
1

The CPP paradox
Jean-Marie Favre1

IMAG Institute
Université Grenoble (France)

Introduction

The CPP paradox

CPP is theC preprocessor. For most researchers this is a toolof the past. For most practitioners
it is a tool from the past but one which is currently used. The heavy use of CPP can lead to
unreadable programs; nevertheless large amounts of code are written using it. CPP makes
maintenance difficult, but CPP is largely used for maintenance... CPP can convert good programs
on which many program understanding tools apply, to incomprehensible programs with no tool
assistance... The presence of CPP constructs in programs is a headache for maintainers and for
tools builders, and CPP is still here... Most software engineering researchers consider CPP as an
uninteresting tool of the past but, when implementing their research prototypes, they turn into
practitioners and use it.

This introduction is controversial. The aim of this paper is to present what lies behind these
paradoxes and assess what should be done. Such paradox are representative of other distinctions:
Industry vs Research, State-of-the-practice vs State-of-the-art, Maintenance vs Development,
Reengineering vs Engineering.

Programming-in-the-large vs Programming-in-the-small

The distinction introduced by De Remer and Kron in “Programming-in-the-large vs
Programming-in-the-small” [Der76] is also relevant here. They argue that programming
languages are well suited to describe algorithms but not to describe the structure of complex
versioned software products. Since then, the separation of concerns between Programming-in-
the-large (PITL) and programming-in-the-small (PITS) has been considerably reinforced and the
corresponding research lines have evolved in parallel. This distinction usually implies a
granularity step. For instance, PITL tools typically see files as elementary values without
considering their contents. Conversely, programming languages deal with instructions, integer
and character values and usually do not provide support for versioning.

As shown in this paper, the C preprocessor is a pragmatic tool which bridges the gap between
PITS and some aspects of PITL. On the one hand, CPP has been designed by PITS practitioners
and is itself a (degenerated) programming language. On the other hand CPP tries to partially
solve some of the PITL problems, like modularity, versioning and configuration issues.

Content of this paper

Section I presents CPP from the State-of-the-practice point of view and gives answers to such
questions as:Why to talk about CPP? What mechanisms are provided by CPP? How, when and
why are they still used in practice? What is wrong with CPP?

CPP is then considered from a reengineering point of view. Section II answers questions like:
What is Reengineering-in-the-large? What techniques can be applied?

1. ADELE Team
Laboratoire LSR, BP 53, 38041 Grenoble Cedex 9. e-mail: Jean-Marie.Favre@imag.fr,
Voice (33)76514964, Fax (33)76446675, http: //www-lsr.imag.fr/users/Jean-Marie.Favre

2

I • CPP & the State-Of-The-Practice

In the 70’s practitioners designed the C language and CPP. Rationales were flexibility, efficiency,
simplicity and portability. Faced with the heavy machinery of Algol68 and all the concepts it
provides, they preferred to provide a fast compiler ensuring only a few checks, along with a
debugger... De Remer and Kron claimed that new concepts and tools must be introduced to cope
with large program production. Far from this idea, CPP has been designed to provide features
coping with some of the problems.

Two decades on why talk about CPP in a software engineering research context? It makes sense
in a maintenance and reengineering perspective. The paradox mentioned above should also be of
interest. Software engineering should not just consist of the elaboration of new methods and tools
for future development; it must also keep an eye on old software produced by old tools.

I.1) CPP significance

Why choose CPP as a case study?

• CPP, with the C language, is widely used both in industry and research. They are
fundamentals in the UNIX operating system. Usually interfaces to system libraries are based
on file inclusion and make an extensive use of conditional compilation. The same is true for
large components like the X Window system.

• CPP is mainly used with the C language, but it is not limited to it. It is also used with other
programming languages like Pascal dialects and C++ or even with text file or LaTeX
documents.

• Since it provides features like macro substitution, textual inclusion and conditional
compilation, CPP is relatively representative of other textual processors, and a large proportion
of what is said in this paper should be applicable to other text processors.

• Versioning and configuration aspects are usually considered at high granularity level. On the
other hand, thanks to conditional compilation, CPP is one of the few tools which enables us
allows to deal with these problems at a fine grained level. Indeed, cpp files constitute a portable
representation for program families1. Parametrized software products like GNU public domain
tools make extensive use of CPP.

• CPP is based on textual representation of programs: a simple but effective technology. In
spite of its evident drawbacks this representation is still widely used, and tools like emacs,
sccs, diff and some textual mergers are representative of the state-of-the-practice.

• With the C language, CPP is both an old and a modern tool. For new application
developments the industry shows an increasing interest in C++. While C++ features decrease
the need for CPP tricks, the transition to this programming paradigm will not be immediate and
CPP might not disappear rapidly. Thus, if nothing is done, in the next decade(s) CPP might
still give maintainers headaches.

Although CPP is a very low-level tool, its significance has been mentioned in workshops on
software configuration management [SCM] [Win88] [Sch89][Gen89][Malh94] and on software
reuse [Gro93]. Problems due to its use have also been reported for large software products
[Spe92] [Til92]. Some tools have been developed [Lit93] [Vo92]. Recently, different,
independent research have shown a growing interest in CPP, taking it as a case study or seeing it
from a reengineering point of view [Spu92] [Mun93] [Sin93] [Fav93] [Kro94] [Liv94] [Zel94]
[Fav94] [Sne95] [Fav95].

