
(c) Copyright 1995 AT&T.

All Rights Reserved.

Reprinted with AT&T's permission.

Notice: For personal use only. These materials

may not be reproduced or distributed in any form

or by any means except that they may be downloaded

from this source and printed for personal use.

PRACTICAL REUSABLE UNIX SOFTWARE

PRACTICAL REUSABLE UNIX SOFTWARE

Edited by

Balachander Krishnamurthy

John Wiley & Sons, Inc.

New York � Chichester � Brisbane � Toronto � Singapore

Publisher: Katherine Schowalter
Senior Editor: Diane D. Cerra
Managing Editor: Maureen B. Drexel
Text Design & Composition: Balachander Krishnamurthy

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons. Inc. is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

This text is printed on acid-free paper.

Copyright c
1995 by AT&T. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional service. If legal advice
or other expert assistance is required, the services of a competent professional person
should be sought.

Reproduction or translation of any part of this work beyond that permitted by section
107 or 108 of the 1976 United States Copyright Act without the permission of the
copyright owner is unlawful. Requests for permission or further information should be
addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data:

Practical reusable UNIX software / edited by Balachander
Krishnamurthy.

p. cm.
Includes bibliographical references and index.
ISBN 0-471-05807-6 (acid-free paper)
1. Operating systems (Computers) 2. UNIX (Computer �le)

3. Computer software{Reusability. 4. Computer software{
-Development. I. Krishnamurthy, Balachander, 1961- .

QA76.76.063R48 1995
005.1{dc20 94-37119

CIP
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

To my family in the United States and in India

Trademarks

X Windows System is a trademark of Massachusetts Institute of Technology.

UNIX is a registered trademark of X/Open Inc.

watchd, libft, REPL are registered trademarks of AT&T Corporation.

SoftBench is a trademark of the Hewlett-Packard Company.

Encapsulator is a trademark of the Hewlett-Packard Company.

DOMAIN is a registered trademark of HP-Apollo.

vii

Foreword

This book describes a collection of software of a sort that people have

known was needed for years, but has been neglected. Most of the

computer-using population sees machines that run applications created

by others. It's hardly surprising that most of the ink on paper and pixels

on the screen, that talk about computers are devoted to the result{the

quality, usefulness, and attractiveness of the applications. Most people

don't program.

But someone has to create these applications, and the software in-

dustry has known for a long time that handcrafted software is expensive.

AT&T, the company for which I work, has undergone a lot of change since

I �rst joined it; one of the most profound, albeit not the most obvious

from the outside, is its transformation to an essentially software-based

organization. The communications services and the telephone switches

AT&T sells are, in a real sense, enabled by an enormous number of lines

of code in various languages, running on a vast assortment of hardware;

writing and maintaining software dominates our development budget.

The tools and libraries described in this book show a variety of ap-

proaches to help reduce these costs. It doesn't claim to be a cure-all; it

doesn't say, \Buy our object-oriented distributed gizmo and your prob-

lems are over." Instead it o�ers, for example, a library portable to many

environments that improves software resilience in the presence of failure.

It o�ers tools for understanding programs, for visualizing them, for keep-

ing track of software development, for application building. It's a wide-

ranging congeries, and pretty far from the slick shrinkwrapped box in the

local software shop. Nevertheless, the contents share a valuable theme{by

emphasizing portability and reusability, by being used in real projects,

the software described in this book makes the insights and hard work

ix

x Foreword

that might have remained entangled in one software system available for

others to use.

Dennis M. Ritchie

Murray Hill, NJ

Preface

In the mid-1990s, with new software paradigms being introduced on a

regular basis, it might be instructive to take a step back and look at a

successful experiment in creating practical reusable software. This book

is a description of one such experiment. I came in midway through the

experiment and have had the bene�t of learning several of the lessons

described here.

As a discipline, software engineering is still maturing; we believe that

managing a software engine requires some key precepts to be kept in

mind. The life cycle of software begins with good design and architecture,

a proper environment in which it can be constructed. That environment

should include a good repository of tools and ongoing help for the rest of

the life cycle.

There is a great variety of hardware and software platforms on which

modern software has to run; the environments change rapidly. It is no

longer enough to build stable software on a speci�c platform|the soft-

ware has to run and be maintained on multiple platforms. UNIX was well

ahead of its time by being portable and introducing the concept of linking

programs in pipelines to achieve a sum greater than the parts. In the past

twenty �ve years, UNIX tools have become a key reason for the success of

UNIX. With the explosion in sites running UNIX both in academia, and,

increasingly, in business, the need for high quality portable UNIX soft-

ware is felt increasingly. Within AT&T the number of UNIX-dependent

projects soared and with it the need for quick solutions. Our department

was formed to aid software developers and, in the process, we brought

about high quality tools.

The origin of the term software reuse has been attributed to Doug

McIlroy, a UNIX pioneer at AT&T Bell Labs, who compared the role of

xi

xii Preface

software routines to the role of screws or resistors in mechanical designs.

For software in the large, one needs to have the full range of artifacts

from high-quality library routines to generic architectural services that

can be �tted into a variety of applications to as modular and reusable

components. The collection of software described in this book covers this

range.

Chapter 1 sets up the environment in which the software described in

the rest of the chapters was constructed. It describes the assumptions un-

der which we worked as well as the Advsoft repository and distribution

scheme. As one of the lessons learned, we discuss our view of architectural

style and services|ideas we consider important for reuse. In conjunction

with Chapter 12, practical suggestions on how to run a reuse program

are presented.

Chapter 2 is in some sense the core of our reuse repository: the col-

lection of most of the highly reused libraries. The descriptions of the

libraries are both at the conceptual level|what niche they �ll|as well

as the nitty gritty level, replete with examples. The libraries range from

the porting base (libast) to graph and �le system services. Chapter 2 also

introduces the concept of discipline and method; techniques dealing with

safe resource management and library portability. This chapter consti-

tutes the substrate level of the four levels of partitioning that we have

done.

Chapters 3 and 4 deal with the base level tools: nmake{a build tool

that represents the state of the art amongst the successors of make, the

original UNIX con�guration and build tool; n-DFS{a n-Dimensional File

System which provides a variety of operating system services; ksh{the

widely used Korn Shell command interpreter; Easel{a system for writing

end-user applications via interactive constructs. The tools in this layer are

considered base tools since we use many of them on an everyday basis for

building and maintaining our software.

We now move up to the standalone layer: Chapters 5 and 6 discuss two

program understanding tools{App, an assertion system helping program-

mers specify what a program is meant to do andCia, a tool that abstracts

relationships between entities in programs for reverse engineering. Chap-

ters 7 and 8 discuss two dynamic aspects of programs: security and high

Preface xiii

availability. Chapter 8 discusses three reusable components (watchd , libft ,

and Repl) that makes software fault tolerant. Tools at the standalone

layer all reuse libraries at the substrate level as well as tools at the base

level.

Chapters 9 through 11 discuss connected tools covering the areas of

event action systems, software process, visualization, testing, and ani-

mation. In Chapter 9, Yeast, an extensible event-action speci�cation

system, is discussed, along with its extensive reuse of a variety of enti-

ties described earlier in the book. Chapter 10 discusses Provence, a

process visualization and enactment environment, made by combining

several tools at the component level. Chapter 11 discusses four vertically

integrated tools: dotty , a customizable graph editor; TestTube, a tool

for selective regression testing; Xray , a function call animator, andVpm, a

real-time, network-wide process execution visualizer. The connected tools

are all formed by linking to lower layer tools.

The practical bent of our software operating system illustrated by the

thousands of users of our tools (for example, s�o, ksh, and nmake) as

well as the fact that companies other than AT&T sell them as prod-

ucts (for example, Tandem's HATS version of watchd/libft). The cycle

time between identifying a reusable component and its deployment has

been steadily shrinking. Fortunately, we have a large testbed within our

company, making rapid experimentation feasible.

I believe that our ongoing experiment will bear out our belief in rapid

construction of higher-level connected tools. Our strengths include the

strong foundation (libraries) that we build on, our understanding of the

software development process, and the remarkable environment in which

we work. The environment is not just the software tools environment

but the Bell Labs culture that has engendered such a diverse, yet closely

knit, collection of useful tools. We do not simply advocate our tools and

methodology: We have tried and tested it, and it works.

A large number of people have contributed, in many di�erent ways,

to the e�orts described in the book. Some have contributed to the book,

while many more are colleagues and partners, researchers, developers, and

those involved in technology transfer. It is impossible to thank all of them

by name, but they are due thanks for their contributions.

xiv Preface

I thank my department head David Belanger for encouraging me to

pursue this book. He is largely responsible for creating a stable atmo-

sphere in the department that enabled the creation of virtually all the

software described in the book.

My thanks to to Dennis Ritchie for graciously agreeing to write the

foreword and Brian Kernighan for his insightful review and valuable com-

ments.

I thank Valerie Torres and Randy Hackbarth for jointly evolving the

Advsoft process, Geeti Granger at Production Technology of John Wi-

ley & Sons, Inc. (Chichester) for her LaTeX style �le to build on, Terry

Anderson and Steven Bellovin for freely sharing their LaTeX wisdom,

Lorinda Cherry for her index-generating program, Berkley Tague, Moses

Ling, Steve Lally, and Fred Douglis for their comments. I thank Diane D.

Cerra and Maureen Drexel of John Wiley & Sons, Inc. (New York), for

their help in guiding me through the editing process.

Above all, without the contributors this book wouldn't have come

about: my thanks to all of them.

Balachander Krishnamurthy

bala@research.att.com

Historical Overview

In the mid-1980s, it became clear in AT&T Bell Laboratories that our

primary development activities revolved around producing software for

products and services. Having recently gone through divestiture, it was

also clear that for AT&T to be more competitive in the marketplace prod-

ucts would have to be produced with less cost, higher quality, and in less

time. One of the responses to this realization was to bring together, in

1986, a Software Technology Center chartered with delivering to AT&T

developers the best software tools, technologies, and processes available.

One group brought into the Software Technology Center was a small

software research department then known as the Advanced Software De-

partment. That department had been established a few years earlier as an

experiment to connect software researchers more closely to the product

development community. This book presents some of the work of that

department.

The timing of this book is driven by a number of factors, most impor-

tant of which is the coming together of a capability. The capability is to

put together very quickly small teams of experts to create new software

tools and systems that embody research breakthrough concepts that can

be made available to nonexpert users. Examples are sprinkled throughout

the book, with several concentrated in Chapter 11 (\Intertool Connec-

tions"). This process of integration is continuing, and it is quite exciting

to view the sophisticated new applications that are now built in peri-

ods of weeks by small teams of researchers. These systems display the

desirable characteristics of good prototypes in that they mature rapidly

as they generate feedback from users. On the other hand, they have the

characteristics of good products in that they are fast, portable, robust,

xv

xvi Historical Overview

and are in several cases used in AT&T Products & Services, sometimes

by hundreds of users.

How did this capability come about? Simply through the e�orts of

some very good people in a stable environment. There is, however, more

to the story. It is the evolution through several stages of knowledge on

our part. The goal of the department was to have as much impact on

AT&T's software pro�ciency as possible. Therefore, our software had to

be usable in a wide variety of production environments. This approach

had a signi�cant impact on the way the research e�ort itself worked. In

the beginning, tools were typically built as individual entities. There was

not enough infrastructure to provide common support for the diversity

and scale of the early tools. Original versions of tools such as Easel, ksh,

and nmake cooperated with each other but shared little code. As these

tools were revised, a set of libraries was created and shared by these tools

and newer tools. This process continued as tools that started with little

relationship to the original core of tools, like graph layout tools (dot,

dotty) and reliability tools (watchd, libft), became cores of integrated

applications. Finally, the set of experts, along with the systems that they

have created, have evolved into a village of experts with the ability to

reuse code e�ectively in building integrated systems. The total amount

of code that we distribute is now on the order of 750,000 lines divided

across close to 100 tools and libraries.

Our strategy has been to support people who are experts in a soft-

ware subject, such as con�guration management or fault tolerance and

experts in building software, and to do this over a diverse range of ex-

pertise. This created the breadth and depth required to meet a num-

ber of the software technology needs of AT&T. Of course, e�ort is re-

quired to manage such a diverse range of expertise. The software sys-

tems/tools/libraries we created were tested and matured in real environ-

ments like products/services with hard requirements and deadlines. Each

of the currently mature tools/libraries has had one or two projects that

provided early, real trials and greatly accelerated the technical maturity

of the tools and the knowledge base of the researcher. The tools start as

a concrete expression of a research idea. They evolve to embody not only

the software product developer's requirements, but often their innovative

Historical Overview xvii

suggestions, and sometimes their code. Working in partnership with the

development community has led to wide acceptance of many of the tools,

and early discovery of where tools did not meet an essential development

need. Surveys and user counts show that the mature libraries/tools either

have hundreds of users, or in a few cases (such as nmake and ksh) are de

facto standards of large AT&T business units.

The evolution in maturity of reuse and system integration described

earlier and documented within this book illustrates a crucial aspect of

reuse. It is that the evolution through di�erent stages of reuse was also an

evolution through stages of knowledge. This has been a learning process

that leads to successful reuse. It can be replicated but one cannot skip to

the endpoint without obtaining the prerequisite knowledge.

David Belanger

Head, Software Engineering Research Department

AT&T Bell Laboratories

Contents

1 Software Reuse: A Decade-Long Experiment 1

David Belanger and Balachander Krishnamurthy

1.1 Introduction : 1

1.2 The Free-Market Assumption : : : : : : : : : : : : : : : : 3

1.3 Rapid Evolution : 5

1.3.1 Advsoft Process Example : : : : : : : : : : : : : 8

1.4 Systems Architecture : 11

1.5 Four Levels : 15

1.5.1 Substrate : 15

1.5.2 Base : 16

1.5.3 Standalone Tools : : : : : : : : : : : : : : : : : : : 17

1.5.4 Connected Tools : : : : : : : : : : : : : : : : : : : 17

1.5.5 Reuse Experiences : : : : : : : : : : : : : : : : : : 18

1.6 An Example of Architectural Style and Service : : : : : : : 20

1.6.1 Architectural Style : : : : : : : : : : : : : : : : : : 20

1.6.2 Architectural Services : : : : : : : : : : : : : : : : 21

1.7 Summary : 23

1.8 Reading This Book : 23

2 Libraries and File System Architecture 25

Glenn Fowler, David Korn, Stephen North, Herman Rao, and Kiem-

Phong Vo

2.1 Libraries : 25

2.2 The ast Libraries : 26

2.2.1 Design Considerations : : : : : : : : : : : : : : : : 28

2.2.2 libast : The ast Base : : : : : : : : : : : : : : : : : : 36

xix

xx Contents

2.2.3 libcmd : Enhanced UNIX Commands : : : : : : : : 38

2.2.4 screen: Character Screen Management : : : : : : : 39

2.2.5 stak : Stacklike Memory Allocation : : : : : : : : : 41

2.2.6 libcoshell : Shell Coprocess : : : : : : : : : : : : : : 43

2.2.7 libcs: Connect Streams : : : : : : : : : : : : : : : : 44

2.2.8 libexpr : C Expression : : : : : : : : : : : : : : : : : 47

2.2.9 libpp: C Preprocessor Library : : : : : : : : : : : : 49

2.2.10 Discussion : 51

2.3 Disciplines and Methods : : : : : : : : : : : : : : : : : : : 51

2.3.1 s�o: Safe/Fast I/O : : : : : : : : : : : : : : : : : : 53

2.3.2 vdelta: Di�erencing and Compression : : : : : : : : 57

2.3.3 libdict : Online Dictionaries : : : : : : : : : : : : : : 59

2.3.4 vmalloc: Virtual Memory Allocation : : : : : : : : : 62

2.3.5 Discussion : 65

2.4 libgraph : 67

2.4.1 Previous Work : 69

2.4.2 File Language : 71

2.4.3 Primitives and Implementation : : : : : : : : : : : 75

2.4.4 Experience : 77

2.5 n-DFS : The Multiple Dimensional File System : : : : : : : 78

2.5.1 Architecture : 82

2.5.2 Implementation : 84

2.5.3 Evaluation : 87

2.5.4 Discussion : 89

2.5.5 Conclusion : 90

2.6 Summary : 90

3 Con�guration Management 91

Glenn Fowler, David Korn, Herman Rao, John Snyder, and Kiem-

Phong Vo

3.1 The Common Bond : 91

3.1.1 Build: nmake : 92

3.1.2 Test : 98

3.1.3 Install : 98

3.1.4 Package : 99

Contents xxi

3.1.5 Bootstrap : 104

3.2 Feature Based Portability : : : : : : : : : : : : : : : : : : 106

3.2.1 A Programming Style for Portability : : : : : : : : 107

3.2.2 The i�e Language : : : : : : : : : : : : : : : : : : 110

3.2.3 The i�e Interpreter : : : : : : : : : : : : : : : : : : 112

3.2.4 Discussions : 113

3.3 Versioning and Viewpathing : : : : : : : : : : : : : : : : : 114

3.3.1 Introduction : 114

3.3.2 Viewpathing Service : : : : : : : : : : : : : : : : : 115

3.3.3 Versioning Service : : : : : : : : : : : : : : : : : : : 118

3.3.4 Event Noti�cation Service : : : : : : : : : : : : : : 120

4 Tool- and Application- Building Languages 121

David Korn, John Snyder, and Kiem-Phong Vo

4.1 ksh{A Tool-Building Language : : : : : : : : : : : : : : : : 121

4.1.1 Introduction : 121

4.1.2 History : 122

4.1.3 How ksh Evolved for Reuse : : : : : : : : : : : : : 126

4.1.4 How ksh Is Used : : : : : : : : : : : : : : : : : : : 129

4.1.5 New Features in ksh-93 : : : : : : : : : : : : : : : : 130

4.1.6 Requirements for a Reusable Scripting Language : : 133

4.1.7 Pros and Cons of Using ksh : : : : : : : : : : : : : 134

4.1.8 Alternatives : 137

4.1.9 Possible Reuse Extensions : : : : : : : : : : : : : : 137

4.1.10 Conclusion : 138

4.2 Easel{An Application-Building Language : : : : : : : : : 139

4.2.1 Introduction : 139

4.2.2 Challenges in Building End-user Applications : : : 140

4.2.3 End-user System Architecture : : : : : : : : : : : : 141

4.2.4 Easel Language for Building End-user Systems : : 143

4.2.5 Experience with Building an Application Family

with Easel : 153

4.2.6 Reuse Experiences in Easel's Evolution : : : : : : 155

4.2.7 Alternatives : 157

4.2.8 Conclusion : 158

xxii Contents

5 Self-Checking Programs and Program Instrumentation 159

David Rosenblum

5.1 Introduction : 159

5.2 Assertion Constructs : 160

5.3 Violation Actions, Prede�ned Macros, and Severity Levels 165

5.4 Generating and Running Self-Checking Programs : : : : : 167

5.5 Instrumentation for Tracing : : : : : : : : : : : : : : : : : 169

5.6 The Architecture of App : : : : : : : : : : : : : : : : : : : 171

5.7 Contributions to Reuse : 173

5.8 Conclusion : 175

6 Reverse Engineering 177

Yih-Farn Chen

6.1 Introduction : 177

6.2 An Entity-Relationship Model for C : : : : : : : : : : : : : 180

6.3 Query Tools : 183

6.3.1 Entity Query Tools : : : : : : : : : : : : : : : : : : 184

6.3.2 Relationship Query Tools : : : : : : : : : : : : : : 185

6.4 Program Visualization Tools : : : : : : : : : : : : : : : : : 187

6.5 Analysis Tools : 194

6.5.1 subsys: A Tool for Reachability Analysis : : : : : : 194

6.5.2 incl : A Tool to Analyze Include Files : : : : : : : : 199

6.5.3 ciadi� : A Tool for Program Di�erencing : : : : : : 201

6.6 ciao: A Graphical Navigator for C and C++ : : : : : : : : : 202

6.7 Reuse Experience : 204

6.8 Conclusion : 207

7 Security and Software Engineering 209

Steven Bellovin

7.1 Introduction : 209

7.2 Keeping It Simple : 210

7.3 Assumptions and Interface Design : : : : : : : : : : : : : : 211

7.4 Security and Reuse : 215

7.5 Logging and Auditing : 217

7.6 Evaluating Security : 219

7.7 Conclusions : 221

Contents xxiii

8 A Software Fault Tolerance Platform 223

Yennun Huang and Chandra Kintala

8.1 Introduction : 223

8.2 Platform and Components : : : : : : : : : : : : : : : : : : 227

8.2.1 watchd : 229

8.2.2 libft : 231

8.2.3 Repl : 235

8.3 Experience : 238

8.3.1 A Network Service Application : : : : : : : : : : : 239

8.3.2 An Event-Action Tool Application : : : : : : : : : 239

8.3.3 A Call-Routing Application : : : : : : : : : : : : : 239

8.3.4 Repl Application : : : : : : : : : : : : : : : : : : : 240

8.3.5 A Switching Data-Processing Application : : : : : : 244

8.4 Conclusions : 244

9 Generalized Event-Action Handling 247

David Rosenblum and Balachander Krishnamurthy

9.1 Introduction : 247

9.2 Architecture and Operation of Yeast : : : : : : : : : : : 248

9.3 Features of Yeast : 251

9.3.1 The Yeast Speci�cation Language : : : : : : : : : 251

9.3.2 Client Commands : : : : : : : : : : : : : : : : : : : 255

9.4 Elimination of Polling in Yeast : : : : : : : : : : : : : : : 258

9.5 An Example Application of Yeast : : : : : : : : : : : : : 259

9.5.1 Object Classes : 261

9.5.2 Speci�cations : 262

9.5.3 Changes to Tools and Owners : : : : : : : : : : : : 264

9.5.4 Discussion of Advsoft : : : : : : : : : : : : : : : 264

9.6 Reuse : 265

9.6.1 Architectural Style of Yeast Applications : : : : : 265

9.6.2 Architectural Services : : : : : : : : : : : : : : : : 266

9.7 Reuse of Libraries and Components : : : : : : : : : : : : : 271

9.7.1 Linking with Libraries : : : : : : : : : : : : : : : : 271

9.7.2 Con�guration and Assembling : : : : : : : : : : : : 271

9.7.3 Fault Detection : 272

xxiv Contents

9.7.4 Reverse Engineering : : : : : : : : : : : : : : : : : 273

9.7.5 KornShell As Action Language : : : : : : : : : : : 273

9.7.6 Auxiliary Commands : : : : : : : : : : : : : : : : : 274

9.7.7 Distribution : 274

9.8 Conclusion : 274

10 Monitoring, Modeling, and Enacting Processes 275

Naser Barghouti and Balachander Krishnamurthy

10.1 Introduction : 275

10.2 Software Development Process : : : : : : : : : : : : : : : : 275

10.3 The Provence Architecture : : : : : : : : : : : : : : : : 277

10.3.1 Assumptions : 280

10.3.2 A High-Level Example : : : : : : : : : : : : : : : : 281

10.4 A Realization of Provence : : : : : : : : : : : : : : : : : 282

10.4.1 Marvel : 283

10.4.2 The Enactor : 287

10.4.3 Yeast with Event Contexts and Constraints : : : : 288

10.4.4 Using Event Contexts in the Action : : : : : : : : : 291

10.4.5 Visualization : 292

10.5 Revisiting the Example : 293

10.6 Reuse : 295

10.6.1 Architectural Style : : : : : : : : : : : : : : : : : : 295

10.6.2 Architectural Services Used : : : : : : : : : : : : : 295

10.6.3 Reuse of Libraries and Components : : : : : : : : : 296

10.6.4 Con�guration and Assembling : : : : : : : : : : : : 296

10.6.5 Component Reuse in Provence : : : : : : : : : : 296

10.7 Conclusions : 297

11 Intertool Connections 299

Yih-Farn Chen, Glenn Fowler, David Korn, Eleftherios Koutso�os,

Stephen North, David Rosenblum, and Kiem-Phong Vo

11.1 Introduction : 299

11.2 dotty : 300

11.2.1 Introduction : 300

11.2.2 Design : 303

11.2.3 dotty Applications : : : : : : : : : : : : : : : : : : 313

Contents xxv

11.3 TestTube : 316

11.3.1 The TestTube Methodology : : : : : : : : : : : : 317

11.3.2 The TestTube Architecture : : : : : : : : : : : : 321

11.3.3 An Implementation of TestTube for C Programs : 322

11.3.4 Conclusion : 326

11.4 Xray : 327

11.4.1 Introduction : 327

11.4.2 Program Animation with Xray : : : : : : : : : : : 328

11.4.3 Managing Complex Traces and Graphs : : : : : : : 330

11.4.4 Conclusion : 331

11.5 Vpm : 332

11.5.1 Introduction : 332

11.5.2 Implementation : 334

12 Evaluation of Approach 337

David Belanger, Balachander Krishnamurthy, and Kiem-Phong Vo

12.1 Introduction : 337

12.2 What Went Right : 337

12.3 What Could Be Improved : : : : : : : : : : : : : : : : : : 339

12.4 Success Factors : 340

12.5 Technology Transfer Experience : : : : : : : : : : : : : : : 341

12.6 Future Directions : 343

12.7 Summary : 344

Bibliography 345

Index 360

Color plates follow page 310

1

Software Reuse:

A Decade-Long Experiment

David Belanger and Balachander Krishnamurthy

1.1 Introduction

This book describes several case studies of software tools and libraries

that have been developed by a software research program at AT&T Bell

Laboratories. It is organized to re
ect the impact of these programs on

the reuse of software, both within research and by the software develop-

ment community. The term software reuse means that a software entity

is used in multiple software systems, by multiple people, and by mul-

tiple organizations. The research program that generated these results

is part of a more comprehensive program of creating and distributing

software technology and methods throughout AT&T, with the aim of

building higher-quality software faster and at lower costs. Reusing large

amounts of software is one of the most promising approaches to achieving

this goal. Although the overall e�ort within AT&T includes participation

from many organizations, this book describes lessons learned to date in

a speci�c research project.

The contributors to this book all belong to the same department in

AT&T Bell Laboratories. The software described is used throughout

AT&T and in several cases outside of AT&T. This research program is

intended to be pragmatic. Although what has been learned may seem well

1

2 Belanger and Krishnamurthy

structured in this presentation, its unveiling was not. Many of the things

we learned were discovered in bottom-up and contorted ways. Most often,

the learning cycle proceeded from a general hypothesis of a need in the

product development community; to the creation of an experimental tool

to address the need; to the widespread, general use (or lack of widespread

use) of a tool; to a better understanding of software development and of

reuse. The ability to articulate a general structure for supporting reuse

trailed widespread use of the technology, sometimes by months or years.

As our understanding evolved, it in turn helped change the way we build

software.

The three basic principles that tie together the work described in suc-

ceeding chapters are:

� Free-Market Assumption: We had to deliver value that users would

choose over alternatives. They might also be required to purchase soft-

ware. This assumption extended to use in our own group. The model

is that of producer/consumer, with the consumer free to choose other

suppliers.

� Rapid-Evolution Assumption: We expected the rate of change of reused

software to be high. Compared to product software, it was expected to

experience more internal change but retain more stable interfaces. This

implied a need for release control. As research was applied, this assump-

tion was strongly con�rmed and con�guration management became a

central focus of the e�ort.

� Systems-Architecture Assumption: For reasonable leverage, reused soft-

ware must constitute signi�cant parts of the software systems that reuse

it. This implies that reuse must be enabled by including reusable com-

ponents in the high levels of software design. In our terminology, this

is called software architecture. It is a central concept to leverage reuse.

The book describes work that has been ongoing for about nine years.

It was at �rst a small e�ort with about ten people, but it has grown grad-

ually over time to 25 people. Most are researchers who create prototype

software. A small number work at technology transfer, and manage the

reuse process. The wide scope of the research work enabled us to create

new technology and also serve as a fertile site for testing and accelerating

the maturation of the software systems. This environment has provided

Software Reuse: A Decade-Long Experiment 3

e�ective feedback for conceptual and implementation improvements. The

resulting levels of quality was key in encouraging reuse. Here are the

results of this work:

� A reusable software distribution process called Advsoft, which re-

ceives over 1,000 requests a year for software or information (almost

all requests for information are followed by requests for software). This

process manages about 80 tools/libraries, with a total of about 300,000

lines of code). It is currently managing about half of the code of the

systems distributed by our department. As with all of our software,

the use of Advsoft is voluntary. Advsoft is evolving and expanding

rapidly and the process includes all the software described in this book.

� A self-supporting, second-order distribution and support system for

some tools and libraries. This support system takes technology trans-

ferred by us and, in turn, manages several times the customer load of

Advsoft.

� A set of software components and tools that are used in software pro-

duction in nearly every AT&T Business Unit. Some tools or compo-

nents have thousands of users; others, hundreds; and many are just

starting signi�cant distribution.

� A reuse infrastructure internal to the department that has allowed us

to create new and innovative software systems in time intervals that

are ten times shorter than our previous experience.

The remainder of this chapter examines the general thought processes

that this work depends on, and provides a framework for reading the

book. Later chapters examine the details of the technology. The primary

results as they apply to reuse are: the impact that the software has had

on AT&T and on our organization, and the lessons that were learned

in breaking free of some of the folklore surrounding reuse as a tool for

software development.

1.2 The Free-Market Assumption

This assumption is probably the simplest of those adopted, but may be

the most powerful in its implication. There are many approaches to en-

4 Belanger and Krishnamurthy

couraging large scale reuse. A straightforward option is to dictate to an

organization. Our experience has been that this works largely where the

organization is cohesive enough in its product line to have a shared tech-

nology base at the start, or where the software to be reused is of excep-

tional quality and is well supported (for example, the C language and

the UNIX system). In the climate of the late 1980s and early 1990s, it

was and is rare for a diverse corporation to reach agreement on common

software components or reuse strategies to be used corporation-wide. On

the other hand, it is common to see de facto standards emerge. Our view

of a free market is that it encourages the emergence of de facto standards

based on the best options available, and that the role of management is to

support the free-market conditions and encourage the rapid convergence

to de facto standards.

This has important implications for researchers and technology trans-

fer agents. They include:

� Quality of the reused software is crucial, both in the beginning and

throughout the life cycle. Quality means better than other options, as

judged by the projects using the software; note that this has to happen

at the time a project is deciding between options, not after.

� Market share is a crucial metric. As a software component was built to

meet a need, it is easy to argue that the additional cost of making it

reusable can be paid for if it is reused a few times. However, to manage

a long term reuse program, the goal should be market share and should

include an understanding of the probable length of the life cycle of the

software involved.

� Marketing and deployment, often called technology transfer, is a ne-

cessity for success. A small group was established in our department

which was speci�cally aimed at transferring technology from research

to support organizations or directly to users.

A key fact to keep in mind is that while a piece of software may be

intrinsically reusable, several constraints on the reusing application may

make reuse di�cult. Typical constraints include performance, portabil-

ity, and suitability for new architectures (for example, multiprocessor or

distributed).

Software Reuse: A Decade-Long Experiment 5

ASSEMBLE A SOFTWARE SYSTEM

TEST THE SOFTWARE SYSTEM

PACKAGE THE SOFTWARE PRODUCT

DISTRIBUTE TO THE USERS

AT THE USER SITEINSTALL

DATED VERSION OF EACH COMPONENT IN SYSTEM

DEVELOPER’S WORKING VIEW OF THE SYSTEM

COMPONENTS FOR FEATURES NEEDED IN THIS SYSTEM

GEOGRAPHICAL LOCATION OF EACH SYSTEM COMPONENT

ORGANIZATION OWNER/SUPPLIER/MAINTAINER OF COMPONENT

S

E

L

E

C

T

COMPONENTS
OF

SELECTED
SYSTEM

Figure 1.1 Software con�guration management.

1.3 Rapid Evolution

Reused software evolves unusually quickly because it must meet the needs

of a demanding and diverse community. Software Con�guration Manage-

ment [FHO92], with distribution capability, is the base technology nec-

essary to address the problem. The various versions of the software must

be easily stored, accurately recoverable, and automatically distributable.

This requires a well-de�ned, controllable process. In our case, this process

is known as Advsoft. This section contains an example of the use of the

Advsoft process applied to a tool called Yeast.

