if E1 doesn’t evaluate to a binding.

The selection operator $ selects a particular name from a binding.
The syntactic form of a name selection is E$N. The expression E must
evaluate to a binding value, and the identifier N must be one of the
identifiers in the binding value. The result is the value associated
with N in the binding value.

15
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3.4 Users can add new bridges as needed

Bridges are not written in the Vesta language, but they add functionality that
is accessible from the language. Bridges extend the basic functionality of the
Vesta evaluator by providing new functions.

Users can add bridges for new compilers or other language processers when-
ever such tools are needed. A bridge is loaded dynamically during an evaluation.
When the bridge is loaded, it tells the Vesta evaluator the names and signatures
of the functions it implements. When one of these functions is called during an
evaluation, the evaluator invokes the bridge to execute the function.

The language supports bridges by providing an extensible type system.
Bridges cooperate in the implementation of strong typing by type-checking the
parameters to the functions that they export.

The language also supports versioning of bridges and tools. The types,
functions, and instances of the types exported by a tool are versioned; details
are given in the bridge paper [Brown and Ellis].

Language details: opaque types and the bridge primitive

Each bridge has a single opaque type associated with it. A bridge
is responsible for defining, manipulating, and type-checking values
with 1ts opaque type. Because the contents of an opaque value are
up to the bridge, a bridge may actually define various opaque types
for its internal use; the bridge then checks that the proper opaque
types are passed to its functions.

For example, consider the following (erroneous) bridge call:

M2$Prog( (M2$Compile(Log.def), M2$Compile(Log.mod)))

The M2$Prog function is passed two files: a compiled interface mod-
ule and an object module. The M2 bridge uses distinct opaque types
for these two values. However, the Prog function accepts only object
modules for linking. When presented with this parameter list, the
bridge signals a type error.

The bridge primitive function makes a bridge and its facilities avail-
able for use in a model. The bridge function returns a binding which
defines the available facilities; typically, a bridge will export func-
tions and default parameters which may be used (or overridden)
when one of the functions is applied.

Note that there are exactly two ways to define a function: one 1s to
write FUNCTION, and the other is to use the bridge primitive.



3 THE VESTA LANGUAGE 17

3.5 Models are concise

A model provides a complete description of a software system, in which all the
dependencies of any given operation are captured. There is a tension between
providing a complete description while also making it easy to create new models
and read or modify existing ones. A naive approach to writing a complete
description would produce a large, unwieldy model that would be difficult to
read or modify.

The problem of producing concise models is addressed by certain features of
functions and function applications, highlighted below.

3.5.1 A typical function and its application

Here is a typical function and its application; it will be used throughout the rest
of the section, although the signature of the function will change as different
language features are discussed.

Consider the function Compile; its inputs, such as the source files and op-
tions, are parameters. One possible signature of the Modula-2+ Compile func-
tion is:

FUNCTION M2-Source, M2-Imports, M2-Options

where M2-Source is a text, M2-Imports is a list, and M2-Options is a binding.
The Modula-2+ bridge type-checks these parameters when the Compile function
is applied.

Consider the compilation of the Modula-2+ source file Val.mod. In Modula-
2+, one module can use definitions from other modules via the IMPORT state-
ment. (Don’t confuse the Modula-24 IMPORT statement with the Vesta IMPORT.)
The Modula-24 IMPORT statement inside Val.mod is:

IMPORT VestaUID, VestaValue, VestaETypes, Env, Expr,
Globals, Err, Prim, Location, EvalFriends, EHandle, Cache,
Vestalog, VestaAST, Bridge, Lex, TagV;

To compile this file, a Vesta invocation of Compile must list all the imported
modules, in addition to the name of the source to be compiled and the name
of the compilation options. The Modula-2+ bridge names the imported mod-
ules using the convention that a Vesta name is the Modula-24+ module name
appended with the string “.d”:

M2$Compile(
Val.mod,
( VestaUID.d, VestaValue.d, VestaETypes.d, Env.d, Expr.d,
Globals.d, Err.d, Prim.d, Location.d, EvalFriends.d,
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EHandle.d, Cache.d, Vestalog.d, VestaAST.d, Bridge.d,
Lex.d, TagV.d ),
M2-Options )

This invocation uses positional notation to match actuals parameters to
formals parameters. Positional matching requires order in the actuals, and
so the actuals are ordered in a list. Positional matching is useful when there
are a small number of actuals, but it becomes clumsy and error-prone when the
number of actuals grows. The next two sections discuss how to make invocations
of Compile more compact.

3.5.2 Defaulting actual parameters

As shown above, there are three parameters to M2$Compile: the source to be
compiled, the imports of the source, and the compilation options. For different
invocations of M2$Compile the source and imports will be different, but the
compilation options will usually stay the same. It would be useful to be able to
specify the compilation options in one place in a model and then omit naming
the compilation options on each call to M2$Compile. The language supports
this with the defaulting of actual parameters by name.

If an actual parameter is not supplied for a formal at a function application,
the Vesta evaluator will look in the current scope to see if there is a defini-
tion with the same name as the formal. With actual defaulting, the call to
M2$Compile can be rewritten as:

M2$Compile(

Val.mod,

( VestaUID.d, VestaValue.d, VestaETypes.d, Env.d, Expr.d,
Globals.d, Err.d, Prim.d, Location.d, EvalFriends.d,
EHandle.d, Cache.d, Vestalog.d, VestaAST.d, Bridge.d,
Lex.d, TagV.d ))

The function definition names three formal parameters, but this application
supplies only the first two actuals. The supplied actuals are matched by position.
The remaining formal, M2-Options, is looked up by name in the scope of the
function application; it is an error if there is no definition. Thus, M2-Options
can be bound once for a number of calls to Compile.

The invocation of M2$Compile has gotten a little shorter and easier to read
and write, but the inclusion of the imports is still unwieldy, and the user is sim-
ply repeating information already contained in the Modula-2+ source module.
Listing the imports again is error prone since a user may not keep the two lists
synchronized. The next section discusses how to eliminate the need to list the
imported interfaces.



3 THE VESTA LANGUAGE 19

3.5.3 Defaulting formal parameters

The language further simplifies function definition and application by support-
ing emplicit parameterization. Implicit parameterization allows clients to omit
formal parameters from the function definition and then omit the corresponding
actual parameters from the function application. The function body therefore
contains free variables, which are names referenced in the function that are not
one of the formal parameters of the function and are not otherwise defined in the
body of the function. A free variable is bound either from the static environment
of the function or from the dynamic environment that invokes the function; the
static environment takes precedence over the dynamic environment.

The signature for M2$Compile indicates the possibility of free variables as
follows:

FUNCTION M2-Source, M2-Options ...

The token ... is part of the language syntax, and the three dots appear literally
in the function definition. The token ... indicates that formal parameters are
omitted from the function definition.

Since only two formal parameters appear explicitly in the function definition,
at most two actual parameters can appear in the application. Assuming that
the actual for U2-Options is defaulted as in the previous section, the application
of M2$Compile reads:

M2$Compile(Val.mod)

This is a clear improvement on the bulky actual parameter list of the previous
section. The function application now explicitly mentions only the interesting
parameter; everything else is bound by other means.

In particular, the free variables in the function body are the imported inter-
faces of Val.mod. Because these implicit parameters are determined when the
function body is applied, there is no need for the user to bundle up the imports
ahead of time in a list, as in Sections 3.5.1 and 3.5.2. Each import is a separate
implicit parameter to M2$Compile.

As described above, if a free variable is not statically bound, and its enclosing
function signature contains ..., the free variable is bound to a value in the
environment of the function application. Such a free variable is looked up in this
environment when the function body is executed. To get access to the function
application environment while evaluating the function body, the language uses
dynamic scoping to bind such a free variable occurrence.

Note that the implicit formal parameters may change from one invocation
of the function to the next. The only implicit formals that are looked up are
those used along the current execution path; there may be others on other code
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paths that are not referenced. Also, implicit formals may depend on another
parameter; in the example above the implicit formals are the imports of the
module Val.mod; if M2$Compile is invoked with a different source module its
imports would probably be different.

In summary, omitting the formal and actual parameter list makes models
quite a bit shorter and easier to read, and requires a user to write less redundant
information.?

Language details: scoping and function application

The basic scoping mechanism is static (or lexical); that is, free vari-
ables in a function get their values from the environment in which
the function is defined. To implement static scoping, the Vesta eval-
uator maintains a static scope.

Typically, in a statically scoped language, each use of an identifier
1s associated with the innermost lexically apparent definition of that
identifier. Because the language has binding values, however, the
place where a given identifier receives its value cannot be determined
in general until the model is evaluated.

If a function is defined with ... in its signature, dynamic scoping
as well as static scoping is used for the identifiers in its body. With
dynamic scoping, free variables in a function get their values from
the environment in which the function was called. To implement dy-
namic scoping, the Vesta evaluator also maintains a dynamic scope.

When a free variable in a function defined with ... is looked up in
the environment, the static scope is searched first, then the dynamic
scope.