1. While PITS deals with programs, PITL deals with program families.

3

I.2) CPP Features

In this section the main features of mechanisms provided by CPP are presented. The reader is
invited to consult C programming language manuals for further information (or [Sta92]).

CPP is a textual preprocessor. It means that, before the compilation phase, a textual
transformation is applied to the program sources. These sources contain a mixture of cpp
directives and pieces of text. The output of CPP ought to be a well-formed C program. Compilers
for the C programming language can be considered as pure PITS tools. They do not deal with
modularity or versioning problems. Their unique function is to transform a monolithic flow of
characters into an object code. CPP, on the other hand, is responsible for the selection and
composition of multiple (textual) components. This can be viewed as a configuration problem
and, in this sense, CPP has a PTIL flavour1.

 CPP directives are lines beginning with a hash character ‘#’. Each directives and piece of text is
processed sequentialy.

File inclusion

The file inclusion directive (#include) allows the composition of multiple files. It takes a filename
as argument and temporarily changes the input to process the specified file. These directives can
be nested but no cycle is allowed. Actually, a file name is specified, not the content of the file. So
the cpp output heavily depends on the relation file name -> file content, i.e. on the file system
state before the cpp invocation. CPP does not modify this relation which acts as a cpp parameter.
In figure 1 an example is provided. Since the input contains a#include directive, the file system is
also important. Furthermore, “directory path access” can also be specified2 and change the
interpretation of the relation. File inclusion directives deal with coarse grained information kept
in the file store and indirectly identified with filenames.

Macro definition and macro substitution

The macro substitution mechanism provide roughly similar services but at a lower level of
granularity. It deals with strings indirectly identified by macro names. The relation macro name
-> macro value is not static: the#define <macroname> <macrovalue> directives allow sequential
modification as the cpp processing goes on. Note that a macro value can be an empty string. The
#undef <macroname> directive can be thought as a special case. It associates a special macro value,
let’s say“undefined”, to the specified macro name. At the CPP invocation an initial value is given
for this relation: some macro name assignments can be specified as parameters3 and theundefined

value is virtually assigned to other macro names4. Note that at definition time, the macro value

1. The same is true for link editors since they assemble object codes and choose proper libraries.
2. Via a sequence of options-I<directory> on command line. Note also that compiler may use different built in

path access for system libraries.

#include “a”
33

#define a b c
#define b 11 c
#define c 22
a 33

#define b 11 c
#define c 22
#define a b c
a 33

11 22 22 33

C
P
P 11 22 22 33

Input Output

Current file system state

Input Output

a #include b
#include c

11
#include “c”

22
c

b

Figure 1

Figure 2

Figure 3

C
P
P

11 22 22 33
C
P
P

Input Output

4

is not processed by CPP. It is considered as a string and it is not interpreted (the same occurs with
cpp files: their content are not interpreted when stored in the file system). This property implies
that the relative positions of#define directives is not relevant if they refer to different macro
names. For instance, the inputs shown in figure 2 and 3 are equivalent.

During the preprocessing,#include occurrences are substituted by the processed file contents. The
same occurs for macros. An occurrence of a macro name is replaced by the corresponding macro
value. Since macro names can be nested (macro values can contains macro names), the result is
then processed for subsequent substitutions (see figure 2).

Macro definitions can be slightly more elaborate: they allow formal parameters which are
instantiated with actual string parameters given for each macro name occurrence.

Conditional compilation

Conditional compilation allows pieces of text to be included or exclude for further processing.
Since CPP is not necessarily used with a compiler, this feature should be called conditional
inclusion. Conditional directives take the form of a#if <expression> <cpptext1> #else <cpptext2> #endif

sequence. Here<expression> is a C restricted integer expression. It deals only with integer values.
Basic arithmetic and relational operators are available. A result equal to 0 leads to the processing
of the “else” part.

Conditional expressions depend on the state of the mapping macro name -> macro value. If a
#include directive is present in the cpp file it may also depend on the mapping filename -> file
content since these files can define alternative macro values for a same macro name. Indeed file
inclusion, conditional inclusion and macro substitution are closely related and are often largely
interleaved. The first one deals with files (usually large sets of lines, i.e. a very long string), the
second one deals with file portions (usually a few lines, e.g. a medium string), and the third deals
with (usually small) strings.

I.3) CPP uses and abuses

One of the major qualities of CPP is that it provides a great flexibility. At the same time this
feature constitutes its main drawback1. CPP low-level mechanisms allow a great variety of usage
and it is sometimes very difficult to recognize the purpose of a sequence of directives.
Nevertheless, different classes can be identified.

CPP and textual abstraction

The possibility of giving a name to a string (a file or a macro value) is a basic support for textual
abstraction. For instance, since the C language does not provide constant declarations, the #define

directive is widely used for this purpose.

CPP and modularity

Thanks to the separate compilation mechanism, software can be broken down into various
compilation units. This is a useful step in implementing a first level of modularity. However, the
separation between interface and realisation is not made and standard link editor technology does
not allow any consistency check. To cope with this problem, the file inclusion mechanism is

3. Trough the options -D <macroname> <macrovalue> on command line which is equivalent to#define
<macroname> <macrovalue> in cpp source text. Note that built in assignments are usually done by compiler
front end implementations in order to define macro names according to the language, operation system, etc.

4. It is also possible to see this relation as a partial function from macro name to strings. In this case the#undef
directive correspond to a domain restriction operator, the#define directive to the overlap operator.