Figure 1.1 is an illustration of the goals of a con�guration management

process. The general notion is that there is an existing base of software

components from which the components of a speci�c system are chosen,

assembled, tested, and distributed to a user.

This Software Base is partitioned in a variety of dimensions. For ex-

ample, the actual software components may be stored in a variety of

geographical locations, and components are used to create the desired

features of the resultant application system. A speci�c application system

6 Belanger and Krishnamurthy

is selected from available versions (such as revisions), views, and perhaps

components from other systems. Finally, selection is often based on a set

of Modi�cation Requests from a change control system. Following this

selection, a system is assembled, tested, packaged, shipped to a customer

site, and installed. At that point, it is ready for customer use. This ability

to create a system selected from a variety of dimensions is crucial to the

multiple use of software objects. We have made considerable progress in

this area for example [FKSV94].

As an example of the above concept, consider the delivery of a speci�c

version of a tool, Yeast, to a customer. It might look like this:

For Customer - North Carolina Lab

Select the August 1993 Version of Yeast

with Modification Requests for "NC" added,

with Fault Tolerance & Security Features,

using "libast" libraries.

The preceding syntax is �ctitious (since these functions are currently not

provided in a single tool), but the problem and capability are not. This de-

livery speci�cation could result in selection and packaging of all changes to

Yeast necessary to create the requested system from a computer in Mur-

ray Hill, New Jersey, and shipping only the changes to \North Carolina

Lab" to update their Yeast con�guration. Once the changes are deliv-

ered to North Carolina, the software is assembled, tested, and installed

there. Note that though our customers use diverse software/hardware

platforms, software requests as in the above example are free of plat-

form speci�cations. This is because we view portability as fundamental

to software reuse and strive to develop technologies and disciplines that

ensure portable code. We also ship source code. Changes necessitated by

a port to a new platform are considered equivalent to bug �xes. Chapter 2

discusses our approach to writing and maintaining portable software.

Our experience has been that software that is reused is subject to

constant change. This is a corollary to the Second Law of Program Evo-

lution [LB85]: \As an evolving program is continuously changed, its com-

plexity, re
ecting deteriorating structure, increases unless work is done to

maintain or reduce it." Software that is reused widely will be subject to

many requests for enhancement. If, as in our case, software creation is

Software Reuse: A Decade-Long Experiment 7

done in small aggressive teams (sometimes consisting of only one indi-

vidual), the rate of change of reusable software can be substantial. This

process is managed using the following principles:

� A single person owns responsibility for the process of distribution of

software.

� A predictable process for freezing basic software components is in place

(this has proven hard in practice).

� The responsibility of ensuring that software ready for distribution has

been tested is a distributed process. The responsibility is currently that

of the software's creator.

� Con�guration, distribution, and process are replicated at user sites.

The entire process can be reused.

� Con�guration and distribution (and to a limited extent|testing) are

part of a single process. The goal is to combine and automate the

processes of: con�gure, assemble, test, package, ship, and install (see

Figure 1.1).

� Few requirements can be enforced on the target (user) machine. The

current assumption is that it is a UNIX-like system with at least a 7th

Edition UNIX Shell and a C compilation system. Even these require-

ments are being relaxed.

Some of these principles have been easier to accomplish than others.

There is a single responsible manager. Con�guration and distribution

are part of a single process, and few requirements are placed on either

the target machine or on the capability of the distribution mechanism

(for example, distribution is over wide areas and existing network facili-

ties). Freezing the basic components in an environment in which changes

are frequent has proven di�cult. It could be done with a formal change

management process, but we, as a research organization, have chosen to

encourage change and work hard when freeze dates occur. Our choice is

biased in the direction of frequent improvement, as opposed to control.

Downstream distributors use formal change management. Their releases

are less frequent but better controlled and tested. In Section 1.3.1, we

trace the Advsoft process, as applied to a speci�c tool.

The technology in use for con�guration and distribution is advanced

and
exible. It uses a variety of new tools, including n-DFS and ship/pax

8 Belanger and Krishnamurthy

(described in Chapters 2 and 3, respectively). On the other hand, the

technology for testing is not as advanced and automated as that for con-

�guration, assembling, packaging, shipping, and installation. Work is be-

ing carried out on automating and increasing the e�ectiveness of the

testing process, but much is yet to be done. Today, those systems that

are large, sophisticated, and/or critical to project operations are typically

distributed to production users by downstream technology organizations

(usually for a charge). In that case, our process supplies that downstream

distribution channel.

1.3.1 ADVSOFT Process Example

In this section, we present an example of how we coordinate, con�gure,

and track the development of a variety of software components that are

distributed to organizations throughout AT&T. We use a tool called ship,

which is a collection of KornShell command scripts (see Chapter 4) that

packages components of a software distribution for a variety of hardware

and operating system platforms in a portable way. ship requires that

tools to be distributed be stored in a directory, together with an item �le

that lists the set of direct dependent entities of the tool (that is, libraries

needed to build the tool). ship creates a portable archive (using pax) of

the source and nmake (the build tool) �les to be sent to the remote site.

ship, pax , and nmake are described in Chapter 3.

The example in this section deals with how changes are automati-

cally tracked in libast , a library on which Yeast and other tools depend.

Taking advantage of the ship directory hierarchy and the item �les, we

are able to automate the generation of new versions of modi�ed software

via the Advsoft process. The automation itself, incidentally, is done

via Yeast (see Chapter 9). The example is explained in more detail in

Section 9.5.

Figure 1.2 depicts the process that Advsoft manages. In the �gure,

the circles represent subprocesses and the arrows represent data
ow be-

tween subprocesses. Tool owners submit a copy of the newest version of

their tools to Advsoft in cycles (about twice a year).

Figure 1.2 depicts in detail how the process is carried out for the tool

Software Reuse: A Decade-Long Experiment 9

Prepare
Enhanced

T
(T’s owner)

Approve
T

(advsoft)

Rebuild
libast

(advsoft)

Test

(Dep Owners)

(Yeast)

Approve
libast

(advsoft)

Distribute
Approved
System

(advsoft)

Initiate
Cycle

Announcement of

Success
Announcement o

f

Failu
re

Notific
ation

Mail to
 Dependent

Owners

Announcement of

New Cycle

Announcement of

Acceptance

Announcement of

Rejection

Announcement of

New Cycle

Approved T

Prepare
Enhanced

libast

owner)

New
libast

Fixes to

Tools
lib

ast

Depends on

Fix libast

Fixed
libast

Approved libast

Notify
Owners

Dependent

libast
on

(libast’s

(libast’s
owner)

Figure 1.2 A software tool development and distribution process. Portions

automated by Yeast are shown in boldface.

10 Belanger and Krishnamurthy

libast (solid lines), while showing that an identical process is carried out

for all other tools T in parallel (dotted lines). The rest of the diagram is

self-explanatory.

The con�guration management tasks to be carried out by the Ad-

vsoft process include coordinating changes (a new version of a tool

requires notifying owners of all tools that depend on the modi�ed tool),

tracking the changes (some tool owners may reject the changes), and con-

trolling the changes (waiting until all dependent tool owners accept the

modi�ed version).

The seemingly simple bookkeeping activities can be time-consuming

and error-prone when performed by humans. Thus, automation of these

responsibilities was undertaken. In particular, Yeast speci�cations au-

tomate those portions of Figure 1.2 that are shown in boldface.

The details of how Yeast is used to implement the Advsoft process

are described in detail in Section 9.5. We simply present a brief outline

here.

We �rst generate speci�cations for all tools and all owners that are

under the management of Advsoft. Yeast watches for the creation of

new versions of tools, and generates noti�cations about the successful

building of these new versions. In the example, the noti�cations are sent

to tool owners dependent on libast , causing them to test their tools with

the modi�ed version of libast . Yeast also generates appropriate error

messages if the new versions did not build properly.

Tool owners run regression tests on their tools and generate a Yeast

announcement (a user noti�cation) indicating that they either accept or

reject the modi�ed version of libast . Yeast keeps track of all accep-

tance and rejection announcements. If all dependent tool owners indicate

acceptance, the modi�ed version of libast is considered to be ready for

distribution. If any of the dependent owners indicate rejection, the owner

of libast is noti�ed and the process involving libast is recommenced.

As dependencies among existing tools change and as new tools and

new versions of existing tools come into existence, obsolete Yeast spec-

i�cations are automatically deleted and new ones added.

Software Reuse: A Decade-Long Experiment 11

1.4 Systems Architecture

A key to reuse at every level of software components is stability of the

interface. At the basic|component|level of reuse, such as the UNIX

System Libraries, a standard must be established at the level of C func-

tion calls, parameters, return values, and names, most of which remain

unchanged across versions. However, at higher levels of reuse, a framework

must be in place to establish standards for a larger variety of things. For

example, in many systems a language is necessary to express and execute

actions for the system. This language is not, typically, part of the system

itself|if each system has a unique action language, reuse will be severely

impacted. In later chapters, there are examples of tools that have sepa-

rated out the action language: Yeast, Easel, and nmake are three such

tools. Nearly all of our high-level systems currently use the ksh93 version

of the KornShell as the action language. Thus, it is important that the

KornShell language evolves mostly in an upward compatible way.

Over time, a better understanding of the interaction between reuse

and system architecture has evolved. These notions are the result of ob-

servation of the use of many application developers, as well as our own

work. In general, they are built around the common notions of separation

of roles in a way that encourages reuse. This discussion is framed in the

context of application systems, often driven by data management and

user interfaces, but it also applies to tool applications.

Three principles were observed in practice:

� A standard, high-level, comprehensive, action language is essential.

To minimize learning curves, it is essential that this language be widely

distributed, understood, and accepted. We have used an extended

UNIX System Shell, KornShell, for this purpose. Because it is also the

command interpreter for many of the computer systems used by our

customers, it has led to widespread understanding without extensive

training.

� Application systems should clearly identify their Architectural Styles

and separate their implementation from that of the Application Do-

main Speci�c Components. Architectural styles show how components

of an architecture can be arranged. It is easy to glean the proper-

12 Belanger and Krishnamurthy

ties of an architecture once the style is known. This was learned, over

time, largely from the development and use of a system called Easel

(Chapter 4). Easel is a tool that supports the e�cient construction

of application systems that can be built as a network of tasks. A task

can be a variety of activities, with one of the most common being an

interaction with a user of the application. Data is passed among tasks,

control is from task to task, and a rich variety of user interface types

are built into the tool.

� An emerging area of reuse is Architectural Services, which should be

identi�ed and leveraged for reuse. Architectural services are capabilities

that are required independent of architectural style. They support the

non-feature requirements of application systems. For example, most

network management systems require high levels of availability and

security, but these are not part of their application feature sets. A list

of some such services is included in Figure 1.3. These capabilities are

crucial to most software products, and make up a signi�cant part of

the software in application systems. They have also become areas of

some depth in their own right. This creates ideal conditions for the

reuse of software: valuable/necessary functionality that is technically

di�cult to get right. Recent work in this department in the area of

software fault tolerance (Chapter 8) has reinforced the value of this

notion. This work has achieved widespread use in products in a shorter

time than any equivalent project. Within a year of development, these

techniques were in use or committed to by more than ten projects

across several AT&T Business Units.

Figure 1.3 illustrates a way of describing the structure of application

systems that is aimed at increasing levels of reuse. Envision a system

as de�ned by a basic structure (style), chosen from a small set. The ar-

chitectural styles range in complexity from simple pipelines, to complex

transaction processing and real time applications. In the ideal case an

architectural style is supported by a tool. For example, systems using a

Transaction Processing style [GR93] would likely use one of several trans-

action processing monitors. Independently of the architectural style, users

should expect services, such as fault tolerance, security, portability, and

Software Reuse: A Decade-Long Experiment 13

A P P L I C A T I O N P R O G R A M

O L T P D S S Event-Action

Data Stream Pipes . . .

Fault

Tolerance
Security O A & M Distribution

Visualization Portability . . .

Architectural

Styles

Architectural

Services

Components

Existing

and

Generated

GUI Builder Database Application
Components

Application
Generators

Generic Components Domain Specific

Components

Figure 1.3 Structural components of reuse.

14 Belanger and Krishnamurthy

operations administration and maintenance (OA&M). These are inte-

grated with the style tool, but are provided separately so that all styles

can take advantage of the services. To complete an application system, a

programmer must attach a variety of application components to the style

tool. Some of these components can be automatically generated (compo-

nent builders such as graphical user interface builders); some will already

exist and be stored in the con�guration system (existing components); and

some will be newly programmed (new components). The term platform is

often used to describe the portion of the application that is reused, that

is, everything except the new application components.

Figure 1.3 shows how components can be used across a variety of

styles. Consider the following illustrative example: A system to watch for

patterns of signals from a set of remote computers and take action (for

example, raise an alarm) when selected patterns are detected. The style

can be called event/condition/action, that is, watch for events, check con-

ditions, take de�ned actions. Formally, this style is likely to be modeled

by a tool implementing a Finite State Machine or a Petri Net. Yeast is

one tool that implements such a style.

In addition to the style, an application is likely to require a variety

of services, such as a de�ned level of availability (provided by fault tol-

erance software), wide-area distribution, security, and visualization. All

of these services are provided with the Yeast tool, but are also avail-

able to any other style tool (for example, Easel) or application. In some

applications, Yeast may choose only a few services, such as, wide-area

distribution, without added fault tolerance. Combining the style tool and

services provides a basic platform. The application can be completed by

adding application-speci�c components. For example, user interfaces will

be created using a graphical user interface (GUI) builder|an example

of a component builder; speci�c actions will be collected if they exist or

written if they are new. In the end, a complete application is created

by gluing together pieces of an existing platform; writing scripts in the

style tool's language (here Yeast) and in the language of the action tool

(KornShell); and writing (hopefully, only a few) new components.

Software Reuse: A Decade-Long Experiment 15

cs dict screengraphL ast
malloc sfio

ksh easelnmakenDFS

appciawatchdlefty dotneato

yeast

dotty

xray testtubeprovence vpm

Figure 1.4 Four levels of the software described.

1.5 Four Levels

The software described in this book can be partitioned into four lev-

els: substrate, base, standalone, and connected tools. Reuse is achieved

at each of these levels: intralevel and interlevel. Figure 1.4 illustrates

this four-level structure as it applies to the tools described in this book.

Readers should note that the distinction between these layers is internal;

application developers who build tools on top of our software will have a

di�erent notion of where the tools �t in their hierarchy.

Each of the nodes in Figure 1.4 corresponds to a tool/library; an edge

between two nodes indicates a dependence by the higher-level node on

the lower-level node. All of the tools/libraries are discussed in the rest of

the chapters of this book.

1.5.1 Substrate

The lowest layer, the substrate (shown by rectangles in Figure 1.4), con-

sists of a collection of libraries. These include ast , which is a library in-

cluding three fundamental components: s�o,malloc, and a set of functions

16 Belanger and Krishnamurthy

to help portability by standardizing variances among di�erent operating

systems.

Tools at this level, and particularly s�o and malloc, illustrate partic-

ularly well three important aspects of the reuse thought process. These

are:

� Dynamic life-cycle: Each of these tools, as they are at the foundation

of the reuse structure, has undergone substantial improvement over

many years. This improvement is a critical factor in the quality of our

software and in our ability to support the remainder of the hierarchy.

� Understanding the problem: These tools were developed in response to

the needs of the higher-level tools. That is, they solve the needs of

real applications and are driven by those applications. Knowing the

characteristics of the systems that you write is a key to getting the

fundamentals right.

� Reuse induction: The substrate tools have evolved to become general

tools by solving problems for a sequence of real systems, and by con-

centrating on improving the abstract model of the solution at each

step.

The libraries are all described in Chapter 2.

1.5.2 Base

The second layer consists of what we label base tools (shown by ovals in

Figure 1.4). These tools are important for the environment in which other

tools are built. The primary di�erence between tools at this level and the

substrate layer is the complexity of their interfaces and how they are

reused. The substrate is a collection of libraries with simple C function

interfaces that can be reused as pluggable components, while the base

tools provide languages and �lters that encode knowledge reusable with

some programming.

Tools that embody the style of an architecture important to a family

of applications (for example, Easel) typically become base tools, as do

those that provide essential standards on which other tools depend (such

as, ksh93 and nmake). Tools that support architecture services also exist

Software Reuse: A Decade-Long Experiment 17

at this level. n-DFS supports services such as fault tolerance and synchro-

nization of data. It will likely support many other services as it matures.

nmake and n-DFS are described in Chapter 3, ksh and Easel are

described in Chapter 4.

1.5.3 Standalone Tools

The standalone tools (shown by circles in Figure 1.4) layer comes next.

Tools at this layer reuse libraries in the substrate layer and are built in

the environment of the tools in the second layer. The standalone tools

perform a focused task and are not as generic as the base tools. For

example, cia, a reverse engineering tool, uses libast in the lowest layer.

cia is generic within a reasonably bounded application class. However,

cia is not as generic as ksh, which provides a language in which arbitrary

scripts can be written.

Both cia and App are tools that aid program understanding. cia pro-

vides static analysis while App aids in analysis at runtime. cia extracts

C program entity relationships, while App processes assertions (speci�ed

as pre- and post-conditions) to generate self-checking C programs. Both

cia and App use libast and libpp.

The watchd tool (together with the libft library) provides a mechanism

to add fault tolerance to existing programs. watchd reuses libast .

Several tools have been written on top of cia forming the Cia system.

App and Cia are described in Chapters 5 and 6, respectively. While we

do not have a tool that provides security as an architectural service, we

discuss security aspects of software engineering in Chapter 7; watchd and

libft are described in Chapter 8.

1.5.4 Connected Tools

The connected tools (shown by rhombuses in Figure 1.4) are application

systems. They are constructed from lower levels of library and tool, and

they, in turn, are used to build other application systems. Thus, for ex-

ample, Yeast from the viewpoint of its developers is a connected tool in

that it is built using ksh, watchd , lefty , and dot , as well as libast and libcs.

On the other hand, to an application developer using Yeast to provide

18 Belanger and Krishnamurthy

the architectural style for his/her system, Yeast is a base tool, and the

application (or part of it) is a connected tool.

Provence, an open process-centered software development environ-

ment, is another connected tool. Provence's components are: Marvel

(a tool developed outside AT&T), Enactor , Yeast, dotty and n-DFS .

dotty , a graphical editor/layout tool, consists of dot and lefty . Test-

Tube, formed by connecting cia and App, identi�es subsets of test suites

that need to be run when a new version of a system is created (thus help-

ing in minimizing the number of tests). Xray animates programs and

visualizes the dynamic aspects of program execution either live or by

playing back a recorded session. Xray is formed by connecting cia (to

get relational information between entities in the program), App (for in-

strumenting the code to output useful information during the run), and

dotty (for visualizing). Vpm, a visual process monitor, permits dynamic

monitoring of running processes across multiple machines. Vpm is formed

by linking n-DFS and dotty .

Yeast and Provence are described in Chapters 9 and 10, respec-

tively. dotty , Xray , Testtube, and Vpm are all described in Chapter 11.

1.5.5 Reuse Experiences

Reuse from existing component libraries, internal to this department, is

shown in Table 1.1. The �rst column shows a partial list of tools we

distribute (the tools are described in detail in the book). The second

column shows the actual lines of source code in the tool (referred to as

NCSL, or noncommented source lines), while the third column shows the

total lines of code shipped (including all the libraries needed by the tool).

On average, it is greater than �ve lines reused per line of code written.

But there are two important factors that we have to consider: Even

though an entire library is linked, only a subset of the functions in the

library is actually referenced by the reusing entity. Thus, if we consider

the code in the library actually used by the tool, we get the numbers in the

fourth column. These numbers were computed by using cref and subsys

(tools that are part of the Cia system), described in Sections 6.3.2 and

6.5.1, respectively. We should stress that the analysis is based on static

information.

Software Reuse: A Decade-Long Experiment 19

The second factor is that there is also a hierarchy of reuse at the system

level among the tools in Table 1.1. For example, ksh93 provides the action

language for Yeast, Easel, nmake, and coshell ; these tools support a

variety of architectural styles. Also, tools, such as watchd , support several

other tools by providing architectural services, such as Yeast. These

reuse values are not in the table because they are in separate executables,

but they represent large integer factors in terms of e�ort reduction, both

for tool builders and in learning time for tool users.

Table 1.1 Software Reuse

Tool NCSL S-NCSL R-NCSL

3DFS 11099 83069 18466

App 5881 57097 11462

cia 5327 52914 13166

coshell 3884 49166 14026

cs 1723 45724 14092

dot 12952 16585 14245

dotty 1413 75918 27674

easel 25782 48024 38901

incl 1085 43868 5245

ksh 31310 69407 39288

lefty 12730 59333 18601

nmake 17319 64687 28663

pax 6479 42225 15344

probe 345 34943 7278

proto 208 47389 2124

ss 504 42272 5867

subsys 360 41194 7301

Vpm 1100 115621 40043

watchd 3133 10694 3552

Yeast 7288 56397 14913

NCSL: Non-commented source lines

S-NCSL: Shipped NCSL

R-NCSL: Reused NCSL

20 Belanger and Krishnamurthy

1.6 An Example of Architectural Style

and Service

In this section, we present an illustration of architectural styles and ser-

vices as a way of building new applications out of reusable components.

First, we brie
y discuss Yeast, an event-action speci�cation tool, as an

example of a tool that enables an architectural style. Yeast is described

in detail in Chapter 9. Next, we show how two architectural services,

namely fault tolerance and visualization, have been added to Yeast.

Fault tolerance is described in more detail in Chapter 8 and visualization

in Section 11.2.

1.6.1 Architectural Style

Yeast runs as a daemon on a single machine on a network and accepts

client speci�cations from users. When these speci�cations are matched,

user-speci�ed actions are triggered by Yeast. Client commands|such

as, add, remove, and suspend speci�cations|can be issued from any of

several machines in the network. Yeast permits arbitrary actions to be

triggered when event patterns of interest are matched. It can match tem-

poral events and nontemporal events, such as changes of attributes in

objects belonging to a variety of object classes. The list of prede�ned

attributes for these object classes can be extended, as can the classes

themselves. With the use of external event noti�cations (called announce-

ments), Yeast can model a wide range of applications that follow the

event-action paradigm.

Yeast supports an event/condition/action architectural style, mak-

ing such platforms easier to build. The application �rst decides on the set

of events of interest and the manner (both temporal ordering as well as

combination of patterns) in which the events should be detected. Then,

a collection of Yeast speci�cations is registered with a Yeast daemon.

Several applications have been built on top of Yeast, ranging from au-

tomatic coordination of database �les from a network of machines to a

schedule maintenance system.

Software Reuse: A Decade-Long Experiment 21

1.6.2 Architectural Services

We next look at two architectural services that dramatically improved

the power and capability of Yeast. The �rst is the fault tolerance service

provided by a combination of a library and a watcher process. The second

example is visualization support provided via a language mechanism.

1.6.2.1 Fault Tolerance

Software fault tolerance is a way to make software withstand faults that

arise during execution. It is signi�cantly more than checking boundary

conditions and several techniques have been identi�ed. It is not enough

to rollback, recover, and restart; nor is it enough to test adequately. Some

faults in programs fall in the category of transient failures resulting from

a particular input sequence or a set of environment conditions. The ap-

proach taken in libft/watchd is to provide a platform that, with some

modi�cations to the software, provides an acceptable level of recovery

from catastrophic conditions, as well as an opportunity to modify soft-

ware faults when an exception happens.

The �rst half of the fault tolerance technique is a library that, when

linked with application programs, provides a checkpointing facility for

recovering from failures. The second half is a watch daemon that aids

in locating the fault. The library and the watch daemon free individual

application programs from having to do their own separate fault tolerance.

A signi�cant amount of useful code is thus reused.

Consider the example ofYeast, of which some customers require fault

tolerance. Yeast clients do not know where the Yeast daemon process

is running on the network. If the machine on which the Yeast daemon is

running crashes, two problems arise: The existing set of speci�cations is

no longer being matched, and new client commands cannot communicate

with a Yeast daemon. Ad hoc solutions, while reasonable, require a

signi�cant amount of code to be added to Yeast, none of which deals

with event-action matching|the stated purpose of the application.

The libft/watchd technique is suited for a distributed environment.

The list of data structures signi�cant to Yeast is isolated in a section of

22 Belanger and Krishnamurthy

Yeast code and the Yeast daemon process is registered with watchd . �

This requires minimal modi�cations to Yeast. Upon a machine crash,

the shadow process restarts a Yeast daemon on another machine on the

network with the most recent value of the signi�cant data structures. This

enables continued matching of the existing speci�cations with no loss of

state. Additionally, new client connections are automatically routed to

the new daemon process, thus making the machine crash transparent to

the users on the network.

1.6.2.2 Visualization

Visualization is often a key component of interfaces and application front

ends. Visualization can be static or dynamic, depending on the applica-

tion needs. For example, graph layouts are often a useful way to present

visual information, especially when dealing with software entities. A
ex-

ible way to provide this is to use a graph description language consisting

of nodes and edges at a simple level, and attributes (such as color) and

abstractions (such as clusters, groupings) at a higher level. The choice for

a visual representation language is driven by simplicity that minimizes

the time spent in learning an additional language.

Unlike libft/watchd , where a library is used, a language is used here

to describe the service. A graph drawing program should be able to

parse a graph description language and construct a picture quickly.

dot [GKNV93] is a tool that reads and writes graphs in an attributed

graph description language. By combining dot with lefty [KD91] (a pro-

grammable graphics editor), dotty was created. dotty can be used as a

standalone tool or as a front end for applications that use graphs. In

dotty , the lefty program implements the insertion and deletion of nodes

and edges, the drawing of the picture, and functions that map user actions

to operations on the picture. dotty can thus read dot input and create a

dynamic front end that can be controlled through simple commands. dot ,

lefty , and dotty are all described in Section 11.2. Section 9.6.2.2 describes

the visualization of Yeast speci�cations in more detail.

The graphical front end for Yeast took a couple of hours to build and

�In the most recent version of libft with global checkpointing, the need for even this modest step
has been obviated.

Software Reuse: A Decade-Long Experiment 23

needed an addition of about 50 lines of code to Yeast. This technique

has since been replicated for other tools in the department|a recent

example is for a software process visualization environment, Provence

(see Chapter 10).

We have examined how one tool (Yeast) has taken advantage of the

architectural services that are available separately from the basic tools

that they serve. Other examples can be found in this book.

1.7 Summary

Our experience shows that there is considerable value in a reasonably

comprehensive set of reusable items of mixed levels (component, service,

style, platform) when supported by strong marketing and distribution

capabilities. The set can be put together in a variety of ways. A reuse

factor greater than �ve has been achieved locally using libraries (with a

real reuse factor of 2 to 2.5 when the actual percentage usage of library

functions is considered). The real impact is much greater than that if the

use of architectural roles and levels is considered, but we do not yet have

accurate measures of that e�ect.

The book follows the four-level structure described in Section 1.5. The

software entities in the substrate and base levels concentrate on the princi-

ples on which they were built and the reusability they o�er to the higher-

level tools. The standalone tools chapters begin with a description of

the tool, describe their architecture, and highlight the lower-level com-

ponents reused by them. They also point toward how they were used as

components to the tools in the later chapters. The chapters dealing with

connected tools discuss the reuse of the standalone tools at the component

level and show how they were assembled e�ciently.

1.8 Reading This Book

There are a number of ways to read this book.

One is as a presentation of a collection of tools and libraries that

perform a variety of interesting and valuable tasks. These tasks include:

24 Belanger and Krishnamurthy

basic library support for software development (Chapter 2), con�gura-

tion management (Chapter 3), static and dynamic code analysis (Chap-

ters 5 and 6), secure/reliable application systems (Chapters 7 and 8),

high level languages for system development (Chapters 4 and 9), and in-

tegrated applications (Chapters 10 and 11). They describe software that is

in widespread use and re
ect what we have learned in several application

areas.

A second is as a collection of tools and ideas that, when taken together,

provide a platform for e�ective software development. The software de-

scribed in this book supports the technique of obtaining high-leverage

reuse by division of software into several architectural roles. From this

point of view: Chapter 2 describes basic components; Chapters 4 and

9 describe tools to support certain architectural styles using high-level

languages; Chapters 5 and 6 describe development environment support;

Chapters 7 and 8 describe architectural services; Chapters 3, 10, and

11 describe integrated applications. Development activity is supported

both within the development environment and for reuse within devel-

oped systems. Particular attention is paid to such issues as portability

and con�guration for the development of large-scale software.

A third way to read the book is for ideas and processes that can

lead to an e�ective software development strategy based on multiple use

of software entities. This strategy has been successful in our research

environment. It is implicit in the way the software in each chapter relate

to each other, rather than the contents of a speci�c chapter. It is best

understood by following the relationships in Figure 1.4 as you read the

book. Keep in mind that this strategy it is not limited to research, to the

production of software tools, or to the speci�c technologies described in

this book. We encourage you to consider, as you read the remainder of

this book, concepts and techniques that you can take from our experience

and use in your software development and speci�cally your reuse strategy.

2

Libraries and File System

Architecture

Glenn Fowler, David Korn, Stephen North,
Herman Rao, and Kiem-Phong Vo

2.1 Libraries

Libraries are the most widely understood and used form of code reuse.

A collection of generic routines that can be simply plugged into diverse

applications is often a strong motivating factor for reuse. However, there

are several principles that have to be kept in mind to create a successfully

reusable library. This chapter deals with a broad cross section of software

ranging from memory allocation to operating system services. The soft-

ware is organized into a collection of libraries called the ast libraries that

form the backbone for the rest of the tools described in the book.

The main sections of the chapter are:

� Section 2.2 gives an introduction to the ast libraries along with a de-

tailed discussion of the design principles used in writing them. This

section also overviews some of the main components of ast including

the porting base libast .

� Section 2.3 deals with a resource acquisition and management param-

eterization technique|disciplines and methods|that enhances library

The left running heads in chapters 2, 3, 4, and 11 indicate the author(s) of each section.

25

26 Fowler, Korn, and Vo

exibility and portability, which are key requirements for widespread

reuse. This section describes four libraries written using this technique.

� Section 2.4 describes a general purpose graph library based on a stan-

dard graph data language, that is used by a variety of tools described

in this book.

� Section 2.5 discusses a �le system service substrate called n-DFS . Of

the wide variety of services o�ered by this logical �le system that has

been implemented as a library, several, such as viewpathing, versioning,

and event noti�cation, are used by tools described later in this book.

2.2 The ast Libraries

In the early years of C and UNIX programming, many general purpose

libraries were produced and widely distributed. These libraries provide a

wide variety of functions for mathematics, bu�ered I/O, dynamic memory

allocation, and so on. Their availability led to a tremendous growth in

programmer productivity. By virtue of their widespread use, the libraries

became de facto standards and were commonly called the standard C

libraries. These libraries stand as some of the best examples of successful

reusable software.

Unfortunately, in the early 1980s, the creation of widely available

reusable C libraries came to a virtual standstill. One can debate the

factors that contributed to this. Certainly, within AT&T and probably

in the industry at large, the main focus of most UNIX development orga-

nizations was more on hardware and kernel development than on general

reusable libraries. This direction of work was driven by the belief that ex-

cept for application-speci�c products, the main value of software was to

help sell hardware. This assumption was always dubious and is certainly

no longer valid at current prices for high-performance stock hardware.

From a language point of view, an important factor was the lack of

direct support for modularization in C. Though conventions could be

formed to alleviate the problem, such conventions were either ill-de�ned

or, more often, ignored when available. This situation was worsened by

the explosive growth of the UNIX system as a platform for building soft-

ware applications. During this gold rush, more e�ort was dedicated to

Libraries and File System Architecture 27

building application-speci�c products than reusable software. The latter

was sometimes viewed as an unnecessary luxury. As applications have ex-

panded and branched into families and demands have increased for quick

turnaround of new features, the need for standard reusable software com-

ponents has become critical.

The introduction of the C++ programming language in the mid 1980s

put an additional damper on the development of new C libraries. C++

had better support for interface encapsulation than C. This simpli�ed the

creation of new libraries. Moreover, since C++ was in its infancy, there

was no backward compatibility to contend with. The result was that much

of the recent best library work in the C family of languages occurred in

the C++ arena (including many reimplementations of C libraries as C++).