We considered having a syntactic means of determining whether a
name was to be looked up in the static or dynamic scope. This is
the approach that Common Lisp, for example, takes when mixing
static and dynamic scoping. We decided that this approach would
be too annoying to model-writers, because many names are bound
in the static environment and many others in the dynamic environ-
ment. For example, a C module being compiled and linked usually
comes from the static environment, but many of its include files and
libraries come from the dynamic environment. Also consider the
following model:

?Implicit formal parameters have two traits that make them unlike regular formal param-
eters: they cannot be identified until the function body is evaluated, and they may change
for each application of a function. Because of this some readers may prefer the more precise
explanation of looking up free variables in the dynamic scope. We think that the implicit
formal parameter approach is more intuitive, however, and that is why we have presented it
here.
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DIRECTORY
main.c = wuid-1,
IMPORT
building-env.v = uid-2,
IN {
build =
FUNCTION ... IN {
main = C$Prog((C$Compile(main.c), libc.a)) };
test =
LET building-env.v$default() IN build()

The function application building-env.v$default() returns the
library 1ibc.a. In the build function, main.c comes from the static
environment, and libc.a comes from the dynamic environment.

3.5.4 Bridges generate names

Names may be introduced into a scope in two ways:

e A user may write the name in the model

e The name may be returned as part of the result of a bridge function
application.

This section discusses the second of these two. Consider the compilation of
interface module Expr.def:

M2$Compile(Expr.def)

This bridge call returns a single-element binding, with the name Expr.d and the
value of the compiled interface module. In doing this, the bridge is constructing
a binding containing a name that does not appear in the Vesta model; it is
manufacturing a new name derived from its input. Since a programmer who
uses the bridge needs to understand what names it can generate, the rules appear
in the bridge’s documentation.

Because bridges can introduce names into a model, a user cannot systemat-
ically replace all occurrences of one name with another and still be certain that
the program means the same. This is because all of the names don’t appear
textually in the model. To make a name substitution, the user must take into
account the rules that the bridge uses to generate new names.
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3.6 Intermediate results are conveniently packaged

Some language processors produce results that will subsequently be analyzed
by other language processors. The results from the first processor need to be
bundled together for convenient analysis by the second processor.

For example, a Remote Procedure Call (RPC) stub generator produces sev-
eral files that need to be compiled, some for use by the client and some for use by
the server. Depending upon which options are used, varying numbers of files are
produced. The RPC stub generator could return a binding that contains each
of the files, but this would be clumsy for the client to handle since the output
files may vary in number. The most convenient way to process the output files
would be for the RPC stub generator to return two functions, one that compiles
the server files and one that compiles the client files.

Language details: closure value

A closure value is the result of evaluating a function definition. A
closure is a first-class value; it may be passed as a parameter and
returned as a result. The language provides higher-order functions
which can take functions as parameters and return functions as their
result. The RPC generator can directly exploit this feature.

3.7 The type system supports program clarity

The type system of a programming language can be both a help and a hindrance
to a programmer. A type system can make a program easier to understand,
since a programmer must follow a certain disciplined style imposed by the type
system. Also, type checking detects certain kinds of programming errors that
could cause incorrect program execution. On the other hand, a type system
may be so restrictive that the programmer must strain to express certain ideas
in the language; in the worst case a type system can prevent a programmer from
formulating some meaningful ideas.

As discussed in this section’s introduction, the Vesta language is strongly
and dynamically typed. During the design of the language we explored some
language variants that incorporated static type-checking. We discovered that
they were inherently much more complex; moreover, they still couldn’t de-
scribe structures that frequently arise in real systems with existing program-
ming languages.® More important, however, is that dynamic checking is early
enough, from the user’s perspective, for a language whose “runtime” actions are
the construction of software; errors will be detected at roughly the same time
as the compilers detect their own static type errors.

3The interested reader is invited to reflect on the interaction of static typing and the
use of include files in C and related languages. What is the type of a C program module,
parameterized by the include files? How does one arrive at the answer statically, i.e., before
compiling?
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The lack of static typing does introduce some difficulties. In particular, the
place where a given identifier receives its value cannot be determined in general
until the model is evaluated. For example, consider the following:

LET {
M2-Optimize = FALSE,
building-env.v$default() }
IN
build()

By textual inspection of the model, it appears that the value of M2-Optimize
will be FALSE when the function build is applied. But the function applica-
tion building-env.v$default () may return another binding for M2-Optimize
which will override the explicit one. If the language had static typing, the
user could find the declared result type of building-env.v$default (), and he
would therefore know whether the function returned a binding for U2-Optimize.
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Part 11
Implementation

4 The Vesta evaluator

The Vesta evaluator analyzes system descriptions, or models, written in the
Vesta language. As these descriptions are evaluated the software system is
built. This section gives a brief overview of the design of the evaluator.

The Vesta evaluator has very different performance requirements from an
evaluator for a general-purpose functional language. In the Vesta language the
expensive operations are applications of bridge functions such as compilation
or linking. Other parts of a Vesta model are comparatively inexpensive. This
means that an interpreter is fast enough to process models. An interpreter
evaluates the expressions in the model as it evaluates the model; type-checking
is done during model evaluation.

The interpreter uses lazy evaluation; that is, a value is computed, or unlazied,
only when it is needed. Furthermore, a lazy value is unlazied only once, not
every time that the value is needed. A lazy value is, in effect, a spontaneously
created closure; that is, the value is an expression together with the current
environment at the time the lazy value was created.

Lazy evaluation is used by the Vesta evaluator as a performance enhancer.
It is useful in the implementation of the Vesta evaluator but is not a necessary
component of the language definition. There are no language features that
depend upon lazy evaluation.

Lazy evaluation improves performance when models are evaluated. It 1s
common for a model to import a substantial name scope (i.e., a binding) from
another model, such as a set of related interfaces and implementations. The
importer then typically uses only a subset of the imported names, so generating
values for all of them would be unnecessarily time-consuming (though seman-
tically correct). Instead, the evaluator assigns lazy values to the elements of
the binding, thereby deferring the computation of those values until individual
names are referenced and eliminating the computation of values that are never
referenced.

4.1 Caching the result of expression evaluation

The language describes software systems in terms of source objects only. In
principle, the Vesta evaluator works by evaluating the entire tree of models
imported by the model it is working on, rebuilding all their components from
source. But obviously it would be far too time-consuming to do this on every
evaluation. Building the compilers alone could take several hours and several
more to build the libraries.
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To speed up evaluation, the Vesta system caches the previous results of eval-
uating expensive expressions; the evaluator stores the expression and the result
in a cache entry. Before an expensive expression is evaluated, the evaluator
checks to see if a cache entry for that expression already exists; if so, the ex-
pression is not reevaluated. In Vesta models, function applications (that require
bridge calls) are by far the most expensive expressions to evaluate, so only the
results of function applications are cached.

Two function applications that use the same function and the same inputs
produce the same result. Because the language is functional, caching function
applications is straightforward. A function application can be characterized
completely by the function and its explicit and implicit parameters. Because
side-effects are not permitted in the language, the only output of a function is
its result. If the language were non-functional, the caching mechanism would
have to cope with other outputs in addition to the application result.

Cache entries are grouped into separate caches. Caches are saved in per-
sistent storage (the Vesta repository) so that they are available across different
instances of the Vesta evaluator. Caches are also automatically shared among
users so that one user can benefit from the work that another user has per-
formed.

Vesta caches the result of all function evaluations, from those at the leaves
of the dynamic call graph (say, compiling one source file), to those in the middle
(say, packaging up a library), all the way to the top. (A few primitive function
applications are not cached since it is not time-consuming to recompute their
results.) This multi-level caching scheme permits Vesta to build and rebuild
large software systems efficiently since 1t maximizes the amount of work that
does not need to be redone.

Vesta caching has a superficial resemblance to the memoizing technique for
functional languages [Hughes] [Keller and Sleep], in that both store a function
application and its result value in a table for later reuse. However, memoizing
is manual, since a programmer must specify which functions are to be saved,
and ephemeral, since memo tables don’t last across different instances of the
language evaluator. Vesta caching is automatic and persistent.

The next three sections discuss the implementation of persistent caching.
Section 5 describes the basic format of a cache entry, which is independent
of the values in the cache entry. Section 6 examines the problems that arise
when particular values occur in cache entries, and presents solutions for these
problems. Section 7 describes how separate cache entries are grouped together
into caches and how cache lookup 1s performed during evaluation.

5 Cache entry structure

This section presents the basic structure of a cache entry and how a cache entry
is produced during a function application. This basic structure i1s independent
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of the values that occur in the cache entry; the next section (Section 6) describes
the special handling required by certain values in a cache entry.

A cache entry corresponds to a function application in the body of some
model. There may be many cache entries corresponding to the same syntactic
function application in a model, because a function can be applied in different
environments.

A cache entry is the triple:

<primary key, secondary key, result value>

A cache hit occurs when the evaluator considers a function application,

F(Args)

computes a primary and secondary key, and finds that they match the first two
elements of some cache entry triple. The final element is then the result value
of the function.

The cache i1s designed never to hit incorrectly, although it may sometimes
miss unnecessarily. The contents of the primary and secondary keys are chosen
to minimize unnecessary cache misses. An unnecessary miss may occur when
the keys contain superfluous information that is not used when computing the
function application result. If only the superfluous information in the key 1is
different, then a cache miss will occur even though a hit would have been ap-
propriate. This issue will be discussed in detail in Sections 5.1 and 5.2.