1. In a spaghetti plate each spaghetti is very flexible... The resulting structure of the spaghetti plate is also flex-
ible... but incomprehensible!

5

widely used to implement the interface notion. Shared definitions can be clustered in an include
file (typically macro and type definitions, procedure headings, etc.).

An include file, let’s say X, may “depend” on another include file. X might assume that it will be
included in a context in which these include files have been included. This solution is not reliable
and X should itself include these files by means of#include directives. In this case an include file
can be processed more than once. Giving such output to a compiler can lead to significant
performance decreases [Vo92] [Lit93] and to compilation errors if multiple definitions are not
allowed by the language. To cope with this problem a common practice consist to use a sequence
#ifndef <aname> #define <aname> <filecontent> #endif [Spe92]. The file content will appear only once in
the output.

CPP, parametrisation and genericity

The output resulting from the processing of a piece of cpp text depends heavily on the context in
what it appears. This context depends on the file system state and parameters given in the
command line. Since parameters and file contents are arbitrary values, there is potentially an
infinity of interpretations for a cpp piece of text. CPP can implement some form of
parametrisation and genericity [Win88][Til92][Gro93]. In figure 4 such an example of genericity
is presented. In real situations the maintainers should understand this without explanations or
graphical help... The file namedGenericList contains some generic definitions and list
implementations. The input of cpp is a client module which relies on two list definitions: a list of
char implemented as an array and a list of t-value implemented as linked list1. At CPP invocation
time, without changing any sources, the programmer has assumed that, for this particular
instantiation, a maximum number of 2000 elements is sufficient. Note the construction#ifndef

maxelem #define maxelem 10000 #endif in the include fileGenericList. Such constructions are
commonplaces [Spe92]. They allow default values to be to assigned to parameters.

CPP, portability and versioning

Through the conditional compilation mechanism different “versions” can be embedded in a
single file. This is especially useful for software portability [Bro74][Til92][Mah94]. In fact,
constraints associated with porting activities are very stringent. Delivery delays are usually very
short. Furthermore, for embedded systems it is not uncommon for the target platform to be
unavailable at the maintenance site. In this case, programmers can be temporarily remotely

1. The use of the concat operator (##) provided by recent CPP versions can considerably simplify this exam-
ple. This operator allows to prefix an identifier by a macro. For example provided thatelemtype is set to
char, the strings elemtype##list andelemtype##append are respectively substituted tocharlist andcharap-
pend if append iselemtype is set tochar.

C
P
P

Current file system state Input

Output

#ifdef LISTASARRAY
#ifndef MAXELEM
#define MAXELEM 10000
#endif
type LIST= pointer to

array[0..MAXELEM] of ELEMTYPE;
#else
type LIST= pointer to

record e : ELEMTYPE; n : LIST end ;
#endif
procedure APPEND(l : LIST; e : ELEMTYPE) ;
#ifdef LISTASARRAY
#else ...
#endif ...

Figure 4

#define ELEMTYPE char
#define LIST charlist
#define APPEND charappend
#define LISTASARRAY
#include “GenericList”
#define ELEMTYPE t
#define LIST tlist
#define APPEND tappend
#undef LISTASARRAY
type t= ...
#include “GenericList”
var cl : charlist ; tl : tlist ; t : t;
begin ...

charappend(cl, ‘x’) ;
Tappend(tl, t) ; ...

type charlist = pointer to array[0..2000] of char;
procedure charappend(l : charlist ; e : char); ...
type t= ...
type tlist = pointer to record e : t; n: tlist end ;
procedure Tappend(l : Tlist ; e : t) ; ...
var il : charlist ; tl : Tlist ; t : t;
begin ...

charappend (il, ‘x’) ;
Tappend(tl, t) ; ...

GenericList

Command Line

-D MAXELEM 2000

6

located or cross development can be done [Gen89]. Far from the research horizons, these
industrial realities explain why porting software usually consists of making patches in the text
sources rather that restructuring it if needed. Here the flexibility of the conditional compilation
mechanisms is appreciable and constructions like#ifdef sun ... #else ... #endif appear rapidly. Note
that when porting, software products must often be adapted to new and foreign components.
When development time comes round it is not always possible to anticipate these evolutions.
Clearly, the appearance of standards like POSIX helps to limit variations between systems, but,
as pointed out by Tilbrook and Crook, adherence to standards1 only partially resolves porting
problems [Til92]. With the increasing complexity of software developed, the trend is to reuse
whenever possible large foreign components. Nowadays, the porting problems do not only
consist in dealing with system calls and file systems but also with window systems, networking
components, object managers, etc.

Software text sources also depend on programming languages dialects and sometimes on CASE
tools. Thanks to conditional compilation some sources can be compiled with various
implementations of C, Ansi C, and C++ compilers. In practice these variations leads to sequences
like #ifdef _cplusplus... #else #ifdef STDC ... #else ... #endif.

While porting is an important aspect, other goals lead to variations in the source text of programs.
Typical examples are optional code for debugging purposes (the traditional#ifdef DEBUG ... #endif

sequence [Aba89]), adaptation to natural languages, time/space trade-off, etc. [Mun93] [Sin93]
[Zel94].