Despite the lack of support for modularization in the C language, it

is possible to write high-level reusable libraries in C. With some e�ort,

such libraries can even be written to be compatible with any variant of

the C language, including C++. Over a period of several years, we have

been writing and distributing a collection of high-level reusable C libraries

under the ast (advanced software technology) umbrella. The ast libraries

were developed as a part of a research program to build highly portable

advanced software development tools. The algorithms and data structures

underlying these tools are encapsulated in library components to increase

general reuse, avoid code duplication, and maximize portability. Over the

years, the libraries have found wide use both within our own work and

other applications, including commercial products.

The ast libraries cover a broad spectrum, including functions tradi-

tionally provided in libc (but more portable), general network connection

functions, C expression evaluation, data compression, and others. ast has

been ported to virtually every combination of UNIX software/hardware

platform, including various versions of System V, BSD and AT&T Bell

Laboratories Research UNIX systems, and Windows and Windows NT.

The remainder of this section describes in detail the design conventions

used, and overviews a few components of ast. A few ast components are

based on the idea of disciplines and methods that parameterize resource

acquisition and management. These are overviewed in Section 2.3, which

discusses disciplines and methods in detail.

28 Fowler, Korn, and Vo

2.2.1 Design Considerations

The primary goals in building the ast components are applicability, e�-

ciency, ease of use, and ease of maintenance. However, there is no simple

set of rules that would guarantee the simultaneous achievement of these

goals. Often enough, the goals con
ict and decisions have to be made to

balance the trade-o�s. Below are an eclectic set of design considerations

used as guidelines in building the ast software.

2.2.1.1 Necessity

A component is not reusable unless it is used. This means that a reusable

component should be built out of real needs. A way to meet this condition

is to �rst plan some applications, then build the functions that make up

the applications as one or more libraries. Because libraries are often used

in di�erent ways, this approach has the additional advantage of forcing

the programmer to think in advance about di�erent usages resulting in

better code quality.

An example of writing a library before writing a command is the libpp

library (Section 2.2.9). libpp de�nes the token parsing and symbol process-

ing engine in our K&R [KR88], ANSI [ANS90], and C++ [Str91] compat-

ible C preprocessor. Besides this original use, libpp has found use in other

important language related tools, such as Cia (Chapter 6), a system for

storing and �nding information about C programs, and app (Chapter 5),

a preprocessor to annotate C code with assertions.

2.2.1.2 Generality

Except for e�ciency concerns, reusable components should be designed

for their most general applications. Often, this means putting together

separate but related concepts into a single unifying interface. This is im-

portant because applications often use similar mechanisms (for example,

various search structures) in di�erent ways (such as for storing objects

of di�erent types). Unifying the di�erent mechanisms in a standard set

of functions both simpli�es application construction and increases their

ease of maintenance. A further important e�ect of generality is that it

often opens up new uses.

Libraries and File System Architecture 29

The dictionary library libdict (see Section 2.3.3) shows an example of

how related concepts are uni�ed under a single general interface. Ordered

and unordered objects are treated uniformly. E�ciency is guaranteed by

switching storage methods between hash tables for unordered objects and

self-adjusting binary trees for ordered ones.

An aspect of generality related to portability is to provide common

abstractions that hide the di�erences in the underlying platforms. Though

our software is UNIX-based, it is no secret that no two versions of UNIX

are the same. In the short term, the existence of standard bodies, such as

POSIX [POS90], actually worsens the situation, as the standards tend to

be some amalgam of existing systems but unlike any of them. Sometimes,

when the di�erences in extant implementations of a desired feature are

wide enough, the standards may even shy away from de�ning one. In

Section 2.2.2, we describe a set of functions and header �les that combine

features from various UNIX
avors. Our tools are written based on this

interface to increase portability.

2.2.1.3 Extensibility

In building a library, certain low-level but critical functions from the

underlying platform are frequently required. Sometimes it is pro�table

to abstract such dependencies and let applications provide appropriate

processing functions. This is similar to the idea of virtual functions in

C++, which parameterize the operations of an abstract class. Section 2.3

discusses disciplines that are interfaces designed to capture external re-

source dependencies. This allows applications to rede�ne such resource

requirements for a library without tampering with its internals.

2.2.1.4 E�ciency

E�ciency is a primary consideration in the construction of a reusable

component, because the performance of such a component is ampli�ed

by its repeated use. When a reusable component does not perform ad-

equately, programmers will be tempted to hand-code and create appli-

cations that are hard to maintain. There are two aspects of e�ciency:

internal and external.

30 Fowler, Korn, and Vo

Internal e�ciency This means, �rst, that library components are imple-

mented using the current best-known data structures and algorithms.

Then, even if general algorithms may have good performance over a

large class of operations, it is sometimes bene�cial to optimize code

based on its most popular use or local hardware and platform features.

An example of this type of optimization is the numerical conversion

algorithm from an internal representation to an ASCII format in the

sfprintf() family of functions in the s�o library (Section 2.3.1). Here,

because base 10 is most commonly used, it is handled using a fast cus-

tomized algorithm. Other bases are handled by a general but slower

method.

External e�ciency: This means that the library interface is designed so

that critical resources managed by the library can be e�ciently accessed

by applications. An example of this is the sfreserve() function of the

s�o library that allows an application to directly and safely access

the internal bu�er of an I/O stream. For applications accessing large

chunks of data, this can dramatically reduce the number of memory

copying operations between stream and application bu�ers while still

minimizing system calls. We have rewritten many system commands,

such as pack and wc, based on sfreserve() with up to a factor of four

in performance improvement over the BSD4.3 versions of the same

commands.

2.2.1.5 Robustness

A successful reusable component should be robust with respect to stresses

on critical resources. There are two aspects of robustness: internal and

external.

Internal robustness This means that the library components should be

well tested in a variety of environments, that their implementation does

not impose any arti�cial constraints on resources, and that they can

respond well to unexpected events. The ast components are continu-

ally tested and used on nearly every UNIX platform. Arti�cial con-

straints, such as �xed size arrays, number of bits in an int, etc., are

duly avoided. As an additional measure of internal robustness, the ast

Libraries and File System Architecture 31

code is written in a style compilable under the K&R C, ANSI C and

C++ dialects. This allows the code to be tested with the type check-

ing mechanisms of many C compilers, each with its own strengths and

weaknesses. In addition, the code can be used transparently by appli-

cations based on di�erent C dialects.

External robustness: This means that the library design should prevent

applications from making inherently unsafe usage and provide them

with ways to deal with exceptions. An example of inherently unsafe

usage is the stdio gets() function, which takes as input a bu�er with

unspeci�ed size and returns data of unspeci�ed length in the bu�er.

Since neither bu�er size nor data size are known in advance, there is

no precaution that either the library or the application can make to

prevent bu�er over
ow. By contrast, the s�o library provides a func-

tion sfgetr(), which returns a pointer to a record delineated by some

application-de�ned record separator. The space for the record is inter-

nally managed by the library, as only it can know how much space is

required.

An aspect of external robustness related to extensions is to design

global data structures so that applications see only what they require.

For example, an application based on the s�o library does I/O via

stream handles of the type Sfio t. However, from the application's

viewpoint, such a handle contains only the elements necessary to imple-

ment fast operations, such as sfputc() or sfgetc(). Other members

of the structure are hidden from view. By doing this and by being care-

ful to use memory allocation instead of static arrays, we can guarantee

that, even at the binary level, application code will not be a�ected

should the Sfio t structure need extensions.

2.2.1.6 Modularity

Modularity means that components and functions are su�ciently insu-

lated from one another so that the implementation of one will not severely

a�ect the implementation of another. It also means that the components

and functions can be used independently. Modularity is important be-

cause it reduces the complexity in interrelations among components. By

and large, the ast libraries can be used in arbitrary order. Of course, using

32 Fowler, Korn, and Vo

some of them may mean that others will be implicitly required, but such

requirements are transparent at the application level.

For example, the ast error-handling component uses s�o to format er-

ror messages, so using an error-handling routine would implicitly mean

using s�o. But this does not mean that any understanding of s�o is re-

quired to use the error-handling functions. Within a library, to the extent

possible, the functions are designed to be orthogonal. For example, sim-

ilar to stdio, the s�o package allows an application to set its own bu�er

for a stream. Unlike stdio, which requires that the bu�er be set before

any I/O operation is performed, s�o allows arbitrary bu�er change. This

may seem to be a trivial improvement but for the fact that s�o lets ap-

plications create string streams to access memory bu�ers, and being able

to switch such bu�ers at any time is important.

2.2.1.7 Minimality

Next to having an awkward or inconsistent interface, having too much

in the interface is another factor that steepens the learning curve for

users. As a general rule, an interface should not be provided unless it

does something that cannot be done otherwise without signi�cant loss

of e�ciency or convenience. For example, unlike stdio, which provides a

multitude of convenience functions, such as getchar() and putchar() in

addition to general stream manipulation functions, such as getc() and

putc(), s�o simply insists that the standard functions sfgetc() and

sfputc() be used.

The downside of minimizing the interface is awkward and redundant

code at the application level when certain aggregate operations are com-

monly performed. In such a case, a compromise should be reached. An

example is the sfprints() function of s�o that creates a formatted string

in some system provided area and returns a pointer to that string. This

function avoids the bu�er over
ow problem that often arises with the

sprintf() function of stdio. Here, strictly speaking, an application can

create the e�ect of sfprints() using a combination of a string stream,

sfprintf(), sfseek(), and sfreserve(), but this is too awkward to

repeat in every application.

Libraries and File System Architecture 33

2.2.1.8 Portability

Given the multitude of hardware and software platforms available today,

portability is an absolute requirement for successful software. There are

two dimensions to portability: code and data. At the code level, the ast

libraries are portable to nearly all known UNIX and UNIX-like platforms

(including Windows and Windows NT). This is aided by the i�e prob-

ing mechanism and an accompanying coding discipline (see Section 3.2)

that allows recording knowledge learned during porting and enables code

con�guration without user intervention.

At the data level, it is desirable that persistent data (for example, disk

�les) or data communicated among processes also be portable. That is,

such data should be independent of the local hardware representations.

This is a hard problem and a complete solution for aggregate data types

would require much more cooperation from the languages and compilers

than currently available in any
avor of C. However, for primitive types,

the problem is more amenable to treatment. Assuming that the order

of bits in bytes is the same across hardware platforms, the s�o library

provides function to transparently read and write integers and
oating

point values.

2.2.1.9 Evolvability

A successful reusable library will undergo revisions as its design and im-

plementation are stressed by usage or technology advances. When the in-

terface is su�ciently general, certain types of revision can be kept hidden

within the package, and the interface can be maintained as is. However,

weakness in the design is often not revealed until challenged by new needs;

then, the interface must change. Sometimes, this amounts to adding new

functions to alter the states of the library.

An example along this way is the method idea discussed in Section 2.3,

which allows customization of the abstract interface by selecting a new

method. In other cases where new, clean, and well-designed interfaces

provide much more bene�t than previous ones, compatibility must be

broken. Then, it is important to help users ease the transition. An exam-

ple is the stdio source and binary compatibility packages provided with

34 Fowler, Korn, and Vo

s�o. These packages allow applications based on stdio to either recompile

or simply link with s�o transparently. This means that a software project

can take advantage of new technologies immediately without too much

upheaval in their programming practice.

2.2.1.10 Naming Conventions

Good interface conventions help to ease the learning curve of a software

package and reduce name clashing when di�erent packages are used to-

gether in a single application. As libraries are developed by di�erent peo-

ple at di�erent times, it is hard to achieve a uniform set of conventions.

Sometimes the interface is already de�ned by earlier packages (for

example, the screen library in Section 2.2.4), so new conventions cannot

apply. By and large, the naming conventions followed in ast are:

� Standard pre�xes: Constants, functions, and variables used in a package

are always named using a small and unique set of pre�xes that clearly

identify the package, including the name of the package. For example,

the pre�xes SF, Sf, and sf are used for the s�o package.

� Standard argument ordering: Functions typically manipulate some

structures that carry states across calls. Such state-carrying structures

always come �rst in a argument list. For example, in all s�o calls,

the stream argument is always the �rst. Sometimes arguments come

in pairs (for example, a bu�er and its size). Then, the one containing

data or used to store data comes �rst (for example, the bu�er comes

before its size). Finally,
ag arguments are always last in the list.

� Object identi�cation: A library typically de�nes and uses many di�er-

ent objects. It is helpful to use naming conventions that distinguish

di�erent object types. Preprocessor symbols or macros (for example,

SF READ) are de�ned using uppercase letters. Nonfunctional global sym-

bols (for example, Sfio t) often start with an uppercase letter. Sfio t

also shows that a library-de�ned type often has an a�xed t. Function

names (for example, sfopen()) are always in lowercase.

� Reducing private global symbols: Global data private to a single library

is often placed in a single struct so that only one identi�er in the data

name space is taken. For example, all private global data of the s�o

Libraries and File System Architecture 35

library are kept in a structure Sfextern. The leading underscore in

Sfextern further emphasizes that it is a private symbol.

2.2.1.11 Architecture Conventions

Architecture conventions help to �t a library into other families of li-

braries, simplify the library design, and ease the learning process for new

users. Below are some of the conventions used in the ast libraries.

Reusing well-known architecture conventions: Inventing a new library

does not necessarily mean inventing new software architecture and

conventions. It is often advantageous to follow already familiar conven-

tions. For example, in many libraries, the modus operandi is to create

some data structure, manipulate it, and �nally destroy it. A good ex-

isting convention is practiced by the UNIX �le-manipulation system

calls: open(), read(), write(), lseek(), and close(). Here, open()

creates a �le descriptor, a data structure that carries states across sys-

tem calls{and close() destroys this data structure. The �le descriptor,

that is, the object being manipulated, is always the �rst argument to

other calls, such as read() or write(), that require it. This is one of

the architecture conventions employed in ast.

Saving and restoring states: C and its sibling languages are stack-like in

their function-call convention. Certain data structures in the libraries

are shared across function calls, so it is good to architect the library

functions so that state information can be saved and restored seam-

lessly. A good convention for functions that alter states is to always

return the previous state. This allows an arbitrary function to call a

library function to perform some work, then restore the data struc-

tures to their previous state before returning. For example, the func-

tion sfset() of s�o, used to set the
ags controlling a stream, always

returns the previous set of
ags.

Information hiding: A structure publicly advertised by a library needs

to reveal only as much of its internals as required by the interface im-

plementation. Revealing too much of the private structure members

makes it di�cult to improve or extend the library without violating

object-code compatibility. So, for example, the Sfio t structure of s�o

36 Fowler, Korn, and Vo

reveals only as much of its members as required for implementing fast

macro functions, such as sfputc(). Other members are visible only to

the s�o functions. This prevents application developers from improper

use of information. Further, as the structure is incomplete, certain in-

formation, such as its size, is meaningless in computation. On numerous

occasions, this has helped to prevent applications from having to re-

compile when Sfio t was extended.

Meaningful use of exceptional values: Separate operations can often be

merged into one using certain exceptional values. An example is the

s�o call sfstack(base,top) that speci�es a base stream and a top

stream to be pushed on top of base. I/O operations on the stream stack

identi�ed by base are performed on the top stream. Thus, sfstack()

is useful for applications that process nested streams, such as the C

preprocessor and #include �les. Now, an operation required for a stack

is the ability to pop the top element. Instead of providing a separate pop

function, s�o does this with sfstack(base,NULL). As NULL is often an

error value (for example, for malloc()), using it in a meaningful way

like this also induces programmers to be more aware and check for it.

2.2.2 libast: The ast Base

libast is the base library for the ast tools. It provides a common header

and function interface for many UNIX systems and C compilers. Imple-

mentation speci�c details are con�ned to libast , with the e�ect that most

ast tools are programmed without architecture-speci�c #ifdefs. While

encouraging clean tool design, libast also provides a convenient frame-

work for portability. Many interface issues are addressed and these are

categorized below.

2.2.2.1 Header Interface

Determining the set of #include headers to use for a given system is

one of the hardest portability challenges. Missing headers can be han-

dled with simple feature testing (see Section 3.2). More di�cult are sys-

tem headers that omit information or de�ne constructs that con
ict with

other headers. This is especially true with the introduction of function

Libraries and File System Architecture 37

prototypes in ANSI C and C++ compiler headers. Traveling along the

migration path between K&R and ANSI C adds more complications.

The header ast std.h provides a union of the following ANSI and

POSIX headers:

stdarg.h, stddef.h, stdlib.h, string.h, locale.h,

limits.h, sys/types.h, unistd.h, fcntl.h

ast std.h is self-consistent across UNIX system and compiler variants.

Consistency is attained by supplying omitted headers, providing defaults

for omitted de�nitions, and �xing up botched constructs in existing local

headers. For example, the type size t is typically de�ned in stddef.h

for ANSI C and sys/types.h for UNIX systems. In the latter case, it

is sometimes not de�ned. As size t is a symbol de�ned by the ANSI

C standard, the header ast std.h guarantees that this type is always

de�ned.

ast std.h includes local headers whenever possible (thus, it may de-

�ne nonstandard symbols). Others are generated as necessary for the

compiler that installs libast using i�e probes (Section 3.2). The ast std.h

header can be safely used with the C compiler used to generate it. It can

also be used with other C compilers if the libpp C preprocessor (the de-

fault preprocessor for nmake users) is used.

2.2.2.2 Missing Functions

libast provides implementations for common system calls not supported

by the local system. Some calls, like rename(), are emulated using link()

and unlink(). Others, like symlink(), cannot be emulated, so the library

provides a stub that always fails with errno set to ENOSYS. Nonfunctional

stubs allow applications to be written against a single system call model.

2.2.2.3 Replacement Functions

Many of the functions in libc have changed little since their introduc-

tion in the late 1970s. Since then, better algorithms and optimizations

may have been discovered. libast provides interface-compatible replace-

ments for the best of these. getcwd() takes advantage of the PWD envi-

ronment variable maintained by ksh and other modern shells. By compar-

38 Fowler, Korn, and Vo

ing the value of PWD with \.", the more complex search algorithm can

be almost always avoided. Another example illustrating the dark side of

standard headers and function prototypes is getgroups(). The POSIX

function prototype is int getgroups(int size, gid t* groups), but

the library implementation on most current systems follows the tradi-

tional BSD int getgroups(int size, int* groups). This is unten-

able on systems where sizeof(gid t)!=sizeof(int) (most implemen-

tations de�ne gid t as short). libast solves this by providing a macro

getgroups that calls ast getgroups() with the proper gid t* proto-

type. ast getgroups() then handles the gid t*/int* inconsistency.

2.2.2.4 New Functions

libast is also a common repository for new functions that are shared

among the ast tools. Application speci�c functions, like the coshell in-

terface described below, generally warrant their own library. There are

over 200 public functions in libast. All are used by at least two of the ast

tools. Some, like s�o, are used by all of the ast tools. There are too many

functions to list, but one particular class should give a
avor of library.

The str* routines convert char* strings to other C types. struid() con-

verts a string to a uid t, and strperm() converts a chmod �le mode

expression to a mode t. For each of these there is an inverse conversion

routine. fmtuid() converts a uid t into a char*, and fmtperm() converts

a mode t to a chmod expression string.

2.2.3 libcmd : Enhanced UNIX Commands

To enhance e�ciency and to test the libraries, we have rewritten many

common commands in the IEEE POSIX 1003.2 Standard for shell and

utilities. Each command is implemented as a self-contained library func-

tion whose name is b name, where name is the name of the command.

For example, b cat() is the function corresponding to the command cat.

Then, an actual command is just a simple main() that passes on its

arguments to the respective function. For convenience, these functions

are grouped together in the libcmd library. An advantage of libcmd is

that such functions can be directly built into applications to avoid the

Libraries and File System Architecture 39

fork/exec overhead of running commands. Recent versions of ksh support

dynamic linking of built-ins. By building libcmd as a shared library, any

or all of these commands can be made built-ins to the shell as desired.

Since the built-in version uses the same code as the command version,

they are always compatible.

libcmd contains many of the simple commands that take more time

to invoke than to run, such as basename, dirname, logname, mkdir,

pathchk, and tty. It also contains commands that descend the �le hierar-

chy, such as chmod, chgrp, and chown. Finally, to enhance I/O e�ciency,

libcmd contains commands, such as cut, join, paste, wc, and other util-

ities.

2.2.4 screen: Character Screen Management

The screen library is a collection of functions to manipulate character

terminals. It can be used as a replacement for the curses library [Arn84,

Hor82] (because of this, screen does not follow the standard ast naming

conventions.) The original curses library was distributed with the BSD4.1

UNIX system. This version su�ered from many serious bugs (such as

memory violations), rendering it virtually unusable.

The library was based on the termcap terminal description language

and database used in the vi editor [Joy80], but it did not make full use

of terminal capabilities, such as hardware scrolling and line/character in-

sert/delete. A later version released with the System V Release 2 UNIX

system �xed many of these problems. This version of curses was based

on the terminfo language and database for terminal description. In terms

of functionality, this version was relatively complete, but it su�ered from

performance both in terms of space requirement and time. There were a

few idiosyncrasies in the interface, such as the distinction between win-

dows that �t a screen and windows that extended beyond screen bound-

aries (these were called pads).

When the Easel system (Chapter 4) was developed in 1982, neither

of the existing curses versions was adequate. This was not just a matter of

performance or portability but also because many key features were lack-

ing. The screen library was built to deal with such problems. An early

version of the library was used as a base for more modern versions of

40 Fowler, Korn, and Vo

curses starting from UNIX System V Release 3.2. Beyond curses func-

tionality, below are the key contributions of screen.

2.2.4.1 Logical Window Hierarchy Model

The library handles windows and derived windows consistently so that

any change in the image of a window in the hierarchy is accurately re-

ected in the others. New functions, such as wsyncup() and wsyncdown(),

allow applications
exible and e�cient manipulations of window images

and screen updates.

2.2.4.2 E�cient Screen Update Algorithm

The library implements an e�cient screen update algorithm that uses

all de�ned terminal capabilities, including scrolling and character/line

insert/delete. The algorithm also correctly deals with variations in video

attribute handling, including various types of magic cookies [Hor82]. The

line update part of the algorithm is based on the Minimum Distance

Longest Common Subsequence algorithm [JV92], which minimizes visual

disturbance due to line jumpings.

2.2.4.3 Internationalization

The library can deal with a wide range of character code sets, includ-

ing ASCII, 8-bit European code sets, and other multibyte character sets

commonly used in the Orient. There are many di�erent code sets for

multibyte characters de�ned by di�erent vendors. The screen library is

still the only implementation of curses that can deal with most existing

code sets.

2.2.4.4 Terminal Handling

In contrast to other curses implementations that can use only one of

the termcap and terminfo databases, the screen library can use either

database or even both in the same process if necessary. On modern work-

stations with pointer devices, such as the mouse, the library supports

their use for interactive screen manipulations.

Libraries and File System Architecture 41

2.2.4.5 New Functions

The library adds many new functions to perform higher-level data ma-

nipulations. Examples are wmenu() to interact with matrices of menu op-

tions, wview() and wunview() to create textual descriptions of window

images, and wedit(), which de�nes a virtual screen editor.

Below is an example of editing a string in a small window. The example

is prototypical of how a form package would create form �elds using

screen. Lines 2 to 17 de�ne the keyboard interface for editing. Here, arrow

keys are used for cursor motion, the control-D character ends editing,

and any other alphabetic keyboard input is inserted in front the cursor.

The full set of editor commands supplied by wedit() is rich enough to

simulate all screen interactions of editors, such as vi or emacs. Lines 18 to

20 create a window with 1 line and 10 columns, turn it to inverse video,

and enable function key interactions. Line 18 invokes the editor with the

string "abcd" as the initial text. wedit() returns the edited string.

1: #include <curses.h>

2: static kbf(WINDOW* win, EDIT_ARG* arg)

3: { int ch;

4: while(1)

5: { switch((ch = wgetch(win)))

6: { default : if(isalpha(ch))

7: return ch;

8: else continue;

9: case KEY_LEFT : return EDIT_LEFT;

10: case KEY_RIGHT: return EDIT_RIGHT;

11: case KEY_DOWN : return EDIT_DOWN;

12: case KEY_UP : return EDIT_UP;

13: case ERR :

14: case CTRL(D) : return EDIT_DONE;

15: }

16: }

17: }

...

18: win = newwin(1,10,10,10);

19: wbkgd(win,A_REVERSE);

20: keypad(win,TRUE);

21: str = wedit(win,0,kbf,"abcd",0,0,0,0,0,0,0);

2.2.5 stak : Stacklike Memory Allocation

Interpreters (such as ksh) frequently build parse trees and text strings by

substitution of text patterns (for example, values of shell variables). The

42 Fowler, Korn, and Vo

typical construction of these objects involves several allocations but no

frees, and, when the object is deleted, all allocated space is freed at once.

Though malloc could be used for this purpose, the overhead can be high.

Interfaces, such as alloca() [UNI86] and the Vmlast method described

in Section 2.3.4, are more suitable, but the function call overheads are

still high when many characters or small strings are being glued together.

alloca(), which, if available, allocates from the stack, is also unsuitable

if the constructed object must live beyond the life of the function that

builds it. The stak library provides a set of macros and functions to

conveniently and e�ciently build stack-like objects.

A stack abstraction consists of an ordered list of contiguous memory

regions, called stack frames, that can hold objects of arbitrary size. A

stack is represented by the type Stk t de�ned in header stk.h. A Stk t

structure is derived from a Sfio t structure, so s�o calls for output can

also be used on Stk t. Stacks are opened and closed with stkopen() and

stkclose(). Variable size objects can be added to a stack. All objects,

once frozen, can be referred to by pointer. The last object (called the

current object) can be built incrementally. During such a construction

process, the object location may be moved, so it is necessary to reference

this object with relative o�sets. Allocation of a frozen object is done with

stkalloc(). The current object can be frozen with stkfreeze() so that

pointers can be used to refer to locations within it. Applications that

require only one stack can use the standardly provided stkstd.

1: int myopen(const char *dir, const char *name)

2: { long offset = stktell(stkstd);

3: sfputr(stkstd,dir,-1);

4: sfputc(stkstd,'/');

5: sfputr(stkstd,name,-1);

6: sfputc(stkstd,'\0');

7: stkseek(stkstd,offset);

8: return(open(stkptr(stkstd,offset),0));

9: }

The example above shows the function myopen() that constructs a

pathname on the standard stack stdstk from a directory name, and a

�lename, then opens the corresponding �le and returns the resulting �le

descriptor. Line 2 obtains the current location on the standard stack,

which is reset on line 7 so that the memory can be reused in future calls.

Libraries and File System Architecture 43

The stkptr() call on line 8 converts the current offset into a memory

address that should point to the constructed pathname.

2.2.6 libcoshell : Shell Coprocess

libcoshell provides a
exible alternative to the traditional system or fork,

exec, wait paradigms for command execution. Instead of executing a sep-

arate shell for each job (related sequence of shell commands), libcoshell

supports the shell as a coprocess. This coprocess spans the lifetime of the

calling process. The coprocess may be either ksh or sh executing on the

local host, or it may be the coshell daemon with access to shells on hosts

throughout a local network. Local, concurrent and remote job execution

are all handled through one interface.

Although full fork/exec semantics are not supported (for example, open

�le descriptors are not passed to the jobs), the library passes most of

the caller's environment and relays signals from the caller's process to

each job. The interface is de�ned in the coshell.h header and is im-

plemented in the coshell library. Each coprocess is created and closed

by coopen() and coclose(). coopen() returns a handle of the type

Coshell t*. Then, each job is executed by coexec(), which returns a

handle of type Cojob t*. This handle can be used to wait on a job and

to get its accounting information.

The following example shows a simple command interpreter. Line 7

opens a coshell using default parameters (all zeros). Thus, by default, ksh

is used as the coshell, but that can be overridden by setting, for example,

COSHELL=coshell to run commands on other lightly loaded hosts on the

local network. Line 9 reads commands from standard input. Line 10 exe-

cutes the commands. Line 12 waits for the running command to complete

before getting the next one. Lines 14 to 17 prints the termination status

of the command and its user and system times. Line 19 terminates the

coshell after all commands have been read and executed.

1: #include <ast.h>

2: #include <coshell.h>

3: main()

4: { char* cmd;

5: Coshell_t* csh;

6: Cojob_t* job;

44 Fowler, Korn, and Vo

7: if(!(csh = coopen(0, 0, 0)))

8: exit(1);

9: while((cmd = sfgetr(sfstdin,'\n',1)))

10: { if(!(job = coexec(csh,cmd,0,0,0,"label=cosh")))

11: exit(1);

12: if(!(job = cowait(csh, job)))

13: exit(1);

14: sfprintf(sfstdout,"status=%d usr=%s sys=%s\n",

15: job->status,

16: fmtelapsed(job->user, CO_QUANT),

17: fmtelapsed(job->sys, CO_QUANT));

18: }

19: coclose(csh);

20: exit(0);

21: }

2.2.7 libcs: Connect Streams

The internet service addressing scheme for remote service names and in-

terprocess communication is complicated to program. Service naming in

the
at IP address and port number name space is like naming �les and

commands by device and inode numbers instead of hierarchical path-

names. This is not a pleasant process. An additional complication is the

interface di�erence between BSD sockets and System V TLI. As a result,

most applications either resort to a super-server, like inetd, for estab-

lishing communications or copy boilerplate initialization code from other

programs.

libcs solves the problem by placing service names in the �le system

namespace and providing a common interface based on either BSD sockets

or System V TLI. A connect stream is a pathname that names a service.

Connect stream �les allow unrelated processes to rendezvous. A server

�rst creates a connect stream; then, each client open of the connect stream

received by the server presents a unique bidirectional pipe connection

between the client and server.

Connect streams may be local or remote. Local connections support �le

descriptor exchange via cssend() and csrecv() that allows one process

to open a �le and an unrelated process to operate on it. Remote streams

support pipe or datagram semantics.

Connect stream names match /dev/proto/host/service[/options],

where proto is fdp for local streams and tcp or udp for remote streams.

Libraries and File System Architecture 45

host is either a host name (local names the local host) or an IP n.n.n.n

address. The special host name share names one service that serves

all hosts on the local network; otherwise, the service may run one per

host. service is either a service name (for new services), inet.service

(for standard services in /etc/services), or an integer port number

(for old internet services). The options are slash-separated and further

qualify the connect stream: user [=uid] restricts the service to the cur-

rent user [or uid]; group [=gid] restricts the service to the current group

[or gid]; other (default) speci�es no user or group service restrictions.

Other options are service-dependent and are used to name di�erent in-

stantiations of the same service; di�erent connect streams name di�er-

ent services. For example, two di�erent process instances of the coshell

daemon program are named by /dev/fdp/local/coshell/user and

/dev/fdp/local/coshell/group=ship.

Most servers reside in the directory libcs/proto/server. server is the

name of the server executable in this directory. For remote connect

streams, the �le hosts lists the hosts on which the service can be au-

tomatically started. If not speci�ed, then the �le lib/cs/share is used.

If hosts is empty, then the service must be manually started. Otherwise

the service is started by the �rst user open of the service. Service mainte-

nance is trivial, as no modi�cations to the kernel init sequence or rc �les

are necessary.

A server announces its connect stream with csserve(), which also

handles the bookkeeping for new connects, read and write requests,

and timeouts. Clients connect to the server by fd=csopen(\connect-

stream",0). Normal read() and write() calls are then used on fd to

communicate with the server.

libcs provides routines for host status monitoring (such as, load av-

erage, user idle time), host attributes (such as, mips rating, cpu type),

and service monitoring. For example, the cs command lists the active

connect streams visible from the local host:

$ cs -lp

connect stream process

/dev/fdp/local/coshell/user /proc/17692

/dev/fdp/local/dev/user /proc/20112

/dev/tcp/share/dbm/group=ship /n/toucan/proc/6486

/dev/tcp/share/yeast/local /proc/20463

46 Fowler, Korn, and Vo

libcs also supports msgsend() and msgrecv(), which are used to pack

and unpack system call messages that may be sent over stream (socket)

pipes. System call messages are used to monitor processes, as well as to

provide alternate system services. The message format is byte-order and

word-size independent.

A glaring omission in the UNIX IP address-port IPC interface is client

authentication. In a modern computing environment, services must be

able to identify clients or service integrity may be compromised. Tradi-

tionally, authentication requires some form of encrypted key exchange

between client and server, but such an intrusive mechanism would break

the �le-based illusion of libcs connect streams.

