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When a single software module in a large system is modified, a potentially large number of other
modules may have to be recompiled. By reducing both the number of compilations and the

amount of input processed by each compilation run, the turnaround time after changes can be
reduced significantly.

Potential time savings are measured in a medium-sized, industrial software project over a

three-year period. The results indicate that a large number of compilations caused by traditional
compilation unit dependencies may be redundant. On the available data, a mechanism that

compares compiler output saves about 25 percent, smart recompilation saves 50 percent, and
smartest recompilation may save up to 80 percent of compilation work.

Furthermore, all compilation methods other than smartest recompilation process large amounts

of unused environment data. In the project analyzed, the average environment of a compilation

unit is up to 1.9 times the size of that unit, but less than 20 percent of the environment symbols
are actually used. Reading only the actually used symbols would reduce total compiler input by

about 50 percent.

Combining smart recompilation with a reduction in environment processing might double to
triple perceived compilation speed and double linker speed, without sacrificing static type safety.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.9 [Software Engineering]: Managemen,t—software configuration management,

D.3.4 [Programming Languages]: Processors—compders
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1. INTRODUCTION

Separate compilation is an important technique for reducing the time pro-

grammers must wait after changing software. It is beneficial even with

today’s fast workstations, because our software systems have grown dramati-

cally in size and our programming languages have become more expensive to

translate. In particular, the facilities for intermodule type checking of modern

programming languages carry a price: A single, small change in a frequently
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used interface may cause the recompilation of nearly the entire system,

which may take hours, days, and, in extreme cases, weeks.

A number of mechanisms have been proposed to reduce the cost of separate

compilation, while retaining the advantages of performing intermodule type

checking during compilation. To quantify the potential savings of these

mechanisms, we analyze the history of a medium-size, industrial software

system. The last configuration of the system consists of 161 compilation units

and 63,000 lines of code, excluding comments. 1 The history available includes

the day-to-day changes over a period of three years. The system is written

entirely in Ada. Although our results are specific to Ada, we conjecture that

they would not differ much for other languages with separate compilation

such as C or Modula.

The main variable of interest is the compilation cost, measured in both

number of input units and number of input lines. We also report various size

attributes, the number of changes, and the change distribution. This study is

in the spirit of the seminal work by Lehman and Belady [ 1985] on program

evolution. However, while Lehman and Belady make their observations on

the time scale of months and years, we make ours on the scale of days.

The mechanisms for reducing compilation costs considered in this paper all

reduce the amount of input the compiler must process. ‘I’here are two nearly

independent methods: selective recompilation and selectzve environment pro-

cessing. Selective recompilation reduces the number of compilations per-

formed after a change, while selective environment processing reduces the

amount of input per compilation unit by abbreviating its environment. The

environment of a compilation unit consists of the set of all symbols (types,

constants, variables, macros, subprogram headers, etc. ) that are external to

the unit, but that the unit may access. For each such external symbol, the

environment provides various attributes to be used for type checking and

code generation. Processing the environment may make up a significant

portion of the total compilation cost for each unit.
Our results show that smart recompilation [Tichy 1986] is the most effec-

tive of the methods that do not sacrifice type safety during compilation. It can

save over half of all compilations, compared to the conventional, “cascading”

method based on compilation unit dependencies. Smartest recompilation can

save even more, but requires a potentially expensive consistency check at

linkage time.

Environment reading can also be improved noticeably: Reading only the
used symbols may shorten environments by as much as SO percent. Since we

observed that the average environment is 1.4 to 1.9 times the size of a

compilation unit, the savings regarding environment reading translates into

a second net input reduction of about 50 percent. Combining smart recompi-
lation with an efficient environment reading technique would yield a total

reduction in input bulk by a factor of four and would significantly speed up

both compiling and (incremental) linking.

1Including comments, the number of hnes IS 99,000 Unless noted otherwise, our measure of

lines of code excludes comments
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The rest of this paper is organized as follows: The remaining paragraphs in

this section define the selective recompilation and environment processing

methods. Section 2 describes the design of the experiment, including the

metrics used and how they were computed. Section 3 presents the main

results, while Section 4 interprets them.

1.1 Selective Recompilation

The simplest method to restore consistency after changes is to recompile

everything. This method, called big bang, is clearly too expensive to be

practical for large systems. Selective recompilation refers to methods that

may compile less than big bang. The main such methods are defined below:

(1) Cascading recompilation. A dependency relation is imposed upon com-

pilation units. When a unit changes, its directly and indirectly dependent

units are compiled also. A single change can spread recompilation down

multiple chains of dependencies, hence, the name of the method.2

To improve the efficiency of cascading recompilation, programming lan-

guages often differentiate between specification units and implementation

units. The specification units contain no procedure bodies or hidden data

structures; those appear in implementation units alone. With the rule that a

given unit may only depend on specification units, cascading recompilation

occur only when specification units change. This approach saves compilation

time, if specifications change less frequently than implementations. (Our data

do not bear this out, however.) The languages Mesa [Mitchell et al. 1978],

Modula 2 [Wirth 1985], and Ada [U.S. Department of Defense 1983] include

such a scheme; the program MAKE [Feldmim 1979] can add it to program-

ming languages that lack it, including C and Pascal. The language CHILL

[CCITT 1988] also uses this mechanism, but requires no separation into

specifications and implementations.

Most implementations of cascading recompilation also permit the recompi-

lation of individual units, without triggering recompilation of dependent

units. To establish full type consistency, the recompilation have to be

performed later, for example, prior to linking.

While cascading recompilation is a vast improvement over big bang (see

Borison [1989] for a comparison), a number of techniques have evolved that

reduce the number of compilations even further. All of these techniques have

cascading recompilation as their basis, but cut short some of the cascades.

(2) Surface change. This method determines whether a set of changes is

semantically irrelevant, that is, whether the changes are confined to com-

ments and whitespace. If so, recompilation of dependent units are unneces-

sary. This method was implemented for SR [Olsson and Whitehead 1989].

Borison [1989] discussed several of its variants.

