
Abstract

ADAGE is a project to define and build a domain-spe-
cific software architecture (DSSA) environment for
assisting the development of avionics software. A cen-
tral concept of DSSA is the use of software system gen-
erators to implement component-based models of
software synthesis in the target domain [SEI90].

In this paper, we present the ADAGE component-based
model (or reference architecture) for avionics software
synthesis. We explain the modeling procedures used,
review our initial goals, show how component reuse is
achieved, and examine what we were (and were not)
able to accomplish. The contributions of our paper are
the avionics reference architecture and the lessons that
we learned; both may be beneficial to others in future
modeling efforts.

1  Introduction

ARPA’s Domain-Specific Software Architectures
(DSSA) program was established in 1990 to create
innovative approaches for generating control systems
[SEI90]. The goal is to use formal descriptions of soft-
ware architectures and advances in non-linear control
and hierarchical control theory, to generate avionics,
command and control, and vehicle management appli-
cations with an order of magnitude improvement in
productivity and quality. A DSSA not only provides a
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framework for reusable software components, but it
also organizes design rationale and structures adapt-
ability. ADAGE (Avionics Domain Application Gener-
ation Environment) is a DSSA project for avionics
[Cog92-93, Goo92a-b]. The premise of ADAGE is that
many of the problems in navigation, guidance, and
flight director software are well-understood. For any
new avionics system, several features will require new
and innovative software, but much of the new system
can be built by combining and adapting existing com-
ponents. Therefore, a domain analysis can be used to
identify components and constraints inherent in the avi-
onics domain. A product of domain analysis, called a
reference architecture, is a blueprint for an avionics
software system generator.

A critical step in creating a DSSA is the definition of a
reference architecture. Domain analysis techniques are
still immature [Ara93, War92]; there are no commonly
accepted modeling processes or meta-modeling con-
structs that are used to define reference architectures.
Of critical importance is that whatever constructs or
processes are chosen must be domain-independent;
repeatability across multiple domains is an essential
requirement of a successful DSSA methodology.

We have chosen to develop the ADAGE reference
architecture in terms of the GenVoca model [Bat92a].
This model is suited for software system generation; it
relies on a particular style of organizing hierarchical
software systems in terms of standardized sets of
parameterized, plug-compatible, and reusable layers
called components. Using components and rules for
their composition, large families of software systems
can be defined.

In this paper, we present the ADAGE reference archi-
tecture. Although our work focuses on avionics soft-
ware, the emphasis of this paper is on creating
reference architectures, using the avionics domain as an
example. We begin by explaining the role of domain
modeling and reference architecture modeling in
ADAGE (and we believe DSSA software system gen-
erators, in general). We then review GenVoca modeling
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constructs and present the ADAGE reference architec-
ture couched in its terms. The contributions of our
paper are an avionics reference architecture and the les-
sons that we learned in applying GenVoca to the avion-
ics domain; we believe that both may be beneficial to
others in future modeling efforts.

2   Context and Modeling Objectives

ADAGE embraces a reuse factory paradigm (Figure 1).
Instead of moving directly from requirements to a one-
of-a-kind avionics software system (a process called
design without reuse), we recognize that target avionics
systems belong to a family [Par76] or domain of similar
software products. By analyzing the avionics domain (a
process called domain analysis), it is possible to define
libraries of primitive components and a factory for
assembling these components into target systems. The
blueprint for the libraries and factory is called the refer-
ence architecture. Using design requirements and the
factory to produce a target system is called design with
reuse.

We believe the key to improved avionics software pro-
ductivity is an integrated environment for exploring,
evaluating, and synthesizing different avionics software
architectures. As Figure 2 indicates, reference architec-
ture modeling is a rather small part of the scopes of
activities of ADAGE. Satisfying strict timing con-
straints, modeling performance based on various sched-
uling paradigms (e.g., rate monotonic, earliest deadline,
cyclic), estimating execution times accurately, deter-
mining aircraft-specific performance tuning constants,
presenting different views of an architecture (e.g., func-
tional, data flow, object-oriented), etc. all contribute to

the enormous difficulty of avionics software engineer-
ing. Nevertheless, reference architecture modeling is
critical because the software generator is the center-
piece for integrating performance requirements and
analysis tools, software documentation and design
rationale tools, etc. The integration of these tools in
ADAGE is discussed in [Cog92-93].