A libcs server can choose to enable client authentication when it creates

the connect stream with cscreate(). Each client csopen() then initiates

the authentication protocol and handshakes with csserve().

Rather than inventing a new authentication scheme, and in the interest

of doing as much work in user space as possible, libcs relies on standard

UNIX �le access mechanisms for client authentication. Authentication

is based on challenge-response. A client csopen() requests a challenge

sequence from the server. The challenge is a �le pathname and two 32-

bit numbers in ASCII format. The client must create the �le with the

access and modify times set to the two given numbers (using the utime()

system call). In addition, the set-uid, set-gid, user-read, and user-write

permission bits are set and all other permission bits are cleared. On UNIX

systems, only the �le owner could create such a �le. The client sends a

null message back to the server and the server authenticates the client

by calling lstat() on the �le, verifying the challenge numbers, and then

using the �le owner and group as the client user identity. If the �le does

not verify, then the connection is dropped. Otherwise, the server sends

back a positive acknowledgement and accepts the connection. The client

then deletes the authentication �le and continues.

Client authentication between server and client hosts that do not share

a �le system is slightly more complicated. In this case, the client uses the

remote shell rsh to run an authentication agent command on the server

host. The client and server handshake just as above, but the agent does

Libraries and File System Architecture 47

the �le create and delete. In this case, remote client authentication is as

strong as, or as weak as, rsh authentication.

The main advantage of libcs authentication is that no new privileged

service is required; it is based on mechanisms already present on UNIX

systems.

2.2.8 libexpr : C Expression

Runtime program control is a common feature of many UNIX tools. Much

of this control is provided by so-called little languages, such as in expr,

�nd, and test. Although they get the job done, the downside is that com-

mands like these provide di�erent and incompatible expression syntax for

the same basic constructs or, worse, the same syntax with inconsistent

usage. For example, expr numeric equality syntax is num1=num2, while

the same syntax is used for string matching in test. This leads to confus-

ing expressions, such as 0 = 00, which is true in expr but false in test.

Unfortunately, old commands are sometimes beyond repair because of the

weight of existing practice and standardization.

libexpr is an alternative for new commands that require runtime ex-

pression evaluation. It provides routines that parse and evaluate simple

C-style expressions. The C syntax was chosen because it is almost sec-

ond nature to most UNIX system users, and C functions are a natural

for command-speci�c extensions. Also, the control constructs while, if,

for, and switch are included.

One diversion from C is that string operands are accepted for == and

!=, and the right operand is interpreted as a ksh �le match pattern.

ksh patterns were chosen over ed regular expressions because, like ksh,

libexpr is biased toward command level evaluation. ksh also o�ers pattern

negation, which is beyond the scope of basic regular expressions. Since

libexpr expressions are often entered as command line arguments from

the shell, string literals may use either "..." or '...' quoting styles.

Interface de�nitions are contained in the header expr.h. Before inter-

preting expressions, a parser context must be allocated with exopen(),

which returns a handle of type Expr t. Arguments to exopen() de�ne

application-speci�c symbols and access functions for referencing, get-

ting, setting, and converting values. An expression context is deleted via

48 Fowler, Korn, and Vo

exclose(). Expressions must be �rst compiled with excomp(), then eval-

uated with exeval().

Each expression context maintains a set of expression procedures. The

default or main expression has no name{all others are named:

name == "*.c" /* default expression */

void action() /* action expression */

{ printf("found %s\n", name);

}

Because goto is not supported, goto style labels provide a convenient

shorthand:

name=="*.c"; action: printf("found %s\n", name);

libexpr was originally designed for the tw [FKV89] �le tree walk com-

mand, a replacement for �nd based on the libast ftwalk() tree traversal

function (upon which the POSIX fts *() was based). The following tw

expression selects �les matching the shell pattern *.[ch] that have been

modi�ed since yesterday:

'name == "*.[ch]" && mtime > "yesterday"'

In some respects, tw (and �nd) are database query programs, where

the database is the �le system. This observation led to cql [Fow94], a

at �le database query program based on libexpr expressions. A
at �le

database is a sequence of newline terminated records with delimiter

separated �elds. Given a database schema description, cql expressions

can be written on the schema �eld names. The following example shows

a cql schema for /etc/passwd (tokenized but not parsed by libexpr).

passwd {

register char* name;

char* passwd;

register int uid, gid;

info info;

char* home, shell;

}

info {

char* name, address, office, home;

}

delimiter = ':';

input = "/etc/passwd";

Libraries and File System Architecture 49

register identi�es �elds that are good candidates for hash indexing.

cql can use this to optimize the query and database scan to eliminate

records that cannot match the query.

The following query lists the names of all users with uid less than 10

and no encrypted password:

uid < 10 && passwd == ""

action: printf("%s\t%s\n", name, info.name);

2.2.9 libpp: C Preprocessor Library

libpp is a C preprocessor library that is runtime compatible (only one

preprocessor executable) with all C dialects: K&R, ANSI, and C++. For

use with cc, a standalone cpp was generated from a 30-line cpp main()

linked with libpp. Except for option and pragma settings, the library

interface is fairly simple and consists of two main functions, ppop() and

pplex().

The call pplex() returns the token identi�er for each fully expanded

token in the input �les. The token identi�ers are suitable for yacc gram-

mars, and the library provides the yacc %include �le pp.yacc for this

purpose. pplex() places the token name in the global char* pp.token.

The call ppop(int op,...) sets preprocessor options and states. For

example, for C++, the call ppop(PP PLUSPLUS,1) enables recognition of

// comments and the .*, ->* and :: tokens.

ANSI C requires a tokenizing preprocessor, so libpp must follow C

syntax rules for the multicharacter operators, as well as identi�ers and

numeric and literal constants. This is di�erent from the usual K&R pre-

processor that passes o� most of the token-splitting rules to the compiler

front end. ppop() allows over 100 option settings. This may seem out of

hand but it merely re
ects the state of C compilation systems. Compiler

vendors cannot resist the temptation to extend C. Some PC compilers

have more than doubled the number of compiler-reserved words (near

and far are just the tip of the iceberg). GNU C and C++ are not far

behind. Others add new directives: #import in Objective C, #ident in

System V, and #eject (to control program listings!) in Apollo C. If the

libpp user were responsible for detecting all of these incompatibilities, ap-

plication programming would never get beyond the ppop() stage. libpp

50 Fowler, Korn, and Vo

handles this by probing each native compiler (at the �rst run) and posting

the probe information for all users. The probe information includes prede-

�ned macros, dialect-speci�c pragmas, nonstandard directive and pragma

maps, and other non-K&R preprocessor-reserved words. The probe infor-

mation is a header �le that is included to initialize the preprocessor. The

following is an example of prede�ned macros probed by libpp:

#pragma pp:predefined

#define __unix 1

#pragma pp:nopredefined

Probing at runtime to generate pragmas helps maintain a surprisingly

stable user and programmer interface. The interface has weathered three

lexical analyzer implementations, the last one, based on a lexical �nite

state machine from Dennis Ritchie, brought libpp speed within 10 percent

of the K&R \Reiser" cpp which is still the most e�cient preprocessor for

K&R C.

From a programming perspective, libpp operates in either standalone

or compile mode. standalone output is a text �le that is passed on to the

compiler front end pass. All macros and include �les are expanded and the

output also contains special line synchronization directives that identify

the source �le and line number for all preprocessed input. Since not all

output tokens need to be delineated, standalone mode can skip some

ANSI details; these will be picked up by the next compiler pass. void

ppcpp(void) encodes the standalone optimizations in a single routine.

On the other hand, compile mode does full tokenization and hashes all

identi�ers into the symbol table Hash table t* pp.symtab. In this mode,

pplex() sets struct ppsymbol* pp.symbol to point to the symbol table

entry for each identi�er token. void* pp.symbol->value is a pointer,

initialized to NULL and free for use by the libpp user.

Compilers can use pp.symbol->value to hold symbol type and scope

information. The PP COMPILE ppop() that sets compile mode accepts an

optional reserved-word table argument, allowing pplex() to do all C-

related lexical analysis.

The following code fragment lists each C source identi�er once (after

macro expansion):

Libraries and File System Architecture 51

ppop(PP_DEFAULT, PPDEFAULT);

optjoin(argv, ppargs, NULL);

ppop(PP_COMPILE, ppkey);

ppop(PP_INIT);

while(n = pplex())

if (n == T_ID && !pp.symbol->value)

{ pp.symbol->value = (void*)"";

sfputr(sfstdout, pp.token, '\n');

}

ppop(PP_DONE);

2.2.10 Discussion

The ast libraries have been in use for about ten years and currently stand

at about 50K lines of noncommented C code. The libraries have proved to

be a good base for building new e�cient and portable tools and continue

to evolve along with the construction of such tools. Aside from well-known

tools, such as ksh, nmake, and Easel, we have also written many POSIX

and UNIX commands, such as ls, pack, and pax which are much faster

than other standard implementations. All the tools are more or less freed

from architecture-speci�c #ifdef, yet they have been ported to all known

UNIX platforms with little e�ort.

In the continuing e�ort of building and maintaining ast, we have

learned many lessons and developed support technologies to build and

use reusable code. There is no easy path toward building such code. They

arise out of necessity but must be chiseled and formed until their essence is

revealed and their applicability fully realized. The design and implemen-

tation considerations described in Section2.2.1 guide us both in building

the software and in the continuing examination of it. None of these con-

siderations are individually deep and hard, but the success of ast does

testify to the value of debating and applying them as appropriate.

2.3 Disciplines and Methods

As with any product, software or otherwise, desirable characteristics of

a good library are simplicity, applicability, and performance. Achieving

these characteristics is a balancing act di�cult even for experienced soft-

ware designers. On the one hand, too much concern about performance

52 Vo

over simplicity may lead to multiple packages with essentially the same

interface but di�erent implementation methods. An extreme example is

the multitude of libraries for dictionary look-up, such as the map [Koe88]

package for C++ and the lsearch, tsearch, and hsearch packages in UNIX

System V [SVR90]. All these packages perform more or less the same

abstract operations of search, insert, delete, and iterate but their inter-

faces are all distinct. On the other hand, extreme concern with simplicity

can make software designers fail to anticipate variations in the underlying

computing substrate. This leads to software not as generally applicable

as it could be. For example, the various implementations of the malloc

package for memory allocation in C programs deal very well with heap

memory but are not usable with other types of memory, such as shared

memory. This is a pity, because a great deal of time and e�ort was put

into developing sophisticated algorithms for such purposes [KV85]. De-

sign failures of the types discussed can often be traced to the lack of

consideration of two factors: resource acquisition and resource manage-

ment.

Insu�cient consideration for resource acquisition means that methods

to obtain resources are assumed without analyzing their availability or

variations in their usage. For example, I/O libraries on UNIX systems of-

ten assume that data can be read or written via the system calls read()

and write(). Thus, these system calls are simply used by the libraries

but their usage is completely hidden from applications. Now, in a sense,

this is a purpose of the library: to hide certain low level implementa-

tion details. However, by doing so, the library design limits the library's

applicability, as it does not permit applications to specify alternative im-

plementations for resource acquisition. Further, implicit assumptions of

this type introduce hidden external dependencies that may be hard to

trace, for example, during porting such an I/O library to a non-UNIX

system. Thus, to increase the usability of a library, we assert that its

external resource requirements should be analyzed up front. Then, if ap-

plicable, the interface to such data structures and functions should be

de�ned explicitly as a part of the library's public interface. This interface

is called a discipline.

Insu�cient consideration of resource management means the avoidance

Libraries and File System Architecture 53

of analyzing and dealing with distinct usage scenarios where di�erent

e�ciency levels and features may not mix well. At worst, the available

code is not usable in a particular application. More often, we end up

with fragmented and inconsistent interfaces as in the case of multiple

online dictionary packages. Such interface di�erences make it di�cult to

mix and match usage of the libraries in a single application. At a more

subtle level, the variance among packages prevents application writers

from experimenting to �nd the right trade-o� in e�ciency and features.

Clearly, it is desirable to have a uniform abstract interface to common

operations even if the underlying data structures and algorithms may

vary due to performance or other requirements. Such variations should

be analyzed and captured as di�erent scenarios of using the abstract

interface. An interface packaging of a usage scenario to vary some common

abstract interface is called a method.

The ideas of discipline and method are useful to keep in mind when

designing a library interface. A discipline de�nes a disciplined way for

applications to extend the library functionality by altering the behavior

of its external dependencies. Further, during any porting e�ort, a large

amount of work is done to identify external dependencies and establish

their validity in di�erent environments. By considering such external de-

pendencies up front and de�ning the interface to them in disciplines, the

library code is also more readily portable. Methods provide an architec-

ture that allows applications to select and tune for certain prede�ned

usage scenarios. A library based on this architecture is also easier to ex-

tend without losing upward compatibility as new manipulation methods

are implemented.

In the rest of this section, we support the above hypothesis by

overviewing four example libraries built based on the idea of disciplines

and methods: s�o [KV91] for bu�ered I/O, vdelta [KV] for data di�erenc-

ing and compression, libdict [NV93] for online dictionary management,

and vmalloc [Vo] for general purpose memory allocation.

2.3.1 s�o: Safe/Fast I/O

One of the main contributions of the UNIX system is the notion of byte

streams for I/O. The byte streams, be they disk �les, terminals, tape

54 Korn and Vo

devices, or communication channels (such as pipes), are uniformly ac-

cessed via the system calls: read(), write(), and lseek(). As system

calls can incur signi�cant costs, it is advantageous to implement some

scheme of bu�ering to reduce the number of such calls. The s�o library

does this and more. It starts by de�ning the type Sfio t as an abstraction

of byte streams, then provides high-level functions, such as sfread() or

sfwrite(), to read/write data to such streams. Internally, a stream may

use a bu�er or a memory mapped area via mmap() [SVR90] for e�cient

I/O manipulations. In its common use, the s�o library is similar to the

stdio or standard I/O functions in the libc library found in any UNIX or

ANSI-C distribution. In fact, s�o was originally written to replace stdio

and correct a number of de�ciencies in its design and implementation. To

ease transition of existing code, s�o provides packages to emulate stdio

both at the source and object levels. Beyond stdio, s�o provides a number

of new features:

String streams: In many applications, it is frequently desirable to man-

age memory as if it were a �le. String streams allow applications to

read and write to memory, using the same stream operations. Bu�ers

of write string streams are dynamically reallocated as necessary to ac-

commodate data.

Portable numerical data: The library provides standard functions to per-

form I/O of integral and
oating point values in portable formats. The

coding of these values is optimized so that small values may use less

space than required in their internal representations. This allows ap-

plications to transport data across heterogeneous hardwares without

resorting to ASCII, which implies some space wastage in the case of

integers and loss of accuracy in the case of
oating point values.

Safe and e�cient bu�er access: The function sfgetr() is used to read

variable length records. For example, the call sfgetr(sfstdin,'nn',1)

reads a line delineated by the newline character. The third argument, 1,

means that the newline character should be replaced by the null byte to

make the line into a C string. sfgetr() keeps the string in the bu�er if

possible; otherwise, it builds the string in some other stream-managed

area. Thus, this example shows a feature similar to stdio gets() but

without any possibility of bu�er over
ow.

Libraries and File System Architecture 55

For more general bu�er access, the function sfreserve() can be used.

For example, sfreserve(sfstdin,1024,1) reserves a data segment

of size 1024 from the standard input stream. The third argument, 1,

indicates that the stream should be locked from further access until

the data segment is released. sfreserve() gives applications the same

I/O power as sfread() and sfwrite(), but applications do not have

to worry about bu�er size and avoid multiple intermediate bu�er-to-

bu�er copies. This is particularly e�cient for streams that use mmap()

for disk access.

Stream stacks: Streams can be nested using sfstack(base,top), which

pushes the stream top onto the stream stack identi�ed by the stream

base. Any I/O operation on base will be performed on top. This is

useful for processing nested �les, such as #include �les. Position syn-

chronization information can be detected by installing disciplines with

appropriate exception handlers to watch when a stream is �nished.

The last item brings us back to the issue of how methods and disci-

plines parameterize an I/O package. In this case, the standard method

implemented by s�o is deemed su�cient, so there is no need for al-

ternative methods. However, external resources managed by the library

are streams of bytes, that, by default, are obtained by the system calls

read(), write(), and lseek(). Thus, these functions can be packaged

abstractly using disciplines. Taking in the additional consideration for

exception handling, an s�o discipline structure of type Sfdisc t contains

at least the following members:

int (*readf)();

int (*writef)();

long (*seekf)();

int (*exceptf)();

The �rst three functions are self-explanatory. The (*exceptf)()

function is called on various exceptional events. For example, the call

(*except)(f,SF READ,disc) is raised when an error (or end of �le) con-

dition is detected while reading raw data into the stream f. Other excep-

tions announce events, such as stream being closed, or the manipulation

of the discipline stack itself.

The following is an example of �lter code that translates input data

from lowercase to uppercase, then outputs the transformed data. Lines 1

56 Korn and Vo

to 8 de�ne the function lower(), which will be used as the (*readf)()

discipline function on line 9. Note that raw data is read via the function

sfrd() on line 4. sfrd() may invoke lower disciplines on the discipline

stack, if any, or simply call read(). In this way, several disciplines can

cooperate to process data into the �nal form that the application re-

quires. Line 10 shows how the discipline is inserted into the standard

input stream. Then, on line 11, the sfmove() function is invoked to move

data from this stream to the standard output stream.

1: lower(Sfio_t* f, void* argbuf, int n, Sfdisc_t* disc)

2: { int c;

3: unsigned char* buf = (unsigned char*)argbuf;

4: n = sfrd(f,argbuf,n,disc);

5: for(c = 0; c < n; ++c)

6: buf[c] = tolower(buf[c]);

7: return n;

8: }

9: Sfdisc_t Disc = { lower, 0, 0, 0 };

...

10: sfdisc(sfstdin,&Disc);

11: sfmove(sfstdin,sfstdout,SF_UNBOUND,-1);

Though simplistic, this example shows how disciplines can be used to

greatly extend the range of data processing. Here is another example to

show how the data output to a stream can be transparently duplicated

to a second �le (perhaps on a di�erent networked machine) to increase

software fault tolerance (see Chapter 8). Because the discipline must know

the identity of the second �le, we extend it to contain the �le descriptor

of this �le:

typedef struct _dupdisc_s

{ Sfdisc_t disc; /* actual sfio discipline */

int fd; /* descriptor of duplicated file */

} Dupdisc_t;

Before a stream can be instrumented, a discipline structure of type

Dupdisc t must be created. The discipline function (*writef) is de�ned

below. For simplicity, we did not check error status of the write() calls on

lines 2 and 4. Note that the cast (Dupdisc t*) on line 4 is valid because

the s�o discipline is included as the �rst member of Dupdisc t.

Libraries and File System Architecture 57

1: dupwrite(Sfio_t* f, void* buf, int n, Sfdisc_t* disc)

2: { int w = write(sffileno(f),buf,n);

3: if(w > 0)

4: (void)write(((Dupdisc_t*)disc)->fd,buf,n);

5: return w;

6: }

So, suppose that a discipline structure of type Dupdisc t, say dupdisc,

has been created; we can use it to instrument an output stream f like

this:

sfdisc(f,(Sfdisc_t*)dupdisc);

The s�o library is in use worldwide on many di�erent platforms in-

cluding UNIX, DOS systems, and others. Disciplines have proved to be

a good ground for extending the library functionality and a good source

of reusable code. A more complete version of the above duplicated �le

discipline and a discipline to read �les compressed by the UNIX compress

program are among the disciplines regularly distributed with s�o.

2.3.2 vdelta: Di�erencing and Compression

Data di�erencing and data compression are techniques to reduce data

storage by exploiting redundancy in data sources. A data compression

tool exploits redundancies in a single data source and computes a com-

pact representation of that source. Popular data-compression tools are

the pack, compress, and gzip programs. A data-di�erencing tool takes

two related data sources and produces a transformation to transform the

�rst to the second. The idea is that if the second data source is similar

to the �rst, then storing the transformation would require substantially

less storage than storing the second source explicitly. In fact, if the two

sources are very similar (for example, di�erent versions of a source code),

the size of the di�erencing transformation should be much smaller than

that of the compressed data for any compression technique on the sec-

ond data source. A well-known data-di�erencing tool is the di� program

that, given two text �les, produces a set of line insert/delete operations

that transform the �rst �le to the second. The di� transformation under-

lies the storage schemes of popular source-code control systems, such as

SCCS [Roc75] and RCS [Tic85].

58 Vo

The vdelta library both compresses and computes data di�erences.

It uses a variation of the Lempel-Ziv data-compression method [ZL77,

Tic84] with a time and space e�cient string-matching algorithm and an

encoding technique suitable for byte streams. The encoding method is

portable across hardware platforms. Thus, it is possible to compute the

transformation on one machine type (perhaps a large machine) while

applying it on another machine (perhaps a small PC).

For compression, vdelta generally produces smaller compressed �les

than compress (especially text �les) but larger than gzip. In terms of

speed, vdelta compression is comparable to compress, which is about two

to three times faster than gzip, while vdelta decompression is two to three

times faster than either compress or gzip. This makes the method suitable

for applications, such as remote software updates, where compression is

typically done once but decompression is done many times. When used

for di�erencing, applications that update software versions based on the

vdelta transformation have reduced the amount of data transmitted by

an order of magnitude.

The call vddelta(src, n src, tar, n tar, disc) does both com-

pression and di�erencing. Source and target data are of size n src and

n tar. Compression corresponds to the case where n src is zero. The

source/target data can be given in array form if src/tar is not NULL.

Otherwise, the data will be obtained via the discipline disc. The corre-

sponding function vdupdate() recomputes the target data.

A vdelta discipline is a structure of type Vddisc t, which contains at

least the following members:

int (*readf)();

int (*writef)();

long window;

The (*readf)()/(*writef)() function is used to read/write data

from/to a vdelta transformation or the source or target data. The window

member of Vddisc t de�nes a segment size to partition large data sets.

This is useful to speed up vddelta() as it constructs a large data struc-

ture to process data (about 5 bytes per input byte). If window is nonpos-

itive, an internal value (216) is used.

The vdelta function interface and discipline are designed to permit

Libraries and File System Architecture 59

applications a range of usage from compressing/di�erencing pure memory

arrays to compressing/di�erencing pure data streams via the discipline

I/O functions. As working with memory arrays is most e�cient while

working with data streams is most general, this allows applications to

select what best �ts their needs. Finally, it is worth noting that an early

version of the vdelta library directly relies on the s�o library for I/O.

Even though the selection between memory arrays and streams is uni�ed

under the s�o string streams, the dependency on s�omeans that it is hard

to use vdelta as an independent library and in applications where only

memory manipulations are required. De�ning I/O dependency in terms

of a discipline solves this problem.

2.3.3 libdict: Online Dictionaries

The dictionary library, libdict , provides a set of functions to manage ob-

jects in runtime dictionaries. Aside from certain engineering features, the

main abstract operations on a dictionary are search, insert, delete and

iterate. There are two distinctive classes of objects: those that are totally

ordered and those that are unordered. Ordered objects are compared as

less than, greater than, or equal, while unordered objects are compared

as equal or not equal. To avoid search degeneracy in managing ordered

objects, either balanced trees or some form of self-adjusting data struc-

ture [Knu73, Sed78, ST85] should be used. With a properly de�ned object

comparator, unordered objects can be taken as a special case of ordered

objects. However, for good performance, hashing techniques should be

used so that each primitive operation can be performed in constant time

on the average.

The availability of multiple algorithms for essentially the same purpose

but with di�erent performance levels induces a great temptation to cre-

ate separate packages tailored to di�erent types of applications. Indeed,

this is the case on various C and C++ platforms. On System V UNIX

systems [SVR90], ordered dictionaries are handled by tsearch(), a tree-

based package, while unordered dictionaries are handled by hsearch(),

which maintains a hash table. These packages employ distinct interfaces

so that it is not easy to take advantage of their services in applications

that require simultaneous manipulation of both ordered and unordered

60 Vo

objects. hsearch() also imposes a severe limitation of only one hash ta-

ble per application. In the C++ environment, the map class library is a

popular package for online dictionaries. map requires that the objects be

ordered, thus sacri�cing e�ciency when objects are unordered.

By contrast, libdict provides a single abstract interface. To handle the

distinction between ordered and unordered objects and the implied per-

formance trade-o�, libdict provides two methods for object maintenance:

Dttree and Dthash. When Dttree is in use, objects are stored in a splay

tree [ST85]. This data structure guarantees that, with amortization, the

cost of each operation is O(logn) time, where n is the number of ob-

jects. Further, the data structure adapts well to applications where search

patterns may be biased. When Dthash is in use, objects are kept in an

extensible hash table with chaining.

Interface de�nitions are given in the header �le dict.h. A dic-

tionary is opened with some initial discipline and method using

dtopen(disc,meth), which, upon success, returns a handle of type

Dict t. The discipline and method of a dictionary can be changed at

any time using dtdisc() and dtmethod(), respectively. A dictionary,

dict, can be closed using dtclose(dict).

Searching for an object is done via dtsearch(dict,proto), where

proto de�nes a prototype of the object being searched. Similar functions,

dtinsert() and dtdelete(), insert and delete objects.

The simplest way to iterate on a dictionary is dtwalk(dict,func),

which causes the call (*func)(obj) to be issued on each object in order.

Note that the object order is well-de�ned only for an ordered dictionary.

For an unordered dictionary (such as under Dthash), some arbitrary order

will be used. This order is maintained as long as there are no inserts or

deletes. There are other ways to iterate on a dictionary. The code below

shows how to iterate either forward or backward in explicit loops:

for(obj = dtfirst(dict); obj; obj = dtnext(dict,obj))

for(obj = dtlast(dict); obj; obj = dtprev(dict,obj))

For applications that build dictionaries in nested scopes (for example,

symbol tables in nested braces in a C-like language), dictionaries can be

linked together using dtview(dict,view). This makes all objects in view

visible in dict. Thus, a search or a walk starting from dict will continue

Libraries and File System Architecture 61

as necessary to view (and any other dictionaries continuously viewable

from it).

In libdict case, discipline is not just a mechanism to increase usability;

it is required so that applications can supply information about objects

to be managed. The discipline structure Dtdisc t contains at least the

following members:

int key, size;

void* (*makef)();

void (*freef)();

int (*comparf)();

unsigned long (*hashf)();

Objects are compared by their keys. The key and size �elds de�ne

how to get the key of an object from the object address. For example,

if key is negative, then the object's address itself is the key. Otherwise,

it de�nes an o�set into the object structure where the key resides. The

function members are optional. If given, (*makef)() and (*freef)() are

used to make or free objects. (*comparf)() compares keys and returns

a negative, zero, or positive value to indicate whether or not the �rst key

is considered smaller, equal, or larger than the second. However, when

the dictionary is unordered, the return value of (*comparf)() is only

signi�cant in whether it is zero or non-zero. Likewise, (*hashf)(), if

given, is used to hash keys.

The following is an example of reading a collection of words with many

duplications possible and writing out the unique words in a lexicographic

order (as de�ned by the ASCII character set). Line 2 de�nes a discipline

using the strdup() function for creating words and the strcmp() func-

tion to compare them. Note that the key �eld is set to -1 to indicate that

the object itself (such as the word) is the key. Line 3 creates a new dic-

tionary using this discipline and the hashing method. Lines 4 and 5 read

words from the standard input and insert them into the dictionary. Here,

we are assuming that words are given one per line. Because dictionary

objects must be unique with respect to the comparison function, dupli-

cated words are automatically rejected. Note also that by using hashing in

this phase, duplications are found quickly. Line 6 changes the method to

Dttree, which causes words to be sorted lexicographically. Finally, lines

7 and 8 output the words in this order.

62 Vo

1: char* word;

2: Dtdisc_t disc = { -1, 0, strdup, 0, strcmp, 0 };

3: dict = dtopen(&disc,Dthash);

4: while((word = sfgetr(sfstdin,'\n',1)) != 0)

5: dtinsert(dict,word);

6: dtmethod(dict,Dttree,0);

7: for(word = dtfirst(dict); word; word = dtnext(dict,word))

8: sfprintf(sfstdout,"%s\n",word);

As the preceding example shows, an interesting aspect of libdict 's

method architecture is that a dictionary may dynamically change its

method. As we see next in vmalloc, method switching is not always possi-

ble, because the objects created and managed by the library may contain

states associated with the method in use. Still, it is useful that such a

possibility exists.

2.3.4 vmalloc: Virtual Memory Allocation

The virtual memory allocation library, vmalloc, provides a set of func-

tions to manage any type of runtime memory: that is, memory that can

be accessed via pointers, such as the usual heap memory (obtained via

sbrk(2) on UNIX systems), shared memory, or even stack space.

Memory is allocated from regions. The call vmopen(disc,meth,mode)

creates a region with discipline disc and method meth. The library pro-

vides two standard disciplines, Vmdcsbrk and Vmdcheap. The former ob-

tains memory using sbrk(2), while the latter uses vmalloc calls on the

standardly provided Vmheap region. Vmheap is an example of how regions

can be built out of memory from other regions. A region, vm, can be closed

with vmclose(vm), which releases all memory associated with vm via the

associated discipline.

The call vmalloc(vm,size) allocates a segment of memory, which, in

turn, can be freed with vmfree(vm,addr). Note that the memory to be

freed must have been allocated from vm. vmresize(vm,addr,size,type)

and used to resize a previously allocated memory segment to �t the given

size. It is similar to malloc realloc() but more general. Here, if type

is zero, vmresize() will fail if the segment cannot be resized in place. If

type is not zero and it is not possible to resize the block in place, a new

area will be created to �t size. Then, data is copied to the new area only

if type is positive.

Libraries and File System Architecture 63

Di�erent types of memory can be managed by vmalloc via the use of

disciplines. A vmalloc discipline of type Vmdisc t contains at least the

following �elds:

void* (*memoryf)();

int (*exceptf)();

The function (*memoryf)() obtains or reduces memory of a region.

Exceptional events are announced by (*exceptf)(). For example, a

failed attempt to get size bytes of memory is announced by the call

(*exceptf)(vm,VM NOMEM,size,disc). Other events announce region

opening and closing, or that some allocation operations were given bad

data.

vmalloc provides a number of allocation methods for di�erent impor-

tant cases of dynamic memory allocation:

Vmbest: A general purpose allocation strategy. It uses a best-�t alloca-

tion strategy which is good for space compaction. Free memory areas

are kept in a splay tree for fast search. For heap allocation, private sim-

ulation studies using real programs showed that this method performs

as well as or better than most other malloc implementations.

Vmlast: A strategy good for building complex structures that are only

deleted in whole (for example, via vmclose()). Thus, only the block

allocated last can be freed or resized. Unlike Vmbest, there is no space

overhead for every allocated block.

Vmpool: A strategy for allocating blocks of one size. This size is set on

the �rst vmalloc() call after vmopen(). Like Vmlast, there is no space

overhead for every allocated block.

Vmdebug: A strategy with stringent checking. It is useful for �nding

misuses of dynamically allocated memory, such as writing beyond block

boundary or freeing a block twice.

Vmprofile: A strategy that records and prints summaries of memory

usage. It is useful to �nd memory leaks and to analyze memory usage

patterns.

As an example of using vmalloc, consider a language interpreter that

may construct several parse trees for di�erent language fragments. Since

all nodes, edges, and associated attributes in a parse tree are allocated

64 Vo

together and freed together, it is advantageous to allocate from a region

using the Vmlast method as follows:

1: Vmalloc_t* vm = vmopen(Vmdcheap,Vmlast,0);

2:... Build tree with vmalloc()...

3:... Processing...

4: vmclose(vm);

The Vmlast method ensures that there is no space overhead associated

with allocated areas and the search for free memory is trivial and fast.