(3) Cutoff recompilation. This method initiates recompilation in the same
way as cascading recompilation, but compar(es old and new compiler outputs.

‘Also known as “trickle-down recompilation.”
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If the old and new compiler outputs for a unit do not differ, then no change

can propagate out of that unit. It is therefore safe to cut off further compila-

tions of dependents of that unit. The Mary-2 system [Rain 1984] uses this

method.

Note that cutoff recompilation and surface change do not necessarily

produce the same set of compilations. Where surface change performs a

simple lexical comparison, cutoff recompilation must perform a full compila-

tion and compare the output. On the other hand, cutoff recompilation takes

into account semantically relevant changes that happen not to propagate.

Thus, the units processed by cutoff recompilation are a subset of the units

compiled or analyzed by surface change.

(4) Semi-smart recompilation. This method classifies the changes in spec-

ification units according to added declarations, modified procedure headings

and variables, and other changes. Added declarations are, of course, unused

in unchanged units and therefore cause no recompilation. In some lan-

guages, changes to procedure headings and variables propagate at most one

level to the directly dependent units; hence, no further cascading recompila-

tion are triggered. Other changes, such as changes of types and constants,

trigger the compilation of all directly and indirectly dependent units. The

method is due to Kamel, who implemented it for BNR-Pascal [Kamel 1987].

(5) Smart recompilation. This method refines the dependency relation to

record the use of individual declarations. Whenever a unit is processed, the

compiler stores the directly and indirectly used declarations from other units.

If any of the other units change, the intersection of the set of changed, added,

or deleted declarations with the set of used declarations indicates whether

the dependent unit must be recompiled. Variants of this method have been

implemented for Pascal, C, and CHILL [Tichy 1986; Schwanke and Kaiser

1988; Eidnes et al. 1989]. Integral C [Ross 1987] achieves a similar effect by

permitting the incremental update of so-called fragments, which typically

correspond to individual declarations. The most sophisticated system for

selective recompilation is perhaps the Rational programming system for Ada

[Feiler et al. 1988]. It allows the programmer to choose between cascading

recompilation and smart recompilation by selecting the granularity of change

(compilation unit, individual declaration, or even individual statement).

(6) Attribute recompilation. This method is a refinement of smart recom-

pilation. It refines the dependency relation to record the use of individual
attributes of declarations. For example, suppose a record type is changed in

such a way that its size attribute remains invariant (e.g., by reordering or

renaming fields). A unit referencing that record type need not be recompiled

if it uses only the record’s size attribute. See Dausmann [1985] for a more

detailed discussion of this technique.

(7) Smarter recompilation. Schwanke and Kaiser [1988] observed that

smart recompilation is too conservative: It requires full type consistency,

even though programmers often wish to leave harmless inconsistencies in a

system until current changes have been tested. Consider, for instance, a
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change that redefines a type T. As long as the old and new versions of T are

used in different partitions of a system, and the interface between the

partitions does not involve T, then it is perfectly acceptable to recompile only

one partition of the two. Smarter recompilation automatically determines

these partitions, More important than reducing compilation time is the fact

that this method may save programming time: After changing T, a program-

mer need only update those references to T that are relevant for testing. If

the change has to be discarded or reworked, the programmer has not lost

time establishing full consistency in a transient situation.

(8) Smartest recompilation. This method requires no dependencies among

units, because it reads no environment at all. Each unit is compiled in

isolation. The compiler employs type inference to derive the most general

possible (parametric) types for undeclared identifiers. The derived types are

unified with the actual types during a linking phase. The method was

proposed for Pascal [Levy 1984] and later refined for ML [ Shao and Appel

1993].

Although compiling quickly, smartest recompilation may be counterproduc-

tive because it slows error removal. Error reports regarding the interfaces

between modules are delayed until integration time, long after programming

work on a module has been completed. Error messages this late appear out of

context and are therefore difficult to remedy. Programmers generally prefer

to receive error messages as early as possible.

This paper quantifies the compilation costs of cascading recompilation,

surface change, cutoff recompilation, smart recompilation and smartest re-

compilation. The figures for smartest recompltlation do not include the cost of

the consistency check to be performed later. However, they are still useful as

lower bounds on compilation work. The costs of semi-smart and attribute

recompilation are approximated. Analysis of smarter recompilation is impos-

sible with our data, due to a lack of information about transient, inconsistent

configurations.

1.2 Environment Processing

While selective recompilation seeks to reduce the total number of unit

compilations, environment processing attempts to reduce the amount of

environment data that must be processed in each compiler run. The environ-

ment of a given unit simply consists of those units on which the given unit

depends. Reading the environment has been nicknamed big inhale for the

usually large amount of information that must be scanned before actual

compilation commences. Conradi and Wanvik [1985] reported that big inhale

may account for 30–50 percent of compilation time.

Gutknecht [1986] classified the methods ~“or environment reading as fol-
lows: 3 Call the units making up an environment environment units.

Gutknecht’s first distinction is that environment units maybe read in source

—
3We changed Gutknecht’s terminology, but preserved the concepts.
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or in compressed form. In source form, environment units are character

strings according to the syntax of a programming language, usually stored as

text files. The compressed form is an encoding that can be loaded quickly into

a compiler’s symbol table. The compressed form must be generated, for

example, during the first time its source is encountered by the compiler. If

environment units change less often than they are read, then compression

saves time at the expense of space.

The second dimension of Gutknecht’s classification distinguishes whether

an environment unit is unresolved or resolved. An unresolved environment

unit is one that contains only pointers to its (sub-) environment units,

whereas a resolved environment unit has been extended with the information

contained in all its (sub-) environments. A resolved environment unit has the

advantage that it can be loaded all at once, without looking up additional

units. However, resolved environment units may consume dramatically more

space, because they duplicate information.

Environment units in source form are usually unresolved, while resolved

environments can easily be compressed during construction. The other combi-

nations are also possible. Some examples follow:

(source, unresolved): C compilers and Foster’s Modula-2 compiler [Foster
1986];

(compressed, unresolved): many Ada and Modula compilers, for example,
Wirth’s [Wirth et al. 1982];

(source, resolved): Tichy’s compiler for INTERCOL [Tichy 1981]; and

(compressed, resolved): Gutknecht’s Modula-2 compiler [Gutknecht 1986].