We identified four objectives when we began our mod-
eling process:

1.  To identify primitive, reusable components of
avionics software.

2.  To explain how components fit together to form
scalable avionics systems and subsystems.

3.  To explain variations in avionics software as dif-
ferent combinations of components.

4.  To outline features of a plausible avionics system
generator (i.e., factory).

The GenVoca model [Bat92a] was instrumental in for-
mulating our reference architecture (points #1-#3). This
model, which we review in the next section, relies on
hierarchical decompositions of avionics software sys-
tems into layers that import and export standardized
interfaces. The use of standardized interfaces is key to
component composibility, component reusability, and
software system scalability.

The most critical objective was #4; it reflects the obvi-
ous fact that any reference architecture is a theory that
postulates how to generate software systems of the tar-
get domain. Until the theory is validated through exten-
sive experimentation and implementation, it (the
reference architecture) is suspect. Our initial goal was
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to make the model plausible to avionics system engi-
neers; we have since verified parts of the model in a
series of progressively more complex prototypes.

3  The GenVoca Model

GenVoca is a domain-independent model for defining
scalable families of hierarchical systems as composi-
tions of reusable components. GenVoca is the distilla-
tion of the designs of two independently-conceived
software system generators for the domains of data-
bases and communications protocols [Bat92a]. Other
recent software system generators, such as Ficus (dis-
tributed file systems [Hei90]), Predator (data structures
[Sir93, Bat93b-94]), and Starburst (database systems
[Haa90]), can also be recognized as examples of Gen-
Voca organizations. The theoretical foundation for
GenVoca has its roots in Parnas’ families of systems
[Par76], Habermann’s FAMOS project [Hab78], and
Goguen’s model of parameterized programming
[Gog86, Tra93]. The features that distinguish GenVoca
are realms (or libraries) of plug-compatible compo-
nents, symmetric components, and type equations.

Components and Realms. A hierarchical software
system is defined by a series of progressively more
abstract virtual machines. A component or layer is an
implementation of a virtual machine. The set of compo-
nents that implement the same virtual machine is called
a realm. A realm is, in effect, a library of plug-compati-
ble and interchangeable components.

Generally, the membership of a realm can be enumer-
ated. Consider realms R and S:

R = { a, b, c }

S = { d[ R ], e[ R ], f[ R ] }

The above notation means that realm R has three mem-
bers, namely components a, b, and c, that are different
implementations of the interface (i.e., virtual machine)
of R. Realm S also has three members, each represent-
ing a distinct and alternative implementation of the
interface of S.

Parameters. Components may be parameterized. All
components of realm S, for example, have a single
parameter of realm R.2 Each component of S, say d,
exports the virtual machine interface of S and imports
virtual machine interface of R. Component d can be
understood as a transformation that maps objects and
operations of virtual machine S to objects and opera-

tions of virtual machine R. The key idea is that the
translation performed by d does not depend on how the
interface of R is implemented; in effect, component d
encapsulates a complex mapping between the inter-
faces of R and S.

A critical aspect to the composition (and indeed, cor-
rect functioning) of components is that they are all
designed to work cooperatively without violating their
encapsulations. For example, all components of R may
get much of their information via calls to the virtual
machine of R, but inherent in component designs is
other common knowledge about global variables, etc.,
and the side effects that their updates might trigger.
Much of this information can be made explicit as com-
ponent parameters; however the key point is that com-
ponents — whether or not they have parameters —
meet system constraints and can exploit knowledge that
is known system-wide.