This example also uses the discipline Vmdcheap to obtain space from

the library-provided Vmheap region. One can imagine situations where

di�erent instances of an interpreter may want to share a parse tree. If a

discipline is available to obtain shared memory, say Vmdcshare, allocating

shared data structures can be done by simply changing line 1 to:

Vmalloc_t* vm = vmopen(Vmdcshare,Vmlast,0);

A major part of vmalloc is a package that emulates the familiar ANSI-

C malloc interface. Using this package, a particular allocation method

can be selected by setting some appropriate environment variable. For

example, export VMETHOD=vmdebug turns on debugging, while export

VMPROFILE=/dev/tty turns on pro�ling and directs pro�ling output to

the terminal. This allows applications based on the current malloc inter-

face to select appropriate allocation methods at runtime. The following

is an example C program with various memory bugs.

1: #include <stddef.h>

2: #include <vmalloc.h>

3: char* copy(char* s)

4: { char* news = malloc(strlen(s));

5: strcpy(news,s);

6: free(s);

7: return news;

8: }

9: main()

10: { char* s = copy("1234");

11: free(s);

12: }

Lines 3 to 8 de�ne a function copy() that makes a copy of an input

string, frees the old string, and returns the new copy. Line 10 calls this

function to copy a string. The �rst indication of bugs was seen after

compiling and running the program for the �rst time:

Libraries and File System Architecture 65

$ cc -DVMFL t.c -lvmalloc -o t

$ t

Bus error(core dump)

Now, if an error like this was found during development, the developer

can try to debug. But if this error happened at a customer's site, it

would be hard to �gure out. However, because the program was based on

vmalloc, we can try turning on memory debugging:

$ VMETHOD=vmdebug t

corrupted data:region=0xc638:block=0xe6a0:bad byte=4:

allocated at=t2.c,4:

free error:region=0xc638:block=0xc17a:unknown address:

detected at=t2.c,6:

The �rst error message says that the block allocated on line 4 (that

is, the space for the new string) was overwritten. Further examination of

the code shows that the programmer forgot the null byte at the end of a

C string, so the allocation on line 4 was one byte short. The second error

message says that the free() call on line 6 attempted to free a block that

was not previously allocated. Indeed, this was the case, as copy() was

called with a literal string. This was the cause of the bus error. Note also

that the program ran successfully this time (that is, without causing a

core dump). This is because the Vmdebug method checks for invalid calls,

such as the erroneous free() call in the example, and prevents them from

going too far.

The point in the above examples is that by anticipating and isolating

di�erent usage scenarios into separate methods, applications can be built

that are both powerful and e�cient. Applications based on the malloc

part of vmalloc can run at high e�ciency in normal mode, yet they still

can detect certain classes of memory errors by turning on the debugging

method as necessary. This is to be contrasted with memory debugging

packages, such as Purify [HJ92a] that requires building separate exe-

cutables if debugging is desired. Though Purify is more comprehensive

than Vmdebug, executables built with it cannot be shipped to customers.

2.3.5 Discussion

We have described the idea of analyzing resource usage for a library as a

part of de�ning the library interface. Resource usage is further categorized

66 Vo

as acquisition and management. The interface to the former is called

discipline, while the interface for the latter is called method. Library

designers routinely assume these resource aspects and avoid analyzing

their requirements. This leads to libraries that are not easily extensible

and, in some cases, unusable due to nonportability or poor performance.

We proposed and showed via examples that the functionality of a library

package can be greatly extended by explicitly de�ning disciplines and

methods as parts of the library interface.

Methods allow
exibility in customization of resource management in

certain prede�ned scenarios to add functionality or to tune for perfor-

mance. The libdict library allows applications to tune for performance at

the right time by switching the managing method of a dictionary to use

hash tables or binary trees. The vmalloc library provides an extensive set

of methods ranging from e�cient allocation to memory debugging or pro-

�ling. Architecting di�erent usages of the abstract interface of a library

with methods also makes it easy to extend the library as new methods

are discovered. Since a method must be speci�cally named to use, this

architecture also helps to reduce application code size if the library im-

plementation is structured so that di�erent methods are either isolated or

share only minimal code. This is due to the way that most C link editors

work. If symbols in a module (C source �le) of a library are not referred

to directly or indirectly, the module is not linked to the �nal executable

code. For example, if Dthash is never mentioned in an application based

on libdict, the code for the hash method is not linked to the application

executable code. This increases the usability of a library in environments

where memory may be limited.

Disciplines allow applications to extend library functionality or cus-

tomize it to speci�c resource requirements. libdict disciplines provide an

example of customizing object descriptions in dictionaries. This use of

disciplines is somewhat similar to class inheritance in object-oriented

languages, where member functions of a discipline structure are virtual

methods that operate on the speci�c object type. However, the dynamic

speci�cation of the key location in an object representation allowed by

libdict disciplines is not as easily done in a language, because class mem-

bers can only be accessed by names. The s�o library shows how the

Libraries and File System Architecture 67

underlying I/O system can be extended for data processing, using disci-

plines. Isolating resource acquisition functions in disciplines (as in s�o)

also means that much of the external dependencies in a library package

have been analyzed and anticipated. This helps to simplify any porting

e�ort.

The described discipline examples parameterize only the resource ac-

quisition parts of the respective libraries as applied to certain library

objects. There are other resource acquisition functions that may bene�t

from such parameterization. For example, dynamic memory allocation

is traditionally done via a single interface malloc. With the introduc-

tion of a library, such as vmalloc, it may be desirable to parameterize

dynamic memory allocation so that structures can be allocated from dif-

ferent types of memory. A di�culty with doing this in general is that

such a parameterization must be done for a library as a whole, not just

for a library object. For example, the creation of a stream in s�o involves

dynamic memory allocation and �le opening (typically via the open()

system call) so, if parameterized, alternatives to these functions must be

speci�ed before the stream is created. Perhaps, some notion of discipline

that applies to a library as a whole would be useful.

Finally, as discipline interfaces are well-de�ned, disciplines are a good

source of reusable code. This is amply demonstrated with the s�o and

vmalloc libraries, which have the most generally de�ned discipline inter-

faces. There are currently about half a dozen standardly distributed s�o

disciplines ranging from making an unseekable stream seekable (by shad-

owing data in temporary �les as necessary) to making transparent I/O

on compressed data. Users of vmalloc have written disciplines to man-

age shared memory via both shmget() and mmap(). This ability to write

reusable code to create variations of a library without having to tamper

with its internals is a key toward general library reusability.

2.4 libgraph

Graphs are fundamental data structures with many applications. In soft-

ware engineering, graphs can model the dependencies between the types,

variables, functions, modules, and �les that make up programs, as well

68 North

as data structures containing pointers or �nite state machines and Petri

nets, to name a few examples.

Many CASE systems use graph layouts to display software structure,

and, for some purposes, users appreciate these diagrams as an alterna-

tive to text output. Our experience with graph layout programs began

with creating the dag layout utility [GNV88]. It iteratively reads a graph,

computes a layout, and emits graphics code for a picture. Its algorithm

combines heuristics and mathematical optimization to make hierarchical

layouts of directed graphs. dag is more general-purpose than most inte-

grated CASE tools. It is not tied to any particular application or type

of graph, such as call graphs or class hierarchies. dag is language-based.

Though it can work with a compatible interactive front end, it doesn't

have to be operated manually with a point-and-click interface. This per-

mitted us to concentrate on layout style and algorithms, not GUI design.

Because dag was conceived as part of the tro� suite, its input language

resembles PIC [Ker84]. Its syntax is reasonably easy to learn, predictable,

and forgiving. Thus, programmers �nd it straightforward to write gener-

ators to convert other data into dag �les. While dag 's successor, dot (dag

of tomorrow), and some applications will be discussed further in Chap-

ter 11, we have introduced these tools here to provide background and

motivation for the design of an underlying graph library.

A serious problem with dag is that its data language was not designed

to be reusable. The need for reuse arose when users requested an inter-

active graph browser, �lters to cut large graphs down to size, and other

graph tools. dag does not have any foundation library to help in writing

such utilities. Though it does have a little language for graph speci�cation,

this language has hard-wired keywords and layout control statements (for

example, to set shapes or constrain rank assignments). It is not general

enough for other tools. Also, dag 's parser is entangled with its internal

layout data structures.

When creating dot , we addressed this need by writing libgraph, which

de�nes a standard graph data language and a small collection of C data

types and primitives. Consequently, libgraph programs can trivially share

graphs and possibly share code as well. (After gaining further experience

Libraries and File System Architecture 69

with dot , libgraph-2 was designed to address other problems. Most of the

following discussion pertains to both versions, except as noted.)

libgraph deals only with representing graphs in memory and in �les. It

does not include depth-�rst search, planarity testing, layout functions, or

a GUI. Including such routines in a base library is a mistake; it is much

better to keep them separate in higher-level libraries. Dependencies on a

speci�c window system or widget set are particularly undesirable because

of the resultant loss of portability.

2.4.1 Previous Work

Some examples of recent work in graph toolkits are Edge [PT90],

GraphEd [Him89], the Tom Sawyer commercial graph layout toolkit [Tom],

and XmGraph [You]; with new systems appearing regularly now. These

systems vary considerably in scope and complexity, but most of them fo-

cus on a graphical user interface and layout algorithms. Generally, these

systems were designed from the viewpoint that graphs will be manip-

ulated interactively, so the core system contains a user interface. New

graph operations are programmed by compiling and linking them to the

main system. These systems were not designed with the idea of making

it easy for individual tools to be composed as shell command pipelines,

which we consider one of the most e�ective forms of tool construction

and reuse in UNIX.

All these systems de�ne basic data structures for graphs, nodes, and

edges that are typically maintained in hash tables or linked lists. This is

a common approach, but, for writing our tools, we felt that we needed

a richer graph model incorporating e�cient random access, programmer-

de�ned and external �le attributes, and general subgraphs. Also, to enable

the design of reusable libraries, these data structures need to support

layering application-speci�c data. It's not di�cult, but the only other

system that supports this is GraphEd, using essentially the same solution

as ours.

Most of these systems do not address reusable graph �le representa-

tion adequately. The problem is how to support application-dependent

attributes. Edge was �rst in providing a data language for graphs; un-

fortunately, its parser was implemented only as a prototype, with hard-

70 North

wired keywords and data structures much like dag 's design. GraphEd, a

later design, has
exible attributes (which can even be nested); however,

GraphEd's attributes are hard-wired, and non-GraphEd attributes are

silently deleted by the scanner when a graph is read. GraphEd also has

a facility to handle graph grammars; this has applications in graph the-

ory (for example, these �les can succinctly encode circles, trees, complete

graphs, outerplanar graphs, and, by also supplying a graph parse deriva-

tion, data
ow graphs). In comparison with the other systems, including

libgraph, GraphEd has many advanced features. The price may be paid

in complexity: The entire system, including contributed layout code, is

230,000 lines of C.

In contrast to the examples just mentioned, the USL C++ graph class

library [Wei92] and the Stanford GraphBase [Knu93] are non-GUI pro-

gramming libraries, so they are closer in spirit to libgraph. The USL

toolkit adopts C++ conventions, such as inheritance and iterators, so it

appeals to a slightly di�erent audience of programmers. It lacks a �le lan-

guage, and its representation of node and edge sets as digital tries raises

some questions about time and space e�ciency. GraphBase was writ-

ten to support experiments in implementing e�cient graph algorithms; it

employs ad hoc �le formats instead of a common language. Also, for our

purposes, because of the choice of data structures, it is missing functions

we want, such as node and edge deletion. In summary, while most of these

systems re
ect similar design criteria, none has all the features needed for

writing straightforward, reusable graph processors.

Other previous work deals with persistent data structures. Examples

include IDL [NNGS90] and P-Graphite [WWFT88]. They are similar in

calling records nodes, and pointers edges. But these systems were created

not for programming graph algorithms, but to address issues of storing

arbitrary data structures on disk in relocatable, machine-independent for-

mat. The libgraph model is more speci�c, and higher-level. For example,

subgraphs are built-in and do not have to be simulated by arrays or some

similar technique. Also, an edge is not simply an address pointer, but

may carry attributes, such as cost, color, or node port identi�er.

Libraries and File System Architecture 71

2.4.2 File Language

To support writing e�ective tools, the graph data language should have

certain properties.

� Readable. Although, in practice, most graph �les are automatically gen-

erated and never seen by a human, there are still occasions when peo-

ple must read and even edit graph �les. This happens when debugging

graph generators or �ne-tuning important diagrams. If the graph spec-

i�cation syntax is reasonable, such tasks can be a little easier.

� General. Although compatibility precludes application-speci�c syntac-

tic constructs in the graph language, it must nevertheless be general

enough to encode important concepts, such as constraints on sets of

nodes and edges, and layout controls. libgraph relies on a built-in no-

tation for nested, attributed subgraphs. A constraint can then be ex-

pressed by creating a subgraph and labeling it with some distinguishing

attribute for relevant tools to recognize.

� High-level. Our intended applications operate on abstract graphs. Thus

our data language aims higher than just giving an exhaustive list of

nodes and edges and their attributes. For example, the edge creation

operator applies not only to node pairs, but also subgraphs (interpreted

as node sets).

Examples of the graph data language and the corresponding layouts

are shown in Figures 2.1 to 2.6. Main graphs and their subgraphs are

enclosed in brackets. These de�ne contexts for creating and initializing

new subgraphs, nodes, and edges. These are also implicitly inserted into

containing graphs; thus, the main graph has global node and edge sets.

A node is created explicitly by giving its name and an optional list of

attribute settings, or implicitly if it does not already exist when named in

an edge. Edges are created by connecting endpoints (nodes or subgraphs)

with an edge operator. Edges also may have attribute settings.

A graph �le may contain additional statements to set graph attributes,

change default values for initializing nodes and edges, or change values of

previously created graph elements. Some attributes are special. The key

of an edge distinguishes multiple edges between the same node pair.

72 North

1: digraph finite_state_machine {

2: rankdir = LR; size = "5,4";

3: node [shape = doublecircle]; LR_0 LR_3 LR_4 LR_8;

4: node [shape = circle];

5: LR_0 -> LR_2 [label = "SS(B)"];

6: LR_0 -> LR_1 [label = "SS(S)"];

7: LR_1 -> LR_3 [label = "S($end)"];

8: LR_2 -> LR_6 [label = "SS(b)"];

9: LR_2 -> LR_5 [label = "SS(a)"];

10: LR_2 -> LR_4 [label = "S(A)"];

11: LR_5 -> LR_7 [label = "S(b)"];

12: LR_5 -> LR_5 [label = "S(a)"];

13: LR_6 -> LR_6 [label = "S(b)"];

14: LR_6 -> LR_5 [label = "S(a)"];

15: LR_7 -> LR_8 [label = "S(b)"];

16: LR_7 -> LR_5 [label = "S(a)"];

17: LR_8 -> LR_6 [label = "S(b)"];

18: LR_8 -> LR_5 [label = "S(a)"];

19: }

Figure 2.1 dot source for �nite state machine.

LR_0

LR_2SS(B)

LR_1

SS(S)

LR_3

LR_4

LR_8
LR_6

S(b)

LR_5

S(a)

S(A)

SS(b)

SS(a)

S($end)

S(b)

S(a)
S(a)

LR_7

S(b)

S(b)

S(a)

Figure 2.2 Finite state machine.

Libraries and File System Architecture 73

1: digraph G {

2: node [shape=record];

3: struct1 [label="<f0> left|<f1> middle|<f2> right"];

4: struct2 [label="<f0> one|<f1> two"];

5: struct3 [label="hello\nworld

|{ b |{c|<here> d|e}| f}| g | h"];

6: struct1:f1 -> struct2:f0;

7: struct1:f2 -> struct3:here;

8: }

Figure 2.3 dot source for compound node structure.

left middle right

one two
hello
world

b
c d e

f
g h

Figure 2.4 Compound node structure.

74 North

1: graph G {

2: run -- intr;

3: intr -- runbl;

4: runbl -- run;

5: run -- kernel;

6: kernel -- zombie;

7: kernel -- sleep;

8: kernel -- runmem;

9: sleep -- swap;

10: swap -- runswap;

11: runswap -- new;

12: runswap -- runmem;

13: new -- runmem;

14: sleep -- runmem;

15: }

Figure 2.5 dot source for process status.

runintr

runbl

kernel

zombie

sleep

runmem

swap

runswap

new

Figure 2.6 Process status.

Libraries and File System Architecture 75

If no value is given, an internal key is generated. Also, for convenience,

edge tailport and headport values are supported with special syntax

in libgraph's parser and printer, using the colon notation, as can be seen

in lines 6 and 7 of Figure 2.3.

2.4.3 Primitives and Implementation

We now consider the interface that libgraph presents to C programmers.

Most programmers can write basic graph data structures and functions

in a few dozen lines of code. A typical approach is to store nodes in

a hash table and give each node an out-edge list. Attributes are hard-

wired as �elds in the node and edge structs. This approach is simple and

usually e�cient. The problem is that it does not permit much sharing

of code or of graph data �les. Usually, if �les are considered at all, they

are programmed to have �xed �eld, line-oriented formats that are not

compatible between applications that employ di�erent attribute sets. As

argued previously, we need a richer, more
exible model. To support this

model, libgraph has about 30 entry point functions. They can be classi�ed

into the following groups:

� Create, search for, or delete graphs, subgraphs, nodes, and edges.

� Attach, get, or set attributes.

� Traverse node or edge lists, or subgraph trees.

� Read or write �les.

The basic data structures de�ned by libgraph are graphs, nodes, and

edges. As a client program runs, it can decorate these with attributes. lib-

graph also supplies a few auxiliary data structures to manage attributes.

There are two kinds of attributes. String attributes are name-value pairs

with default values, and are intended principally for I/O. For example,

when libgraph reads an external �le, the string attributes are automati-

cally attached to graphs, nodes, and edges.

The other kind of attributes are runtime records de�ned in C by ap-

plication programmers. These attributes allow programs to operate on

values, such as weights, counts, and marks, using e�cient native rep-

resentations. In libgraph-1, programmers de�ne one record type shared

throughout the entire client program. This proved to be a serious limita-

76 North

tion because it impedes the design of layered graph libraries; all functions

generally must share the same compile-time de�nition of attributes.

libgraph-2 allows multiple runtime records. Each record has a

header containing a unique name (a string, such as layout_data or

union_find_fields), a pointer to the next record in the list, and

application-speci�c �elds. These records are kept in a circularly linked

list attached to a node, edge, or graph. Thus, a function can �nd its

runtime data by searching for the record with a given name. It is up to

application programmers to manage this name space sensibly. Because it

is clearly undesirable to search this list on every data reference, libgraph-

2 has an optional move-to-front search on this list, with hard and soft

lock requests, making frequently referenced data available in one pointer

reference within a set of compatible functions.

Any desired conversion between runtime and string values must be

written explicitly by application programmers. Usually, conversion func-

tions are called immediately after reading or before writing graphs. For

example, a program may convert a numeric weight in a runtime record

to a string attribute for printing in a graph �le.

libgraph's node and edge sets are stored in libdict splay tree dictio-

naries. An advantage of splay trees over hash tables is the support for

ordered sets. If nodes and edges are labeled and stored in their input

sequence order, �lters may process graphs without scrambling their con-

tents, as would be the case if only hashing were employed. Further, some

algorithms seem more predictable to users if they process nodes or edges

in a known sequence, not some seemingly unpredictable order. libdict also

allows changing dictionary ordering functions, and we take advantage of

this to order nodes and edges by external keys sometimes, and by internal

number at other times. User-de�ned ordering functions are also permit-

ted. Though we have not exploited this much, it may be useful in coding

geometric algorithms.

While libdict provides many convenient features, naive use for node

and edge sets as we just described would incur signi�cant overhead. For

example, calling Dtnext to move from one item to the next in a splay tree

dictionary set involves a function call and possibly several comparisons

and pointer operations for tree rotation. Ideally, to compete with the

Libraries and File System Architecture 77

hash table/linked list representation of graphs, we would like the cost of

moving from one element to the next in a set to be just a few machine

instructions or perhaps even just one. This cost is critical when coding

an algorithm whose inner loop involves scanning edge lists.

Our solution is to give libgraph-2 a function to temporarily linearize or

atten node and edge sets. This makes the splay tree look like a linked

list: the root node or list head is set to the smallest element, and the left

and right tree pointers are prev and next in the list. libgraph also de�nes

macros or inline functions to traverse these lists very quickly. This means

that a graph is either in edit mode (having e�cient random access), or

traversal mode (having e�cient sequential access). A boolean
ag in each

graph records its mode; this
ag is tested by random-access operations

to trap related errors as early as possible.

Naive use of libdict also costs memory in the form of container objects

for dictionary members. Each container object has left and right tree

pointers and a user object pointer. libgraph eliminates these containers

by using the libdict option of embedding the headers in user objects (in

this case, the graphs, nodes, and edges). A slight complication is that an

edge needs to belong to two dictionaries (both in- and out-edge sets). Ac-

cordingly, libgraph creates two structs for every edge; each has a pointer

to one endpoint node and to its partner edge. Each node and edge struct

consumes 7 words (plus additional storage for node names and any at-

tributes that are attached).

2.4.4 Experience

libgraph supports a collection of tools, including dot , neato (Network Em-

bedding Automatic Tool for undirected graph layout by spring models),

tred (a transitive reduction �lter), sccmap (a strongly connected compo-

nent decomposition utility), gpr (a generic �lter to apply a predicate to

nodes and edges and perform path contraction on unselected nodes), and

colorize (a �lter to algorithmically color nodes from seed values). libgraph

was essential in the development of these tools. Of particular importance

is that the data language is general enough to support new features with-

out breaking existing tools or data sets. While libgraph-1 was a success

for creating graph tools, it was too in
exible for writing layered graph

78 Fowler, Korn, and Rao

libraries. Initial experience with libgraph-2 has been satisfactory in this

area; for example, the network-simplex solver has been rewritten as a

separate library.

2.5 n-DFS : The Multiple Dimensional

File System

The Multiple Dimensional File System (n-DFS) is a logical �le system

layered on top of UNIX-like �le systems. Inspired by its predecessors,

the Three Dimensional File System (3DFS) [KK90], AT&T Bell Labora-

tories' Plan 9 [PPTT90], and the Jade File System [RP93], the goal

of n-DFS is to tailor traditional UNIX-like �le systems to meet the

needs of con�guration management in software development environ-

ments. n-DFS allows new services to be added to the underlying �le

system. Examples of services include naming services (for example, view-

pathing [KK90], semantic naming [GJSO91], and attribute-based naming

[Pet88]); monitoring �le systems operations and communication [KK92];

replicating critical �les in underlying �le systems to remote backup �le

systems [FHKR93]; accessing Internet-wide �le systems [RP93, Sum94];

and providing versioning of �les [LCM85, KK90]. 3DFS was named the

Three Dimensional File System because it introduced a third physical di-

mension (viewpathing) to the UNIX �le system. Conceptually, we view

each new service in n-DFS as a new virtual dimension to the �le sys-

tem, and thus we call n-DFS the Multiple Dimensional File System. The

versioning service, for example, is analogous to a time dimension to �le

systems.

The design philosophy of n-DFS is that overloading �le system seman-

tics can improve software reusability and customer acceptability when

compared with the alternative of creating a new interface that is in-

compatible with existing applications. For example, UNIX tools, such

as nmake [Fow90] and build [EP84], have demonstrated the usefulness

and power of viewpathing in con�guration management. This notion has

been implemented by adding extra code to each of these tools. n-DFS ,

however, embeds viewpathing into the �le system so that not only do all

tools (for example, UNIX commands ls, vi, and so forth) take advantage

Libraries and File System Architecture 79

n-DFS

vinmakelscp ccksh mv.....

SVR4

 HP UX

SGI MIPS

Sun Solaris

Sun OS

Versioning Viewpathing Event
Notification

VPM REPL Parrot

System Call Interface

Applications

Kernel

Figure 2.7 The Multiple Dimensional File System.

of viewpathing without any modi�cation, but they also share the same

view of the underlying �le system. As another example, by implementing

a versioning service as the front end of a source code control system (for

example, SCCS [All86] and RCS [Tic85]), n-DFS introduces to UNIX-

like �le systems a new repository that supports versioning of �les. Hence,

users are able to reuse the ls command to browse di�erent versions of a

�le.

Rather than considering individual functionality separately, our fo-

cus is to provide a generic and extensible architecture that allows new

functionality to be added. Conceptually, n-DFS introduces a logical layer

between the operating system and user applications, as illustrated in Fig-

ure 2.7. This layer presents applications with the same interface that

the underlying system provides. However, it also allows users to mount

services on nodes (such as directories or �les) in the name space by main-

taining a per-process name space. n-DFS intercepts system calls from

applications and then passes them to the mounted services. For example,

consider the viewpathing service that allows a virtual directory to refer

to a sequence of physical directories. Users de�ne a directory as a virtual

directory by attaching the viewpathing services to the directory. When

80 Fowler, Korn, and Rao

the system call open is invoked by an application (for example, vi) to ac-

cess a �le under this directory, n-DFS translates the pathname into the

corresponding physical pathname by invoking the viewpathing service,

and then calls the real system call open on the physical pathname.

n-DFS 's services are implemented either as built-in functions resident

in the n-DFS layer, or as external user-level server processes. As illus-

trated in Figure 2.7, we have designed and implemented the following

services:

� Viewpathing Service: Allows a logical directory to refer to a sequence of

physical directories/trees, the virtual content being an ordered union

of �les in the physical directories. This service is used in con�guration

management (see Section 3.3.1).

� Versioning Service: Supports a repository that provides multiple ver-

sions of �les. This service is also used in con�guration management (see

Section 3.3.1).

� Event Noti�cation Service: Collects �le access events and noti�es re-

mote event-action servers, such as, Yeast (see Chapter 9).

� Visual Process Manager (Vpm): Monitors interaction among a group

of processes by collecting system calls invoked by them, and displays

the result graphically in real time (see Section 11.5).

� Tree Replication Service (Repl): Replicates �les under replicated trees

in underlying �le systems to a backup �le system whenever their con-

text/attributes are changed [FHKR93]. Software fault tolerance uses

this service to backup critical data (see Section 8.2.3).

� Parrot Service: Presents users with a coherent, single-copy view of two

loosely connected replicated physical �le systems.

These services demonstrate the extensibility and generality of n-DFS .

Indeed, n-DFS has been used as a research vehicle, enabling us to explore

a variety of new services for di�erent application domains.

n-DFS is unique in that the logical layer is realized as a library that

is linked by applications and run in the application's address space. For

systems, such as Sun OS 4.1 [Sun88], that provide the concept of dy-

namic linking of shared libraries, we are able to replace the standard C

shared library with n-DFS 's library so that such applications may ac-

cess n-DFS without any change. For systems without dynamic linking

Libraries and File System Architecture 81

of shared libraries or applications with static linking, we need to relink

applications with n-DFS 's library. In either case, n-DFS is transparent to

the kernel and applications; no modi�cation of the kernel or applications

is required, and the syntax and semantics of system calls are preserved.

Built-in services are accessed by local function calls without requiring any

context-switch overhead.

With the library approach, n-DFS is more portable than the approach

of modifying the kernel (for example, semantic �le system [GJSO91] and

watchdogs [BP88]) and adding new drivers (for example, Pseudo De-

vices [WO89]). Furthermore, n-DFS runs in the client side. It uses stan-

dard UNIX system calls to access the underlying �le system, regardless of

what access protocols are provided by �le servers. Hence, heterogeneity

is another advantage. The drawback to the library approach, however,

is that it requires that all commands be linked with the library in order

for everything to work correctly. Fortunately, most systems use dynamic

linking, and nearly all the standard utilities are dynamically linked to the

system call library. In most cases, we have been able to get third-party

software vendors to provide dynamically linked versions of their software.

As shown in Figure 2.7, we have an implementation of n-DFS running

on Sun OS 4.1, Sun Solaris, HP-UX, SGI MIPS, and SVR4, all of which

support dynamic linking of shared libraries. The implementation includes

the services described above. Most UNIX tools and commands, such as vi ,

nmake, and ls, are able to run on n-DFS without any modi�cation, and

without relinking for systems supporting dynamic shared libraries. n-DFS

and its predecessor, 3DFS , have been used as a software development

environment in our department and other AT&T organizations for several

years by hundreds of active users.

In the rest of this section, we describe the design and implementation

of n-DFS , while detailed descriptions of services are in other chapters.

Section 2.5.1 presents n-DFS 's architecture, focusing on its per-process

name space and a mechanism of attaching services on the name space. Sec-

tion 2.5.2 describes implementation of the current system. Section 2.5.3

evaluates the system by measuring overhead of the logical layer and the

cost of the viewpathing service. Section 2.5.4 o�ers further discussion of

82 Fowler, Korn, and Rao

User Address Space

n-DFS library

Kernel

External Server

system trap

Name Space

Application Code

open/read/write/close...

system call filter

Services

External Server

Figure 2.8 System architecture.

n-DFS in comparison to related projects, and Section 2.5.5 provides a

summary.

2.5.1 Architecture

Layered between an application and the operating system, n-DFS extends

the functionality of the underlying �le system by providing additional

services. n-DFS maintains a per-process name space that allows a service

to be mounted on a subtree in the name space. Whenever a system call is

made by an application for a �le that lies in the subtree where the service

is mounted (we say that the service ismounted on the �le), n-DFS invokes

the service to handle the request.

As a replacement of the system call library (such as libc), n-DFS is

linked to the application code and run at the same address space as the

application code. Figure 2.8 illustrates its architecture, including a system

call �lter, a name space, built-in services, and an interface for interacting

with external servers. The system call �lter catches system calls from

the application code, such as, open, read, write, close, and fcntl. It then

locates and calls the mounted service. If no services are mounted on �les

referred by the system call, n-DFS simply passes the call to the kernel.

Libraries and File System Architecture 83

n-DFS provides a set of built-in services, which are implemented as

regular function calls and reside in the application's address space. No

context switch is required to access these services. The viewpathing ser-

vice, for example, is implemented as a built-in service. In addition to

these built-in services, n-DFS also provides an infrastructure to imple-

ment external services supported by external servers, which run in dif-

ferent address spaces or even on di�erent machines. The infrastructure

includes a naming mechanism to name servers, a library to implement

servers (called libcs), and a message protocol for communicating between

n-DFS and each server.

Each running n-DFS server has a unique global name in a distributed

environment, as follows:

/dev/proto/host/service[/options]

The details of the syntax are described in Section 2.2.7. For example,

/dev/fdp/local/coshell/user, /dev/fdp/local/coshell/group=ship

both name di�erent processes running the coshell daemon program. It is

also possible to interact with the running server at the shell level. For

example,

$ echo "I did it" > /dev/tcp/share/logger

sends the message \I did it" to the shared server logger.

A service is de�ned by mounting a server on the service's pathname,

as follows:

$ mount /dev/proto/host/server name /#fs/service name

/dev/proto/host/server name refers to the name of the running server

that provides the service and the second argument /#fs/service name is

the service pathname. Users may choose di�erent pathnames for the same

service. The binding of a service and its server may change dynamically.

It is also possible to turn on/o� services temporarily.

The mapping between a pathname and its mounted service is main-

tained by a name space. Like Plan 9, n-DFS maintains a per-process name

space. Unlike Plan 9, the per-process name space resides inside the user

address space rather than in the kernel. The name space is modi�able on

a per-process level. It is, however, inherited across the fork system call, in

84 Fowler, Korn, and Rao

that the child process has the same name space as its parent after fork.

Users construct their own private name spaces using two system-wide,

global name spaces: a name space supported by the underlying operat-

ing system and a name space of naming servers provided by n-DFS . At

the beginning, the per-process name space contains only these two global

name spaces. Users then are able to attach services onto their per-process

name spaces.

Services supported by n-DFS can be classi�ed into three categories:

naming services, �le services, and monitoring services. n-DFS intercepts

system calls and then invokes the corresponding services. A service de�nes

which calls it wants to intercept. Usually, naming services are invoked only

to resolve pathnames in system calls, while �le services may be called from

all system calls that are related to �le operations. Users can specify the

system calls that are to be monitored by the monitoring services.

2.5.2 Implementation

The original version of 3DFS was implemented by modifying the func-

tion that maps names to i-nodes in the kernel. It proved too hard to

maintain this version, since it relied on speci�c UNIX kernel implemen-

tations. To avoid this, n-DFS is now implemented as a user-level library

that contains versions of many of the UNIX system calls. This library

can either be merged with libc, or kept separately. Systems that do not

have dynamic shared libraries require that programs be relinked to get

the n-DFS extensions.