There are several methods to reduce the amount of environment informa-

tion to be processed, independent of Gutknecht’s classification. The reduction

of environment input is important, because programmers, perhaps either out

of ignorance, carelessness, or lack of time, tend to make environments larger

than necessary. The minimal environment input would be achieved if the

compiler selected only those declarations that it actually needed. Such a

method, called selective embedding, was proposed by Cashin et al. [1981]. The

basic idea is to interleave syntax analysis, environment reading, and seman-

tic analysis. Syntax analysis, besides building a syntax tree, determines the

set of unknown identifiers. The environment reading phase then looks up the

unknown symbols in the environment and enters their attributes into the
symbol table. This process may add additional unknown symbols, so that it

recurses. After all unknown symbols have been resolved, the environment is

complete, and semantic analysis can commence.
Clearly, selective embedding saves space in the compiler. Time is saved

only if the individual declarations can be accessed quickly, without having to

read whole environment units.
A less selective, but simpler method is environment pruning. Here, envi-

ronment units are skipped entirely if none of their declarations are used. The

method can be implemented in the compiler or as a separate program. If

implemented in the compiler, all external symbols must be qualified with the
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name of the environment unit in which they are defined. Thus, a compiler

only reads those environment units whose identifiers appear as qualifiers in

the program text. If there are unqualified external symbols, the compiler

must process all units in the environment.

An environment analyzer separate from the compiler can afford a more

thorough analysis. It can process all units to detect spurious unit dependen-

cies and delete them. The program Incl [Vo and Chen 1992] performs this

analysis for C programs. It is run periodically to “clean up” a dependency

architecture that might have undergone some deterioration during mainte-

nance. Incl does not require qualification of (external symbols.

This paper reports on the cost of environment reading for the following

methods: unresolved source environments, selective embedding, and environ-

ment pruning. Data about compressed environments are not available.

2. DESIGN OF THE EXPERIMENT

We analyzed two subsystems of a software ccmfiguration management system

called BiiN4 SMS, developed at Siemens Corporate Research in Princeton,

New Jersey [Schwanke et al. 1989]. The two subsystems considered were CM

(configuration management) and VM (version management), both written

entirely in Ada. CM and VM are independent of each other and were

therefore analyzed separately. Both depend heavily on the operating-system

interface and another subsystem called SUPPORT. Neither SUPPORT nor

the operating system were analyzed, because of insufficient space in the

analysis program.

The entire daily development history of SMS is available, because program-

mers stored their daily changes into an archive managed by the version

control system RCS [Tichy 1985]. Compilations occurred in a batch run at

night. The batch job incorporated the changes of the day into a consistent

baseline to be tested the next day. If a new revision caused a compilation

error, then it was replaced with the one in the previous configuration. The

compilations performed for each configuration were exactly those prescribed

by the Ada language definition.

In essence, the RCS archive records a snapshot configuration of SMS at the

end of each day. Programmers performed some preliminary testing during

the day, and only the end results of these tests appear in the archive. The

preliminary tests consisted mainly of syntax checking and some small unit

tests. Because of the high cost of recompilatllon, programmers actually had to

apply an unsafe form of selective recompilation for this part of their work:

They guessed the proper compilation order and then invoked the Ada com-

piler on individual units, but turned off any propagated compilations. Full

consistency could only be reestablished during the batch run at night. The

compiler ran at only 1–5 lines/s on a time-sharing system, and the complete

dependency analysis with all recompilation took 5–6 hours. Programmers
simply could not afford to wait this long during the day.

We analyzed the daily snapshots with a special program written in YACC

4BiiN is a trademark of Siemens.
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and C. This program consists of a syntax analyzer, a symbol table manager,

and a cross-reference generator for Ada. The analyzer successively processes

several configurations. The initial configuration builds up the symbol and

cross-reference tables, while later configurations update this information.

Ada’s rules for visibility and overloading made the symbol table management

quite complicated. An additional complication was the need to process incom-

plete configurations, since both the operating-system interface and the sub-

system SUPPORT were excluded from the analysis.
The analyzer estimates the costs for cascading recompilation, surface

change, cutoff recompilation, smart recompilation, and smartest recompila-

tion, as well as the environment reading techniques for unresolved source

environments, environment pruning, and selective embedding. The recompi-

lation costs were measured in both number of units processed and lines of

input. The first measure reflects the number of files to be opened, while the

second determines total input bulk. Lines processed may be somewhat more

meaningful, especially because specification units are typically shorter than

implementation units. Furthermore, compiler speed is commonly measured in

lines per time unit. Other factors that influence compilation speed, such as

the quality of the compiler (optimizing vs. nonoptimizing), the operating

system, and the hardware are not measured. As a by-product, the analyzer

also collects statistics about the number and class of changed declarations per

specification unit.

2.1 Configuration Selection

Configuration selection is the process of choosing the revisions for a consis-

tent configuration. With the SMS database, this is a simple process: Since

only compilations, but no update activity, occurred at night, the configure

simply chooses the latest version of each unit at a given date. Occasionally,

several revisions of a unit were stored in RCS on a single day, presumably

when programmers found errors. We ignore all but the last of multiple

revisions per day.
If our analyzer discovers a syntax error in a unit, it backs up to the revision

used in the previous configuration, just as the actual development environ-

ment would have. However, our analyzer does not detect semantic errors.

Thus, it is possible that our analyzer processes some configurations that were

never actually compiled successfully. The potential errors introduced in this

way include overestimation of the number of compilations that were actually
performed and perhaps slight inaccuracies in the dependency hierarchy.

However, since programmers compiled and tested their programs before

depositing them into RCS, and because they were expected to correct any

semantic errors in the next revision, we believe the number of undetected

semantic errors to be quite small and their effect on compilation costs

negligible.