The primary and secondary keys are separated to facilitate cache lookup.
The primary key may be computed at the point of the function application; it
1s used to find a set of potential cache entries. The secondary key contains the
information needed during cache lookup to choose among the set of potential
cache entries. See Section 7.3 for details of cache lookup and use of the primary
and secondary key.

5.1 The primary cache key

For the function application

F(Args)

the primary key is computed from the body of F and the actual parameters,
which include Args and any defaulted parameters corresponding to explicit for-
mal parameters. The primary key doesn’t capture all of the function’s parame-
ters since 1t doesn’t include the implicit parameters, also known as the function’s
free variables (see Section 3.5.3). These are the province of the secondary key,
whose construction is described in the next section.
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The primary cache key is chosen to quickly narrow the choices of potential
cache entries. The primary cache key doesn’t contain just F without Args be-
cause this would produce too many potential cache entries after lookup based on
such a broad key. For example, in a given model there are many applications of
the Compile function, but there are usually very few different cases of applying
Compile with the same source object.

As mentioned at the beginning of Section 5, the primary cache key is chosen
to minimize unnecessary cache misses. The primary cache key contains the
body of F but not the static environment of F. If the static environment of F
were included it might cause unnecessary cache misses since many elements of
the static environment of F may not actually be used when F is applied. For
example, consider the following model:

DIRECTORY
AVax.def = wid-1,
AAlpha.def = wid-2,
IN {
intfs = FUNCTION target ... IN
IF eq(target, "VAX") THEN
M2$Compile(AVax.def)
ELSE IF eq(target, "ALPHA") THEN
M2$Compile(AAlpha.def)
ELSE
error("target value is incorrect")
END

1

The static environment of the function intfs contains both AVax.def and
AAlpha.def. For any given application of intfs, however, at most one of these
names will actually be used.

The static environment of F needn’t be included in the primary cache key
because the names that are actually used from it will appear in the secondary
cache key. This is discussed in the next section.

5.2 The secondary cache key

The secondary cache key is created from the implicit parameters of the function
application. Recall from Section 3.5.3 that implicit parameters are the free
variables in a function body. A free variable in a function is a name referenced
in the function that is not defined in the body of the function and is not one of
the formal parameters of the function. In the following function:

FUNCTION M2 ... IN {
M2$Compile(A.def),
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M2$Compile(B.def)

1

the function’s explicit free variables are A.def and B.def. When the function is
applied, many more implicit free variables may be discovered that are defaulted
parameters to the calls to M2$Compile.

The free variables and their values are used to construct the secondary cache
key. As shown in this example, the free variables can’t be determined by a static
examination of the function body (see Section 3.5.3), so the evaluator discovers
them incrementally as it interprets the body. Roughly speaking, for each free
variable it encounters, the evaluator adds a name-value pair to the secondary
cache key. (A more precise description of the secondary key construction appears
in Section 7.3.)

Two different applications of the same function may have different free vari-
ables. Consider the following function:

f = FUNCTION target ... IN

IF eq(target, "VAX") THEN
M2$Compile(AVax.def)

ELSE IF eq(target, "ALPHA") THEN
M2$Compile(AAlpha.def)

ELSE
error("target value is incorrect")

END

If the function application 1s:

f (IIVAXII)

the set of free variables includes AVax.def, while for

£ ("ALPHA")

the set of free variables includes AAlpha.def instead.

Like the primary cache key, the secondary cache key is also chosen to mini-
mize unnecessary cache misses. Unfortunately, there is one case in Vesta where
the secondary key may cause an unnecessary miss. This may occur when the
free variable is a composite value (either a list or a binding). In this case, the en-
tire value is recorded as the free-variable value. This simple technique is easy to
implement, but 1t can lead to unnecessary reevaluation. For example, consider
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g = FUNCTION ... IN
M2$Prog( (M2$Compile(A.def)))

The name M2 is a free variable in the function g; it is a binding that contains
(at least) the functions Prog and Compile. On a subsequent application of g, if
any component of M2 is different then the application will be reevaluated instead
of getting a cache hit. This will happen even if the different component was
never used in g, say the Library routine. A more careful alternative scheme for
recording dependencies is briefly discussed in Section 10.5.

There’s one more wrinkle about free variables and the secondary cache key:
free variables may actually be bound by the function’s static environment. For
example, consider the model from Section 5.1. For any given evaluation of
intfs, at most one of the names AVax.def and AAlpha.def will be encountered
by the evaluator as a free variable, and its value will come from the static
environment. For any given application of intfs, only the value that is actually
used will contribute to the secondary key.

5.3 Determining free variables

As discussed in Section 5.2, each cache entry contains a list of free variables
that were accessed during the corresponding function application. This section
elaborates on how a free variable list 1s computed.

A free variable for a given function application may be accessed within the
body of that function, or it may be accessed within the body of some function
called by that function. Consider the fragment:

ship = FUNCTION dir ... IN
ShipM2Prog(dir, "Bundle", Bundle);

buildAndShip = FUNCTION dir ... IN
LET M2 IN {

Bundle = Prog((Compile(Bundle.mod), SL-basics));
ship(dir) };
test =
LET building-env.v$default() IN buildAndShip("/tmp")

ShipM2Prog is a free variable in the function ship because it is referenced there
but not defined. ShipM2Prog is implicitly referenced in buildAndShip because
it 1s an 1mplicit parameter to the function ship, and since it is referenced but
not defined in buildAndShip ShipM2Prog is a free variable there also. (The
name ShipM2Prog appears in the binding returned as the result of the function
application building-env.v$default () in test.) In general, the discovery of
a free variable during an evaluation may require that free variable to be added
to several free variable lists.
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To implement this requirement, the evaluator interconnects cache entries as
follows. Each dynamic function application has an associated cache entry. The
cache entries are threaded with parent pointers in a structure that reflects the
dynamic call graph of the evaluation. Each cache entry points to the cache
entries of the functions that called it.

Now, when a name is looked up in the environment, the evaluator maintains
free variable lists by the following simple algorithm:

1. Is the name bound in the current function body? If so, the algorithm
terminates.

2. Add the free variable to the list (secondary key) of the cache entry asso-
ciated with the current function body.

3. Set the current function body and its cache entry by following the parent
pointer, then go to step 1.

5.4 Use of fingerprints

The primary and secondary cache keys were previously described as being “com-
puted from” various values. Since these values are potentially large, the reader
may have suspected that some sort of hashing technique is employed to re-
duce the keys to a bounded size. Indeed this is the case—the evaluator uses a
particularly convenient kind of hashing code called a fingerprint.

Fingerprints provide small, fixed-sized identifiers for values, as described by
Broder [Broder]. Because values are unbounded in size and fingerprints are
fixed-sized, many values can map to the same fingerprint, as is the case of
any fixed-length hash. Unlike ordinary hashing, however, such an occurrence
is designed to be extremely uncommon with fingerprints of modest size. As a
result, if two fingerprints are equal, the values they stand for are the same, with
overwhelmingly high probability.*

Using fingerprints in cache entries instead of values saves both space and
time. A fingerprint comparison is faster than performing a structural compar-
ison of the values, except for the very smallest values. Replacing values with
their fingerprints saves space in a cache; this saving is substantial since values
can get quite large.

6 Values in cache entries

The previous section (Section 5) describes the basic structure of a cache entry,
which is independent of the values that occur in the cache entry. This section

4As a rule of thumb, the probability of collisions grows quadratically with the number of
values compared, and linearly with their size. In our current implementation, a rough estimate
of the probability of collision is n? % m/2°% where n is the number of values considered, and
m their average size.
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examines the individualized treatment that is required by certain values that
may appear in cache entries.

The Vesta evaluator supports lazy values, error values, and closure values
(among others), and these values can lead to problems when they appear in
cache entries. As discussed in this section, these problems are solved by deleting
or fixing up the cache entries after they are built but before they are available
for lookups, so that these lookups can proceed efficiently.

This section describes lazy values in the result value or the secondary key of
a cache entry; error values in the result value; and closure values in the result
value or secondary key. This section also discusses the related case where the
result of evaluating a model (which can be an arbitrary value) appears in the
primary or secondary cache key of a cache entry.

6.1 Lazy values in the result value

As described in Section 4, lazy evaluation is used during model interpretation.
After a model is completely evaluated, there may be some lazy values produced
during evaluation that were never unlazied. These lazy values were not needed
to compute the result value of the model, but they may appear as the result
value of some cache entry. For example, consider the following model:

libs = FUNCTION ... IN {
filelib = file.v$1ib();
memorylib = memory.v$lib() };

build = FUNCTION ... IN
LET M2 IN {
log =

Prog((Compile(Log.mod), libs()$filelib, SL-basics)) };
test =
LET building-env.v$default() IN build();

After test is evaluated, there will be a cache entry for 1ibs(). The result of
libs() will be a binding, but since the memorylib component was never used
during the evaluation, it will be bound to a lazy value in the result.

A lazy value is represented as an unevaluated expression tree together with
the environment current at the time the lazy value was created; typically such
a value is quite large. Because of this, cache entries with lazy values in their
result are not persistently cached. At the end of an evaluation, the cache 1s
scanned and any cache entry with a lazy value in its result is discarded. In this
example, the cache entry for 1ibs() would not be retained because the value
of the memorylib component in the result is lazy.’