I.4) CPP drawbacks

While widely used, it is well known that CPP is a problematic tool [Til92] [Gen89] [Sin93]
[Kro94]. Some incomprehensible cpp pieces of code are reproduced in [Spe92]. To get a better
feeling for what can dive maintainers headaches the reader is invited to have a look at some UNIX
“portable interfaces”2. Figure 5 shows some pieces of code extracted from the include files of an
operating system. The comments show typical situations that arise in practice. Unfortunately in
much software this kind of informations are not present, the maintainer must rely only on the
code. An interface from public domain code is reproduced in appendix A.

Rather than simply noting that cpp use can lead to the worst case, it is fundamental to know
precisely what makes CPP so bad. Major flaws are identified below. Firstly, we present cpp
intrinsic problems and then problems which arise when it is used with a programming language.

1 • Understanding a cpp piece of text may involve the examination of various files.The

1. Some people say that standards are fine because there is a great possibilities to choose...
2. In some old unix kernel appears “you are not expected to understand this”.

/* @(#)buserr.h 2.2 92/05/27 SMI*/

/* This file is not needed for sun4m builds.
 * For historical reasons it was copied into this directory.
* Since Some files in the non-sun4m directories include this file,
* I will offer an empty file here
 */

/*
 * @(#)keyboard.h 1.11 88/09/28
 * Copyright (c) 1986 by Sun Microsystems, Inc.
...
 * Since this file is included by <mon/eeprom.h>, which is
* included by <machine/eeprom.h>, kernel files (specifically
* kbd.c) include it, too. The kernel file <sundev/kbd.h>
* contains parallel definitions for the constants in this file.
* All this should be cleaned up, but in the meantime, the
* following #ifndef is a kludgey solution.

 */
#ifndef IDLEKEY
...

Figure 5

7

relative order of text pieces may be essential. Invocation command lines are also of interest
since they usually contain samples of parameter assignments. Unfortunately, they are
usually not available to the maintainer1.

2 • Sometimes the maintainer wants to focus his/her attention on a specific version of the
source code. For instance he or she may choose to concentrate on the Sun version and try to
understand why the French and English variants have unexpected behaviours. For that,the
maintainer should reproduce mentally a partial cpp execution. Without tools assistance it
is cumbersome and error-prone.

3 • There is no lexical difference between regular identifiers and macro names. As a
consequence,it is very difficult to know which are the parameters of a piece of code (see,
for example, theGenericList file in figure 4). An explicit macro substitution syntax would
have been a better solution2. In [Til92] a preprocessor which deals with this problem is
proposed. With, CPP the common usage generally consists of using upper cases for macro
names. Unfortunately, this rule is not always respected.

4 • Reading only a macro definition does not allow its aim to be determined. The macro can
be used as a version selector (e.g.debug, sun) or as a parameter (e.g.sizemax 100). In the first
case it will appear (elsewhere) in some conditional expressions, in the latter case in some
piece of code. Note that these possibilities are not exclusive. Trying to capture the meaning
of a set of#define directives often requires browsing all cpp files to observe usages of these
definitions!

5 • Since CPP does not interpret macro values at definition time the mental interpretation
should also be deferred. This makes understanding even more complex. See, for instance,
the#define directives in the input of figure 4. The reader cannot capture the purpose of the
#define elemtype T before reading theGenericList file and the definition of the T type. Consider
also the construction #define A 1 #define B A ... #undef A ... #define A 10 ... B. When reading the
B definition, the maintainer will probably infer that it is a short-cut for the value 1, but in
fact the B occurrence is replaced by 10. Such constructions should always be considered
with suspicion. Without tool assistance it may be difficult to detect such cases since they are
likely to appear precisely in the worst cases: when CPP preprocessing involves complex file
inclusion graphs.

6 • By default, undefined values are initially assigned to macro names. Thusfor a macro there
is no difference between an intentional lack of definition and an erroneously omission.
Indeed, relying on this value as a version selector is a bad (but generalized) practice. The
#ifndef <macro> #define <macro> <defaultvalue> #endif sequences are exceptions: they provide great
flexibility while ensuring that the macro will be defined with a correct value. Furthermore,
such a construction usually constitutes a clue to the presence of a parameter. As stated above
the undefined value is replaced by0 in conditional expression. In an arithmetic term this is
probably not the expected behaviour and it usually corresponds to an error.

7 • The usage of the#else directive is also problematical since the universe of variation is not
closed. For instance, a program originally defined for aSun and then ported toHp would
probably have some constructions like#ifdef hp ... #else ... #end. This hides the fact that the else
part has been tested only on Sun and when ported to a new platform it will be taken by
default. A construction like#ifdef hp ... #endif #ifdef sun ... #endif is the worst because no code will
be produced for another platform! A better construction (very rare in practice) will signal
an error when needed:#ifdef hp... #else #if sun ... #else #error #endif. More generally,preconditions

1. Is is worthwhile to look at makefiles when used in conjunction to CPP.
2. For instance an explicit$<macroname> notation (as used in shell scripts) would have simplified the compre-

hension of theGenericList include file.

8

on parameters and contexts are not made explicit in cpp programs. In [Zel94] it is
suggested that a sequence checking proper precondition on macro value be inserted at the
beginning of each cpp file. For instance,#if ! defined(sun) || ! defined(hp) && !defined(GUNC) #error

#endif.

The flaws presented above are intrinsic to cpp features and will remain even when preprocessing
plain text or other documents1. As shown below, when CPP is used with programs more problems
crop up!