Type Equations, Families of Systems, and Scalabil-
ity. Software systems are modeled as type equations.
Consider the following two systems:

System_1 = d[ b ];
System_2 = f[ a ];

System_1 is a composition of component d with b;
System_2 composes f with a. Note that both systems
are equations of type S. This means that both systems
implement the same virtual machine and hence, Sys-
tem_1 and System_2 are interchangeable implementa-
tions of the interface of S.3

Realms and their components define a grammar whose
sentences (component compositions) are software sys-
tems. Just as the set of all sentences defines a language,
the set of all component compositions defines a Parnas
family of systems. Adding a new component to a realm
is akin to adding a new rule to a grammar; the family of
systems automatically enlarges. Because large families
of systems can be built using relatively few compo-
nents, GenVoca is a scalable model of software system
construction.

2.  Parameterizations that we examine in this paper are
simple enough to dispense with formal parameter
names.

3.  Note that composing components can be interpreted
as stacking layers in hierarchical software systems. We
use the terms component and layer interchangeably,
although our use of the term ‘layer’ is different from its
typical ad hoc usage.



Design Rules. In principle, any component of realm R

can instantiate the parameter of a component of realm
S. However, there are always certain combinations of
components that semantically incorrect, even though
their compositions are type correct. Additional domain-
specific constraints called design rules are needed to
preclude illegal component combinations. Attribute
grammars appear to be a unifying formalism that can be
used to define realms, their components, and design
rules [Bat92b, McA93, Bat95].

Symmetry. Just as recursion is fundamental to gram-
mars, recursion in the form of symmetric components
is fundamental to GenVoca. Symmetric components
have the unusual property that they can be composed in
arbitrary ways. More specifically, a component is sym-
metric if it exports the same interface that it imports
(i.e., a symmetric component of realm W has at least one
parameter of type W). In the realm below, components n
and m are symmetric whereas p is not.

W = { n[ W ], m[ W ], p, ... }

Because n and m are symmetric, compositions
n[m[p]], m[n[p]], n[n[p]] and m[m[p]] are pos-
sible, the latter two showing that a component can be
composed with itself. In general, the order in which
components are composed can significantly affect the
semantics, performance, and behavior of the resulting
system.

4  The ADAGE Reference Architecture

Avionics software systems have been long understood
as layered subsystems. A typical layering is shown in
Figure 3. The bottom layer is formed by data source
objects (DSOs), i.e., sensor subsystems. Examples
include subsystems for inertial navigation sensors
(ins), tactical air navigation (tacan), and doppler navi-
gation sensors (dns).

DSO subsystems report their raw sensor values to the
navigation and radio navigation subsystems. Naviga-
tion (nav) software estimates the aircraft’s position rel-
ative to earth coordinates; radio navigation (rnav)
software estimates the aircraft’s position relative to a
(typically) fixed-position radio beacon. Navigation and
radio navigation software operates by integrating
diverse DSO estimates into a single estimate, as well as
dynamically adapting its calculations according to cur-
rently available data sources (i.e., DSOs can fail in
flight), filters, gains, and earth and atmospheric models.

The guidance subsystem determines the difference
between mission objectives and the current aircraft
state (e.g., position). It calculates a desired flight pro-
file, estimates errors in heading, speed and/or altitude,
and assures smooth transitions between guidance
modes. The guidance subsystem selects the guidance
modes (i.e., algorithms for computing flight profiles),
filters and gains, and specifies mode preconditions such
as data quality, capture criteria, and mode conflicts.

The flight director subsystem converts guidance errors
into pilot control cues or autopilot commands. Its pri-
mary function is to develop cues based on errors, air-
craft performance models and pilot models. As
designed, this subsystem can accommodate fixed-wing
or rotary-wing aircraft parameters, varying aircraft
flight models and pilot models, and different sets of
control laws and gains.

The controls and display subsystem presents the inter-
face to pilots. Results computed by any subsystem can
be displayed at flight time; pilots use this capability to
assess manually the reliability of sensor outputs and
their impact on subsequent stages of transformations
performed by the navigation, guidance, and flight direc-
tor subsystems.

The basic unit of data that is exchanged between sub-
systems is a state vector, which contains values that
define the state of the aircraft (i.e., position, heading,
etc.). At execution time, avionics software emulates a
pipeline where state vectors flow upward from data
source objects toward the controls and display sub-
system, while commands flow downward. Each execu-
tion cycle initiates another wave of state vector
transmissions and command propagations.