2.2 Estimating Compilation Costs

The basis for computing the compilation costs for the various methods is the

dependency relation at unit and declaration level. These are defined for Ada
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Selective Recompilation and Environment Processing . 11

as follows:

Unit leuel. Compilation unit U2 USES compilation unit Ul, iff

—U2 mentions U1 in a WITH-clause,

—U2 is an implementation unit and the corresponding specification unit

mentions U1 in a WITH-clause,

—U2 is an implementation unit and U1 the corresponding specification, or

—U2 is a subunit and U1 an ancestor unit of U2.

Declaration level. Declaration D2 USES a declaration Dl, iff D2 refers to

D1 or to D1’s subordinate declarations.

The following clarifications are in order: First, the definitions ignore im-

plicit dependencies caused by generics and in-line subprograms. These may

cause further dependencies on both unit and declaration level. Fortunately,

the data do not contain any generics, since the Ada compiler in use at the

time did not support them. There are only a few in-line subprograms (six in

the final configuration); our analyzer simply treats these as normal subpro-

grams.

Second, a compiler may introduce additional dependencies. For instance, a

compiler may employ procedure numbers or offsets for variables to resolve

intermodule links, even though a linker is a better tool to handle such links.

Interprocedural optimizations may also introduce dependencies. Burke and

Torczon [1993] described algorithms that recluce the number of compilations

in such situations. Here we assume that the compiler does not produce any

dependencies not captured by name use.

Third, our definition of declaration-level USES simplifies the treatment of

subordinate declarations, such as enumeration literals, record components,

and formal parameters. Rather than perform ing a dependency analysis down

to subordinate declarations, we treat each use of a subordinate declaration as

the use of the parent declaration. Our results indicate that a more thorough

analysis would achieve only minor additional savings in recompilation.

Fourth and finally, overloading of identifiers is handled properly. The

overloading problem is a special case of the more general problem that adding

or changing declarations can lead to semantic errors in unchanged units. The

analyzer does not, however, detect semantic errors caused by overloading.

The resulting inaccuracy is extremely small, because overloading was rare

and most of the configurations available at the end of a day may be assumed

to be correct.

Based on the above definitions and assumptions, the analyzer builds up

symbol tables recording the USES relations and the number of lines in the

units. For any two successive configurations, the analyzer pairs correspond-
ing specification units, determines added, deleted, and modified declarations

for each pair, and then computes the various compilation costs by consulting

the USES relations. The recompilation set, that is, the set of recompiled

units, is computed as follows:
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Cascading recompilation. The recompilation set is simply determined by

computing the reflexive, transitive closure of the touched units under unit-

Ievel USES.

Surface change. The recompilation set consists of all touched units plus

the units in the reflexive, transitive closure of the semantically changed

units. Including all touched units actually underestimates the potential

savings. However, only 3 percent of the recompiled units are touched but

semantically unchanged, so this error is slight.

Cutoff recompilation. The recompilation set of this method is approxi-

mated closely by observing that for semantically changed units, cutoff recom-

pilation compiles one dependency link further than smart recompilation.

Thus, we first compute the smart recompilation set for the semantically

changed units (see below), then supplement this set with those units that

directly import any unit of this set, and, finally, add the touched, but

semantically unchanged units.

This computation is correct under two assumptions: (1) The recompilation

of any unit that is not affected by a given change produces output identical to

the output before the change (otherwise, cutoff recompilation would hardly

work at all); (2) the recompilation enforced by smart recompilation are really

necessary; that is, smart recompilation causes no redundant recompilation.

Unfortunately, this assumption is not always met in practice. Smart recompi-

lation may cause a redundant compilation if a unit uses attributes of a

changed declaration that happen to be invariant despite the change. For

example, the size attribute of a record type might remain invariant if the

order of its fields changes. If a unit relies only on the size attribute, smart

recompilation would cause an unnecessary recompilation. However, when

evaluating our results in the last section, we shall see that the number of

those cases is negligibly small.

Semi-smart recompilation. The semi-smart recompilation technique does

not work well for Ada, since the assumptions about nonpropagation of the

relevant classes of changes are not met. For example, new declarations may

cause visibility errors, and thus, the directly dependent units must be recom-

piled. Ada also permits the use of attributes of variables and subproprograms

when defining new types. In general, the performance of semi-smart recompi-

lation lies between surface change and smart recompilation. For Ada, we
estimate it to be close to that of cutoff recompilation, since over half of all

changes involve procedure headers, which tend to propagate dependencies

only to the directly calling units.

Smart recompilation. The recompilation set is computed exactly. It con-

sists of the set of changed units plus the units containing declarations that

use a changed declaration directly or indirectly.

Attribute recompilation. Only lower and upper bounds can be given. The

upper bound is smart recompilation; the lower bound is the set of changed

units.
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Smartest recompilation. The recompilation set is the set of changed units,

excluding all specification units. Smartest recompilation is infeasible for Ada,

but the figures serve as lower bounds.

2.3 Estimating the Cost of Environment Processing

For each selective recompilation technique investigated, the analyzer sums

the number of source environment lines and units inhaled. It also determines

the savings achievable with environment pruning and selective embedding.

The gain of environment pruning is easy to compute by analyzing declara-

tion-level USES. Selective embedding is measured by Borison’s RW (Ratio of

Use to Visibility) metric. This metric is computed for a given set S of n

declarations as follows:

use(i) = number of compilation units Whlere declaration i is used,

uisible ( i ) = number of compilation units where declaration i is visible,

The set S maybe all or a subset of the declarations in specification units of

a given program. RW for the entire program is an indicator for the perfor-

mance of selective embedding, since it is the fraction of actually used declara-

tions.

We computed the RW metric for the declarations in the specifications of

the last configuration and for the declarations in all changed specifications.

Furthermore, we broke RW down into separate declaration classes (subpro-

grams, variables, types, constants, etc.).

3. RESULTS

This section reports on the quantitative results with little interpretation; a

more thorough interpretation appears in the succeeding section.

3.1 Size and Growth

The first revision of SMS was checked into the archive in September 1985,

and the last one in March 1989. With the last revision, the development of

the alpha test release of SMS was complete. Maintenance data are not

available, because further development was halted. The last release of SMS

consists of about 140,000 lines of code (140 KLOC), of which CM and VM

contain about a total of 63 KLOC (all counts exclude comments and empty

lines). Details about the number of units, revisions, and configurations are

given in the Appendix.