8 • While maintainers consider cpp input, compilers or CASE tools consider cpp output. This
difference can lead to misunderstanding and difficulties in interpreting compiler errors or
use tools like debuggers. The reader may have noticed that in the figure 2 a great help is
provided by the lines between cpp input and output. Technically this kind of informations
is transmitted to the compiler via the insertion of#file <filename> and #line <linenumber>

annotations in cpp output. But no#macro <macroname> construction is provided2. Without
tool assistance to debug cpp execution, maintainers try to decipher cpp output. To
understand the reason for an error they must reproduce mentally the multiple nested
substitution chains. Since the cpp output contains no trace of macro definition and
expansion this task is very painful!

9 • CPP works on textual representation. A syntactic basis would have been better [Win88]
[Wei93]. Sometimes such directives split syntactic entities; the reader must mentally
recombine them. Usually, this does not lead to major problems since compilers will check
syntax. Nevertheless, if the language provides very similar syntactic constructions for
different semantics, serious problems are likely to arise. Let us consider the following
example:#define A 1 ... #define B A+4 c := B*2 ; the value assigned to C is ... 9! In fact the
expression B*2 is replaced by 1+4*2. This substitution “cuts” the corresponding syntactic
tree.

10 • No semantic checking can be ensured on a cpp include file: (1) CPP deals with strings not
with semantic entities, (2) the output of cpp depends on the inclusion context, which is not
restricted. For example, no semantic checking can be done for the include fileGenericList

alone. All the compiler can do is to ensure that a specific instantiation is correct.

11 • Test coverage problems encountered at program level arise at a program family level.
With no tool assistance the maintainers may have difficulties to determine which pieces of
text have been exercised and under which conditions.

12 • It was stated in the introduction that CCP also represents headaches for tools builders.The
presence of cpp directives in programs impose serious limitation on the applicability of
worthwhile techniques, especially those which are based on program source
transformations. This is due to the fact that analysis techniques are available for programs,
not for program families. For instance, it would be useful to apply slicing techniques on real
industrial C programs, but currently the presence of cpp instructions (along with other
factors) makes this impossible. Different tools manage versioned information similar to cpp
files, but, since they do not take into account all cpp tricks, they are not applicable to real C
programs [Kru83] [Sne93] [Mun83] [Zel94].

1. Nevertheless the complexity is much lower because pieces of text are less interconnected (or at least the
semantic connection between these part are not taken into account).

2. This pragmatic choice can be explained by the fact that include files are expected to contain long strings
included few times whereas macro value are usually short strings included many times. Usually#file and
#line roughly allow the programmer to trace the execution of cpp. When macro values are large, as for
“inline” function, maintainers are lost in cpp output.

9

I.5) So what?

Faced with the problem presented here, different reactions are possible. Maintainers may take an
aspirin and try to patch patches before deadlines expire. Practitioners may impose a discipline on
the use of CPP [Spe92] [Aba89], set up a portability framework and implement a better
preprocessor [Til92]. Some academics may say “with the ‘alpha’ method this may not occur” and
20 years later when millions of lines of code have been developed with ‘alpha’ and (new)
maintenance problems arise they may say “with the ‘beta’ method this may not occur”. Some
researchers may ask “What can research do to make maintenance of real programs easier? What
can we do with cpp files?”

Of course, all these reactions are complementary and correspond to different points of view. In
the next section the last option is developed.

II • CPP and Reengineering

The need to deal with maintenance of a growing amount of large and old software leads to the
emergence ofSoftware Reengineering [Arn93]. In the remainder of this paper the taxonomy
proposed by Arnold is used because it presents “Reengineering” as a general term which
encompasses a large set of activities defined by goals. According to this definition a
reengineering activity may or may not modify the software. Thus program understanding is also
a reengineering activity.

II.1) Reengineering-In-The-Large vs Reengineering-In-The-Small

As suggested in [Fav94] the distinction between Programming-in-the-large and Programming-
in-the-small applies to all domains of software engineering and thus can be specialized to
reengineering:

Reengineering-in-the-small activities are reengineering activities which focus on the
detail of small portions of the software.

For example, the aim of the European Esprit project REDO is to generate Z specifications from
source code [Bow91]. Since a detailed knowledge of source code is necessary, it is essentially a
Reengineering-In-The-Small (RITS) approach.

Reengineering-in-the-large activities are reengineering activities which focus on the
structure of software and/or their versioning dimensions.

The C++ Information Abstractor from AT&T is a typical example of a Reengineering-in-the-
large (RITL) system [Gra92].

The PITL/PITS distinction can also be applied to reengineering sub domains. For example,
Restructuring-In-The-Large can be distinguished fromRestructuring-In-The-Small. The Arch
system [Sch91] is representative of the former case while traditional techniques for goto
instructions elimination are related to the latter case. In what concernsProgram Understanding,
it is proposed in [Fav94b] that the termProgram Family Understanding be used when the focus
is on structural or versioning aspects of software.

The structural aspect of software is important in PITL, and RITL tools take it into account. But
versioning has been forgotten by the reengineering discipline [Fav94a]. Almost all the existing
tools only consider a non-versioned world. Gulla emphasizes the lack of views taking version
aspects into account [Gul93]. To understand a program family, a maintainer might apply classical
tools successively to each version and then try to make the synthesis by himself... If he wants to

10

use a Restructuring-in-the-large tool, he might do it on a specific version, but nothing ensures that
this restructuration is compatible with other ones.Large software products are versioned and
reengineering must deal with it.

II.2) CPP and reengineering.