With the n-DFS library installed, each system call that n-DFS needs

to know is intercepted and interpreted. As necessary, zero or more system

calls are made by n-DFS to carry out a given action.

Because n-DFS runs in the user address space, it is not possible to

guarantee that it will not a�ect an application that uses it. If the appli-

cation writes into a random location that happens to lie in its address

space, it could overwrite data that is critical to one or more n-DFS ser-

vices. However, n-DFS was designed to be as unobtrusive as possible so

that it could be used with existing programs. For example, since the vi

editor uses the sbrk call to obtain heap memory and expects consecutive

calls to sbrk to return contiguous memory, we could not use malloc to get

Libraries and File System Architecture 85

heap memory needed for n-DFS . Instead, n-DFS maintains a static data

area along with a 4K bu�er to handle dynamic information. This space

is more than adequate to handle the compact per-process information.

The mount system call is used to communicate with n-DFS itself. We

chose to extend the mount call rather than adding another call so that

any program that needs to use n-DFS services directly will not have an

unsatis�ed external reference when run without the n-DFS library. The

arguments to mount are chosen so that the real mount returns an error

code if n-DFS is not involved.

Each process using n-DFS requires tables of information relating to

each of its dimensions, and this table needs to be inherited by each child

process. With 3DFS , the execve system call inserts an environment vari-

able named \ " to the front of the environment list to pass down these

tables. The �rst system call intercepted by 3DFS reads the environment,

extracts this information, and then deletes this environment entry. This

creates two problems. First, it is possible for a user program to modify the

environment before making any system calls, so the correct information

may not be present. Second, programs that are close to the ARG MAX

limit of the size of the argument list plus environment are pushed over

this limit with the additional 3DFS data. To circumvent this problem,

n-DFS passes down this information in an open �le. Since n-DFS inter-

cepts the close system call, there is no way that the user program can

delete or modify this information before it is read by n-DFS . To save the

time of creating and unlinking a �le, n-DFS uses a UNIX pipe whenever

the amount of information that is necessary is less then the

PIPE MAX, the number of bytes that can safely be written on a pipe

without blocking. A second optimization is done when a process that has

not made any mount calls executes an exec call; the n-DFS table that

was passed to this process can be reused to pass to the child process.

n-DFS uses libcs to implement external servers as explained earlier in

Section 2.2.7.

2.5.2.1 Shell Interface

At the shell level, the vpath command controls the n-DFS namespace.

Like other commands that control per-process system information (for

86 Fowler, Korn, and Rao

example, cd and umask), vpath is a shell built-in. vpath uses themount(2)

system call, intercepted by n-DFS , to specify relationships between pairs

of pathnames:

$ vpath path1 path2

If path1 and path2 are directories, any reference to the directory hierarchy

under path1 will be mapped to the ordered union of the path1 and path2

hierarchies, where �les under path1 take precedence over �les under path2.

path2 of the form /#* controls the n-DFS internal state. For this case, a

path1 of \{" can serve as a placeholder to preserve the vpath argument

pairs. For example,

$ vpath { /#option/debug=5

sets the n-DFS debug trace output level to 5.

$ vpath { /#option/trace

prints the intercepted n-DFS systems calls on standard error for all child

processes.

Replication is speci�ed by �rst de�ning the replication service

$ vpath /dev/tcp/share/rpl/user
/#fs/rpl/monitor/regular/write/call=open,close,write/ack=write

where /dev/tcp/share/rpl/user is the pathname of a per-user repli-

cation server that is shared among all hosts in the local network.

/dev/tcp/host/rpl names a speci�c server running on host. /#fs de�nes

a new �le system service. The replication service is a �le service that has

the name rpl (usage described below), with the following attributes:

� monitor: Intercepted calls are run locally but also passed on to the

service.

� regular: Monitors regular �les (no directories, special devices, and so

forth).

� write: Monitors only �les open for write.

� call=... : Monitors only these intercepted calls.

� ack=... : Blocks for server acknowledgment for these calls.

Replication hierarchies are then speci�ed by mounting directories on the

replication service:

Libraries and File System Architecture 87

$ vpath dir1 /#rpl dir2 /#rpl

where rpl is the name from the /#fs mount above. The service can be

switched o� by

$ vpath { /#fs/rpl/o�

and on by

$ vpath { /#fs/rpl/on

without breaking the service connection.

Finally, the command vpath with one argument prints out the physical

path associated with the input logical path. vpath without arguments

lists a complete con�guration mapping. This can be saved into a �le and

used to restore an n-DFS con�guration sometime in the future.

2.5.3 Evaluation

We measured the overhead of the logical layer and the performance of

the viewpathing service using the Andrew Benchmark [HKM+88]. The

input to the benchmark is a read-only source subtree consisting of about

70 �les. These �les are the source codes of an application program and

total about 200 kilobytes in size. The benchmark includes �ve distinct

phases, as listed in Table 2.1.

Table 2.1 Five Phases in Andrew Benchmark

MakeDir Constructs a target subtree that is identical

in structure to the source subtree.

Copy Copies every �le from the source subtree

to the target subtree.

ScanDir Recursively traverses the target subtree

and examines the status of every �le in it

but does not read the contents of any �le.

ReadAll Scans every byte of every �le in the target

subtree once.

Make Compiles and links all the �les in the target

subtree.

88 Fowler, Korn, and Rao

The hardware for testing is a Solbourne 5/800, running Sun OS 4.1

with a local disk. We compared three cases. In the �rst case, applications

directly access �les located on the local disk; we call this a UNIX �le

system case. In both the second and third cases, applications run on n-

DFS , which, in turn, is layered on top of a UNIX �le system. There is

no viewpathing service de�ned by users in the second case, while in the

third case, applications run on an empty directory that is on top of the

source directory. Table 2.2 shows the performance results. The numbers

presented in this section were derived from ten runs, with the average

of those runs reported. The standard deviations of the experiments were

small.

Table 2.2 Performance Results

n-DFS

UNIX File System No Layer One Layer

MakeDir 5 sec 5 sec -

Copy 15 sec 17 sec -

ScanDir 18 sec 24 sec 25 sec

ReadAll 26 sec 36 sec 39 sec

Make 41 sec 48 sec 49 sec

Total 105 sec 130 sec -

The second case (that is, n-DFS/No-Layer) shows the overhead of the

logical layer introduced by n-DFS . Most of this overhead comes from

pathname resolution done in n-DFS in order to locate mounted services.

n-DFS needs to translate a relative pathname to an absolute pathname

and then to look up the mapping table for mounted services. In the phases

ScanDir and ReadAll, which access individual �les using their relative

pathnames, this process costs 33 to 38 percent compared with the UNIX

case. However, this cost becomes less important when applications do

more computation, as in the phase Make. The third case, n-DFS/One-

Layer, shows the overhead of the viewpathing service. As shown in Ta-

ble 2.2, the overhead is less than 10 percent.

Libraries and File System Architecture 89

2.5.4 Discussion

There are many research e�orts that share our philosophy of overloading

�le system semantics to improve system uniformity and utility, software

reusability, and customer acceptability. Examples of the research include

Watchdogs, Killian's process �le system [Kil84], Pseudo Device Drivers,

Semantic File System, and Automount daemon [CL89]. All these projects

introduce new functionality by modifying the kernel or implementing new

drivers. n-DFS 's predecessor, 3DFS , was originally implemented by mod-

ifying the kernel. Because it relies on a speci�c UNIX kernel implemen-

tation, 3DFS proved too hard to maintain.

n-DFS , on the other hand, implements a logical layer using the library,

which is running on the application's address space. As mentioned above,

for systems providing dynamic linking of shared libraries, we are able to

replace the standard C shared library with n-DFS 's library, and applica-

tions with dynamic linking may access n-DFS without any change. For

systems without dynamic linking of shared libraries or applications with

static linking, we need to relink applications with n-DFS 's library. By

porting the library to a variety of platforms, we have shown that the li-

brary approach is more portable than modifying kernels or implementing

new drivers.

Most modern UNIX-like operating systems [GLDW87, NH93] support

dynamic linking of shared libraries to reduce sizes of program images and

to improve page sharing between di�erent programs running the same

libraries. We take advantage of the dynamic linking feature to avoid re-

linking applications with n-DFS 's library.

Plan 9 and Spring [KN93] provide an architecture for extensible

�le systems. Plan 9 supports a per-process name space and a message-

oriented �le system protocol. All services implement a �le system-like

interface. Users are able to attach new services to the per-process name

spaces dynamically. Spring provides a general, global naming structure

to name objects with interfaces not restricted to that of the �le system.

It also provides an architecture that enables the extending of �le sys-

tem functionality by stacking new services on top of existing �le systems.

Like Plan 9 and Spring, n-DFS supports an infrastructure that allows

new functionality to be added into existing �le systems. Unlike Plan 9

90 Fowler, Korn, and Rao

and Spring, however, this infrastructure runs in the user address space

rather than in the kernel address space. Spring and Ficus [GHM+90] also

support a stackable layers architecture to permit coexistence of multiple

functionality. For programs with static linking and no source code avail-

able for rebuilding, we have a shell script vex, that replaces each virtual

�lename with a physical name and executes the original program. Child

processes of statically linked programs that spawn dynamically linked

processes will inherit the n-DFS environment correctly. This approach

doesn't handle the case in which the program opens a �le whose name is

not given as an argument to the program. In addition, monitoring services

are not severely curtailed for these processes.

2.5.5 Conclusion

n-DFS provides a generic framework that allows new functionality to be

added without any modi�cations of the kernel or applications. By porting

n-DFS to a variety of UNIX-like operating systems, we have shown that

n-DFS is more portable than other systems. By implementing a set of

novel services, we have also demonstrated the extensibility and generality

of n-DFS . 3DFS , the predecessor of n-DFS , has been in production use

for several years in many software development organizations at AT&T

primarily because of its viewpathing capability. n-DFS has replaced 3DFS

in day-to-day work. Repl is currently being used by two projects in

AT&T.

2.6 Summary

This chapter described a wide ranging collection of libraries in daily use

throughout our company and, in some cases, worldwide. The libraries

were constructed with speci�c design goals in mind, with portability as

a key design goal. Methods and disciplines help in exposing external de-

pendencies at an early stage and enabling later extensions. libgraph has

shown how a language-based approach permits sharing at multiple levels.

The n-DFS service infrastructure above the �le system has resulted in

many novel applications (Chapters 8, 9, and 10).

3

Con�guration Management

Glenn Fowler, David Korn, Herman Rao,
John Snyder, and Kiem-Phong Vo

3.1 The Common Bond

We manage software using our own tools: nmake, n-DFS , pax , and ksh.

nmake builds executables and libraries from source; n-DFS partitions

host-speci�c generated �les from the source and allows transparent source

sharing; pax e�ciently records source changes for distribution to other

hosts; and ksh scripts provide a concise user interface that ties the tools

together.

Our ast software management is an evolutionary process made possible

by the
exibility of its underlying tools. Portability, reuse, and minimal

user intervention are the driving forces behind this evolution. In retro-

spect, the process has bene�ted from the evolution: We could not have

anticipated the current process, because the tools it is based on have

evolved and improved along with the process itself.

We describe each of the following six activities that characterize the

ast software management process:

� Build|generate executables, libraries, documentation, and so on from

source �les.

� Test|test, debug, and improve the source.

� Install|place generated �les in public directories.

� Package|collect source or generated �les for use on other systems.

91

92 Fowler

� Bootstrap|build and install on other systems, possibly in the absence

of ast tools.

� Version management|manage multiple versions of software.

3.1.1 Build: nmake

nmake is the build tool. It is a modern variant of the traditional

make [Fel79] with an important di�erence: nmake maintains state that

records information for future runs. The state includes:

� File modi�cation times

� Explicit prerequisites (from make�le assertions)

� Implicit prerequisites (from #include scanning)

� Action text (used to build targets)

� Variable values

� Target attributes:

.BUILT|a generated �le

.MAKE|sends action to nmake rather than the shell

.TERMINAL|a source �le (not generated)

.VIRTUAL|a target that is not a �le

State and a language to manipulate it �nally make concise make�les

a reality{concise because rules traditionally placed in each make�le can

now be implemented in a general way in a single base rules �le. The

base rules are such a fundamental part of nmake that most of its visible

features are controlled by them.

For example, a clean rule is traditionally supplied (by the user) with

each make�le. This rule deletes generated �les in the current directory.

The nmake clean rule is in the standard base rules. The base rules version

generates a list using a loop that selects all make�le targets that satisfy

the following conditions:

� Has the .BUILT attribute.

� Exists as a �le.

� Path is rooted in the current directory.

The traditional clobber rule is just clean with the path test omitted.

Con�guration Management 93

$INSTALLROOT

bin include lib man ship src

man1 man3 man8 cmd lib

Figure 3.1 File hierarchy.

Similarly, the pax base rule creates a pax archive of all source �les by

generating a list of all .TERMINAL �les rooted in the current directory.

Since the base rules are written in the same language as user-level

make�les, customization is simply a matter of providing global rules �les

that replace or augment the base rules assertions. There are several ways

to access global rules: direct make�le include, the -g command line

option, and assertion operator de�nition �les (described below).

Make�les play an important role in the layout of the source hierarchy.

They conveniently partition the software into manageable components,

where each component represents a single library or group of commands.

ast components form a directory hierarchy, rooted at $INSTALLROOT that

contains:

� bin: installed command executables

� lib: installed libraries and command-related data

� include: installed library interface headers

� src: component source �les, src/lib for the libraries, and src/cmd for

the commands

� ship: staging area for shipment to/from other systems

� man: manual pages for commands

Much of the power and simplicity in ast comes from �le naming con-

ventions. Figure 3.1 illustrates the prototype �le hierarchy.

Intermediate �les are built directly in the src subtree by nmake. nmake

install places the installed �les in the bin, lib, man, and include di-

rectories. By convention, commands are installed in bin, library interface

94 Fowler

headers are installed in include, libraries are installed in lib, and com-

mand related information �les are installed in lib/command.

The naming conventions support application-position independence.

By placing $INSTALLROOT/bin in the command path search, command-

speci�c information can be found by searching for ../lib/command/info

in the PATH directories. Installed �les that have been moved to another

directory may be used by simply changing PATH to include the new

$INSTALLROOT/bin. This also allows user overrides for information tra-

ditionally reserved by the system. For example, a user can reference a

private magic �le $HOME/lib/file/magic for the �le command by in-

serting $HOME/bin before $INSTALLROOT/bin in PATH.

The nmake :PACKAGE: operator provides a convenient way to select

portions of the $(INSTALLROOT) hierarchy. Many ast make�les contain

the line

:PACKAGE: ast

that asserts that the directory $(INSTALLROOT)/include/ast is searched

for C header �les and that all commands are linked with the library -last

if it exists. The :PACKAGE: assertion also speci�es that installed headers

are to be placed in $(INSTALLROOT)/include/ast. Additional packages

can be asserted. The �rst is the main package and speci�es where include

�les will be installed, whereas the remaining packages provide include

and library access. As with most nmake assertion operators, :PACKAGE:

isolates make�les from third-party software installation changes. For ex-

ample, ast X11 application make�les assert

:PACKAGE: ast X11

The best make�les specify only source dependencies; metarules in the

nmake base rules �le determine the underlying object and executable

transformation commands. Command make�les contain another assertion

that speci�es the command name, the source �les, and any additional

library dependencies:

calc :: README calc.1 calc.h main.c misc.c calc.y calc.l -lm

By using only source dependencies, the e�ects of implementation

details and local naming conventions are eliminated. For example, on

Con�guration Management 95

most UNIX systems, main.c generates the object �le main.o that,

when linked with the other object �les and the library /lib/libm.a,

generates the executable calc. On PCs, main.c generates main.obj,

links with libm.lib, and generates the executable calc.exe. To fur-

ther complicate matters, di�erent compilers on the same system may

have their own naming conventions. For example, if the compiler supports

DLLs (dynamically linked libraries), then -lm might map to libm.so,

libm.so.n.m, or libm.sl. DLL library timestamps are ignored because

applications need not be relinked when a DLL changes. nmake automat-

ically probes the $(CC) compiler at runtime to determine local conven-

tions for the standard include directory, the library directory, �le su�x

conventions, and common options. It needs this information for accu-

rate include, library, and option dependency evaluation. For example,

<stdio.h> might bind to /usr/include/stdio.h for cc, but may bind

to /usr/local/CC/include/stdio.h for CC.

In a similar fashion, the :LIBRARY: operator eliminates local library

naming conventions from the abstract description:

ast 4.0 :LIBRARY: ast.h sfio.h sfio.c hash.h hash.c misc.c

On traditional UNIX systems, this produces libast.a. If the local

system supports DLLs and the variable CCFLAGS contains $(CC.PIC)

(the options to generate object �les speci�cally for shared libraries), then

:LIBRARY: also produces libast$(CC.SUFFIX.SHARED).4.0 (where the

value of CC.SUFFIX.SHARED, usually .so or .sl, is set according to local

convention).

The probe generated compiler conventions are placed in CC.* variables

(like CC.PIC and CC.SUFFIX.SHARED above), providing an abstraction to

an otherwise out-of-control interface. Using the probe information nmake

accurately determines include and library timestamps.

A library may also reference other libraries. For example, on some

systems the socket and network routines are placed in -lsocket and

-lnsl rather than in -lc (as was the tradition in BSD UNIX). The

-lcs library (see Section 2.2.7) provides a consistent IPC abstraction

on top of either sockets or streams, but, incredibly, the socket and stream

library support may be found in one or more of eight di�erent libraries,

depending on the local implementation. To avoid specifying and testing

96 Fowler

these libraries for each command that uses -lcs (and to avoid editing

all command make�les to update the library list should it ever change),

the optional libraries are simply asserted on the right-hand side of the

:LIBRARY: operator in the make�le for -lcs:

cs 1.2 :LIBRARY: cs.3 csopen.c cssend.c ... \

-lin -lipc -lnetcompat -lnetinet \

-lsocket -linet -lnsl -ldl -lintl

If any of the rhs libraries exist, then a reference to -lcs also pulls in

those libraries. As long as the cs library make�le is correct, make�les like

the one below are portable to all systems on which cs builds.

netcommand :: netcommand.c -lcs

The :MAKE: operator controls the make�le hierarchy itself.

$INSTALLROOT/src/Make�le is:

:MAKE: lib - cmd

The rhs are directories in which separate nmake commands will be

executed. The command line arguments are passed down using the built-

in variable $(=) and the options are passed using $(-) (both quoted for

the shell). Prerequisites may be built concurrently (the -jn option directs

nmake to build up to n targets concurrently) but they are still queued for

building from left to right. A `-' prerequisite is a synchronization point;

nmake blocks until all prerequisites to the left complete. In the example

above, all the libraries will be built before the applications.

Not all operators are de�ned in the standard base rules. Users and

administrators may de�ne their own operators by placing the de�nition

for :OPERATOR: in the �le $INSTALLROOT/lib/make/OPERATOR.mk. The

�rst time :OPERATOR: appears, the �le will be included to get its de�ni-

tion. The cs library uses this technique for servers using the :SERVICE:

operator de�ned in $INSTALLROOT/lib/make/SERVICE.mk:

:PACKAGE: ast

nam fdp :SERVICE: nam.c

pid udp :SERVICE: uid.c

dbm tcp :SERVICE: dbm.c -ldbm

-ldbm : .DONTCARE

Con�guration Management 97

:SERVICE: abstracts the directory naming conventions, the libraries

that must be linked, and any installation-time service registration. The

lhs of :SERVICE: is the service name and protocol type (fdp|local stream

that can pass �le descriptors; udp|network datagram; tcp|network

stream); and the rhs is the same as for the :: operator.

The .DONTCARE attribute on -ldbm allows nmake to ignore -ldbm if it

is not found (otherwise it would complain with don't know how to make

-ldbm and stop). .DONTCARE also handles a detail glossed over in the calc

example above: what appears to be a nonportable reference to -lm. In

this case, the base rules probe automatically assigns .DONTCARE to -lm

for each compiler that does not support it. The nmake user can rely on

an abstract compilation model, letting the probes and base rules handle

implementation inconsistencies.

The average ast make�le is simply a collection of :PACKAGE:, ::,

:LIBRARY:, :SERVICE:, and :MAKE: assertions. Make�le assertion oper-

ators are comparable to C library function calls in C programs: If the

operator is buggy or insu�cient, then only the operator must change,

not the make�les that use the operator. But, assertion operators provide

much more than convenient build maintenance. Make�les now abstract

software at the source level, and source is the one piece that has a chance

of remaining unchanged across di�erent compiler and operating system

implementations. This stability makes source the best medium for com-

municating its semantics: Object �les, libraries, and su�x conventions

are merely intermediate implementation details that lead from the source

to the ultimate targets.

Two examples show the advantage of source assertions. The base rules

supply the ciadb rule that generates a cia (see Section 6.2) database

for the source controlled by the make�le. cia generates a .A �le for each

.c source �le and then combines the .As to form the database. ciadb

provides a %.A:%.c metarule and generates a list of all .As by collecting all

.TERMINAL and generated .c �les (for example, yacc, lex, and sql generate

.c �les) and editing them to a .A list. reference.db is then asserted with

the .A list as its prerequisites and reference.db is made.

Source assertions also make code instrumentation a snap. nmake

instrument=purify generates purify'd executables; instrument=app

98 Fowler

(see Chapter 5), instrument=quantify, and instrument=sentinel are

also available.

Of course, a source level make�le is only as good as the source it ab-

stracts. The source itself must be careful to factor out minor details, such

as word size, byte order, supported include �les, standard library func-

tions, and so on. ast does this at the library level by using i�e (described

in Section 3.2) to do installation-time feature testing and probe to do

runtime feature testing.

These examples illuminate an nmake principle: Specify information

once and correctly. This principle winds its way through the rest of the

software management process.

3.1.2 Test

Testing is part of the compile-edit-debug cycle. It often involves references

or modi�cations to �les that have not been o�cially installed. The main

point in this phase is to keep temporary, possibly incorrect, �le changes

separate from o�cial versions of the �les. This is a problem ideally suited

to n-DFS viewpathing (see Section 3.3.2). n-DFS users usually maintain

two or more viewpath levels: one for the o�cial source, and at least one

for development modi�cations.

Viewpathing can also keep generated �les separate from the corre-

sponding source. This is particularly useful when compilers for di�erent

architectures access the same �lesystem, either through cross-compilation

on a single platform or through cross-mounting on di�erent platforms.

3.1.3 Install

Although an important phase in software management, ast installation is

trivial because it is provided by default in the nmake base rules. There are

some exceptions, most notably for headers. Recall that the proto program

(described in Section 2.2.1.5) allows the ast libraries (and thus headers)

to be compatible with the K&R, ANSI, and C++ C dialects. Instead of

requiring that proto be used by all compilers that reference ast headers,

the ast headers are themselves passed through proto at installation time.

This is done with the :INSTALLPROTO: assertion operator:

Con�guration Management 99

$(INCLUDEDIR) :INSTALLPROTO: header.h

With the �le details handled by nmake, the hardest part of installation

is to make sure that the users are prepared for the changes in the newly

installed software.

3.1.4 Package

The package and bootstrap phases fall under the control of the ship com-

mands found in $INSTALLROOT/ship. Packages are generated by shipcrate

and shipout and contain all of the �les required to bootstrap part or all of

the software on another system. Individual packages are called shipments.

A source shipment contains �les that can be installed on any platform

that has a C compilation system, whereas a binary shipment contains

�les that can be installed on binary-compatible platforms.

A source shipment ultimately replicates or generates equivalent ver-

sions of the src, bin, lib, and include directories on the recipient

host (binary compatible with the recipient, of course). In contrast to the

sending host, the recipient host most likely will not have as rich a com-

puting environment. For maximal portability, ship must be conservative

in the requirements it places on the recipient environment:

� UNIX system V7 compatible shell: ship handles shells with broken -e

option and no [! xxx] patterns.

� UNIX �le system pathname syntax and semantics: \/" separated path

components, case sensitive names, 14-character �lename limit.

� Traditional C compiler interface: -c, -Dmacro, -Idirectory, and -o out-

put options supported.

� The mv, cp, rm, cmp, sed, sort, comm, tee, grep, ls, and cpio

or pax commands.

The shipcrate command places all shipment information in the ship

directory. The ship directory contains the ship system commands and a

subdirectory for each item (command or library) to be shipped. An item

is the smallest unit of software that can be shipped and usually corre-

sponds to a single application or library. The source �le directory for an

item can be derived from its name: All library items have a lib pre�x

100 Fowler

itemsitems

ship src

cmd

$INSTALLROOT

app

lib

libpp libast

Source is here

probeitemsitems

libast

itemsitems

libpp probe

libast
probe

libast

itemsitems

app

libpp
libast

Figure 3.2 Before crating.

and the source is located in $INSTALLROOT/src/lib/item; commands have

no lib pre�x and the source is located in $INSTALLROOT/src/cmd/item.

The only peculiarity with this scheme is that the source for any com-

mand with a lib pre�x, library for example, must be placed in

$INSTALLROOT/src/lib.

An item may depend on other items to build. For example, most of

our tools link with the libast library. Item dependencies are expressed

as item name lists placed in ship/item/items �les. An item with no

dependencies must still have an empty items �le; this distinguishes item

directories from others that may appear in ship. Figure 3.2 illustrates

the ship hierarchy before crating.

The shipcrate command takes item names as arguments and forms the

transitive closure of required items using the items �les. If no items are

speci�ed, then all items with items �les are crated. For each item in the

closure, shipcrate generates a pax archive (in cpio compatible character

format) containing:

� Source �les

� nmake source Makefile

� Generated Mamfile

The Mamfile is a make abstract machine �le that allows generated

�les to be built using a shell script rather than by nmake, which may not

be present on the recipient host, or by make, which has many unreliable

Con�guration Management 101

and incompatible implementations. The most di�cult problem to work

around is caused by an old but prevalent bug with the Bourne shell -e

option. This option, used by make to execute its actions (recipes), causes

the shell to exit with non-zero status whenever any command it executes

exits with non-zero status. Some shell implementations improperly apply

-e to commands subject to the shell conditionals (if, elif, &&, and

k), making it impossible to di�erentiate real errors from those caused by

conditional tests. make also cannot handle actions containing multiline

statements; these are often used to generate compile-time con�guration

information. nmake generates both the source �le list and the Mamfile.

n-DFS is often used to join src hierarchies from di�erent users. It is

also used to overlay the ship hierarchy on top of src when generating the

Mamfiles and shipment archives. Overlaying keeps the ship information

disjointed from the src information and provides a simple way to add

new items to a shipment.

If the source �les have not changed since the last time shipcrate

ran, then a new base is not created. Otherwise, the result is a directory

ship/item/YYMMDD for each item that contains:

� The pax archive base .

� A copy of the items �le (since the original may change with future

revisions).

� A copy of ship/item/message, if it exists, that contains item speci�c

installation information.

� A copy of ship/item/owner, if it exists, that contains the mail address

of the user responsible for the item (the owner is noti�ed of any build

problems encountered on the recipient hosts).

� A copy of ship/item/copyright, if it exists, that contains source copy-

right information|proto uses the copyright information to automati-

cally prepend copyright comments to all source �les as they are ex-

tracted from the shipment archives.

The shipment version naming scheme uses YYMMDD, the current year,

month, and day digits, limiting the system to one crate per item per

day. This has not been a problem in practice since multiple crates in

a single day usually suggests an item that has been shipped before its

prime. We have a special command that can generate archives containing

102 Fowler

only the bytewise changes between a previous archive and the current

source �le list (changes also include �le permission changes, �le deletion,

and �le creation). If a previous base archive ship/item/YYMMDD/base ex-

ists, shipcrate will generate a delta archive ship/item/YYMMDD/YYMMDD

by default, rather than a complete base archive. For example, the base

archive for 931225 is generated by:

pax -wf 931225/base files ...

and the delta archive for 940214 based on 931225/base is generated by:

pax -wf 940214/931225 -z 931225/base files ...

The �le-naming scheme itself identi�es the base for a given delta: The

base for delta 931225 is 931225/base.

Delta archives are compact. Even for modi�cations spanning years,

delta sizes are typically less than 10 percent of the size of the original base.

nmake has been in the ship system since June 1989, and 36 deltas have

been generated with a total size of 783K bytes. This number compares

favorably with the current nmake base archive size of 776K bytes (the

nmake source has changed signi�cantly since 1989). Figure 3.3 illustrates

an $INSTALLROOT hierarchy after shipcrate. Note that on the recipient

side, only the most recent base and delta are retained (931225 and 940214

in Figure 3.3).

When the delta size exceeds a threshold, 20 percent of the base size

by default, shipcrate automatically generates a new base along with the

delta. This new base can be generated from the previous base and new

delta, so previous recipients need only be sent the new delta. Because

delta archives must be read by the new pax , shipcrate automatically

adds pax to each shipment closure.

A crated shipment contains all the �les needed to build its constituent

items, even in the absence of ksh, nmake, and pax . This allows us to use

crated shipments to record our software change history and allows us to

restore any item from any previous shipment.

A major headache for a software researcher is keeping track of software

that has been sent to other users: What version? What system? What

items? Was there good feedback? Did the installation work? Did they

even try it? Should an update be sent? One method posts the software

Con�guration Management 103

$INSTALLROOT

Ship Commands shipyardshipslog
shipcrate
shipin
shipout
etc.

app ksh libastlibpp nmakeREADME
[ship.head]
[ship.body]
[ship.tail]

940101 940214931225 base delta

BUILT UNCRATED base items owner base items owner931225 items owner 931225

base version delta version delta and new base

ship

ccc

Figure 3.3 After crating.

to a global repository (a directory on an anonymous ftp host) and leaves

software update management up to the recipients. ship takes a di�erent

approach by assuming control of the recipient ship directory, updating

this directory with each new shipment. The updates are such that obsolete

�les are deleted, preventing the accumulation of old, unused �les. By

controlling the ship directory, ship can maintain a database of recipient

items and versions. As long as the recipient ship directory remains intact,

a minimal amount of information can be transported for updates.

Recipients are identi�ed by electronic addresses appropriate to the

transport method:

� uucp recipients are identi�ed as host!recipient.

� rcp recipients are identi�ed as recipient@host:installroot.

� Source ftp recipients are identi�ed as archive%src (generates an in-

stallation message �le and a compressed archive of source �les for all

items).

� Binary ftp recipients are identi�ed as archive%bin (generates an instal-

lation message �le and a compressed archive of generated �les for all

items).

The recipient database uses <address><item><type> keys to ac-

cess <YYMMDD><date><shipper> data, where<YYMMDD> is the

104 Fowler

crated version, <date> is the date the item was shipped, and <shipper>

is the user id of the person who shipped the item. <type> is either base

or delta and identi�es the type of item shipped. The shipout command

takes both a recipient list and an item list as input, and uses the recipient

database to determine the items that need to be shipped. The database is

updated as new items are shipped. Database update is done using a single

database server so that shipout may run concurrently on any host on the

local network. An important aspect of this is that multiple shippers can

share a single ship directory (and recipient database).

As mentioned above, recipient addresses determine the transport

mechanism. Most transports are
exible, but some impose limitations

on the number and size of �les that can be sent; for example, some uucp

implementations have a 160K byte size limitation. shipout generates a

single virtual �le for each recipient. This virtual �le is split into physical

chunks sized for the individual transport. Split shipments are staged on

the recipient host and reassembled by shipin, described in the next sec-

tion. Other transport mechanisms, such as ftp and rcp, have their own

peculiarities, and these are also handled by shipout and shipin.

Accompanying each shipment is a mail message that explains the ship-

ment contents. The message, generated by shipout , also includes instruc-

tions for uncrating, building, and reshipping.

Since the recipient ship directory is a replicated version of the sending

ship directory, the recipient may use shipout to pass shipments on to

other recipients. Many of our recipients are system administrators and

they prefer to receive shipments on a single host. Once satis�ed with the

shipment contents, they then use shipout to move the shipment to other

hosts in their administrative domain. shipout modi�es the owner �les at

each stage, so the original owner is still noti�ed of installation problems.

3.1.5 Bootstrap

Once shipout has completed, all actions are controlled by the recipient via

the shipin command. The �rst-time recipient must choose a suitable (and

empty) $INSTALLROOT directory, create an $INSTALLROOT/ship subdirec-

tory, and copy the shipin script there. Running nohup ship/shipin &

in the $INSTALLROOT directory, builds and installs all the shipped items.