5At one time, the evaluator did save cache entries with lazy components in the results.
In the cache entry a lazy value was converted to an unavailable value, which included the
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6.2 Lazy values as free-variable values

To restate, lazy values are not saved as results in the cache because lazy values
are too large. Should lazy values be permitted in the free variable section?
Unlike the result value, free variables are represented as fixed-sized fingerprints,
so the size of the free-variable value wouldn’t matter.

Due to the low cost of doing so, the Vesta evaluator chooses to let lazy
values appear in the secondary keys. The low cost is important because these
cache entries seldom cause hits during subsequent evaluations. A hit would
require exactly the same lazy value; since the lazy value contains the entire
environment at the time it was created, even an irrelevant difference in the
environment will produce a different lazy value (fingerprint) and cause a cache
miss. This wouldn’t be a problem if the evaluator included only the relevant
environment values in the lazy value, but determining what’s relevant requires
an essentially complete evaluation of the lazy value’s expression, defeating its
purpose.

Here’s a concrete example, derived from the one above in Section 6.1:

DIRECTORY
Log.mod = uid-1,
Log.man = uid-2,
IMPORT
file.v = uid-3,
memory.v = wid-4,
building-env.v = uid-6

N {
doc = FUNCTION ... IN
{ Log.1 = ComputeManPage(Log.man) };
libs = {

filelib = file.v$1lib();
memorylib = memory.v$lib() };

build = FUNCTION ... IN
LET M2 IN {
log =

Prog((Compile(Log.mod), libs$filelib, SL-basics)) };
test = LET building-env.v$default() IN {
build();
doc() };
1

model name and an evaluation path to the expression that produced the lazy value. If an
unavailable value was used during an evaluation, the evaluator would re-analyze the model
to recreate the original lazy value, and then unlazy it. After implementing this approach we
discovered that it was not particularly efficient; the cost of the re-evaluation often exceeded
the benefits of caching. It was more efficient to save cache entries only when the result values
were completely evaluated.
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The binding 1ibs is a free variable in the application of build. The binding
libs has two fields: filelib and memorylib. Only filelib is used in this
model; memorylib is therefore bound to a lazy value. That lazy value contains
a number of definitions in its environment; including the binding for Log.man.
Every time the user evaluates the model with a different Log.man, the build
function will be reexecuted also, because the free-variable value 1ibs is different
from before.

How might the evaluator improve this situation? One possibility is to unlazy
any lazy free-variable values in cache entries. This works well if the value will
be needed later anyway. But if the value isn’t needed, the evaluator ends up
doing a potentially large amount of useless work. In this example, an entire
library might be constructed (from scratch) needlessly.

The current Vesta evaluator tries to steer a middle ground between leaving
lazy components lazy and completely unlazying them. It unlazies the top-level
components of composite values, but leaves other lazy values unevaluated. This
heuristic approach works in many cases but is not really satisfactory; for a better
solution see Section 10.5.

6.3 Errors in the result value

The evaluator doesn’t produce cache entries for function applications that en-
counter errors during their interpretation. This rule applies recursively to func-
tion applications that call the function application that got the error.

Why not? In afunctional language, won’t a subsequent re-evaluation just get
the same error? There are two reasons, both reflecting the practical realities of
using a functional language in an environment that is sometimes nonfunctional.

First, some functions produce error messages that aren’t part of their formal
result. Such messages are really harmless side-effects in the sense that the side-
effects don’t alter the result of evaluation. But if the function applications
were cached, on a subsequent re-evaluation the cache hit would prevent the
user from seeing the messages again—an unfortunate situation if the original
messages were lost.”

Second, a function evaluation may fail because of a transient system problem.
In the ideal, of course, this can’t happen. But in reality, resources are finite and
occasionally become exhausted. For example, the temporary file space available
to compilers is limited, and an application of the Compile function may therefore
fail because of inadequate temporary space. Obviously, caching this result is
foolish—the user will want to retry the compilation when adequate disk space
has been restored.

60ne could eliminate this problem by making the error messages be the result of the
function, so they would be retained in the Vesta cache. But, while intellectually satisfying,
this approach has additional practical complications that aren’t worth surmounting.
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6.4 Models as free-variable values

As in the previous examples, one model references another by simply naming
it. So, in the first model, a DIRECTORY expression binds the second model’s
name to a UID that names the object in the repository. During evaluation,
when the name of the second model is encountered in the body of the first, the
second model is read, parsed, and (lazily) evaluated.

The value obtained by evaluating a model may appear as a free-variable
value. For example, in the model to build the Vesta server:

DIRECTORY
IMPORT
vestarep.v = wid-1,
vestaeval.v = wid-2,
vestabase.v = wid-3,
IN {
intfs = FUNCTION ... IN {
vestabase.v$intfs();
vestarep.v$intfs();
vestaeval.v$intfs() };
etc.

1

the models vestabase.v, vestarep.v, and vestaeval.v are all free variables
in the function intfs. To check for a cache hit on intfs(), the evaluator would
appear to have to read, parse, and (lazily) evaluate all three models. That’s a
significant amount of work, and reduces or eliminates the usefulness of getting
a cache hit.

Instead, the evaluator uses a small trick that gives a substantial performance
benefit. The entries in the free-variable list of a cache entry are augmented with
an additional Boolean, so that each list member is a triple:

<free var name, free var value, is—a-model>

When “is-a-model” is TRUE, the free variable value is the repository UID of a
model, or, more precisely, the fingerprint of the repository UID. Fingerprinting
the UID is logically just as good as fingerprinting the (lazily) evaluated model
for two reasons: (1) models are immutable, and (2) a model is evaluated in the
empty environment and so gets no free variables from the surrounding environ-
ment. This UID substitution is much faster, since the model doesn’t have to be
read or interpreted at all.
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This trick dramatically reduces the evaluation time of a model that references
many other models when only a few of these references are different from an
earlier evaluation.

6.5 Models in the primary cache key

A similar trick is used when a model is part of the primary cache key. Specifi-
cally, when the evaluator sees the syntactic form:

Model$Component (Args)

it creates two cache entries with different primary cache keys. The first is a
regular cache entry; the cache key is a function of the values of Model$Component
and Args. The second is a special-key cache entry; its primary cache key is
computed from only the UID of Model, the name of Component, and the value
of Args.

Consequently, if there is a cache hit on the special cache entry, the Model
needn’t be read, parsed, and evaluated. Even if Model is different, there’s a
chance that the value of Model$Component isn’t different, and so there’s still
the opportunity to get a cache hit on the regular cache entry.

This simple optimization reaps performance benefits for the same reasons,
and in the same situations as described in the previous section.

6.6 Closures in the result value

The language supports first-class functions, which may return other functions
as their results, and it is important to be able to cache these result functions.
However, saving closures in the result value of a cache entry poses special chal-
lenges.

A closure contains an expression body, the formal parameter names, and the
static environment. The static environment may contain lazy values. Before
the cache entry is saved at the end of evaluation, the lazy values in the static
environment are completely evaluated. This is done since lazy values are usually
quite large and would take up too much space in the cache. (Also see the
discussions of lazy values in Sections 6.1 and 6.2.)

There is one exception to unlazying all the lazy values in the static envi-
ronment. If the lazy value is produced by evaluating a model, than the value
is not unlazied but is converted back into the model’s UID. This technique is
necessary because completely evaluating a model may require a great deal of
extra evaluation. One model usually contains a construction component and
also imports other models, which in turn import other models which contain
construction components and import other models, etc. Completely evaluating
a model and its environment could end up causing a complete build of every
model in the system!
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To make it possible to save closures in result values, the language definition
imposes a restriction on the contents of the static environments of closures: only
names that appear literally and are free in the body of the function definition
are included in the static environment of the closure. For example, consider the
following model:

DIRECTORY
Text.def = wuid-1,
Text.mod = uid-2
IN {
intfs = FUNCTION ... IN
M2$Compile(Text.def),
impls = FUNCTION ... IN

M2$Compile(Text .mod)

1

The functions intfs and impls are evaluated in the same static environment;
this environment contains definitions for both Text.def and Text.mod. The
restricted static environment of the intfs closure contains only Text .def, since
that is the only name in the static environment which appears literally in the
body of the function. Likewise, the restricted static environment of the impls
closure contains only Text.mod.

This rule means that

(FUNCTION IN body) ()

is not equivalent to

body

because the former may have fewer free variables when evaluating body, and
this can make a difference if body calls functions that take implicit parameters.
This 1s an unusual restriction, but 1t was found to be necessary to make closures
work well with caching.

A closure’s static environment is restricted for three reasons:

e The unrestricted static environment can be quite large and would require
too much space to store in a cache in many cases.

e Every value in the static environment needs to be unlazied before the clo-
sure can be cached; if the static environment contains superfluous entries,
unnecessary evaluation can occur.
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e When a closure appears in the result value of a cache entry, every name in
its static environment is a potential free variable for the cache entry.” If
there are superfluous names in the static environment then these superflu-
ous names will also appear in the cache-entry free variable list. A different
value for one of these superfluous names would cause an unnecessary cache
miss.