ADAGE addresses a core portion of avionics software,
namely the flight director to the DSOs. Our task was to
decompose each of these major subsystems into their
constituent symmetric and nonsymmetric components
and to show how their compositions described existing
and envisioned subsystems. We relied on the relative
independence of these major subsystems, starting with
DSO subsystems, identifying their realms and compo-
nents, and then progressing to navigation subsystems,
and higher level subsystems.

In the following sections, we explain a portion of the
model that we have developed. The full model is dis-
cussed in [Bat93a]. Here, we concentrate on explaining
how specific features and designs of avionics software
can be expressed in terms of components and type
equations. As mentioned earlier, there are many differ-



ent views or models of avionics software; the model
that we present here is central to software system gen-
eration in ADAGE.

4.1  Data Source Objects

We identified over twenty distinct data source objects,
including air data computers (adc), doppler navigation
subsystems (dns), radar altimeters (radalt), and global
positioning subsystems (gps). We rejected the possibil-
ity of creating a single virtual machine that was to be
exported by all sensors because of the wide array of
sensor functionality we were facing. Instead, proposing
a standard virtual machine interface for all adc sensors,
another interface for all gps sensors, etc. was much
easier and more readily acceptable by avionics engi-
neers [Bri81]. This decision led to a realm of compo-
nents for each distinct DSO type.

The realm of inertial navigation sensors (ins) is a typi-
cal example:

ins = { // equipment list

ins_asn_141, ins_asn_143,
ins_asn_143rlg, ins_asn_90,
ins_ln_15j, ins_ltn_51,
ins_skn_2443,

// simulators, filters, etc.

 ins_simulator, ins_filter[ins],
ins_select[{ins}],
ins_average[{ins}], ...

}

An ins equipment list is the list of actual inertial navi-
gation sensors that are available from different manu-
facturers. Each ins component is actually a physical
sensor and a device driver which translates the standard
ins interface into device-specific actions. Simulator
components can be swapped with equipment compo-
nents during test phases of system designs. Filter com-
ponents smooth state vector outputs.

A traditional software design in DSO subsystems is to
present a single sensor image to navigation from a col-
lection of redundant sensors. This view is accom-
plished using the symmetric components ins_select
and ins_average. Both are parameterized by a set of
ins components, denoted by parameter {ins}. The
ins_select operates as a multiplexor by reading the
state vectors of its input components and reporting the
state vector of the unit that was selected by the pilot.
The ins_average combines its input state vectors to
produce a single ins state vector that is more reliable
than that from any single ins sensor.

DSO subsystems are rather flat hierarchies; it is not
uncommon for a DSO subsystem to be modeled by a
single component. A more complex ins subsystem, for
example, might have a pair of ins sensors combined
by a selector. Such a system would be specified as an
equation of type ins:

multiple_ins = ins_select[ {
ins_skn_2443,
ins_skn_2443 } ];

controls and display

flight director

guidance

nav rnav

tacan dns
...

ins

Figure 3. A Layered Architecture for Avionics Software
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4.2  Navigation Software

Navigation subsystems are highly layered. They are
compositions of DSO subsystems and components
from five realms: earth_model, earth_geometry,
atmos, inav, and nav. The figure below offers a simple
overview the relationships among realm components.
Each node represents a realm; an arc from node A to
node B means that components of realm A may be
parameterized by components from realm B. A loop
represents the presence of symmetric components. Note
that there is a cycle in this graph: inav components can
be parameterized by earth_geometry components and
vice versa. We will see later that such cycles are critical
to navigation software.

As a brief summary of realm semantics, inav compo-
nents encapsulate navigation modes, filters, and selec-
tors. A navigation subsystem is an equation of type
nav. The state vector of a nav component includes all
the values of its input inav state vector, plus derived
values (possibly computed from earth_geometry and
atmos component state vectors).