Our analyzer successfully processed 687 out of the 706 configurations. The

rest contain syntax errors.
Figures 1 and 2 illustrate the growth of CM and VM combined. Figure 1

plots the average number of revisions per unit over time. The gap between

specification and implementation units widens with the age of the system,

apparently as the architecture stabilizes. Fig-m-e 2 shows the number of
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compilation units per configuration. Both graphs separate specifications and

implementations, and plot the variables in lone-month intervals. Implementa-

tions trail specifications in Figure 2, with the gap narrowing over time. Drops

in the averages in Figure 1 occur when new units, with no revisions initially,

are added (compare Figure 2).

Concerning the mixture of changes, we observed that 39 percent of

the daily changes were pure implementation changes (i.e., only implementa-

tions were revised that day) and that 16 percent were pure specification

changes (i.e., only specifications were revised). Most of the pure specification

changes occurred at the beginning of the development. Pure implementation

changes increased in number later on. Overall, about 37 percent of all unit

changes were specification changes.

In the last configuration of March 1989, the average size of a specification

unit was 111 lines of code; the average size of an implementation unit was

706 lines. The average unit contained an additional 236 lines of pure com-

ments. This number was almost identical for specifications and implementa-

tions. Thus, the ratio of pure comment lines to the total number of source

lines was about 0.70 for specifications and 0.25 for implementations.

3.2 Compilation Costs

Table I summarizes the cumulative cost of compilation and environment

handling over all configurations analyzed, lmeasured in KLOC processed. The

table contains columns for cascading recompilation, surface change, cutoff

recompilation, smart recompilation, and smartest recompilation. An extra

column, labeled “Changed”, tallies the number of lines to be recompiled or

inhaled if only the changed units were recompiled. This column is the lower

bound for methods that process all changed units, such as smart and at-

tribute recompilation. The column for smartest recompilation is unrealistic,

because it is infeasible to add type inference to Ada so that environment

reading can be totally omitted. However, this column provides a lower bound

on pure compilation work (without environment reading).

When compiling a given unit, we distinguish the lines that belong to that

unit from the lines that the unit inhales from the environment (first and

second rows, resp.); their sum appears in the third row. The fourth row

provides the source lines analyzed, to determine which compilations to omit.

This row is needed to estimate the overhead of the various methods and is

not included anywhere else in the table. Note that the numbers in this row

are small fractions of the total lines processed by cascading recompilation.

The fifth row gives the ratio of inhaled to recompiled lines; this number

decreases from 1.9 for cascading recompilation to 1.4 for smart recompilation.

This effect is easily explained: The units that are not compiled are those that

depend on the touched units. These units are further down in the dependency
hierarchy and therefore have a larger environment. Consequently, removing

them from the compilation sets makes the environment smaller on average,

and the average number of lines processed per compilation unit decreases

from 1.42 to 1.31 KLOC.
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Table I. Cost of Compilation and Environment Handling m KLOC (all configurations)

Method Cascade Surface Cutoff Smart Changed Smartest

X KLOC recompiled 3,146 2,784 2,530 1,879 1,621 1,621

Z KLOC inhaled 6,063 5,193 4,247 2,653 2,124 0
2 KLOC total 9,209 7,977 6,777 4,532 3,745 1,621

Z KLOC analyzed o 1,621 180 135 0 0

Inhaled/recompiled 1.9 1.9 17 14 1.3 0

Mean KLOC processed per unit 1.42 1,39 1.39 1.31 1.27 0.55

Lines saved relative to cascade 0% 13 % 26 % 51 % 59 ‘% 82 %

Z KLOC inhaled 4,892 4,303 3,808 2,573 2,100 0

with environment pruning

Lines saved relatme to X KLOC total 13 v. 11 % 6 % 2 $% 1 O& () .,

with environment pruning

The entries showing the savings relative to cascading recompilation are

perhaps the most interesting. Surface change achieves savings of 13 percent;

cutoff recompilation, 26 percent; and smart recompilation, 51 percent. These

three methods provide the same type safety as cascading recompilation and

face no additional, deferred costs. Smart recompilation’s savings are close to

the lower bound of changed (59 percent).

Smartest recompilation compiles the theoretical minimum: only the changed

compilation units. However, recall that smartest recompilation gives up

compile-time type safety, and the cost for consistency checking during linking

is not included.

As explained previously, semi-smart recompilation would be close to cutoff

recompilation. The savings of attribute recompilation lie somewhere between

smart recompilation and Changed, that is, between 51 and 59 percent.

The last two rows of Table I show the savings achievable with environment

pruning. Depending on the quality of the selective recompilation method, the

savings range from 13 to 2 percent, On our data, environment pruning with

smart recompilation would have saved only 80 KLOC over a three-year

period.5

The bar chart of Figure 3 illustrates the cost of compilation in lines

processed. The lower part of the bars represents the touched units; the upper

part, the directly and indirectly dependent untouched units. Smart recompi-

lation compiles only slightly more than the set of changed units, without

sacrificing static type safety.
Table II shows the same costs as Table I, but measured in number of units

rather than in number of lines. For instance, the first line provides the actual

number of compilation runs, Note that the ratio of inhaled versus compiled

units is much higher than for lines, because specification units are smaller

than implementation units. The savings achievable with environment prun-

ing also appear more pronounced, for the same reason.