Preprocessors are isolated tools in the sense that they are based on rather specific concepts. Their
behaviour is not well defined. Furthermore different preprocessors are used in legacy systems.
Building reengineering tools in this context can be rather difficult.

To cope with this problem, in [Fav95] CPP is studied from a non-conventional point of view: this
preprocessor is seen as a basic imperative programming language working on strings. So we have
defined APP (Abstract PreProcessor), a small language which is compatible with CPP, but which
uses Programming-in-the-small concepts.

Roughly speaking, macros are variables; the relation macro name -> macro value acts as the
memory;#define and#undef directives are assignments; control structures are very poor: there are
only conditional instructions, no loop, no goto statement; files act as procedures and each
fragment of text is interpreted as an output statement (i.e. A CPP execution modifies the memory
(of macro) and generates an output).

The abstraction process from CPP to APP is shown in the table below. APP is an abstract
language and it is defined for reengineering purposes only. It appears here with a concrete syntax
only to facilitate the comprehension. In fact, APP programs are CPP abstract trees.

 TABLEAU 1 Abstraction: from CPP to APP (cpp file = app procedure)

concrete terminology CPP APP abstract terminology

cpp file <File> ::= <FileName> <FileContent> <Proc> :=procedure <ProcName>is
begin <ProcBody>end

 app procedure

file name <FileName> <ProcName> procedure name

file content <Filecontent> ::= <CppDirective> <ProcBody> ::= <Stmt> procedure body

cpp directive <CppDirective> ::=
<SequenceDirective>

| <TextualInclusion>
| <Conditionals>
| <TextFragment>
| <MacroDef> | <MacroUndef>

<Stmt> ::=
<SequenceStmt>

| <CallStmt>
| <IfStmt>
| <OutStmt>
| <AssignStmt>

statement

directive sequence <SequenceDirective> ::=
<CppDirective> <CppDirective>

<SequenceStmt> ::=

<Stmt>; <Stmt>

statement sequence

textual inclusion <TextualInclusion> ::=

#include “<FileName>“
<CallStmt> ::=

 call <ProcName>

procedure call

Input

procedure GenericList is
begin

if [defined $ LISTASARRAY] then
if [not defined $ MAXELEM] then

MAXELEM := “[10000]”
else

output [type $LIST = pointer to] ;
output [array [0.. $MAXELEM] of $ELEMTYPE ;] ;

else
output [type $LIST = pointer to] ;
output [record e $ELEMTYPE n “ :” LIST end “ ;’] ;

output [procedure $APPEND (l : $LIST ; e : $ELEMTYPE)] ;
if [defined $ LISTASARRAY] then

...
else

...
end

procedure p is
begin

ELEMTYPE := “[char]” ;
LIST := “[charlist]” ;
APPEND := “[charappend]” ;
LISTASARRAY := “[]” ;
call GenericList ;
ELEMTYPE := “[t]” ;
LIST := “[tlist]” ;
APPEND := “[tappend]” ;
LISTASARRAY := “[]” ;
output [type t = ...] ;
call GenericList ;
output [var cl : charlist ; tl : tlist ...] ;
...

end

11

The denotational semantics of APP have been defined [Fav95] so it is possible to think about CPP
files on a formal basis. The benefit of this abstraction is that it allows us to use concepts available
in the PITS domain. For example, it is possible to apply program analysis techniques like slicing,
partial evaluation or data flow analysis. Slicing is useful for maintainers wishing to read a CPP
piece of code. Partial evaluation allows them to remove unused versions. Computing reaching
definitions and live variables allows them to know which macros are used in a given piece of
code. Inter-procedural data flow analysis is necessary in the cases of multiple files.

The main difficulty lies in the fact that CPP uses dynamic binding. This is not a conventional
problem in program analysis. We have designed and implemented an algorithm which builds a
program dependence graph and takes dynamic binding into account. Slices are based on this
result.
Currently we are implementing different tools. They are based on:
(1) a functional language (Camllight a dialect of ML),
(2) lex and yacc for the CPP to APP conversion,
(3) the daVinci graph editor to show different views of software.

III • Conclusions

CPP can be seen as a tool for representing program families. Recently there has been growing
interest in studying this tool in a research context [Spu92] [Mun93] [Sin93] [Fav93] [Kro94]
[Liv94] [Zel94] [Fav94] [Sne95] [Fav95]. Usually only specific techniques are applied. We
propose to use a general approach with a formal basis in order to be able to apply the results
obtained to other preprocessors.

conditional
compilation

<Conditionals> ::=

#if <CondTokenList>1
<CppDirective>1
#elsif <CondTokenlList>2
<CppDirective>2
#elsif ...