An earth_model component encapsulates a set of
equations that estimate statistics about the earth’s
geometry. An earth_geometry component converts
earth_model outputs into estimates of the earth’s
radius, true heading, magnetic heading, etc. An atmos
component (or atmosphere model) computes dynamic
and static air pressure, barometric altitude, true air
speed, and calibrated air speed, among other values
from air data DSO subsystems.

In the following section, we examine the inav realm in
detail because inav subsystems (equations) contain
some of the most interesting and complex features of
avionics software.

nav

inav

earth_geometry

DSO subsystems

atmos

earth_model

Figure 4. Realm Dependency Graph for
Navigation Subsystems

4.2.1  Internal Navigation Realm

inav is a realm of components whose interface is
exposed only to other components within a nav sub-
system. The software for basic navigation modes can
be encapsulated as individual components in the inav
realm; so too can the software for “combined” modes
which transform state vector inputs from multiple DSO
subsystems. These are the only nonsymmetric compo-
nents in inav.

The most interesting inav components are symmetric.
Navigation software typically has multiple navigation
mode (components); each mode produces an inav state
vector that contains estimates of the current position of
the aircraft. State vectors from different modes will
vary in accuracy because of the DSO sources from
which they were derived. Mode control software reads
each of these state vectors and outputs a single inav
state vector which contains the most accurate value for
each vector field. Mode control software can be encap-
sulated as a symmetric component. Current avionics
technology imposes a static ranking per field (e.g.,
static_nav_mode_control[{inav}]), while
more advanced techniques permit dynamic rankings
(dynamic_nav_mode_control[{inav}]).

Estimates of aircraft positions can change abruptly
when input sources (chosen by mode control compo-
nents) change. First or second order washout filters are
needed to smooth these transitions; such filters are sym-
metric (e.g., high_pass_filter[inav]) because
they import (unsmoothed) and export (smoothed) inav
state vectors and inav interfaces.

The partial membership of the inav realm is:

inav = { // basic navigation modes

addr_nav_mode [atmosphere_model],
gps_nav_mode [gps],
ins_nav_mode [ins],
trn_nav_mode [ins], ...

// combined mode components

gps_ins_nav_mode [gps, ins],
ins_dns_nav_mode [ins, dns,

earth_geometry], ...

// filters

high_pass_filter [inav],
low_pass_filter [inav],
washout_filter_inav_dns [inav,

dns, earth_geometry],



// Mode-controllers and selectors

static_nav_mode_control [{inav}],
dynamic_nav_mode_control [{inav}],
inav_select [{inav}], ...

}

Aiding is the process by which data from one or more
different types of DSOs are combined to produce
results that are better than any single sensor [Goo92b].
A important design trade-off that arises in navigation
subsystem designs is whether to perform aiding before
selection. This trade-off is captured in our model by
different compositions of DSO and inav components.
Figure 5a depicts selection before aiding; Figure 5b
shows aiding before selection.

Feedback loops are a fundamental requirement of navi-
gation software. The state vector outputs of DSO sub-
systems are essentially derivatives of aircraft states
(e.g., changes in position, speed, direction, etc.). In
order to compute the state of an aircraft at time i, the
state at time i-1 must be available. Systems with feed-
back loops are expressed in GenVoca by recursive
equations. inav subsystems are represented by equa-
tions of the form (see Figure 6):

s_inav = inav_subsystem[ s_inav ];

On each execution cycle, the state vector of the inav
subsystem is input to an earth_geometry component
which is internal to that subsystem. This is the feedback
loop that occurs in navigation software.

4.3  Other Realms

The basic structure of realms with parameterized com-
ponents was repeated for radio navigation, guidance,
and flight director subsystems [Bat93]. Overall, our
model identified 20 realms containing over 350 primi-
tive components. These components allow us to define
a vast family of avionics software systems.

In general, type equations provide a very compact way
to express and reason about the architectural designs of
avionics software systems. We found that a simple avi-
onics system could be expressed in 20 equations that
referenced approximately 50 components; more com-
plex systems would easily double the number of equa-
tions and components.