5Environment pruning figures are calculated as if all external symbols were quahfied and,

hence, represent a best case for Ada.
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Table II. Cost of Compilation and Environment Handling in Units (all configurations)

Method Cascade Surtace Cutoff Smart Changed Smartest

Z units recompiled 6,471 5,737 4,859 3,449 2,955 2,955

Z units inhaled 69,515 59,435 47,364 29,679 23,277 0

2 units total 75>986 65,172 52,228 33,128 26,232 2,955

S units analyzed o 2,955 1,800 1,200 0 0

Inhaled/recompiled 10.7 10.4 9.7 8.6 7.9 0

Saved units relative to cascade 0% 14 % 3170 56 To 65 % 96%

S units inhaled 48,700 43,000 37,620 25,753 20,989 0

with environment pruning
Units saved relative to 2 units total 27 % 25 % 19% 1270 970 0 %

with environment pruning
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Table 111. Ratio of Use to Visibility (RUW

Inner

Declaration class All Constants Types Variables ExceptIons Subprograms packages

RUV of changed 0.16 0.08 0.30 0.00 0.10 0.14 001
specifications

RUV of specifications 0.20 0.09 0.45 016 0.20

in final
configuration

We shall base further comparisons on lines of code, since savings expressed

in this measure are more conservative than in compilation units. In case the

cost of opening and closing units actually dominates the input cost, then the

potential savings will be higher.

Table III shows the RUV for the declarations in all changed specifications

and in the specifications of the last configuration. In both cases the RUV is

also computed for the various declaration classes separately. The results

show that RUV in the last configuration is slightly larger. This may be

explained by the observation that the use of stable declarations tends to

increase over time. Compared to the overall RUV, the RUV values for types

are considerably larger, while the RUV values for constants are considerably

smaller. Hence, the importing units use types relatively more often and

constants less. The RUV fur subprograms corresponds closely to the total

RUV, since subprograms strongly dominate the declarations (see Section 3.3).

Since variables and inner packages occur rarely, the computed RUV values

are unreliable. Tasks do not occur at all.

The total RUV value of 0.2 in the last configuration is rather small and

means that a single symbol defined in a package specification is used in only

20 percent of those units in which it is visible. Thus, selective embedding can

save up to 80 percent in symbol table space for the environment, and the

same percentage in environment processing time, provided symbols can be

looked up directly. Recall that the environment is between 1.4 and 1.9 times

the size of the compilation unit. Thus, the 80 percent savings in environment

handling translates to 46 percent total input savings for smart recompilation

and 52 percent for cascading recompilation. However, these input savings

may be difficult to translate into equivalent time savings. First, random

access to symbols may carry some overhead, and second, the compiler may
process lines in the environment faster than lines in implementation units.

These issues are taken up in the next section.

3.3 Distribution of Changes and Program Structure

Concerning the distribution of changes and the program structure, we ob-

serve the following:

—Fifteen percent of the touched specifications are not semantically modified

(164 out of 1,097). In the touched specifications, about 18 percent of the

contained declarations were actually changed. Figure 4a shows the distri-
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Fig. 4. (a) Distribution of changes. (b) Distribution of declarations in specification units.

allbution of changed declarations, In relation to their total occurrence in

changed specifications, subprograms, constants, and types were changed

slightly more often, whereas exceptions were changed considerably less

often.

—In the last configuration of March 1989, the average specification unit

exported 27.4 declarations. See Figure 4b for their distribution. Inner

packages and variables were exported extremely rarely, and tasks never.

—In the last configuration of March 1989, a specification is used by about

20–21 other units (6 directly, 14– 15 indirectly). The average dependency

depth of the uses hierarchy is 2.3. This depth is the average length of a

used-by path, starting from an arbitrary specification in the dependency

hierarchy.

For comparing the distribution of declarations and the depth of the depen-

dency structure, we analyzed another Ada system of approximately two-thirds

the size of CM and VM together. The system was developed by the “Gesell-

schaft ftir Mathematik and Datenverarbeitung” (GMD) as part of an Ada

compiler. CM and VM consist of nearly the same number of units as the GMD

system. A specification unit of CM and VM contains twice as many lines of

code as a specification of the GMD system; an implementation contains a

third more. The GMD system has no revisicm history at all; however, for the

present comparison, a history is not needed,

Despite the difference in size, the average number of declarations per

specification is about the same in both sy,tems. As for the distribution of

declarations, 26 percent of declarations in the GMD specifications are vari-

ables, while there are hardly any variables exported by CM and VM specifica-

tions. Constants and exceptions are used more often in CM and VM (23.7

percent versus 11.8 percent and 16.4 percent versus 1.8 percent). The percent-

ages for procedures, types, and packages are nearly the same.
The dependency structure among the compilation units of the GMD system

is considerably deeper; its average depth is nearly five. However, this is to be

expected, since the analysis of the GMD system is complete, while the

analysis of SMS omitted the subsystem SUPPORT and the operating-system
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interface. Inclusion of these systems would result in a deeper

structure for SMS, but would also more than double total size.

4. INTERPRETATION OF RESULTS

dependency

Saving one-half to three-quarters of compilation work is significant, espe-

cially for slow compilers and large systems. However, the savings are offset

by the overhead of additional analysis. This section relates savings to over-

head and discusses other factors influencing total compilation turnaround

time, such as parallel compilation and linking.

So far, all measures for compilation work were in terms of input size. The

following formula relates input to compilation time:

t~=ILblxcI+EL~xc~ +0~,

compile time for selective recompilation method M,

kilo lines compiled by method M,

kilo environment (specification) lines processed by method M,

time for compiling 1 KLOC of an implementation unit,

time for processing 1 KLOC of a specification unit,

overhead caused by method M.

(1)

Eq. (1) will be used to compute the cumulative compilation time (all runs)

under the various methods using data from Table I. Compiler speed is

modeled with two constants, C1 and c~, because environment processing is

often faster than compiling. We assume that

c~
cE<—

2
(2)

for the following discussion, but the reader may substitute a different ratio.

4.1 Overhead of Selective Recompilation

Cascading recompilation is the baseline. The overhead of surface change is

o Surf =A surf x Csurf

1621c~
<

5

< 324c~

< 162cI , (3)

where AsU,~ is the amount of input analyzed by surface change, measured in
KLOC (see the fourth row of Table I), and csU,f is the average time for

comparing a pair of units of 1 KLOC each for identity, while ignoring

whitespace and comments. Because the comparison is only lexical, we can

ACM Transactions on Software Engineering and Methodology, Vol 3, No 1, January 1994

.