Even the restricted static environment saved in a cached closure may be an
overestimate of what the function body actually requires. Consider the model:

DIRECTORY
Text.def = wuid-1,
IN {
intfs = FUNCTION ... IN

LET {M2; flume()} IN {
Compile(Text.def);
ete. };

The static environment of intfs will contain a binding for Text.def since
Text.def appears literally in the body of intfs. Once the function intfs is
applied, however, it may turn out that Text.def is not a free variable of intfs,
if the function application £lume() returns a binding for Text.def.

Although the restricted static environment may contain an overestimate of
what is actually used from the static environment, this has not been a problem
in practice. Given the way models are currently written, the conservative static
environment usually produces an environment that is close to the ideal.

6.7 Closures as free-variable values

As mentioned above, a closure is composed of an expression body, formal pa-
rameter names, and a static environment. This means that when a closure 1s
added as a free-variable value, 1ts static environment 1s included.

When a closure appears in the secondary cache key this key includes the
closure’s static environment, restricted as described in the previous section.

7To see why the names in the closure’s environment are listed as free variables in the cache
entry, consider the fragment:
LET {x = 3} IN {

g = FUNCTION IN { h = FUNCTION IN x };

g0 }
x is in the static environment of the closure bound to h. According to the rule above, all
the names in the closure’s environment are on the cache entry’s free variable list. Since x is
defined outside the body of g, x is on the cache entry’s free variable list for g(). If this were
not the case, on a subsequent cache lookup the value of x might be different but there would
still be a cache hit on the old entry for g(), and this would be incorrect.
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Because the static environment is included in the key, an evaluation may occa-
sionally miss unnecessarily; if the closure environment contains a definition that
is not used in the function application, and that definition is different on a sub-
sequent cache lookup, a miss occurs even though there’s no need to reevaluate
the expression. Consider the model:

DIRECTORY
AVax.def = wid-1,
AAlpha.def = wid-2,
IN {
privatelntfs = FUNCTION target ... IN
IF eq(target, "VAX") THEN
M2$Compile(AVax.def)
ELSE IF eq(target, "ALPHA") THEN
M2$Compile(AAlpha.def)

ELSE
error("target value is incorrect")
END;
intfs = FUNCTION target ... IN
LET privateIntfs(target) IN {
ete. }

The closure privateIntfs is a free variable in the application intfs(). The
static environment for privateIntfs contains both AVax.def and AAlpha.def.
Depending upon the value for target, only one of these interface modules will
actually be used by any given application of privateIntfs. But if either of
them is different in a later evaluation, there will be a cache miss on the function
application for intfs.

This simple approach to handling closures as free-variable values usually
performs well, but it does produce unnecessary misses on occasion. It is difficult
to do better and not slow down cache lookup noticeably.

7 Caches and cache lookup

The previous sections have discussed cache entries, without considering how the
cache entries are organized so that accesses will balance speed and accuracy.
Since cache entries are stored persistently (in the repository), disk I1/0 is re-
quired to read them. Storing each cache entry in a separate file would yield
an impractically slow evaluator, so related cache entries must be clustered into
caches. During an evaluation, various caches are accessed as needed and at the
end of an evaluation a new cache is created.
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A high cache hit rate is important for performance. If missing in the cache
causes a moderate-sized compilation, that costs 1,000 times more than a hit.
The miss rate is also important to users regardless of how long the compilation
takes; users hate to see a module recompiled if they know the compilation is
redundant. Still, searching through all the cache entries ever generated is clearly
too slow, so entries must be clustered in such a way that only the likely ones
are searched.

This section examines how cache entries are grouped into caches, how caches
are created, and how cache lookup occurs during evaluation. There is also a dis-
cussion about how cache entries are purged from caches. The section concludes
by describing several flaws in the current design.

7.1 Caches used during cache lookup

A cache 1s associated with a particular version of a model, and each model
has exactly one cache, once evaluated. Each cache is stored in a file in the
repository under a UID that is computed from the model’s name; given the
name of a model, its cache can be found. Because a cache 1s associated with a
model, a cache produced by one user may be used by another; this allows one
user to take advantage of another’s work.

During evaluation, a list of currently interesting caches, as explained below,
is maintained. Before each function application a cache lookup occurs in each
interesting cache until a cache hit occurs or until misses occur in all caches.

During evaluation, a cache is labeled as one of two types. The first type
of cache 1s an ancestor cache, associated with the model that is the immediate
ancestor of the root model that the user is evaluating. The second type of cache
1s an wmported cache, associated with some model that is imported directly
or indirectly by the root model. Note that the cache type is not an inherent
property of a cache, but a property that the cache possesses during a particular
evaluation. The importance of these two cache types will become apparent in
Section 7.2 below.

The list of interesting caches grows and shrinks during an evaluation. Ini-
tially, the list contains only the ancestor cache. During the evaluation, an
imported cache is added to the list whenever the evaluator evaluates a new im-
ported model, and is removed from the list when the evaluator finishes with
the model. In other words, the list of interesting caches contains those caches
in whose models evaluations are currently proceeding, including the ancestor
cache.

7.2 Organizing cache entries into a cache

When a model is evaluated, a single new cache is created for the root model.
The imported cache and the ancestor caches are not modified; any new cache
entries created during the evaluation go into the new cache for the root model.
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Also, any cache entries from the ancestor cache (but not from imported caches)

for which a hit occurred are copied into the new cache. Consequently, the new

cache for the root model contains all the entries that were created during that

evaluation, or would have been created if cache hits had not occurred in the
ancestor cache during the evaluation. At the end of an evaluation the new
cache is saved to persistent storage.

7.3

How cache lookup works

To evaluate a function application, the evaluator performs the following steps.

1.
2.

6.

Evaluate the function parameters.

Consider the function expression. If it is of the form Model$Component,
then compute the special key (see Section 6.5) and perform a cache lookup
(described in detail below). If the lookup gets a hit, return the result value
from the cache entry as the result of the function application.

Evaluate the function (which, in the case of a miss in step 2, will cause
Model to be read, parsed, and evaluated).

. Construct the static and dynamic environments for the evaluation of the

function body, and bind the actual parameters to the formals.

Perform a cache lookup (described below). If the lookup gets a hit, return
the result as in step 2.

Evaluate the function body using the environment constructed in step 4.

In detail, the cache lookup proceeds as follows.

A The evaluator first computes a primary cache key by fingerprinting the func-

tion and its parameters. This computation is different for the two lookups
in step 2 and 5 above, as described in Sections 5 and 6.5.

B For each cache on the list of interesting caches, the evaluator indexes (i.e.,

hashes into) the cache using the primary key computed in step A. If this
produces one or more cache entries, then step C is performed on each of
the entries until either a cache hit occurs or the entries are exhausted.
If a cache hit occurs, the lookup terminates with a hit; otherwise, the
evaluator repeats this step on the next member of the list of interesting
caches. If no members remain, the lookup terminates with a miss.

C The evaluator extracts the secondary cache key from the cache entry under

consideration. This is the free variable list (Section 5.2) containing triples
of the form <name, value, is-a-model>. For each triple on the list,
the evaluator looks up name in the environment; if it is undefined, this
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cache entry is a miss. Otherwise, the value field 1s compared to either
the UID bound to name (if is—a-model is TRUE) or the fingerprint of the
value of name (if is—a-model is FALSE). An equal comparison causes the
evaluator to repeat this step on the next triple of the free variable list.
If there are no more entries on the free variable list, a cache hit occurs.
An unequal comparison causes the cache entry to miss, and the lookup
algorithm continues with the next cache entry per step B.

7.4 Purging cache entries

Once a new cache is created at the end of an evaluation, it is never modified.
Individual cache entries are not purged from a cache, but the entire cache and
all 1ts cache entries are deleted at the same time.

This approach is appropriate given the way cache entries are organized into
caches. The clustering approach for cache entries was chosen to simplify purging
them. A cache is associated with a model, and a cache contains only the cache
entries that are needed when evaluating its model.

The cache 1s therefore just another derived object that is created during the
evaluation of the model. Deciding when to delete a cache (or any other derived
object created during the evaluation) is not under the purview of the evaluator,
but is an administrative issue. The Vesta repository paper [Chiu and Levin]
includes a discussion of how and when this deletion occurs.

7.5 Bridges and repository caching

The preceding description of caching discussed the techniques used by the eval-
uator. There is an independent caching mechanism, repository caching, that
bridges can exploit to improve on the evaluator’s scheme.

During the evaluation of most bridge functions, the bridge will produce one
or more derived objects to be stored in Vesta’s repository, under a name based
on the bridge function and its parameter. This is done using the repository’s
NameDerived function (see Section 2.6). To implement repository caching, the
bridge computes the name to be given to the derived, and checks in the reposi-
tory to see if the object already exists.

For a bridge to perform repository caching, it must be able to determine
all the inputs to a function efficiently without actually performing the function.
In some bridge functions this is easy and repository caching is a performance
accelerator; in others the bridge must actually perform most of the function
to determine the inputs and so bridge caching does not pay off. For example,
when compiling a Modula-24+ module, only the beginning of the module must
be read and parsed to determine the collection of necessary compiled interface
modules. In comparison, to determine the inputs for compiling a C file, all of
the C header files must be read and parsed. This may take a large fraction of the
total compilation time, and so repository caching may not improve performance.
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The evaluator doesn’t do repository caching itself because 1t would need to
know all the parameters used to create a derived object, and it is the bridge
that determines this in a language-specific way. Repository caching is entirely
optional; each bridge can implement it for the functions that can benefit.