5  Lessons Learned

The GenVoca model was a consequence of distilling a
common design paradigm from two independently-
conceived software system generators. The challenge
that we faced was that no methodology had been cre-
ated for applying GenVoca to new domains. Many of
the lessons that we learned and discuss below illumi-
nate key features that should be part of such a method-
ology.

Look for transformations. As mentioned in Section 3,
components are transformations or mappings between
virtual machine interfaces. We recognized early that the
basic unit of exchange between components was a state
vector, and therefore the virtual machine interfaces for
all realms should export operations on state vectors,
such as initialize_vector, read_vector, write_vector,
and terminate. Thus, our approach to decomposing the
DSO, navigation, guidance, etc. subsystems was to
look for primitive transformations on state vectors,
such as filtering, combining, etc. These primitive trans-
formations became our components. We knew that
whenever input (lower-level) state vectors were differ-
ent from output (higher-level) state vectors, a new
realm and virtual machine had to be created. Further-
more, a component/transformation was parameterized
by the state vectors that it read as input.

Distinguishing “primitive” from “nonprimitive” trans-
formations was subjective. We did not look for further
decompositions of a transformation when (1) system
and software engineers felt that the mapping it per-
formed was a basic unit of computation in avionics sys-
tems, and (2) no further decomposition of the
transformation was obvious. Our goal was to make
each component match a basic term or processing step
that avionics engineers used in describing the computa-
tions in avionics software. Thus, type equations would
be precise specifications of these verbal descriptions.
Overall, we feel this decomposition approach worked
quite well.

Exemplar systems. Reference architecture modeling
requires access to information on multiple systems in a
domain in order to discern their similarities and differ-
ences. In previous modeling efforts, over ten different
systems were analyzed in creating a reference architec-
ture [Bat88]. We faced a different situation where we
had access to detailed knowledge on only two, but very
different, avionics systems: a special operations heli-
copter and a fixed-wing transport. The lack of exemplar
systems was offset by a considerable expertise at Loral
Federal Systems Company on avionics software sys-



tems. Thus, having access to a few systems supple-
mented by domain expertise was sufficient for our
modeling effort.

Information gathering. Given the right information,
creating a reference architecture isn’t difficult. Unfor-
tunately, we were often surprised at how hard it was to
obtain (what would seem to be) relatively elementary
information. For example, finding the inputs to guid-
ance mode components required us to find the right
system engineer(s) to talk to. Quite often, no such per-
son could be found. System engineering expertise
tended to be highly focused on a particular project cou-
pled with diffuse information (or rumors) on what was
done on other aspects of the same project or on other
projects. We often had to rely on educated guesswork
as the primary means of deducing the parameteriza-
tions of components within certain realms. Overall,
collecting information was the most difficult aspect of
our modeling effort.

Object-oriented and functional designs. As men-
tioned earlier, the key to our modeling approach is rec-
ognizing the primitive transformations in avionics
software. Modeling transformations is really a process
of modeling algorithms and how algorithms fit together
in a layered manner. This approach is different than
object-oriented design methods where objects and their
operations are the central focus. Our approach is actu-
ally closer to functional decompositions, although
noted earlier, a transformation does not deal with just a
single function/operation, but an encapsulated suite of
interrelated functions (e.g., initialize_vector, read_-
vector, etc.). Our method of software decomposition
might be characterized as a meld of functional and OO
design methods.

Don’t look at code. Our domain model concentrated
on components and their compositions. There is noth-
ing in our model that addressed the internal construc-
tion/organization of a component’s software. From our

experience in building and validating several reference
architectures [Bat88, Sir93, Bat93b-94], we know that
the similarity of components within a realm is consider-
able. Exploiting this similarity is important in creating
a software system generator.