Selective Recompilation and Environment Processing . 21

assume that c~U,f < c~/5. With Eq. (2), surface change’s overhead is less

than 3 percent of tca~cade.
The cutoff recompilation method requires only the comparison of compiler

output :

0 cut =A cut ~ Ccut

180c~
<—

5

< 36c~

s 18cI. (4)

ACU ~ is the number of lines (in KLOC) in recompiled specifications, ccU~ is the
time for a bytewise comparison of the compiler outputs produced from a pair

of specification units of 1 KLOC each. Note that the first three rows of Table I

already account for all compilations that occurred, so we only need to

consider file comparisons. Compiler output may be more voluminous than

input, but bytewise comparison is extremely fast, so we can assume that

Ccut < cj3/5. With (2), OcU~ k 0.3 pE!rCE!d Of tca~cade.

The overhead of smart recompilation consists of computing deltas and

intersecting symbol lists:

o Smart =A smart x Csl + I%llart x Csz

938c~
< 135CE + ——

5

< 323cE

< 161cI. (5)

ASmart iS the SiZe Of recompiled specifications in KLOC> and cS1 iS the time Of
computing a delta between a pair of specification units, each 1 KLOC long. A

delta consists of the identifiers of added, dleleted, and changed declarations.

Table I provides the value for A~~a,t. Computing deltas is fast, since it

involves merely building syntax trees and comparing them structurally. It is

safe to assume that c~l < CE.

The second component of the overhead folrmula is more difficult to quantify.

c~z is the time for processing 1,000 symbols in an intersection, while ls~.,~
indicates how many symbols (in thousanck) are processed in this manner.

Table II indicates that 1,200 deltas are computed, while Section 3.3 states

that the average number of dependent units is 21. Thus, each delta must be

loaded once and then intersected with the use lists of 21 other units. The size

of the delta is minimal: According to Section 3.3, the average specification

unit exports 27 symbols, of which only 18 lpercent are changed. So a delta is

on average only 5 symbols long. Use lists are also short. Table II indicates
that each compilation has an environment of 8.6 units. Each unit provides 27

symbols, of which 16 percent are actually used (see Table III). Thus, we have

37 symbols per use list. The total number of symbols processed is thus

1,200 X (5 + 21 X 37) = 938 X 103. It is reasonable to assume that process-
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ing a symbol (basically, hashing it against 5 preloaded ones) takes much less

time than inhaling a line. Hence, we assume that C,z < c~/5. With Eq. (2),

smart recompilation’s overhead is 2.6 percent of cascade recompilation’s

compile time.

Smartest recompilation incurs no compile-time overhead, if we assume that

the time for performing type inference is negligible. Link-time overhead is

unavailable.

4.2 Overhead of Environment Processing

Environment pruning built into the compiler carries no overhead, because it

simply skips wholly unused environment units. A separate pruning program

such as Incl takes time that is some fraction of big bang, but it is run

infrequently, so its cost is amortized over many compilation runs.

Selective embedding might cut environment input by 80 percent,G but its

run time is difficult to estimate. The most obvious approach of implementing

the method is to use a database, but it is unclear how update and access time

in the database compare to c~.

The size of the environment indicates that maintaining a resolved environ-

ment per compilation unit carries a substantial space penalty, even if envi-

ronments are compressed. However, the potential sharing of resolved envi-

ronments among compilation units was not investigated. It is also unclear

how much time saving compression can yield, because we did not determine

how often an environment is read before its source changes.

4.3 Compile-Time Estimates

Table IV provides the estimated total compilation time over all configurations

analyzed. It is computed from Eqs. (l)–(5) and the data from Table I.

Overhead is included, as is the assumption that environment reading is twice

as fast as compiling. The fh-st row provides cumulative times for the entire

development history in multiples of C7 with full environment reading, whereas

the second row provides percentages relative to cascading recompilation. The

third and fourth rows are similar, but with environment pruning applied (row

8 instead of row 2 of Table 1). The bottom two rows of Table IV assume that

the environment input has been reduced by selective embedding, but not with

pruning (20 percent of Table I, row 2). For lack of an estimate, we include no

overhead for selective embedding. This may be an unrealistic assumption.
However, the reader may recompute the last two rows by using a less

favorable reduction rate in order to account for the overhead, The reader may

also use a different cI/c~ ratio and different cost factors for computing 0~.

Several observations can be made. Smartest recompilation is the fastest

method among all combinations, potentially compiling at four times the speed

of cascading recompilation. However, the costs for type inference, linking, and

programmer time spent in resolving delayed error messages are excluded.

6We are assummg that the number of declarations m emm-onment umts is proportional to input
lines.
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Table IV. Compile Time Measured in Multiples of Cr (all configurations)

Method Cascade Surface cutoff Smart Changed Smartest

Full environment (CI ) 6,178 5,543 4>672 3,367 2,683 1,621
Relative to cascade 100 VO 90 % 76 % 54 Yo 43 !% 26 ‘%0

(full environment)
Environment pruning (C[ ) 5,592 5,098 4,452 3,327 2>671 1,621
Environment pruning relative to 91 % 83 % 72 % 5470 43 W* 26 Yo

cascade (full environment)

Selective embedding (CI) 3,752 3,465 2,973 2,305 1,833 1,621
Selective embedding relative to 6170 56 % 48 ‘% 3770 3070 267.

cascade (full environment)

Smart recompilation is not much slower than processing the changed units

and has none of the problems of smartest recompilation.

On our data, environment pruning has a small to negligible effect: The

more selective the compilation method, the smaller is the gain. However, Vo

and Chen [1992] reported that Incl’s environment pruning removed 4 1–71

percent of the environment units of three systems, saving between 12 and 36

percent of compilation time. A plausible explanation is that SMS has not

undergone any maintenance and, thus, has a clean architecture.

A properly implemented version of selective embedding might cut the

environment input by 80 percent. Note that this figure applies to a system

with a clean dependency architecture, where unused environment units are

rare. So this reduction may be achievable even after environment pruning

has occurred. However, random access tc~ declarations in the environment

may be time consuming, wiping out much of the gain of selective embedding.

From this discussion we conclude that further substantial reductions in

compilation work can only come from partially compiling the touched units,

as implemented in the Rational environment and some language-oriented

editors.