...
#else
<CppDirective>n
#endif

<IfStmt> ::=

if <CondTerm>1
then <Stmt>1

else if<CondTerm>2
then <Stmt>2

else...

conditional instruction

condition <CondTokenList> ::= <TokenList> <CondTerm> ::= <Term> condition term

text fragment <TextFragment> ::= <TokenList> <OutStmt> ::=output <Term> output instruction

token list <TokenList> ::= [<Token>] <Term> ::= [<Factor>] term

token <Token> ::= <MacroNameOcc>
| <StdToken>

<Factor> ::= <Const>
| <VariOcc>

factor

regular token <StdToken> <Const> constant

macro occurence <MacroNameOcc> ::= <MacroName> <VarOcc> ::=$<Var> variable occurence

macro name <MacroName> <Var> variable

macro definition <MacroDef> ::=

#define<MacroName> <MacroVal>

<AssignStmt> ::=

<Var> := <Value>

variable assignment
(dynamic binding)

macro value <MacroVal> ::= <TokenList>
| <ParameterizedMacro>

<Value> ::= <Term> | <Function> value

parametrized macro <ParameterizedMacro> ::=

([<Var>]) <TokenList>

<Function> ::= function

“fun [<Var>] . <Term>“
function

 TABLEAU 1 Abstraction: from CPP to APP (cpp file = app procedure)

concrete terminology CPP APP abstract terminology

12

Bibliography
[Aba89] A. Abacus; “Parameterizing C Code at Compile and Run Time”, in Structured Programming, Vol. 10, N.

4, Springer Verlag, 1989, pp. 209-214.

[Arn93] R.S. Arnold; “Software Reengineering”, IEEE Computer Society Press, ISBN 0-8186-3272-0, 1993, 675
pages.

[Bro74] P.J. Brown; “Macro processors and techniques for Portable Software”, Wiley series in
computing, ISBN 0 471 11005 1, 1974, 244 pages.

[Fav93] J.M. Favre; “Vers une representation multi-langages et multi-versions des programmes” in 6th Interna-
tional Conference On Software engineering and its Applications, Paris, France, 1993, pp. 459-468, In
French.

[Fav94] J.M. Favre; “Reengineering-In-The-Large vs Reengineering-In-The-Small”, first SEI Workshop on Soft-
ware Reengineering, Software Engineering Institute, Carnegie Mellon University, May 1994.

[Fav95] J.M. Favre; “Une approche pour la maintenance et la ré-ingéniérie globale des logiciels”, PhD disserta-
tion, Unsiversity of Grenoble, July 1995.

[Gen89] W. M. Gentleman, S.A. MacKay, D.A. Stewart, M. Wein; “Commercial Realtime Software Needs
Different Configuration Management” , in Proc. of the 2nd International Workshop on Software Config-
uration Management, Princeton, (New Jersey), October, 1989, pp. 152-161.

[Gra92] J.E. Grass; “Cdiff: A Syntax directed Differencer for C++ Programs” in USENIX, Computing Systems,
Vol. 5, N. 1, 1992.

[Gro93] F.J. Grosch, G. Snelting; “Polymorphic Components for Monomorphic Languages” in Proc. of the 2nd
Internation Workshop on Software Reusability, pages 47-55, Lucca, Italy, March 1993, pp. 47-55.

[Gul93] B. Gulla; “The constraint diagram: an approach to visualizing the version space” , in Proc. of the 4th
International Workshop on Software Configuration Management, Baltimore, Maryland, USA, May
1993, pp. 112-122.

[Kin81] J.C. King; “Program Reduction using Symbolic Execution” in ACM SIGSOFT Software Engineering
Notes, Vol. 6, N. 1, January 1981, pp. 9-14.

[Kro94] M. Krone, G. Snelting; “On the Inference of Configuration Structures from Source Code”, Proc. 16th
International Conference on Software Engineering, Sorrento, Italy, 1994.

[Kru83] V. Kruskal; “Managing Multi-Version Programs with an Editor” in Research Report, RC 10217
(#45003), IBM Thomas J. Watson Research Center, P.O. box 218, Yorktown Heights, New York 10598,
August 83.

[Lit93] A. Litman; “An Implementation of Precompiled Headers” in Software - Practice and Experience, 23:3,
March 1993, pp. 341-350.

[Liv94] P. E. Livadas, D.T. Small; “Understanding Code Containing Preprocessor Construct”,
in IEEE Third Workshop on Program Comprehension, Washington, November 1994.

[Mah94] A. Mahler; “Variants: Keeping Things Together and Telling Them Apart” , Chapter 3, in
W.F. Tichy, Editor; “Configuration Management”, Trends in Software 2, ISBN 0-471-94245-6, John
Wiley & Sons, 1994.

[Mun93] B.P. Munch; “Versioning in Software Engineering Database : the Change Oriented Way” , PhD disser-
tation, Division of Computer Systems and Telematics, The Norwegian Institute of Technology, 1993.

[Nar89] K. Narayanaswamy; “A Text-Based Representation for Program Variants” in Proc. of the 2nd Interna-
tional Workshop on Software Configuration Management, Princeton, (New Jersey), October, 1989, pp.
30-33.

[Sch89] U. Schroeder; “Incremental Variant Control” in Proc. of the 2nd International Workshop on Software
Configuration Management, Princeton, (New Jersey), October, 1989, pp. 145-148.

[Sch93] R.W. Schwanke, V.A. Strack; “Configuration Management Problems and Architectural Integrity” , in
Proc. of the 4th International Workshop on Software Configuration Management, Baltimore, Maryland,
USA, May 1993, pp. 225-228.

[SCM] Proc. of International Workshop on Sofware Configuration Management. 1st SVCC Grassau 1988, 2nd
Princeton 1989, 3rd Trondheim 1991, 4th Baltimore 1993.

13

[Sin93] P. Singleton, O.P. Brereton; “A Case for Declarative Programming-in-the-Large”, in Proc. 5th Interna-
tional Conference on Software Engineering and Knowledge Engineering, San Francisco, California,
1993.