We made a brief foray into navigation software to bet-
ter understand component organizations and to com-
pare the implementation of (what appeared to be) the
same component in two different avionics systems.
This experiment failed in that we learned nothing on
the similarity of components, but learned a lot about
their dissimilarity. Navigation components, like most
avionics software, are defined by a set of mathematical
equations, where each equation has multiple terms.
There is general agreement in the avionics community
on what these equations are supposed to do — this is
the information that we were able to glean at the com-
ponent level. However, the number of ways of coding
the same set of equations is immense. Different terms
of the same equation would be given different (vari-
able) names and would appear in completely different
places in different systems, making it virtually impossi-
ble to verify that the same equations/component were
in fact reused. The phrase “individual coding prefer-
ences” kept cropping up in explanations as to why
source codes for the same component looked so differ-
ent.

We concluded that, in general, the transformations that
we identified as primitive components are not encapsu-
lated in existing systems. Consequently, it is clear why
very little code reuse in avionics software has been
achieved in the past.4 Another conclusion is that
domain (reference architecture) modeling must be done

4.  In contrast, requirements, equations, models and test
data are often reused in avionics system development.
The modularization that is imposed by our model can
make avionics code and designs more reusable.
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inav_select[ gps_ins[ gps1,ins1 ],
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Figure 5. Common Configurations of Selection and Aiding
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at the conceptual, not code, level. The critical issue of
modeling is identifying reusable abstractions. Studying
code is often too detailed to identify such abstractions.

Triad of expertise. Creating a reference architecture
requires expertise in software engineering, domain mod-
eling, and domain applications. In previous instances of
systems organized by GenVoca concepts, a single per-
son assumed all three roles. This was definitely not the
case here. We created a modeling team with different
individuals that covered the required triad of expertise.

Normally, a domain modeling expert consults with the
domain expert (i.e., a system engineer or engineers) to
create a model. Systems engineers are not always soft-
ware engineers, and thus are not the best candidates to
provide the reality checks that are essential in creating a
viable model. Thus, a software engineer (who has expe-
rience in building software in the domain) plays an
important role in keeping both the system engineer and
domain modeling expert focussed on the key issues as
well as maintaining their lines of communication. One
should not assume that system engineers understand
(reusable) software and that domain modelers under-
stand the domain (e.g., avionics). We found that a per-
son capable of bridging both worlds was very important.

Interface design. During the initial phases of modeling,
it is sufficient to know approximately what operations
would define a virtual machine interface (and that sys-
tem engineers are confident that a standard could be
realized). Defining a standardized virtual machine
requires building lots of components for that particular
realm [Bri81]. Each time a new component is added, the
standard may evolve to accommodate its particular fea-
tures (without exposing implementation detail). Time
and experience will eventually lead to a steady-state vir-
tual machine interface for that realm. Predeclaring or
hypothesizing interface “standards” prior to extensive
implementation and testing is doomed to failure.

Tools are essential. As our approach to decomposing
software systems hierarchically is not standard, there
were no tools to support and express our model. One of
our big wins was writing a simple compiler (or syntax
checker), called le (for layout editor), in which realms
and their components could be declared and composi-
tions of components could be specified. The syntax that
we have used in this paper for declaring realms and sys-
tems is the syntax of le. We found le clarified discus-
sions and understandings with people who were
learning to use the model. It caught the errors that com-
monly arose component modeling: referencing unde-
fined realms and components, identifying ambiguous or

incorrect type expressions, undefined variables, etc.
Modeling software systems is an art and any precision
that can be interjected into a modeling process is always
beneficial. le is available via anonymous ftp at cs.u-
texas.edu in directory /pub/predator.

Participation of others. As mentioned earlier, a triad of
expertise is needed to create a reference architecture.
There is also the obvious and fundamental need for peo-
ple (other than the domain modeler) to understand the
domain model that is being created. The involvement of
other system engineers and domain experts provides (a)
critical feedback on versions of the model as it develops,
and (b) opportunities to apply the model to describe sys-
tems that are being built or that might be built. Such
interaction exposes misconceptions (both on the domain
modeler’s part and others) and is generally a good edu-
cation opportunity for all.

Current software engineering practices. Successful
domain modeling requires a global understanding of
how software works in a domain. Most individuals who
have worked on representative software systems have
an understanding of a small corner of the domain and
rarely have the insights that are needed to extrapolate
accurately beyond their experiences. Engineers will
gladly offer conflicting opinions on how things work,
thereby contributing to the overall confusion.