Con�guration Management 105

shipin only modi�es the directory hierarchy under $INSTALLROOT and

does not require special user privileges to run.

shipin is by far the most complicated part of ship{�rst, because it

avoids recipient interaction by generating and running programs to check

local features, and, second, because it is designed to restart after inten-

tional or unintentional build interruptions. Each item version has a state,

and ship acts as a state machine that moves each item from its initial

to its �nal state. The �le $INSTALLROOT/item/YYMMDD/STATE means that

the item is in or has passed through state STATE. If no state �le exists for

an item, then it is in the START state. If more than one state �le exists,

then the item is in the highest-numbered state from the list below:.

1. START: No actions have been taken.

2. UNCRATED: Source �les have been read from shipment archive and

put in $INSTALLROOT/src/cmd/item or $INSTALLROOT/src/lib/item.

3. GENERATED: The current base archive was generated from a previous

delta and base.

4. BUILT: The installed �les were correctly built and installed.

5. ERROR: An error occurred during some part of the shipment|the

item will not be built until after an update shipment arrives from the

item (the -E option to shipin ignores ERROR �les).

6. BYPASS: Prevents further action on the item until BYPASS �le is re-

moved.

Figure 3.4 illustrates the shipment states and transitions.

ERROR

BUILT

START

UNCRATED
GENERATED

Figure 3.4 Shipment states.

106 Fowler, Korn, Snyder, and Vo

3.1.5.1 Software Portability

So far, all that has been said about the shipment items is that each item

can be generated on the sending host. This does not guarantee that the

item will build on the recipient hosts. In preparing source for ship, de-

signing and coding for portability takes the most time by far. As a general

rule, we rely on published standards whenever possible. All programs are

coded in a subset of C that is compatible, modulo extern "C" f ...g

linkages, with C++. ANSI C, POSIX, and X/OPEN library and header

interfaces are used before private ones are invented. Except for one basic

library (libast), all other items are coded in this style.

Not all systems provide standard interfaces and compilers; we leave it

up to ship to con�gure the source and to provide the missing (or broken)

parts of the standards. This is done as a two-step process. First, just

before shipin reads in the src archives, it checks if the local C compiler

handles ANSI C. If not, then it applies the proto �lter to each *.[chly]

�le that contains the statement #pragma prototyped. The input to proto

is a valid ANSI C �le; the output is a �le that simultaneously compiles

under the classic K&R, ANSI, and C++ dialects. This is done by inserting

#ifdefs and macros in places where the three dialects di�er. proto is also

used on the sending host, but is automatically applied by nmake as a part

of the normal compilation process by nmake. Libpp cpp detects #pragma

prototypes and applies the proto algorithm as a discipline.

The second and more involved part of the porting process deals with

the i�e command and accompanying coding style. This is discussed in

the following section.

3.2 Feature Based Portability

Many critical parts of ast as well as our other software tools must use

di�erent library functions and system calls on di�erent platforms. For

example, to tell whether or not a �le descriptor is ready for I/O, on a

BSD-derived system, one should use the select() system call, while on

newer System V systems, the poll() system call is required. The prob-

lem is compounded by the fact that there are many hybrid systems, some

Con�guration Management 107

from the same vendor, that provide mixed services. In another dimension,

most systems come with standard libraries, such as string and mathemat-

ical packages, but some are implemented better than others. An extreme

case is the VAX family of machines that come with hardware instructions

for certain string and character look-up operations that are more e�cient

than any handcrafted software. In such cases, we would like to take ad-

vantage of local features to optimize our software. Of course, in all cases,

we have to be certain that the platform feature that we use does what it

is supposed to. In sum, the porting problem is this: How can we certify

that a particular feature exists on a local software/hardware platform and

that it does what is required?

3.2.1 A Programming Style for Portability

Traditionally, the porting problem is solved by embedding #ifdef

selector in the code to select di�erent implementations. Here, selector

is a predetermined token that somehow guarantees that the respective im-

plementation will work. Typically, selector must be supplied by a local

knowledgeable user. This usually means that selector must de�ne fairly

broad categories, such as SUN or SGI for hardware and BSD or SYSV for

operating systems. With the existence of hybrid systems, this can miss

the mark and lead to the construction of bad code.

We solve this problem by applying a programming style and a tool,

i�e, that supports the programming style. It is best to show this with an

example. Consider the following code fragment:

1: #include "FEATURE/vfork"

2: #if _lib_vfork

3: #undef fork

4: #define fork vfork

5: #if _hdr_vfork

6: #include <vfork.h>

7: #endif

8: #endif

This code is taken from the source of the sfpopen() function of the

s�o library. Line 1 includes a �le FEATURE/vfork that may de�ne two

tokens, lib vfork and hdr vfork. Line 2 determines if lib vfork is

non-zero, indicating the existence of a system call vfork() that can be

108 Fowler, Korn, Snyder, and Vo

used in place of fork(). Like the traditional fork() system call, vfork()

is a BSD system call to create a new copy of the current process. It is

faster than fork() since it does not create a separate copy of the data

section for the new process. This works well for sfpopen() because the

requested command will immediately overlay the new process anyway.

However, there is a major problem on SUN SPARC machines where reg-

isters modi�ed by a child process get propagated back to its parent. SUN

solved this problem by providing a header �le vfork.h that contains a

compiler pragma that generates code to avoid this bug. This fact is tested

on line 5 using the token hdr vfork.

In the preceding example, the parameterization of system requirements

is done in a single �le. Where such requirements span more than one mod-

ule, it is possible to create a single header �le for all parameterizations.

Now, to complete the picture, we need to see how the tokens lib vfork

and hdr vfork can be correctly and automatically generated. This is

done via the i�e language and system. The reader may have noticed that

a subdirectory, FEATURE, is used to store the �le vfork that contains

the de�nitions of the required tokens. This �le is generated from a spec-

i�cation �le, vfork, in a parallel directory, features. The contents of

features/vfork is:

lib vfork

hdr vfork

The line lib vfork determines if vfork() is a function provided by

the standard libraries by compiling and linking a small test program that

contains a vfork() call. Similarly, the line hdr vfork determines if the

header �le vfork.h exists by compiling a small program containing the

line #include <vfork.h>. The output �le FEATURE/vfork for a SUN

SPARC follows. Note that to prevent errors with multiple inclusions the

generated symbols are automatically wrapped with the wrapper #ifndef

and #endif which is generated from the base name of the feature test �le

features/vfork and sfio, the parent directory of features and package

name. By the way, FEATURE does not have an S to parallel features so

that the two directories can be kept distinct on operating systems such

as Windows NT where cases are indistinguishable in directory and �le

names.

Con�guration Management 109

#ifndef _def_vfork_sfio

#define _def_vfork 1

#define _lib_vfork 1 /* vfork() in default lib(s) */

#define _hdr_vfork 1 /* #include <vfork.h> ok */

#endif

Actually, we are a little trusting in the preceding example, since compi-

lability is not equivalent to execution correctness. For complete safety, i�e

can specify programs that must compile, link, and execute successfully.

The following example is a i�e speci�cation to test for the register layout

of a given VAX compiler. If the program compiles and runs successfully,

we know that the register layout is as expected and certain hardware

instructions can be used for optimization.

tst vax_asm note{ standard vax register layout }end exec{

main()

{

#ifndef vax

return absurd = 1;

#else

register int r11, r10, r9;

if(sizeof(int) != sizeof(char*))

return 1;

r11 = r10 = r9 = -1;

asm("clrw r11");

if(r11 != 0 || r10 != -1 || r9 != -1)

return 1;

asm("clrw r10");

if(r11 != 0 || r10 != 0 || r9 != -1)

return 1;

asm("clrw r9");

if(r11 != 0 || r10 != 0 || r9 != 0)

return 1;

return 0;

#endif

}

}end

The preceding code will compile and run correctly only on a VAX with

a proper compiler. If that is the case, the output would be as follows and

we would know that the register layout is as expected so that certain

hardware instructions can be used safely for optimization.

#define _vax_asm 1 /* standard vax register layout */

i�e speci�cations can be integrated with makefiles in the obvious

110 Fowler, Korn, Snyder, and Vo

fashion. nmake does this automatically: It �rst determines the required

FEATURE �les by scanning the source code for any implicit header �le

prerequisites (a.k.a. #include dependencies). Then, the base metarule

FEATURE/% : features/% .SCAN.c (IFFE) (IFFEFLAGS)

$(IFFE) $(IFFEFLAGS) run $(>)

provides the action to generate the FEATURE �les. Note that oldmake

make�les generated by nmake contain all header dependencies including

the generated FEATURE �les.

To summarize, the programming style that we adhere to is:

1. Determine needed features that may have platform-speci�c implemen-

tations.

2. Write i�e probes to determine the availability and correctness of such

features.

3. Instrument makefiles to run such i�e scripts to create header �les

with properly de�ned con�guration parameters.

4. Instrument C source code to include FEATURE header �les, and use

#define symbols in these �les to select code variants.

5. Restrain FEATURE �le proliferation by limiting use to libraries when

possible.

By following the preceding steps during any port of a software system,

porting knowledge is never forgotten. Indeed, such knowledge is coded in

a form that is readily reusable in di�erent software systems. In extreme

cases, FEATURE �les generated on one platform may be used to bootstrap

software on another; this is how the initial Windows NT port was done

(i�e would not work with the NT shell, so we started with FEATURE �les

from a mostly ANSI/POSIX system and edited them as problems arose,

eventually getting ksh up and running, at which point we could rebuild

with i�e).

3.2.2 The i�e Language

A i�e input �le consists of a sequence of statements that de�ne comments,

options, or probes. A comment statement starts with # and is ignored by

i�e.

An option statement is of the form:

Con�guration Management 111

set option [value]

Option statements are used to customize the execution behavior of

the interpreter, such as cc to change the compiler or debug to change

debugging levels.

A probe statement is of the form:

type name [header ...] [library ...] [block ...]

where type names the type of probe to apply, name names the object on

which the probe is applied, header and library are optional headers and

libraries to be passed to the compiler (ignored if they do not exist), and

block is optional multiline blocks of text of the form:

label line ... end

type and name may be \," separated lists, in which case, all types

are applied to all names. The default output for a successful probe is

statement of the form:

#define _type_name 1 /* comment */

and the entire output �le is wrapped by:

/* :: generated from input-file by iffe version 07/17/94 :: */

#ifndef _def_name

#define _def_name 1

i�e probe output

#endif

where name is derived from the directory and base name of the input �le

or the name of the �rst probe type if input is from the standard input.

Unless otherwise noted, the standard output and standard error of each

probe is redirected to /dev/null and the standard input is redirected

from /dev/null.

block labels are selected from a prede�ned list and indicate actions

done following the result of a probe. A few examples are:

fail: If the probe fails, then the block is evaluated as a shell script and

the output is copied to the output �le.

112 Fowler, Korn, Snyder, and Vo

pass: If the probe succeeds, then the default output is suppressed and the

pass block is evaluated as a shell script and the output is copied to the

output �le.

compile: The block is compiled as a C program.

execute: The block is compiled and linked as a C program and is then

executed; the output is ignored.

output: The block is compiled and linked as a C program, and is then

executed and the output is copied to the output �le.

cat: The block is copied to the output �le.

The sense of a block test is inverted by pre�xing the block label with

no. If run, preprocess, compile, link, execute, and output blocks are

not speci�ed and type is one of the prede�ned types, then default code

templates will be generated and tested. A probe is successful if it exits

with status 0. Inside the fail and pass blocks, $m expands to the default

macro name for type and $v expands to the normalized identi�er for

name (that is, name converted to a valid C identi�er). Examples of most

commonly used prede�ned types are:

hdr: Checks if #include <name.h> is valid.

sys: Checks if #include <sys/name.h> is valid.

lib: Checks if name is a function in the standard libraries.

For example, the following code checks to see if the functions bcopy()

and/or memcpy() are available:

lib bcopy,memcpy

On an old BSD system, the output of this probe is likely to be:

#define _lib_bcopy 1 /* bcopy() in default lib(s) */

This can be used to mimic or replace memcpy () as follows:

#if _lib_bcopy && !_lib_memcpy

#define memcpy(to,from,size) bcopy((from,to,size), (to))

#endif

3.2.3 The i�e Interpreter

As i�e is used in building the base libraries, it is important that the

interpreter can be run before any of our tools are built. For this reason,

Con�guration Management 113

i�e is written in the Bourne shell language, which is supported on all

known UNIX systems. The i�e interpreter has one option. If the �rst

argument is \{", then the probe output is written to the standard output

rather than the default FEATURE/name. The remaining arguments are

interpreted as probe statements, where a \:" argument is the statement

separator. Typical invocations are:

iffe run feature/lib

iffe set cc CC : run feature/stdio.c

Queries can also be entered at the shell prompt:

iffe - lib,sys socket

3.2.4 Discussions

As stated at the start of this section, the portability problem boils down

to �nding out from a platform exactly which of its features are required

and whether such features perform as expected. Any scheme of answering

this question based on a broad classi�cation of platforms (for example,

BSD vs. SYSV or SPARC vs. MIPS) is doomed to fail. This is mostly

because many modern UNIX systems are hybrids. But, even when a re-

quired feature is available, a bane of programmers is that its implemen-

tation quality can vary greatly from platform to platform. For example,

the mmap() system call is a good alternative to read() for reading disk

data on many modern UNIX systems because it avoids a bu�er copy.

But, on certain platforms, the performance of mmap() can be much worse

than read(). This can make it hard to implement high-quality software,

such as the bu�ered I/O library s�o. The i�e tool and the accompanying

programming style described in this section provide a good solution by

enabling programmers to target speci�c platform features and perform a

variety of tests to determine their acceptability. From an organizational

point of view, the most important attribute of this approach is that it

provides a mechanism to record porting knowledge in a form that is easily

shared among software developers.

114 Korn and Rao

3.3 Versioning and Viewpathing

3.3.1 Introduction

Two ingredients for the success of the UNIX system for software develop-

ment are its process model and its �le system. The process model makes

it easy to connect simple tools together to perform complex tasks. The

�le system is simple to understand, has relatively few limitations, and

encourages the sharing of information. This has led to the creation of a

rich set of software development tools, such as, nmake.

However, using the UNIX File System for con�guration management

has several drawbacks. There is no intrinsic capability to store multiple

versions of the same �le. This has led to the creation of software database

management systems, such as SCCS and RCS, to store revisions of each

source �le by encoding the changes into a �le. Because SCCS and RCS

are not an integral part of the �le system, new commands are needed to

�rst extract the information from the database before using source �les.

In addition, both SCCS and RCS are not able to capture the relationship

between revisions of multiple �les. To build a con�guration, it is necessary

to get a revision for each of the required �les.

Several developers may be required to make changes to the software

project simultaneously. With the standard UNIX �le system, only the last

version of the changes will be kept. SCCS and RCS provide for locking of

portions of the source database to prevent the same source �le from being

changed by di�erent developers at the same time. The traditional solution

to dealing with concurrent access problems is to build a con�guration

management system on top of SCCS and RCS. A notable example of

such a system is Sablime [Cic88].

Another direction that has become popular recently is to store source

code for programs in object-oriented databases. Each language token may

be represented as an object within the database and a given con�guration

of the software can be thought of as a view of the database. Changes to

code are database transactions. Special-purpose editors are often provided

to trigger database updates and changes are made. There is no need for

the make or nmake utility, because an update to the database triggers

the actions needed to keep the object code up to date.

Con�guration Management 115

While the object-oriented database approach o�ers certain advantages,

it has some disadvantages. Object-oriented databases are usually tied to

a language, which makes them hard to use for projects that use more

than one language. Often, documentation must be maintained separately.

Object-oriented databases tend to require a lot more disk space than stor-

ing source as UNIX �les. They often have trouble dealing with source code

that is generated. Perhaps the biggest drawback is that these con�gura-

tion management systems tend to be closed.

We are strong believers in open and extensible systems. Coupled with

a powerful tool to build releases, nmake, we believe that the advantages

to our approach outweigh the bene�ts of the object-oriented program

database approach. On the other hand, con�guration management sys-

tems, such as Sablime, are too monolithic.

The facilities of n-DFS , described in Section 2.5, provide a rich en-

vironment to embed a software con�guration management system into

UNIX-like �le systems. Through n-DFS , it is possible to handle revisions

of the same �le directly in the �le system name space. It is possible to

name con�gurations and have di�erent users access di�erent con�gura-

tions simultaneously. The viewpathing feature of n-DFS makes it possible

to create user views so that users can make changes to the system and

test these changes without having to make a complete copy of the code.

Finally, n-DFS makes it possible to generate �le system events that can

be handled by Yeast, described in Chapter 9, to provide a level of syn-

chronization and control.

3.3.2 Viewpathing Service

A user view is created by mounting one �le tree onto another. The result

is that the top �le tree now virtually contains the union of �les from both

trees. It is as though each �le in the bottom tree that was not in the top

tree was copied to the top tree. The user can now work in this merged top

�le tree. Only the top layer is writable; all other layers are read-only. So,

when the user modi�es a �le located below on the top layer, the desired

�le is copied to the top layer before it is accessed. Files from the bottom

tree that have the same name relative to the root of the tree as a �le on

the top tree are obscured. However, �les on the layer underneath can be

116 Korn and Rao

/

official

src

lib

lib3d

open.c stat.c

cmd

ksh

sh

main.c builtin.c

include

shnodes.h defs.h

shlib

strmatch.c gsort.c

nmake

make.h main.cmetarule.c

include

dirent.h limits.h

Figure 3.5 O�cial source.

referenced with the special �lename \...". The e�ect of \..." is to remove

the top layer, exposing �les that are covered.

Unlike ordinary mounts, these mounts are visible only to the current

process and its descendants. Trees are mounted pair-wise. It is possible to

mount a on b, and b on c, to get viewpathing e�ects equivalent to setting

the VPATH environment variable to a:b:c, a technique introduced by

build .

For example, consider a software project where the released source

�les reside in an o�cial area (see Figure 3.5). After software bugs are

found and �xed, but before another release, the changed �les are left in a

separate directory tree controlled by system testers (see Figure 3.6). To

add a new feature or �x a bug, a user creates a working area to modify

�les as shown in Figure 3.7. The user may construct his/her own view

of the project by viewpathing the private working area on top of the

system tester area, which is, in turn, viewpathed on top of the o�cial

area; Figure 3.8 shows the three-dimensional view of the system through

the user's working area. The user can then modify and build the system

Con�guration Management 117

/

test

src

cmd

ksh

sh

builtin.c

include

defs.h

shlib

strmatch.c

include

dirent.h

Figure 3.6 Tester's source.

/

user

src

cmd

ksh

sh

main.c

include

defs.h

Figure 3.7 User's workspace.

118 Korn and Rao

src

lib

lib3d

open.c stat.c

cmd

ksh

sh

main.c builtin.c

include

shnodes.h defs.h

shlib

strmatch.c gsort.c

nmake

make.h main.cmetarule.c

include

dirent.h limits.h

src

cmd

ksh

sh

builtin.c

include

defs.h

shlib

strmatch.c

include

dirent.h

/

user

src

cmd

ksh

sh

main.c

include

defs.h

Figure 3.8 Three-dimensional view.

using conventional tools. Only the top layer|the user's working area|is

writable. When the user modi�es a �le located below on the top layer,

the desired �le is copied to the top layer before it is accessed. After

modi�cations, the user can copy modi�ed �les to the system tester area.

3.3.3 Versioning Service

A version �le is a new type of �le used to support multiple instances of

a logical �le, all under the same name. It is organized like a directory,

with instances as entries. It is possible to browse instances using regular

directory commands, such as ls. Unlike regular directories, however, when

a version �le is referenced, the system returns a reference to one of its

instances rather than to the version �le itself; it may actually invoke

operations to check out the desired instance from the version �le. Each

instance is named by one or more version names, and users are able

to specify search paths of instances on a per-directory basis. We use a

byte-oriented, block-move algorithm to compute the delta of an instance

Con�guration Management 119

foo.c bar.c RSCS...

SRC

bar.cfoo.c
foo.c bar.c

default1 2

Version File

Version Object

Version Directory

Cached Instance

mapping

Checkin/Checkout

Figure 3.9 Versioning.

related to a common base and to store the delta in the version �le. A

central server is used to handle checking out (in) instances from (to) the

version �le using the corresponding delta.

The system contains version �les, version directories, and version ob-

jects. A version �le is implemented as a regular UNIX �le, containing a

base and sets of delta. When checking in an instance, the system gener-

ates a new delta by computing the di�erence of the instance and the base

in the version �le, and appends the delta to the end of the version �le.

The system also stores the instance information: an instance name, �le

attributes from the system call stat , and the predecessor instance name.

When checking out an instance, the desired instance is regenerated using

the base and the corresponding delta. Original attributes of the instance,

such as, ownership, access control, and timestamps are restored. Each

version �le is append-only and immutable. A newly appended delta re-

places the old ones with the same instance name. With this immutable

feature, it is easy to handle the case where version �les are replicated on

120 Korn and Rao

multiple sites and multiple instances are checked in to the same version

�le from di�erent sites simultaneously.

A version directory contains entries with available instance names.

Each entry could be a cached instance that has been checked out from

the version �le early, or a simple hard link to the version �le. Whenever

accessing a hard-link entry, the system performs check-out operations to

replace the hard link with the real instance, and returns the reference

of the instance. Whenever listing attributes of entries under a version

directory, the system returns attributes associated with each instance.

A version object is a reference that maps a generic name of a logical

�le to one of its instances. It is implemented as a symbolic link. Consider

an example of sources for a software project as illustrated in Figure 3.9.

For a logical �le, foo.c, there are:

� A version object SRC/foo.c

� A version �le SRC/RSCS/foo.c

� A version directory SRC/.../foo.c containing instances of foo.c, ei-

ther a cached instance or a hard link to the version �le.

The link of the version object SRC/foo.c is ../.../foo.c/default

originally, where the last component is dynamically replaced by a user-

speci�ed instance name. For example, a user can specify the instance

name to access via the command vmap:

$ vmap SRC/foo.c 1

The system then replaces default with 1, and therefore the version object

points to ../.../foo.c/1 instead.

3.3.4 Event Noti�cation Service

Many aspects of con�guration management can be modeled as the occur-

rence of events that require additional actions. For example, the upgrade

of a library module is an event whose occurrence triggers several actions,

such as, rebuilding all systems of which the library is a component. In-

stead of a daemon polling the �le system, n-DFS provides an alternative:

event noti�cation. Users specify interesting events in the context of sys-

tem calls. n-DFS detects these events and noti�es an external server,

Yeast (Chapter 9), which, in turn, triggers the proper actions.

4

Tool- and Application-

Building Languages

David Korn, John Snyder, and Kiem-Phong Vo

4.1 ksh{A Tool-Building Language

4.1.1 Introduction

One common thread among many of the tools described in this book is

their use of the shell, ksh speci�cally. The actions in nmake (Section 3.1.1)

and Yeast (Chapter 9) are ksh commands. The ship (Section 3.1.4)

system is written entirely in ksh. The cia (Chapter 6) queries are written

as ksh shell scripts that invoke the C query language command, cql , for

database access.

A user writing ksh scripts can tap into all the runtime facilities o�ered

by ksh. In this way, the shell is a service whose purpose is to interpret

the script it is sent. coshell (see Section 2.2.6) turns this service into

a network service by providing a mechanism to invoke shell commands

on appropriate machines in a network based on a variety of scheduling

constraints. ksh is a reusable asset.

In addition to being a reusable asset, ksh itself has been built using

many of the reusable assets contained in libast (see Section 2.2.2). It uses

a library for line editing and history that is also reusable. This library has

been used with several other interactive tools to provide the same facility

to other tools.

121

122 Korn

ksh uses the portability services provided by proto and i�e (Sec-

tion 3.2) to make it highly available. ksh runs on virtually all UNIX

systems as well as Windows and Windows NT. High availability across

a wide variety of platforms fosters reuse, because scripts do not need to

be rewritten when moving to a new platform.

This section presents a brief history of UNIX system shells. It then

describes how the needs of other tools have contributed to the evolution

of the language. After describing how ksh is currently being used, we

describe some of the signi�cant new features that are in ksh-93 , the latest

version of ksh. To help illustrate the potential for reuse, a list of possible

extensions for ksh is presented. Finally, we describe the pros and cons of

using ksh as a common scripting language, rather than other scripting

languages, such as awk [AWK88], perl [WS90], or tcl [Ous94].

4.1.2 History

The original UNIX system shell was a simple program written by Ken

Thompson at AT&T Bell Laboratories as the interface to the new UNIX

operating system. It allowed the user to invoke single commands, or to

connect commands together by having the output of one command pass

through a special �le, called a pipe, and become input for the next com-

mand. The Thompson shell was a command interpreter, not a program-

ming language. While one could put a sequence of commands in a �le

and run them, that is, create a shell script, there was no support for tra-

ditional language facilities, such as
ow control, variables, and functions.

When the need for some
ow control surfaced, the commands /bin/if

and /bin/goto were created. These were separate commands, not part of

the shell itself. The /bin/if command evaluated its �rst argument and, if

true, executed the remainder of the line. The /bin/goto command read

the script from its standard input looking for the given label, and set

the seek position at that location. When the shell returned from invoking

/bin/goto, it read the next line from standard input from the location

set by /bin/goto.

Unlike most earlier systems, the Thompson shell command language

was a user-level program that did not have any special privileges. This

meant that new shells could be created by any user, which led to a suc-

Tool- and Application-Building Languages 123

cession of improved shells. In the mid-1970s, John Mashey at AT&T Bell

Laboratories extended the Thompson shell by adding commands so that

it could be used as a primitive programming language. He made com-

mands, such as if and goto built-ins, for improved performance, and he

added shell variables.

At the same time, Steve Bourne at AT&T Bell Laboratories wrote a

version of the shell using programming language techniques. A rich set of

structured
ow control primitives was part of the language, and the shell

processed commands by building a parse tree and then evaluating the tree.

Because of the rich
ow control primitives, there was no need for a goto

command. Bourne also introduced the notion of a here document, whereby

the contents of a �le are inserted directly into the script for processing

by the shell. One of the often overlooked contributions of the Bourne

shell is that it helped to eliminate the distinction between programs and

shell scripts. Earlier versions of the shell read input from standard input,

making it impossible to use shell scripts as parts of a pipeline.

By the late 1970s, each of these shells had sizable followings within

AT&T Bell Laboratories. The two shells were not compatible, leading to

a division as to which should become the standard shell. Steve Bourne

and John Mashey argued their respective cases at three successive UNIX

user group meetings. Between meetings, each enhanced its shell to have

the functionality available in the other. A committee was set up to choose

a standard shell. It chose the Bourne shell as the standard.

At the time of these \shell wars," we needed to build a form entry

system. We decided to build a form interpreter, rather than writing a sep-

arate program for each form. Instead of inventing our own new language,

we were able to modify the Bourne shell by adding built-in commands

and use it as our form scripting language. We added a built-in to read

form template description �les and create shell variables, and a built-in

to output shell variables through a form mask. We also added a built-in

named let to do arithmetic using a small subset of the C language expres-

sion syntax. An array facility was added to handle columns of data on

the screen. Shell functions were added to make it easier to write modular

code, since our shell scripts tended to be larger than most shell scripts at

that time. Because the Bourne shell was written in an Algol-like variant

124 Korn

of C, we converted our version of it to a more standard K&R version of

C. We removed the restriction that prevented I/O redirections for built-

in commands, and added echo, pwd, and test as built-in commands for

improved performance. Finally, we added a capability to run a command

as a coprocess so that the command that processed the user-entered data

and accessed the database could be written as a separate process.

At the same time, at the University of California at Berkeley, Bill Joy

created a new shell called C shell. Like the Mashey shell, it was imple-

mented as a command interpreter, not a programming language. While

the C shell contained
ow control constructs, shell variables, a better

command interface, and an arithmetic facility, its primary contribution

was job control. It introduced the idea of a history list and an editing fa-

cility so that users didn't have to retype commands that they had entered

incorrectly.

The �rst version of ksh was created from the form scripting language

by removing some of the form-speci�c code and adding features from

the C shell, such as history, aliases, and job control. In 1982, the UNIX

System V shell was converted to K&R C, echo and pwd were made built-

in commands, and the ability to de�ne and use shell functions was added.

Unfortunately, the System V syntax for function de�nitions was di�erent

than that of ksh. In order to maintain compatibility with the System V

shell and preserve backward compatibility, ksh was modi�ed to accept

either syntax.

The popular inline editing features (vi and emacs mode) of ksh were

created by two software developers at AT&T Bell Laboratories. Each

had independently modi�ed the Bourne shell to add these features and

both were in organizations that wanted to use ksh only if ksh had their

respective inline editor. When it became clear that line-editing was not

going to move into the terminal driver, both line-editing modes were

integrated into ksh. Each of them was made optional so that they could

be disabled on systems that provided editing as part of the terminal

interface.

As more and more software developers at AT&T switched to ksh, it

became the de facto standard shell at AT&T. As developers left AT&T

to go elsewhere, external demand for ksh led to AT&T making ksh source

Tool- and Application-Building Languages 125

code available to external customers via the UNIX System Toolchest, an

electronic software distribution system. For a one-time �xed cost, any

company could buy rights to distribute an unlimited number of ksh bina-

ries. Most UNIX system providers have taken advantage of this and now

ship ksh as part of their systems. The wider availability of ksh contributed

signi�cantly to its success.

As use of ksh grew, the need for more functionality became appar-

ent. Like the original shell, earlier uses of ksh were primarily for setting

up processes and handling I/O redirection similar to that of the original

shell. Newer uses required more string handling capabilities to reduce the

number of process creations. The 1988 version of ksh, the one most widely

distributed at the time this was written, extended the pattern-matching

capability of ksh to be comparable to that of the regular expression match-

ing found in sed and grep.

In spite of its wide availability, ksh source is not in the public do-

main. This has led to the creation of bash, the Bourne again shell, by

the Free Software Foundation, and pdksh, a public-domain version of ksh.

Unfortunately, neither is compatible with ksh.

In 1992, the IEEE POSIX 1003.2 and ISO/IEC 9945-2 shell and util-

ities standard [IEE93] was rati�ed. This standard describes a shell lan-

guage that was based on the System V shell and the 1988 version of ksh.

The 1993 version of ksh is a superset of the POSIX shell standard. With

few exceptions, it is backward-compatible with the 1988 version of ksh as

well.

The awk command was developed in the late 1970s by Al Aho, Peter

Weinberger, and Brian Kernighan of AT&T Bell Laboratories as a report-

generation language. A second generation awk developed in the early

1980s was a more general-purpose scripting language but lacked some

shell features. It became common to combine shell and awk to write

script applications. For many applications, this had the disadvantage of

being slow because of the time consumed in each invocation of awk . The

perl language, developed by Larry Wall in the mid 1980s, is an attempt to

combine the capabilities of shell and awk into a single language. Because

perl is freely available and performs better than combined shell and awk ,

perl has a large user community, primarily at universities.

126 Korn

The need for a reusable scripting language was recognized in the late

1980s by John Ousterhout at the University of California at Berkeley. He

invented an extensible scripting language named tcl , an acronym for tool

control language. Rather than being a command, tcl is written as a library

that can be embedded into any command to give it scripting capability.

The tcl language has gained a sizable following, primarily because of a

window programming interface that is provided by an adjunct tk . With

tk , it is possible to write X Window System applications as tcl scripts.

At the same time as tk was invented, Steve Pendergrast from the

UNIX Systems Laboratory created wksh, a program that extends ksh for

X Window System programming. The extensions were added as a col-

lection of built-in commands to create and manipulate widgets. Callback

functions are written as shell functions. A version of ksh for X Window

System programming similar to wksh, xksh was developed by Moses Ling

at AT&T and is used in several applications. While wksh and xksh are

excellent examples of reuse, they also created new demands on ksh and

were a major in
uence for the new features that have been added to ksh-

93 . A new windowing desktop shell, dtksh, based on ksh-93 and wksh,

has been developed by Novell and will be part of the Common Desk-

top Environment (CDE) that was de�ned by Common Operating System

Environment (COSE).

4.1.3 How ksh Evolved for Reuse

As mentioned in the previous section, ksh was created as part of a form

entry system. The intent was to extend and reuse the shell language.