7.6 Problems with the current design

There are two problems with the current approach to grouping cache entries
into caches. The first is that the cache miss rate is higher than it should be.
The second is that, given today’s memory costs, memory usage is too great for
Vesta to be a viable commercial product. Each of these is discussed in this
section.

Because cache entries are associated with root models, cache misses can
occur even though a valid cache entry exists in some cache. Consider the fol-
lowing two models umbrellaOne.5 and umbrellaTwo.8. Both models import the
same version of 1ib.v and the same version of building-env.v. Both evalu-
ate the functions applications 1ib.v$intfs() and 1ib.v$impls() in the same
building-env.venvironment. The cache entries from these two applications in
umbrellaOne.5 would provide hits for the same applications in umbrellaTwo.8
if these entries were available during cache lookup. But the cache entries from
the evaluation of umbrellaOne.b are stored in the cache for umbrellaOne.5, and
the current design does not provide a way for the evaluation of umbrellaTwo.8
to find them.

umbrellaOne.b5

DIRECTORY

IMPORT
building-env.v = uid-5,
1ib.v = wid-6,

etc.
IN

intfs = FUNCTION ... IN {
lib.v$intfs();
ete. };

impls = FUNCTION ... IN {
lib.v$impls(),
ete. };

test = LET building-env.v$default() IN {
intfs(); impls() };



7 CACHES AND CACHE LOOKUP 43

umbrellaTwo.8

DIRECTORY

IMPORT
building-env.v = uid-5,
1ib.v = wid-6,

etc.
IN

intfs = FUNCTION ... IN {
lib.v$intfs();
ete. };

impls = FUNCTION ... IN {
lib.v$impls(),
ete. };

test = LET building-env.v$default() IN {
intfs(); impls() };

In this case, repository caching can prevent the bridge from actually having
to redo the compilations in 1ib.v$intfs() and 1ib.v$impls(). This is not
an 1deal solution, since bridges don’t always implement repository caching. For
example, if the models are for C programs instead of Modula-2+ programs,
repository caching won’t save much time even if it is implemented; Section
7.5 explains this point in detail. Also, while repository caching may eliminate
individual compilations, an evaluation could run much faster with cache hits
at internal function applications. For example, if 1ib.v$impls() contains a
thousand compilations, the 1000 repository cache hits will take longer than
getting one internal cache hit on the application of 1ib.v$impls().

The second problem with the current design is excess memory usage; the
prototype used more memory than would be reasonable for a commercial system
today. In the current design, caches are read for every model that is used during
the evaluation. Many times there are no useful cache entries in a cache, but the
cache is read anyway because there is no simple way to discover in advance that
there are no useful cache entries.

Both these problems must be addressed to make the Vesta system perfor-
mance commercially acceptable. Section 10.4 suggests a different approach.
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Part 111
Experience

8 Performance

This section argues that the run-time performance of the Vesta system is com-
parable to that of the Unix utility make [Feldman] when make is used in a way
that avoids inconsistent builds. To support this claim, this section compares the
times to build several typical Modula-2+4+ programs using the two systems. The
timings were taken on a Firefly personal workstation [Thacker et al.] 8. The
relevant information about each test program is given in Table 1.

The time discussed in this section is from the end of the user’s source file
edits to the completion of the build, minus the time spent in the compiler and
linker (which are the same in each case). For Vesta the time is divided into two
parts: the time to create a new immutable model (“Advance”) and the time
for the evaluator to interpret the new model. For make the time is divided into
three parts: the time spent in the edsel and imc utilities that are used with
make to avoid an inconsistent build for Modula-2+4+ programs, plus the time for
make to process the makefile.

These timing divisions highlight the fact that make and Vesta provide dif-
ferent guarantees. Vesta creates a consistent software system every time since
it rebuilds whatever parts of the environment are required. Systems built with
make do not build the environment when the client program is constructed; in-
stead, libraries and other environment components are built earlier and simply
used during the construction of the client program. In Vesta terminology, the
environment components are treated as source objects during the system con-
struction. The make building style requires additional tools to perform checks
to verify a consistent build. The tools described here are specific to Modula-2+,
but similar tools have been used with other languages.

The edsel utility used with make for Modula-2+ programs is similar to
makedepend [Brunhoff] in functionality and performance, but is set up to run
automatically from the makefile during each build. Edsel, in conjunction with
make, causes the necessary recompilations to be performed for modules that are
listed in the makefile. Typically, these are the modules in the makefile that
are local to the system being built.

The Inter-Module Checker (imc) handles Modula-2+ libraries that are linked
into the client program but are not built by the client program’s makefile.
Because the libraries are not necessarily built in the same environment as the
client program, they can be accidentally built with different interfaces. The imc
checks interface consistency of all the modules that go into a system and issues

8 Although the Firefly is a multiprocessor, neither Vesta nor make takes explicit advantage
of its multiprocessing capabilities.
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program name total source lines number of modules
Vesta server 103,295 195
loupe 24,336 177
vrweed 4,563 3
hello 6 1

Table 1: Program information

program make Vesta
name (edsel+ime+make) (Advance+ Vesta server)
Vesta server 1:26 1:10
loupe :59 :39
vrweed :20 :08
hello :07 :08

Table 2: Complete build

an error if they are not built with the same interfaces. Note that the imc can
not produce a consistently built program; it merely can issue an error message
if it determines that a consistent program cannot be built. It is then up to the
programmer to determine which modules are inconsistent and what needs to be
rebuilt.

Tables 2 and 3 give timings for a complete build of several programs. A
complete build is required, for example, when some basic library interface is
modified or a new compiler 1s introduced. The make timings were taken after all
the deriveds in the program were deleted, which 1s much faster than depending
on edsel to discover the need for recompilation. (To see this, compare the
edsel times reported in Table 3, where all deriveds are deleted, with the edsel
times reported in Table 5, where the deriveds cannot be deleted.) Tables 2 and
3 show that, except for the smallest builds, Vesta is 19% to 60% faster than
make plus edsel and imc.

Tables 4 and 5 give timings for a build after a change is made to a single
implementation module. In this case, Vesta is 46% to 67% faster than make plus
edsel and imc.

Table 6 gives the percentage of the total build time spent in Vesta facilities,
which includes time spent in Advance and the Vesta server. The percentage of
the total build time in Vesta ranges from 1% to 16%.
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program name edsel mce make Advance Vesta server

Vesta server :19 :19 A48 :32 :38

loupe :10 :30 :19 :21 :18

vrweed :08 :10 :02 :06 :02

hello :05 :01 :01 :06 :02
Table 3: Details of the complete build

program make Vesta

name (edsel+ime+make) (Advance+ Vesta server)

Vesta server 2:03 :56

loupe 1:12 :39

vrweed :24 :08

Table 4: Single-module change

program name edsel mce make Advance Vesta server
Vesta server 1:11 :19 :33 :32 :24
loupe :24 :30 :18 :22 17
vrweed 13 :09 :02 :06 :02

Table 5: Details of the single-module change

program name complete build single-module change
Vesta server 1% 16%

loupe 1% 15%

vrweed 4% 6%

hello 10%

Table 6: Percentage of total build time spent in Vesta
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9 Comparison with other systems

9.1 Cedar System Modeller

Many of the ideas in Vesta originated in the Cedar System Modeller, and Cedar’s
System Modelling Language (SML) and the Vesta language have many sim-
ilarities [Lampson and Schmidt]. The Cedar System Modeller was used in a
single-language environment to maintain software written in Cedar.

The Vesta language and SML share a number of basic features. SML is
functional and modular, and strongly typed. Bindings are commonly used.
First-class functions are supported. System descriptions are written in terms of
source objects. System descriptions are complete; they describe all the compo-
nents that go into building the system.

While there are similarities between the two languages, the System Modeller
supports a description language with an elaborate and complex type system.
Types in SML are first-class values, and SML implements static type-checking
instead of dynamic type-checking like the Vesta language.

The SML type system permits an elegant system description in which a
Cedar interface is a type, and the corresponding Cedar implementation mod-
ule is an instance of that type. With SML, static type-checking provides ear-
lier warnings about certain kinds of mistakes in a system configuration earlier
in the construction process. Unlike the Cedar System Modeller, though, the
Vesta system was designed to work in a multi-language environment that could
incorporate all existing programming languages. We discovered that in this
environment static type-checking was not feasible; see Section 3.7 for details.

The SML evaluator caches the results of compilation and linking, but does
not cache the results of other function applications. The SML approach to
caching 1s similar to that used by make and the make variants described below.
While this approach provides adequate performance when evaluating small and
medium-sized software systems, the overhead becomes significant when evalu-
ating large systems with thousands of software modules.

9.2 Make

Make and systems similar to it are perhaps the most prevalent software building
systems [Feldman]. Make has been implemented with slightly different features
by a number of vendors, but this section does not need to distinguish between
the different versions.

The make system is not integrated with a version control system. To use
make with one of the common version control systems such as RCS [Tichy] or
SCCS [Rochkind], the files to be compiled must be checked out into a local
building area. With Vesta, files do not have to be checked out to be compiled.