It seems that current software engineering practices of
partitioning expertise actually hinders if not outright
precludes a successful domain modeling effort and, con-
sequently, reduces the probability of realizing a software
generator for that domain. It is worth noting that a study
of different software projects conducted by MCC
revealed that successful projects always had one or two
individuals (not necessarily the project leaders) who
understood their entire system [Cur88]; these are the
individuals who programmers turn to when all other
information sources for answering their questions had
been exhausted. Projects that did not have such individ-
uals were destined for failure (or were guaranteed to be
expensive). Thus, there appears to be something funda-
mental about understanding and designing software sys-
tems and software system families: for a project to
succeed, there must be individuals with a global under-
standing of the system or domain. For exactly the same
reason, it comes as no surprise that individuals with glo-
bal understandings are critical in creating reference
architectures and software system generators.

Composition is the key. Reuse libraries should not be
populated with randomly-harvested components. The
difficulties encountered with this approach are legion:



components are typically not interoperable (because they
are based on conflicting assumptions), they are not com-
posable because they have ad-hoc interfaces, and they can
be customized only with great difficulty (and considerable
hacking) [Gar95]. Instead, reuse libraries for generators
must have much more restrictive admission requirements.
The ability to compose components to build systems
quickly and cheaply is the key to creating successful gen-
erators. We also believe that the composibility of compo-
nents is also the key to enhancing their reuse.

It takes time. It is very easy to underestimate the effort to
design a reference architecture and to build a generator
that validates the model. Four months were originally allo-
cated for the process of creating the reference architecture
for ADAGE; it took us over a year-and-a-half to finalize
the model. The outlines of the model were actually created
quickly, in a few months. However, some investigations
resulted in dead-ends (e.g., our “looking at code” experi-
ence described above), and other aspects (e.g., learning a
new domain, building tools, generalizing existing model-
ing concepts) also took time. Granted with more experi-
ence, the effort needed to develop reference architectures
for other domains will certainly shrink. Overall, however,
our experiences seem common to most domain modeling/
reference architecture modeling efforts.

In general, a good rule of thumb would be to assume that it
is twice as difficult and costly to develop reference archi-
tectures and generators than it would be to design and
develop a single system. There are two reasons for this.
First, it is hard enough to design a single software system.
But in addition to all the usual difficulties, designers must
also deal with the constraints that the resulting compo-
nents must be “reusable”, i.e., they must be plug-compati-
ble, interoperable, and interchangeable. This often doubles
the design time.

Second, one typically has to build many more components
than that needed for a single system. In principle, one typ-
ically can’t demonstrate convincingly the generation of a
family of related systems without a fairly well-stocked
library of components to begin with; 50% more compo-
nents than that needed by a single system seems to be a
lower limit. The lesson to be learned here is that research-
ers who wish to follow our lead (or those of others) should
be prepared to expend the resources and time to maximize
the chances of a successful outcome.

6  Conclusion

In this paper, we presented a building-blocks view of the
reference architecture for avionics software generation in

ADAGE. We defined the reference architecture in
terms of the GenVoca model, a domain-independent
model that is aimed at software system generation.
We explained how GenVoca concepts were applied to
real-time avionics software and important design con-
figurations and alternatives were captured as different
compositions of primitive components. We also pre-
sented lessons that we learned, in the hope that others
will find them useful in future DSSA modeling
efforts.

There are other important views of avionics software
besides the one we presented in this paper: execution
models (or implementation styles), a dataflow/control
flow view, composition constraints and requirements/
rationale linkage are other critical features of our ref-
erence architecture [Cog92]. Currently, ADAGE is
refining formalisms and prototype tools that combine
these separate views into executable avionics pro-
grams.

In the end, the success of ADAGE depends largely on
the ease of specifying and combining components to
rapidly create new applications and prototypes. The
reference architecture — a high level guide to appli-
cation development — provides us with a major step
toward greatly improving productivity and quality for
avionics development.
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