[Sne95] G. Snelting; “Reengineering of Configurations Based on Mathematical Concept Analysis”, Computer
science report 94-02,Technical University of Braunschweig,
Germany, January 1995, 28 pages.

[Spe92] H. Spencer, G. Collyer; “#ifdef Considered Harmful, or Portability Experience With C News” in
USENIX, Summer 1992 Tecnical Conference, San Antonio (Texas), June, 1992, pp. 185-197.

[Spu92] D. Spuler, A.S.M. Sajeev; “Static Detection of Preprocessor Macro Errors in C”,
Technical report 92-7, James Crook University, 1992, 18 pages.

[Sta92] R. Stallman; “The C Preprocessor”, GNU Project, Free software foundation, July 1992, 52 pages.

[Til92] D. Tilbrook, R. Crook; “Large Scale Porting through Parametrization” in USENIX, Summer 1992
Tecnical Conference, San Antonio (Texas), June, 1992, pp. 209-216.

[Vo92] K.P. Vo, Y.F. Chen; “Incl: A Tool to Analyse Include Files” in USENIX, Summer 1992 Tecnical Confer-
ence, San Antonio (Texas), June, 1992, pp. 199-208.

[Wei93] D. Weise, R. Crew; “Programmable Syntax Macros”, in ACM SIGPLAN ‘93
Conference on Programming Language Design and Implementation, 1993, pp. 156-165.

[Win88] J.F.H. Winkler, C. Stoffel; “Program-Variations-in-the-Small”, in Proc. International Workshop on Soft-
ware Version and Configuration Control, Grassau (Germany), January, 1988, pp. 175-196.

[Zel94] A. Zeller; “Configuration Management with Feature Logics”, Technical report TR-94-01, Technische
Universitat Braunschweig, Germany, March 1994.

14

Appendix A
#ifndef P2C_H
#define P2C_H
#include <stdio.h>
/* If the following heuristic fails, compile -DBSD=0 for non-BSD sys-
tems or -DBSD=1 for BSD systems. */
#ifdef M_XENIX
define BSD 0
#endif
#ifdef vms
define BSD 0
ifndef __STDC__
define __STDC__ 1
endif
#endif
#ifdef __TURBOC__
define MSDOS 1
#endif
#ifdef MSDOS
define BSD 0
#endif
#ifdef FILE /* a #define in BSD, a typedef in SYSV (hp-ux, at least) */
ifndef BSD /* (a convenient, but horrible kludge!) */
define BSD 1
endif
#endif
#ifdef BSD
if !BSD
undef BSD
endif
#endif
#if (defined(__STDC__) && !defined(M_XENIX)) || de-
fined(__TURBOC__)
include <stddef.h>
include <stdlib.h>
define HAS_STDLIB
if defined(vms) || defined(__TURBOC__)
define __ID__(a)a
endif
#else
ifndef BSD
ifndef __TURBOC__
include <memory.h>
endif
endif
ifdef hpux
ifdef _INCLUDE__STDC__
include <stddef.h>
include <stdlib.h>
endif
endif
include <sys/types.h>
if !defined(MSDOS) || defined(__TURBOC__)
define __ID__(a)a
endif
#endif
#ifdef __ID__
define __CAT__(a,b)__ID__(a)b
#else
define __CAT__(a,b)a##b
#endif
#include <ctype.h>
#include <math.h>
define EXIT_SUCCESS 0
define EXIT_FAILURE 1
#define Enum

#define SETBITS 32
#define Inline inline
#if defined(hpux) || defined(A2_RS6_AIX32_STD) || defined
(__CLCC__) && !defined (__GNUC__)
#define Signed
#define Volatile
#ifndef hp9000s300
#define Enum
#else
#define Enum enum
#endif
#else
#define Have_Full_Inline
#define Signed signed
#define Volatile volatile
#define Enum enum
#endif
#define Void void /* Void f() = procedure */
#define Const const
typedef char *Anyptr;
#define Register register /* Register variables */
#define Char char /* Characters (not bytes) */
#define Static static /* Private global funcs and vars */
define Local static /* Nested functions */
typedef Signed char schar;
typedef unsigned char uchar;
typedef int boolean;
#ifndef true
define true 1
define false 0
#endif
#ifndef TRUE
define TRUE 1
define FALSE 0
#endif
extern int P_ioresult;
#define PP(x) x
#define PV() (void)
#define FileNotFound 10
#define FileNotOpen 13
#define FileWriteError 38
#define BadInputFormat 14
#define EndOfFile 30
#define BUFEOF(f) (__CAT__(f,_BFLAGS) != 2 && P_eof(f))
#define RESETBUF(f,type) (__CAT__(f,_BFLAGS) = 1)
#define SETUPBUF(f,type) (__CAT__(f,_BFLAGS) = 0)
#define Free(p) (free((Anyptr)(p)), (p)=NULL)
#define Malloc(n) (malloc(n) ?: (Anyptr)_OutMem())
extern int _OutMem PV();
extern int _CaseCheck PV();
extern int_EscIO PP((int));
extern int P_peek PP((FILE *));
extern int P_eof PP((FILE *));
extern int P_eoln PP((FILE *));
#define FILEBUFNC(f,type) int __CAT__(f,_BFLAGS); \

 type __CAT__(f,_BUFFER)
/* Memory allocation */
#include “adlstr.h”
typedef struct _TEXT{
 FILE *f;
 FILEBUFNC(f,Char);
} _TEXT;
#endif /* P2C_H */
/* End. */