The Vesta language has a well-defined semantics that programmers should
find familiar, especially programmers with knowledge of functional languages.
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In contrast, make’s semantics are more operational. To understand a complex
makefile, a reader must often imagine the actions make might take at each
step.

With make, the user describes the software system in terms of the source
and object modules that go into the system. The user must think in terms
of derived object names, which becomes complex when a system can be built
in various ways for multiple platforms, instruction sets, etc. With Vesta, the
user describes his system in terms of only the source objects used to build the
system.

With make, dependencies for each activity must be explicitly listed; if a user
omits a dependency an object might not be rebuilt when it needs to be. Con-
sequently, language-specific generators are often used to generate a makefile
with the correct dependencies, but for safety the makefile may need to be gen-
erated before every build and running the generator is often time-consuming.
With Vesta, the system will determine the dependencies during each evaluation
of a model. There is no opportunity for a user to fail to rebuild, as with make;
in Vesta, an object will always be built if it hasn’t been created previously.

Make depends upon environmental factors, such as Unix environment vari-
ables, that are not specified in the makefile. For example, Unix make relies
on the user’s PATH variable to include the right directories. With Vesta, all
dependencies are explicitly specified in the model.

With make, only file dependencies are taken into consideration when make
decides whether to recompute a derived. This means, for example, that changing
a compilation switch does not cause rebuilding. Also, makefiles can’t prevent
compilers from using environment variables; since the settings of environment
variables are not written down in a makefile this is another unrecorded depen-
dency.

Make uses file dates to determine what to rebuild; if an object predates the
modified date of any object it depends on, that object is rebuilt. Whether or
not an object is rebuilt depends upon the time stamps of the object and its
dependencies, not on whether or not any of the modules in the configuration
change. This approach is sufficient as long as progress involves all modules in
a system moving forward in time. But consider the following scenario. A user
is working on system P, which imports version 5 of interface I from the public
area. The user successfully builds system P, but during testing he discovers an
error with version 5 and switches back to using version 4 of interface I instead.
Since version 4 is older than version 5, make will not rebuild any of the modules
in system P that import I. As with the other problems with make, the user is
required to work around this limitation by hand.

Make does support recursive invocation of itself to permit decomposition of a
large system into several smaller makefiles. The mechanisms for passing a large
number of parameters from one makefile to another is clumsy, but this does
provide a limited form of makefile modularity.
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9.3 Make variants

Several other systems exist that provide the same basic features of make, but
include additional features that attempt to correct certain of make’s problems.
The imake [Moraes] system was created to deal with building the X Window
system; ODE-IT [Open Software Foundation] was created to build OSF software;
ClearCase [Atria Software] is a commercial product that extends make.

ODE-II and ClearCase provide a way to integrate with a version control
system. In both cases, compilations can occur without having files checked out
to a local area.

All three systems, imake, ODE-II, and ClearCase, use an extended form of
make as their description language. In all three cases the software system is
described in terms of the object modules that go into the system, as with make.

The three systems express dependency information differently. In ODE-II,
all dependencies must be explicitly listed. On the other hand, imake uses a
dependency generator that works for C code only; presumedly dependencies
for other languages need to be explicitly specified. ClearCase does not require
build dependencies to be explicitly specified, but build order dependencies of
derived objects must be specified. Vesta also requires build-order dependencies
to be specified, but the way this is done differs. In ClearCase, the dependency
is specified using object files and build rules; in Vesta the order dependency is
specified using scoping and implicit parameters.

With imake and ODE-II, only file dependencies are taken into consideration
when deciding whether to recompute a derived. ClearCase takes into account
file dependencies as well as the “command line” that invokes the language pro-
cessor. However, ClearCase’s use of the command line doesn’t include environ-
ment variables that the processor may access from the environment. Also, a
ClearCase user must perform special actions so that tool versions are included
in the dependencies.

ODE-II and imake, like make, use file dates to determine what to rebuild.
ClearCase does not; an object is rebuilt when any object it depends upon is
different than before.

None of the three systems provides modularity equivalent to Vesta’s. They
do provide a common file that stores the common rules or definitions in one place
that may be referenced from separate makefiles. These rules therefore needn’t
be duplicated in each makefile and a change to the common file will affect
all the makefiles that include it. For example, imake supports building for
different machines by allowing machine dependencies (such as compiler options,
alternative command names, and special make rules) to be kept separate from
the descriptions of the objects to be built.
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10 Future directions

The Vesta system was in use at SRC for more than one year. During that time
several areas were identified for future work. Some of this work, described in
Sections 10.1,10.2, and 10.3, 1s needed to improve system usability. Other work,
described in Sections 10.4, 10.5 and 10.6, is needed to reduce memory usage and
increase speed.

10.1 Form models

The Vesta language offers extreme flexibility in writing models. However, as
in all languages, flexibility provides the opportunity for both good and bad
structure. We’d like to allow proven structures to be written more easily without
taking away the “escape hatch” that is necessary to do something unusual.

After writing models for more than a year, we noticed that several basic
patterns for model-writing began to emerge. To make it easier to write new
models, form (or template) models should be developed. Such form models
should be quite useful because in a typical model there is no new structure;
models of the same type often differ only in the lists of files in the system.

Form models will reduce what a new user must understand about the Vesta
language. Currently, most users use the “copy-and-edit” approach to writing
models; a user will find a model for a similar library or application, copy the
model, and edit the appropriate parts. Form models will codify this procedure
so that a user can be certain of using an reliable format.

10.2 Vesta language debugger

Users often write models with bugs, and the models are often complex enough
that finding the bugs can be difficult. A debugger for Vesta models would help
users understand what goes wrong when they write incorrect models.

Most of the features that users want in a Vesta debugger are standard ones
provided by general-purpose debuggers. Also, users have requested one non-
standard feature; they want to ask: “Where was this name bound to its current
value?”. This is important because where names are bound is not always tex-
tually apparent in models, since functions can return bindings and names can
be generated by bridges.

It 1s difficult to imagine a similar debugging facility for use with make, be-
cause of make’s lack of formal semantics. Traces of make’s actions are usually
all that is available.

10.3 Browsing system builds

The main browsing tools available in software development environments today
are mainly language-specific use/definition tools. Future work for the Vesta sys-
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tem includes a browser that can answer language-independent questions about
building sets of models, although it knows nothing about language-specific se-
mantics.

Common queries might include:

e Where is identifier XYZ defined /used?
e Where is the value V used?
e What library supplies the implementation of Foo?

e Evaluate expression E in a given scope.

Another area for work would be to integrate language-specific browsers with
the Vesta browser.

10.4 Grouping cache entries into caches

Section 7.6 described two problems with the current approach to grouping cache
entries into caches: the cache miss rate is too high and the memory usage per
server 18 too great. A solution is briefly sketched here; it uses a cache server.

A cache server is responsible for storing cache entries and for providing a
cache lookup function. Cache entries are kept in files on disk; all cache entries
for a given primary key are grouped into a single file called a PKFile. PKFiles
are read as needed during cache lookup. The cache server maintains an in-core
hash table of new cache entries that haven’t yet been written to disk, or of cache
entries that were recently used through a cache hit.

A PKFile file is a hash table; cache entries are assigned to a bucket based
upon the values of the free variables that are common to every cache entry in the
file. PKFiles are organized so that the whole file needn’t be read during a cache
lookup. Hash buckets that are read are kept small enough so that performance
is not adversely affected.

With the cache server, all cache entries for a given primary key are available
to every evaluation. This eliminates the current problem where an evaluation
does not find an applicable cache entry even though one exists in some cache
somewhere. Note that although caches are never updated in today’s scheme,
PKFiles will be updated as new cache entries are generated.

Cache servers will need a lot of memory, but moving this functionality to
a server means that client workstations will not incur the high memory usage
required by caching today. If necessary, there may be more than one cache
server, with each server handling a portion of the cache entries.

10.5 A fine-grained dependency scheme

As described in Section 5.2, the secondary cache key is constructed from the
free variables in the function body. This scheme is not ideal when a free variable
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is a composite value (i.e., a list or binding) or a closure. This section discusses
improvements to the current approach.

With a list or binding value, the function may depend only on one component
of the list or binding even though the free variable names the entire value. With
a fine-gratned dependency scheme, the entry on the secondary cache key will
change. Recall that the current information is:

<free var name, free var value, is—a-model>

The new secondary cache key entry will be:

<free expression, free expression value, is—a-model>

This allows an entry on the secondary cache key to be a component of a
composite value instead of the entire composite value.

To make this fine-grained scheme work, we must be able to determine which
composite value each component value belongs to, if any, and what expression
selects the component value from the composite value. The evaluator maintains
the necessary information during evaluation. The expression is compact, since it
is to be stored as the “name” in a secondary cache key; for a binding component,
for example, a typical expression will be binding$componenti$component2.

As discussed in Section 6.2, a lazy value may be a component of a free
variable value. Currently, if the lazy value isn’t completely unlazied it may later
cause unnecessary cache misses, but if the lazy value is completely unlazied that
may cause unnecessary evaluation. The fine-grain dependency scheme solves
this problem: the only cache key entries are those components that are actually
used by the function, which will already be completely simplified.

10.6 Parallel distributed evaluation

Currently a software system is completely built on the workstation which initi-
ated the build. Distributing the building in parallel to a network of machines
will decrease the total evaluation time.