4.4 Total Turnaround Time

Selective recompilation and efficient environment processing are but two

ingredients for achieving the goal of fast turnaround after changes. Other

important ingredients are the programming language itself, the basic com-

piler speed, parallelization of the compilation process, and the speed of the

linker.
Parallelization can shorten the time to rebuild a system considerably. All of

the selective recompilation methods discussed here can be combined with

parallel compilation. The only drawback. is that selective recompilation

might reduce the amount of parallelism available. However, Leblang and

Chase [1987] reported that on a network of workstations the number of

compilations that a single scheduler can spawn concurrently peaks around

10. Even if this peak improves by a factor of three, lack of parallelism is not

going to be an issue when hundreds of units need to be compiled.

Linking can also consume a substantial amount of time, especially if large

configurations must be completely relinke d after every change. Incremental
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linkers reduce linkage time by patching new object modules into already

linked code [Linton and Quong 1989]. With such linkers, savings produced by

selective recompilation translate into nearly the same savings in linkage

time.

Industrial-strength compiling systems should therefore strive for the best

available techniques in the areas of compiler speed, selective recompilation,

environment processing, and incremental linking.

4.5 Other Observations

Attribute recompilation has not been discussed yet. Its performance lies

between that of smart recompilation and changed. It seems highly unlikely

that the latter case can be attained, because not all changes will be limited to

attributes that are unused; otherwise, there would hardly be any point in

making the change or exporting the changed declarations. Furthermore, only

types and variables have compile-time attributes that may remain un-

changed when the corresponding declaration changes. Recall that types make

up a mere 14 percent of both declarations and changes, and there were

practically no exported variables. Thus, we conjecture that only a small

fraction of the additional savings of attribute recompilation can be realized.

The bookkeeping involved in attribute analysis seems quite expensive and

might easily wipe out the small potential gain.

One of the surprises in this study is that specifications change relatively

frequently, especially during the early development. The high frequency

makes selective recompilation strategies all the more important, because

changes of specifications often cause far-reaching recompilation. It also

suggests that a separation between specification and implementation units is

perhaps not worth the bother, provided the language offers an adequate

encapsulation mechanism in some other way.

Another surprise is that the dependency graph was quite shallow, with a

wide fanout. This observation might not generalize to other systems. First,
the flatness of SMS might have been a conscious design decision. Second, we

did not analyze the dependencies into the underlying software layer. Obvi-

ously, a larger system would exhibit a deeper dependency graph. Note,

however, that not all changes occur at the roots of the dependency graph. For

bottom-up development, levels closer to the leaves are likely to change more

frequently. Thus, we expect that the average change propagates only a few

levels in the dependency graph before it reaches leaves. In other words, the

average propagation depth might be relatively small, even for large systems.

Our study was carried out for batch compilations. We believe that similar

results would hold for interactive compilations. The number of total compila-

tions would probably rise, while the number of changed units per configura-
tion would drop. However, there is no reason to assume that the dependency

graph and the relative frequency of changes to specifications and implemen-

tations would differ greatly.
There exist few other studies in this area. Besides our earlier work [Adams

et al. 1989], the only systematic approach known to us is Borison’s [ 1989]

Ph.D. thesis. Borison analyzed the evolution of a relatively small C program
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that consisted of 28 specifications (header files), 26 implementations, and a

total of 12,000 lines of code. The history contains 190 revisions over a period

of about half a year. With respect to selective recompilation, she reports the

following savings, measured in lines relative to cascading recompilation;

surface change—6.5 percent; smart recompilation-5 1.5 percent; and at-

tribute recompilation—58.3 percent. These are quite close to our results. The

difference in surface change could be caused by less documentation in Bori-

son’s data. In SMS, about one-third of the source lines are comments.

Eidnes et al. [1989] reported that change detection in CHILL consumes

about 3–4 percent of compilation time, which matches our estimate of the

overhead of smart recompilation.

Conradi and Wanvik [1985] estimated that environment reading may

consume 30–50 percent of compilation tirne. They also confirmed RUV as

below 0.2. Borison’s thesis reports the RUV for three C programs (0.29, 0.19,

and O.14) and three Ada programs (0.42, 0.14, and 0.07). The values vary

considerably, but are all rather small. The only larger value of 0.42 is for the

smallest of the six programs, consisting o~” merely 4,300 lines of code. It is

easy to see that for small programs the RUV value tends to be large, since the

interface of a module is used by a small number of units and should therefore

contain little redundancy.

5. CONCLUSION

This paper has compared several techniques of selective recompilation and

environment processing. By analyzing the three-year history of a realistic,

industrial software system, a conclusive comparison was possible. Smart

recompilation and selective embedding can each cut input nearly in half,

potentially doubling to tripling compilation speed and doubling linking speed.

Environment pruning could not be assessed. Its effectiveness depends

strongly on the dependency architecture of a given system.

Further studies should quantify the gains possible when recompiling at the

declaration and statement level. The fancmt and depth of the dependency

structure and the distribution of declarations and changes would be of

interest. Corroborating these results with different languages would be help-

ful. Finally, systems formulated in object-oriented or functional languages

may have different properties from those observed here.

APPENDIX

Table V gives an overview of the number of units, revisions, and configura-

tions in the subsystems CM and VM. In the surveyed time period of about

three years, CM was changed on 372 days and VM on 334 days. On average,

CM was modified on 10 days each month, and VM on 9 days. Altogether,
3,076 revisions were deposited (counting multiple deposits of the same unit

on the same day as one). This means that 4.4 units were touched on average

for each change of one of the two subsystems. The 3,076 revisions consist of

1,137 specification units and 1,939 implementation units. Surprisingly, speci-
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fication units were revised rather frequently: 37 percent of all changed units

were specifications.

The analyzer successfully processed 687 out of the 706 configurations (368

for system CM and 319 for system VM). The remaining configurations (4 in

system CM and 15 in system VM) contain syntax errors. Altogether, 79 (or

about 2 percent) of the individual units (50 in system CM and 29 in system

VM) contain syntax errors.
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