There has been a fair amount work in the underpinnings of distributed evalu-
ation, such as how to pass evaluation context efficiently between machines. The
difficulty in doing distributed building in Vesta is determining when remote
evaluation is warranted and how to schedule the remote machines. Practical
considerations include expected length of compilation, “warmth” of file system
caches on remote machines, and resource availability.
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11 Conclusions

This paper introduces Vesta, a novel system for configuration management. It
focuses on the modelling language used to describe configurations, and on the
evaluator that processes models to build software systems.

A simple functional language is all that is needed to describe large and
complex systems. This language can be used to produce exhaustively complete
descriptions of real software systems in which all dependencies are explicitly
captured. These descriptions contain all the sources and building instructions
that go into the result, including the tools and libraries used in building the
system.

Models written in the Vesta language are compact, and easy to read and
write, for three major reasons. First, the language makes it easy to manip-
ulate large groups of name-value pairs. Second, the language provides a way
of defaulting formal parameters at the point of function definition. Third, the
language supports defaulting of actual parameters at the point of function in-
vocation.

The language allows for the dynamic integration of existing compilers and
tools. Each new tool extends the basic types and primitives provided by the
Vesta language. The language makes it easy to add a new tool by providing a
single naming mechanism by which a tool can access its inputs.

Given the performance characteristics of model evaluation, a simple inter-
preter is adequate to evaluate system descriptions. While the interpreter itself
can be quite simple, Vesta’s complete system descriptions do place heavy de-
mands on persistent caching of function applications. In particular, caching
must be performed for function applications at all levels of the dynamic call
graph. Caching at the leaves only (which correspond to compilation and linking)
would not produce acceptable performance when evaluating complete descrip-
tions. Since cache lookup is used heavily by the evaluator it must be carefully
implemented to make evaluation efficient.

Performance measurements show that the run-time performance of Vesta is
comparable to that of make. This is in spite of the fact that Vesta offers stronger
consistency guarantees for the resulting software system.
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A Language semantics

This section is a definition of the core of the Vesta language, by means of an
explicit interpreter that maps an expression and an environment into a value.
The following are values in the language:

e ERR, NIL, TRUE, and FALSE
e pairs of values

e bindings and closures

e texts, integers, and UlDs

e bridge values.

The notation for pairs and lists is Lisp-like; that is, (x,y) is short for CONS(x,
CONS(y, NIL)).

A binding is a total map from names to values. Bindings map all but a finite
number of names to the distinguished value ERR. If b is not a binding, b(N) is
defined to be ERR.

If bl and b2 are bindings, define (b1 ELSE b2) to be the binding defined by

the rule that for any name N,

(b1 ELSE b2)(N) =
IF b1(N) = ERR THEN b2(N) ELSE b1(N) END

If either bl or b2 is not a binding, bl ELSE b2 is defined to be ERR.

The function Eval takes an expression E and two bindings, called the static
and dynamic environments, and produces a value. It is defined by cases; if E is
not handled by one of the cases below Eval returns ERR.

For any name N,

Eval(N, s, d) = (s ELSE init ELSE d)(N)

where init is an initial binding whose contents are a parameter to the language
definition. The initial bindings contain the predefined values ERR, TRUE, and
FALSE, and the built-in functions.

The § operator in the language extracts the value associated with a name in
a binding. That is:

Eval(E$N, s, d) = Eval(E, s, d) (N)

A comma-separated list surrounded by round parentheses represents a list:
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Eval( (E_1, ..., E_n) , s, d) =
( Eval(E_1, s, d4), ..., Eval(E_n, s, d) )

Eval( () , s, d) = NIL

A semicolon-separated list surrounded by curly braces represents a binding
formed by evaluating a list of bindings in order, adding each one to the static en-
vironment before evaluating the next one, and returning as a result the “ELSE”
of all of them. It is convenient to define first the case in which there are just
two bindings in the list:

Eval({E; F}, s, d) = £ ELSE e
where e = Eval({E}, s, d)
and £ = Eval({F}, e ELSE s, d).

Notice that curly braces are placed around E and F in the recursive evaluations,
so that if they contain semi-colons, the rule will apply to them again. This gives
two ways of evaluating an expression like {E; F; G}, but since they produce the
same result it doesn’t matter.

If commas are used instead of semicolons, then each binding is evaluated in
the initial environment; that is, the bindings are evaluated “in parallel” instead
of sequentially:

Eval({E, F}, s, d) = £ ELSE e
where e = Eval({E}, s, d)
and £ = Eval({F}, s, d).

The comma has higher precedence than the semicolon, so that for example
{E, F; G }is short for { {E, F }; G }.

An explicit binding is created by listing name-value pairs with an equals sign
between the name and the value:

Eval( {N=E}, s, d) =
(FUNCTION x: IF x = N THEN e ELSE ERR END)
where e = Eval(E, s, d)

The “base case” for the rules above i1s that if “E” does not have the form
“F; G”, “F, G”, or “N = E”, then

Eval({E}, s, d) = Eval(E, s, d)

Eval({}, s, d) = NIL
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As a consequence, curly braces can be used to override the precedence rules;
round parentheses cannot be used for this purpose since (X) is a list of length
1.

The language has a LET construct that is conventional except that the
binding is a value:

Eval( LET B in E, s, d) =
Eval(E, Eval(B, s, d) ELSE s, d)

The language has an IF construct that is conventional:

Eval(IF T THEN E ELSE F, s, d) =
IF Eval(T, s, d) = TRUE THEN Eval(E, s, d)
ELSEIF Eval(T, s, d) = FALSE THEN Eval(F, s, d)
ELSE ERR END

The DIRECTORY expression is unique to the Vesta language. It is the
top-level expression in a model, and is used to introduce specific versions of the
source files that compose the software system:

Eval(DIRECTORY D1 IMPORT D2 IN E, s, d) =
Eval(E, Eval({D1}, s, d) ELSE Eval({D2}, s, d) ELSE s, d)

A UID is a unique repository identifier which names another model or a
source file. A UID is evaluated differently depending upon whether it is a
model or a regular source file:

Eval(UID, s, d) =
IF IsModel(UID) THEN Eval(Parse(Read(UID)), NIL, NIL)
ELSE Read(UID) END

The functions Read and IsModel are abstractions of the facilities provided
by the Vesta repository. Read returns the text associated with the UID sup-
plied as its parameter. IsModel is a predicate that is true if and only if its
parameter names a Vesta model. Parse takes a text as a parameter and returns
an expression; it returns ERR if its parameter cannot be parsed into a legal
expression.

A closure is a quadruple

(formals, body, environment, type)
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where formals is a list of names; body 1s an expression, environment is a binding,
and type is either STATIC or DYNAMIC.

There are two forms for constructing closures: one leads to type=STATIC
and one leads to type=DYNAMIC. The syntactic distinction is that for the
latter case, the list of formals is followed by a literal “...”. Note that “...” 1s
literally part of the Vesta language, and not an ellipsis in this description.

Eval (FUNCTION formals IN E, s, d) =
(formals, E, s’, STATIC)

Eval (FUNCTION formals ... IN E, s, d) =
(formals, E, s’, DYNAMIC)

where s’ 1s s restricted to the set of variables that occur free in E but not in
formals; this set fs is defined by induction over the structure of E:

£s(N) =N

£s(E$N) = £s(E)
fs((E1,...,En)) = Ui fs(Ei)
fs({E;F}) = £fs(E) U £s(F)
£s({E,F}) = £s(E) U £s(F)
fs({N=E}) = £s(E)

£s({E}) = £s(E)

£s(LET B IN E) = £s(B) U £s(E)
fs(IF T THEN E ELSE F) = £s(T) U £s(E) U £s(F)
£s(FUNCTION F IN E) = £s(E)
fs(FUNCTION F ... IN E) = £s(E)

fs(F A) = £s(F) U £s(A)

Finally there is application, which is denoted by juxtaposition. There are
two cases, corresponding to the application of a static or dynamic closure, which
differ only in the way they set the dynamic environment for the evaluation of
the body of the closure:

Eval(F A, s, d) = Eval(body, s’, d’)
where Eval(F, s, d) = (formals, body, env, STATIC),
actuals = Eval(4, s, d),
s’ = BindArgs(actuals, formals, s, d) ELSE env,

@ ={

Eval(F A, s, d) = Eval(body, s’, d’)
where Eval(F, s, d) = (formals, body, env, DYNAMIC),
actuals = Eval(4, s, d),



A LANGUAGE SEMANTICS 58

]
1

BindArgs(actuals, formals, s, d) ELSE env,

d’ (s ELSE 4)

The function BindArgs(a, f, s, d) returns a binding of the actuals a to the
formals f. Any unbound formals are bound from the environment. The actual
may be a binding, list, or other value:

BindArgs(a, £, s, d) = BindArgs(NIL, f, a ELSE s, d)
where a is a binding

BindArgs(NIL, NIL, s, d4) = {}
BindArgs(CONS(a, al), CONS(f, f1), s, d) =
{f=a, BindArgs(al, f1l, s, d)}
BindArgs(NIL, CONS(f, £1), s, d) =
{(s ELSE d)(f), BindArgs(NIL, f1, s, d)}

BindArgs(a, £, s, d) = BindArgs(CONS(a, NIL), f, s, d)
where a is neither a binding nor a list.
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