Features initially added for the form application were useful in other

contexts and became part of the language. In this section, we show how

the needs of other tools and applications led to new ksh features, which

enhanced its reusability.

The C language library routines, system() and popen(), have made

it easy to use shell services. These routines are the method that tools,

such as make, use to execute each line in an action block.

While this approach is simple and often adequate, it has some draw-

backs. First, executing a command in this manner has traditionally re-

quired at least two processes to be created: the shell and the command(s)

Tool- and Application-Building Languages 127

that are invoked by the shell. Recent versions of ksh have been able to

optimize this by recognizing when it is possible to overlay ksh by the

command given as an argument to system(), and eliminating a process

creation.

A second drawback to this approach is that each shell invocation is

separate so that no state information can be carried across invocations.

An alternative C to ksh interface can be created by thinking of the shell as

a service. Rather than invoking system() for each command invocation, a

shell service is invoked that is capable of running one or more commands.

Each command is carried out by sending a message to the shell containing

the command that needs to be executed. Because the shell runs as a server

process, rather than having to reinitialize for each message, it is able to

maintain state between messages.

The approach of using ksh as a service was �rst used in the original

version of nmake. A library interface was written to make it easy to use

this interface without having to understand and deal with di�culties,

such as the handling of signals. The implementation of this library led to

one simple modi�cation to ksh. The make program traditionally uses the

-e option when invoking the shell to cause the current action to terminate

when an error was encountered. The current nmake can continue to run

and may perform additional actions. To simulate this behavior using ksh

as a shell service required that there was some means to terminate an

action without terminating the ksh. A trap named ERR was added to ksh

for this purpose.

Several major bene�ts resulted from this approach. First, for large

make�les, the memory size for nmake may be large, and the time to fork

nmake to run an action might not be negligible. Because there was state,

it was possible to send functions to ksh and have ksh do more of the work.

For example, the execution trace of commands with nmake is performed

by ksh, not by nmake. With the server model, it is easy to see that it

is better to send a complete action block at a time, rather than running

each command separately as old make does. This change makes it easy

to write complex action blocks that allow any possible ksh command.

The line-at-a-time approach does not allow here documents to be used in

action blocks.

128 Korn

Perhaps the biggest bene�t to the new interface is that parallel execu-

tion is easy to add. The reason for this is simple. The shell already knows

how to run commands in parallel; just put an & after the command. By

having the library send a block, such as f command ; g & reply $! to

the ksh server, the process that uses the service can continue to compute

as the shell is carrying out its commands.

Thinking of the shell as a reusable service led to the creation of a

network shell service, coshell , which is described in Section 2.2.6. The

idea behind coshell is to have a server, which looks like a shell to each of

its clients, but which carries out its work by distributing the commands it

receives to shells that it keeps running at di�erent hosts in the network.

To implement this, it is necessary for the shell to be able to send its

standard output and its standard error back to the process that invoked

the service. However, ksh had no way to connect its output to a network

socket or stream. Rather than create a special server program that would

have to be present on each machine, a simple extension to ksh that enabled

it to connect to a network socket was added. The code, about 25 lines in

C, enabled a script to make a tcp or udp connection to a socket, using

the existing shell redirection operators. ksh checks for �lenames of the

form /dev/tcp/machine/port or /dev/udp/machine/port and makes a

socket connection, rather than trying to open the given �le. Through this

mechanism, the coshell server is able to establish network connections to

shells whose standard output and standard error are redirected to the

appropriate places. See Section 2.2.7 for additional details of connect-

stream syntax.

This simple change, driven by the needs of a new tool, is typical of the

evolutionary changes to ksh. The change, while necessary to the original

tool that required it, is useful in its own right. Because of the change

required by coshell, it is easy to write shell scripts as clients to existing

services, particularly when the service is line-oriented.

Another example of a tool that has led to a change to ksh is n-DFS , de-

scribed in Section 2.5. With n-DFS , each process can set up a name space

by invoking mount(). The mount() calls a�ect the current process and

child processes, but do not a�ect the parent process. Without a change

to ksh, there would be no way to modify the n-DFS services in the cur-

Tool- and Application-Building Languages 129

rent shell environment. A similar situation exists with cd, which is why

cd is a built-in command. The built-in commands vpath and vmap were

added to handle the original 3DFS services of creating views and set-

ting version mapping. These commands were extended for n-DFS so that

all mount() operations could be invoked through this interface. Adding

these commands to ksh solved the immediate problem, but it also made

it clear that it would be useful to have a mechanism to add new built-in

commands to ksh without having to modify the language. This was one

of the many changes described below that were made for ksh-93 .

Many of the changes for ksh-93 have been driven by the needs of

windows based programming. Here again, the changes that have been

added to meet these needs are also usable by many of the other tools

that use ksh services. These changes are described below.

4.1.4 How ksh Is Used

The most frequent use of ksh is as an interactive command language.

In this context, most users learn the basics of redirection and pipelines.

The most important feature for this use is command-line editing and

history interaction. A second common use of the shell is for writing scripts

that combine several commands into a single command. These scripts are

usually placed into the user's private bin directory, and are customized

to the individuals needs and usually not designed for reuse.

A third common use of the shell is as an embedded scripting language.

In addition to library calls popen() and system(), tools such asmake and

cron, have used shell as their speci�cation language. nmake and Yeast

also use ksh this way. A fourth use of ksh is for writing administrative

scripts. Since all UNIX systems are delivered with scripts written in the

shell language, system administrators need to be able to read and write

scripts to do their job. The most important features for these applications

are the ability to generate and test �les and to invoke pipelines.

A �fth use for ksh programming is for the generation of front ends.

ksh provides a coprocess mechanism that makes it easy to run a process

that is connected to a shell script via pipes. The script interacts with a

user, and then generates commands to send to the coprocess to carry out

most of the work. With wksh and dtksh, the front ends can be graphical.

130 Korn

A sixth use of ksh is for program generation. Scripts can be written that

produce code for compiled languages, such as C and C++, or for script

languages, such as ksh. For this use, the ability to handle arbitrary strings

and patterns is essential. The here document feature is well suited for

program templates, as used by i�e (Section 3.2).

The �nal use for shell programming is for writing programs. In this

context, the shell does virtually all the work without relying heavily on

other utilities. This is the area in which shells have traditionally been

weakest and the reason that languages, such as perl and tcl , were invented.

The new version of ksh, ksh-93 , is intended to eliminate this weakness.

4.1.5 New Features in ksh-93

ksh-93 is the �rst major revision to ksh in �ve years. It was revamped

to meet the needs of a new generation of tools and graphical interfaces.

Much of the impetus for ksh-93 was wksh, which allows graphical user

interfaces to be written in shell, just as tk allows one to write graphical

user interfaces in tcl . The intent was to provide most of the awk func-

tionality as part of the language, as does perl . Because ksh-93 maintains

backward compatibility with earlier versions of ksh, older ksh and System

V shell scripts should continue to run with ksh-93 . This section describes

several important new features introduced in ksh-93 .

4.1.5.1 Floating Point Arithmetic

Applications that required
oating point arithmetic no longer have to

invoke a command, such as awk or bc. The comma operator, the ?: oper-

ator, and the pre- and post-increment operators were added. Thus, ksh-93

can evaluate virtually all ANSI-C arithmetic expressions. An arithmetic

for command, nearly identical to the for statement in C, was added, as

were functions from the math library.

4.1.5.2 Associative Arrays

Earlier versions of ksh had one-dimensional indexed arrays. The sub-

scripts for an indexed array are arithmetic expressions that are evaluated

Tool- and Application-Building Languages 131

to compute the subscript index. Associative arrays use the same syntax

as indexed arrays, but the subscripts are strings; they are useful for creat-

ing associative tables. However, because the list of subscripts is not easily

determined, a shell expansion was added to give the list of subscripts for

an array. Because associative arrays reuse the same syntax as indexed ar-

rays, it is easy to modify scripts that use indexed arrays to use associative

arrays.

4.1.5.3 Additional String-Processing Capabilities

Shell patterns in ksh-93 are far more extensive than in the Bourne shell,

having the full power of extended regular expressions found in awk , perl ,

and tcl . In addition, ksh-93 has new expansion operators for substring

generation and pattern replacement. Substring operations can be applied

to aggregate objects, such as arrays.

4.1.5.4 Hierarchical Namespace for Shell Variables

One of the lessons learned from the UNIX system is that a hierarchical

name space is better than a
at name space. With ksh-93 , the separator

for levels of the hierarchy is . (dot). It is possible to create compound

data elements (data structures) in ksh-93 . Name references were added

to make it easier to write shell functions that take the name of a shell

variable as an argument, rather than its value. With earlier versions of

ksh, it was necessary to use eval frequently inside a function that took

the name of a variable as an argument.

Shell variables in ksh-93 have also been generalized so that they can

behave like active objects rather than simple storage cells. This was done

by allowing a set of discipline functions to be associated with each vari-

able. A discipline function is de�ned like any other function, except that

the name for a discipline function is formed by using the variable name,

followed by a . (dot), and the discipline name. Each variable can have dis-

cipline functions de�ned that get invoked when the variable is referenced

or assigned a new value. This allows variables to be active rather than

passive. At the C library level, variables can be created that allow for any

number of discipline functions to be associated with a variable. These

132 Korn

functions can be invoked in an application-speci�c way: An X Window

System extension can associate each widget with a shell variable, and the

user can write callback functions as discipline functions.

4.1.5.5 Formatted Output

One of the most annoying aspects of shell programming is that the behav-

ior of the echo command di�ers on various systems. The lack of agreement

of the behavior on echo in the POSIX standard led to the requirement

of printf. In ksh-93 , printf is a built-in command that conforms to the

ANSI-C standard de�nition with a few extensions. The two most impor-

tant extensions are the %P format conversion which treats the argument

to be converted as a regular expression, and converts it to a shell pattern;

and the %q format conversion which prints the argument quoted so that it

can be input to ksh as a literal string. These two simple extensions make

it much easier to correctly write scripts that generate scripts.

The implementation of printf relies heavily on the s�o library of

libast , which allows extension to the underlying sfprintf() function.

ksh-93 does not have to interpret the format string.

4.1.5.6 Runtime Built-in Commands

With ksh-93 , a user can add built-in commands at runtime on systems

that support dynamic linking of code. Built-in commands have much

less overhead to invoke, and unless they produce side e�ects, they are

indistinguishable from nonbuilt-in commands. Each built-in command

uses the same argument signature as main(), and returns a value that is

its exit status. Complete applications can be written in ksh-93 by writing

a library that gets loaded into ksh-93 for the application-speci�c portion.

To give an example of the performance improvement that arises from

having a command built in, the following script takes roughly 20 sec-

onds to run on a Silicon Graphics workstation when cat is not a built-in

command, versus 0.2 seconds when cat is a built-in.

for ((i=0; i < 1000; i++))

do cat

done < /dev/null

Tool- and Application-Building Languages 133

4.1.5.7 Support for Internationalization

The earlier version of ksh was 8-bit transparent and had a compile option

to handle multibyte character sets. The behavior of ksh-93 is determined

by the locale. In addition to the earlier support for internationalization,

ksh-93 handles:

� Character classes for pattern matching: One can specify matching for

all alphabetic characters in a locale-independent way.

� Character equivalence classes for pattern matching: One can specify

matching for all characters that have the same primary collation weight.

� Collation: The locale determines the order in which �les and strings

are sorted.

� String translation: One can designate strings that can be looked up in

a locale-speci�c dictionary at runtime by preceding the string with a

$; for example, $"hello world".

� Decimal point: The character representing the decimal point for
oating

point numbers is determined by the current locale.

4.1.5.8 Usability as a Library

ksh-93 has been rewritten so that it can be used as a library and called

from within a C program. This makes it possible to add ksh-compatible

scripting capabilities to any command, just like one can with tcl .

4.1.6 Requirements for a Reusable Scripting
Language

The primary requirement for any language is that it enables one to easily

specify what one wants. Also, a scripting language should be able to run

without requiring a separate compilation system. Since strings are a ba-

sic element of any general-purpose programming language, the language

must be able to handle arbitrary-length strings automatically.

We list the additional requirements that we had for a general-purpose

scripting language.

A general-purpose scripting language should be simple to learn. There

is no easy way to measure how simple a language is to learn, but the time

134 Korn

to learn a language can be reduced by making the language similar to one

that users already know. For instance, arithmetic computations should

use familiar notation and operators should have conventional precedences.

The language should be widely available and well documented in order

to achieve wide usage. Programmers do not want to spend time learning

a language that will not be available to them wherever they work. Also,

because no single document is right for everyone, there should be several

documents for di�erent types of users.

In addition to performing arithmetic, a script language should have

string and pattern matching capabilities. The details of memory manage-

ment of variable sized objects should be handled by the language, not

by the user. Many applications require the handling of aggregate objects.

Even though very high level languages require fewer lines of code, real

world applications are likely to be large; thus, a good script language

needs to have a method to write procedures or functions that have auto-

matic variables and that can return arbitrary values.

Applications coded in the language should have performance compa-

rable to that of the application if it were written in a lower level language.

This means that the overhead for interpretation must be amortized by

the useful work of the application. The lower the overhead for interpre-

tation, the larger the class of applications for which the language will be

useful. Some applications are short-lived and will be dominated by the

time they take to start up.

For many applications, the language should interface simply with the

operating system. It should be possible to open or create �les and network

connections, and to read and write data to these objects. It must be

possible to extend the language in application-speci�c domains to achieve

high reuse.

Finally, the language should make it easy to write portable applica-

tions. One should be able to write scripts that do not depend on the

underlying operating system, �le system, or locale.

4.1.7 Pros and Cons of Using ksh

There are several advantages to using ksh. Many of these stem from the

fact that ksh is upward-compatible with the Bourne shell. This reduces

Tool- and Application-Building Languages 135

the learning curve and makes it possible to reuse the many thousands of

existing scripts. Because of the large number of Bourne shell users, there

is a large community who already know how to use ksh.

Because ksh is compatible with the Bourne shell, there is no limit

to the length of variable names, the length of strings, or the number of

items in a list. File manipulation and pipeline creation are simple, and

here documents allow script applications to be packaged into a single �le.

Compatibility with the Bourne shell makes ksh a better interactive lan-

guage than most other high level scripting languages. Having the same

language for interactive use as for programming has several advantages.

First of all, it reduces the learning curve since everything learned for in-

teractive use can be used in programs and vice versa. Secondly, interactive

debugging is simpler since it uses the same language as do the programs.

Using ksh, rather than the Bourne shell, has many additional advan-

tages other than improved performance. The inline editing feature makes

ksh friendlier to interact with. Since the inline editing feature can be en-

abled by scripts that are read from the terminal, interactively debugging

ksh scripts is easier.

The Bourne shell is notorious for its lack of arithmetic facility. The

expr command is both slow and awkward. The string processing capa-

bilities are inferior to languages that are based on regular expressions.

ksh uses ANSI-C style arithmetic and a pattern matching notation that

is equivalent to regular expressions.

ksh has a better function mechanism than the Bourne shell or POSIX

shell. Large applications are di�cult to write with the Bourne shell or

POSIX shell because of an inadequate function facility. Bourne shell and

POSIX shell functions do not allow local variables. In addition to allowing

local variables, ksh allows functions to be linked into an application when

they are �rst referenced, making it possible to write reusable function

libraries. ksh is also more suitable for larger applications because it has

better debugging facilities.

One advantage of using ksh is that it has been around for several years

and has a large user community. The result is that ksh is well documented.

There are several books on ksh, including [BK89], [BK95], [Olc91], and

[Ros93].

136 Korn

There are some drawbacks to using a Bourne shell-compatible shell

as a programming language. One drawback, the unfortunate choices in

the quoting rules, makes it harder to write scripts that correctly handle

strings with special characters in them. The use in ksh of the $(...) syntax

in place of �...� is a big improvement that allows easy nesting of command

substitution. Another Bourne shell mistake that remains is that ANSI-

C sequences are not expanded inside double quoted strings. This makes

it hard to enter non-printable characters in a script without sacri�cing

readability. It also leads to the di�erent behaviors of the echo command

on di�erent systems. With ksh-93 , any single quoted string preceded by

$ is processed using the ANSI-C string rules.

A second problem with using a Bourne shell compatible language is

that �eld splitting and �lename generation are done on every command

word. In purely string processing applications, this is not the desired

default, thus these operations are better left to functions as with perl

and tcl . With ksh it is possible to disable �eld splitting and/or �lename

generation on a per function basis, which makes it possible to eliminate

this common source of errors.

A third drawback is that scripts depend on all the programs they in-

voke, and these programs may not behave in the same way on all systems.

In addition, there are variances in the versions of the shell that exist on

di�erent systems. To overcome this obstacle, we have written versions of

many of the standard utilities that we ship along with ksh. The scripts

that are needed to build ksh and these standard utilities are written in

the Bourne shell, and use features of the Bourne shell known to exist in

all implementations so that they are easy to port.

A fourth drawback is performance. On many UNIX systems, the time

to invoke command that is not built-in is about 100 times more than

the time to run a built-in command. This means that, to achieve good

performance, it is necessary to minimize the number of processes that

a script creates. To overcome this problem, ksh has much more built-in

functionality so that more operations can be performed without creating

a separate process.

Tool- and Application-Building Languages 137

4.1.8 Alternatives

At the time most of the tools described in this book were developed,

there were few options for choosing a scripting language. The only widely

available alternative for scripting was awk , and a standard version of awk

was not widely available. In addition, awk does not have some of the shell

capabilities. By the time the perl language became available, ksh already

had many of the perl facilities as built-ins. In addition, because of the

syntax, many users �nd perl harder to read and write than ksh. We have

seen several examples of scripts written in ksh that are about 10 percent

shorter than in perl and have approximately the same performance.

The tcl language has a somewhat simpler syntax than ksh. However,

because most of the script isn't expanded until used, it is di�cult to

�nd certain syntax errors until runtime. tcl doesn't appear to o�er any

functional advantages over ksh-93 .

One major advantage to perl and tcl is that they are available as

freeware, whereas ksh is not. However, since our focus has been software

development within AT&T, this has not been a problem. Since dtksh is a

standard part of CDE, the Common Desktop Environment, interpreters

for ksh-93 scripts are more likely to be installed on the machines than

perl or tcl .

4.1.9 Possible Reuse Extensions

In this section, we describe several extensions that could be written for

ksh and added at runtime. The intent of this list is to demonstrate how

ksh can be reused.

4.1.9.1 Graph Drawing

In Section 11.2, we describe the lefty language that is used as an inter-

active tool with dot as a coprocess to perform graph layouts. While lefty

is an excellent language for this purpose, one might ask why not use ksh

instead? Had the new features in ksh-93 been available at the time lefty

was �rst created, it would have been a logical choice. We are considering

creating a runtime extension for ksh-93 that will enable dotty applications

to be written in ksh rather than in lefty .

138 Korn

4.1.9.2 Writing Servers

A second possible extension is a connection-stream library (see Sec-

tion 2.2.7) that would make it simple to write servers in ksh. The addi-

tion of /dev/tcp ... and /dev/udp ... with redirection already allows

clients to be written as ksh scripts. A built-in command could be added

to advertise the service and to associate this service with a variable. Call-

back functions that handle message events could be written as discipline

functions for this variable. A second built-in command would then pro-

cess events received by the server and invoke the appropriate discipline

function. To write servers of n-DFS , it is necessary to process n-DFS

protocol messages. A built-in command can be added for this purpose.

4.1.9.3 Persistence

A built-in command could be added that declares that a portion of the

variable name space of a script be persistent. The built-in would take a

second argument that maps this store onto the �le system. Each assign-

ment to a variable under this part of the variable name space would also

cause the �le system to be updated.

4.1.9.4 Object-oriented Database Manipulation

Built-in commands can be added to read and write objects stored in an

object-oriented database. The objects can be represented as shell vari-

ables, and the methods as shell discipline functions.

4.1.10 Conclusion

ksh has proven to be a good choice as a scripting language. It has the

capabilities of perl and tcl , yet it is upward-compatible with the Bourne

shell. ksh scripts of sizes up to 25,000 lines have been written for produc-

tion use. Because it uses the libraries described in Section 2.2.2, ksh is very

portable. This means that ksh scripts are very portable. Finally, because

ksh is extensible, new, reusable components are likely to be implemented

as ksh libraries.

Finally, because ksh is extensible, new reusable components are likely

Tool- and Application-Building Languages 139

to be implemented as ksh libraries. Extensions for graphical user interface

programming provided by dtksh are likely to be widely available. Addi-

tionally, it may be possible to use ksh with tk for graphical user interface

programming. For a detailed description of the new features in KornShell

the reader is referred to the second edition of the KornShell book [BK95].

4.2 EASEL{An Application-Building

Language

4.2.1 Introduction

A major class of applications are so-called end-user applications, which

are systems usable by users who are not very sophisticated in certain

aspects of computing. This section focuses on the End-User Application

System Encoding Language, Easel, a language and system to write end-

user applications based on interactive constructs, such as windows, forms,

menus, and hypertexts. Similar to ksh discussed in the last section, Easel

is built on top of other reusable assets discussed in Chapter 2: curses,

libdict , s�o and vmalloc. In fact, as we shall discuss later, these libraries

grew along with Easel's development.

Over the past ten years, hundreds of projects in AT&T have used

Easel, including several current network management products, each

supporting hundreds of users daily. Because of its curses heritage, Easel

is character-based. Even with the advance of bit-mapped graphics, for

many cases, such as o�ces with expensive embedded equipment, this is

still a desirable solution. However, Easel's internal design separates high-

level interactive constructs from display manipulations. The execution of

high-level constructs is negotiated by a display library that, in turn, calls

lower-level display functions, such as curses. Thus, with some additional

work on the display library, Easel can be made to use other screen-

handling packages, such as the X Window System [Nye90].

The remainder of this section discusses the challenges in building end-

user applications; how Easel meets such challenges; the current state of

the Easel language; how its approach to system construction encourages

software reuse; how language macros help build a higher abstraction level;

140 Snyder and Vo

some experiences in building end-user applications with Easel; and some

of our own experiences in building reusable software tools.

4.2.2 Challenges in Building End-user
Applications

An end-user is a user who needs to perform some computing functions

but may not be well-acquainted with the underlying theories and me-

chanics. In this sense, even an expert computer user can be an end-user

in some application domain. An end-user application is a software system

designed to be used by end-users. As such, the primary characteristic of

an end-user system is an interface that is easy to use, directly addresses

users' needs, and hides any complexity in the solution methods. As com-

puting techniques become more diverse and complex while the cost of

computing machinery becomes cheaper, the market for end-user applica-

tions gets larger. This is particularly true in business computing, where

combinations of techniques from networking, databases, statistical anal-

yses, equation-solving, and graphics are routinely required.

Though computing techniques can be complex, there is a multitude of

high-quality software tools readily available to solve such problems. From

a system-construction point of view, it is desirable to take advantage of

such tools in building a new application. Coupled with the requirement

of a good user interface, the main challenges in building an end-user

application are:

� Designing a system architecture that maps closely to users' needs.

� Building an interface that re
ects that architecture.

� Leveraging as much as possible from existing software tools in imple-

mentation.

As successful applications often live long and beget others, additional

challenges are to ensure that a system is easily evolvable, and to grow

the pool of reusable software tools as systems are built. A sign of a suc-

cessful software development organization is its ability to build families

of applications quickly and still provide good maintenance support. This

is possible only if:

� The system construction method encourages building reusable tools.

Tool- and Application-Building Languages 141

Forms,

User Interface Menus,

Design Text

Programming Tasks

System Structure and

Subtasks

Application-

Computational Functions Speci�c

Computation Code

Programming Application-

Data Architecture Speci�c

Data Types

Figure 4.1 Interactive End-User Systems Architecture

� Enough characteristics of an application family can be abstracted into

reusable templates.

� A means exists to help the coding and maintenance of such templates.

4.2.3 End-user System Architecture

To see how Easel helps to build an end-user system, we need to under-

stand the components that comprise such a system. The logical structure

of an end-user system can be divided into four layers [Vo90], as shown

in Figure 4.1. The top two layers represent Design Programming, that

is, programming activities focusing on the user interface and high-level

tasks as seen from the user's point of view. The lower two layers repre-

sent Computation Programming, that is, activities focusing on how the

high-level tasks are to be implemented and with what data structures.

The User Interface layer allows users to manipulate the systems using

well-de�ned and easy-to-use steps. A major function of this layer is to hide

all di�erences and idiosyncrasies in the interfaces of underlying computing

tools and techniques. An Easel application builds this layer using menus,

forms, and hypertexts to provide an active interface that guides users in

taking appropriate computational steps.

142 Snyder and Vo

The System Structure de�nes a task partition and relationships among

tasks. In the Easel framework, the design process of an end-user system

begins with identi�cation of tasks and subtasks as seen from the user's

perspective. The high-level tasks are mapped to objects known as frames,

which are interconnected in a frame network. Each frame de�nes all user

dialogs appropriate to the task, and prescriptions for computing methods

necessary to carry out that task. Dialogs can cause transitions to other

frames in the frame network, or induce certain low-level computations.

For example, a simple electronic-mail application might consist of the

following tasks:

� Getting a list of users

� Picking addressees from the user list

� Filling out a mail form

� Sending the mail

Each of these tasks maps to a frame that de�nes:

� Its own set of relevant parameters

� Mechanisms to obtain the parameters (from the user, from other

frames, by running other programs, and so on)

� Appropriate commands to drive lower-level computational processes

(such as calling a C function, retrieval from a database, and so on)

Thus, frames focus on high-level activities required to perform a given

task. Actual computations are performed at a lower level by invoking

applications code, utilities, and other packages.

The Computational Functions layer consists of utilities and application-

speci�c code embodying the computational methods to access, transform,

and generate the data necessary to accomplish the end-user's tasks as

requested. The Easel language provides for string manipulation, mathe-

matical operations, �le input/output, and event handling. In addition,

there are several language mechanisms to execute application-speci�c

code that may be in C or some interpretive languages, such as the Korn-

Shell [BK89] or awk [AWK88].

The Data Architecture layer de�nes the types of data to be manipu-

lated, along with their storage and access methods. Speci�c data types

Tool- and Application-Building Languages 143

depend on the application and the tools used to perform the compu-

tational functions. Data types may be tuned to support, facilitate, and

optimize execution of algorithms and methods at the computational level.

Examples include Easel variables, C and C++ data types and structures,

data for relational and object-oriented databases, as well as data types

required by speci�c packages, such as statistical or queuing packages.

The four-layer architecture points out some useful insights on reusabil-

ity in some broad categories of tools. Traditional UNIX tools are often

designed to do single tasks that, in many cases, embody powerful data

structures and algorithms. Since their interfaces are geared toward the

speci�c computing methods being implemented, they are not easily usable

by end users, although they are immensely reusable. At the other end of

the spectrum, many screen-oriented applications based on screen libraries,

such as curses [Arn84, Vo85], X, and various spreadsheets or database

packages, are easy to use but o�er little reuse, because the computational

methods are too intertwined with the implementation of other parts of

the system. Easel bridges this reuse gap between general-purpose but

hard-to-use tools and application-speci�c but easy-to-use software.

Easel's approach to system construction can be summed up as that of

separating Design Programming from Computational Programming. The

Easel language focuses on expressing the high-level design of a system,

including its user interface and task partition. Most computational details

in the lower two layers are left out at this level, but enough of the in-

terface to appropriate software components can be speci�ed. In this way,

tool reuse is naturally a component of the Easel's system construction

method. As we shall see later, by using a language tool for program de-

sign, Easel enables the reuse of certain high-level tasks, just as software

tools improve computational reuse.

4.2.4 EASEL Language for Building End-user
Systems

The Easel programming language is block-structured, where the block

types map to certain high-level activities. Some blocks de�ne user inter-

face components and such tasks as:

144 Snyder and Vo

� {frame { A high-level task

� {context { Grouping of related activities

� {menu { Selections to be decided by users

� {question { A group of questions is a form

� {write { Display text to screen

Other blocks and statements de�ne such computations as:

� {action { Runs the enclosed shell script

� {process { Runs named cooperating UNIX process and sends en-

closed text to its standard input

� ~Ccall { Calls the named C function

� ~call ~goto ~overlay ~return { Transition among frames

� ~evglobal ~evlocal { Event handling

� File input and output

� String handling

� Mathematical operations and functions

Other language statements provide for managing the scope of vari-

ables, manipulating the runtime UNIX process environment, key bindings

and macros, and �le input/output. Another group of statements is used

to modify default display attributes, such as window locations, border

styles, colors, and so on.

Easel variables need not be declared and are initialized as empty

strings. Most operations, including those requiring communicating with

external processes or subroutines, result in string values. However, in

cases where numerical values are required, the mathematical assignment

statement := can be used to do arithmetical and other mathematical

computations.

Easel applications are constructed in a network of frames. Each frame

is de�ned in a frame block:

{frame FrameID ~arg1 ~arg2 ...

....

}f

Each frame has its own name or frame identi�er, may accept argu-

ments, may contain statements and other nested blocks, and may return

Tool- and Application-Building Languages 145

values to its caller. Easel variable names (and keywords) begin with the

~ (tilde) character.

Composite blocks provide grouping of statements and nested blocks:

{context (entry):(exit)

....

}c

Control
ow as exempli�ed above is directed via (entry) and (exit)

conditions. A block or statement is executed only if its (entry) condi-

tion is true; control loops through the block or statement until its (exit)

condition is satis�ed. An omitted, or null, condition is taken as true.

Rather than examining the Easel programming language in detail, we

will illustrate how to build a system with Easel using a small example.

4.2.4.1 An EASEL email Application

An electronic-mail application serves as a small but realistic example.

The main tasks of the application consist of:

� Getting a list of users

� Asking the user to select addressees

� Filling out a mail form

� Sending the mail

The design of the frame network for such an email application might

then look like Figure 4.2.

Following is the Easel code for the top level email frame. Line 1

begins a frame block for frame email. Line 2 calls frame users to get a

list of users that is assigned to variable ~users. Line 3 calls frame select

with argument ~users to ask user to make selections that will be assigned

to variable ~to. Line 4 calls frame mform with argument ~to. This frame

will return three values to be assigned to ~to, ~subj, and ~mesg. Line

5 begins with an entry condition that is true only when both ~to and

~mesg are not null; if that is the case, then frame msend is called to send

the message to the selected people. Line 6 denotes the end of the frame

block.

146 Snyder and Vo

email

users select mform msend

Figure 4.2 The email frame network.

1: {frame email

2: ~call users > ~users

3: ~call select ~users > ~to

4: ~call mform ~to > ~to ~subj ~mesg

5: (~to!=~null && ~mesg!=~null): ~call msend ~to ~subj ~mesg

6: }f

The �rst task or frame called by email is users. Following is the code

for users. Line 2 runs /bin/ksh as a cooperating process or coprocess.

Values returned from the coprocess will be assigned to variable ~logins.

Line 3 speci�es the end-of-response and end-of-commands protocol de-

limiters to be used between Easel and the coprocess. When Easel is

done sending data to the coprocess (the text on line 5), it sends the

end-of-commands text (echo ShIsDone\n). Easel then starts reading

text returned from the coprocess until it sees the end-of-response text

(ShIsDone\n). Line 4 says that the screen will not be disturbed during

this execution, so Easel will not refresh the screen when it gets back

control from the coprocess. Line 5 is the complete body of text to be

sent to the coprocess; on Suns running NIS (formerly Yellow Pages), this

shell script will generate the current list of logins. Line 6 ends the process

block. Line 7 causes control to return to the calling frame and returns

the value contained in the variable ~logins.

1: {frame users

2: {process "/bin/ksh" > ~logins

3: ~!"ShIsDone\n","echo ShIsDone\n"

4: ~$

5: ypcat passwd | cut -d: -f1 | sort -u | xargs

6: }p

7: ~return ~logins

8: }f

Tool- and Application-Building Languages 147

The next task is to ask the user to select the desired addressees from

the available list of users. Following is the frame select that performs

this task. Line 1 begins frame select, which has argument ~list. Lines

2 to 8 present the ~list of logins as a menu to the end-user, build a ~to

list adding each user selection, and loop until a null choice is entered. The

.window statement on line 3 de�nes a window for the menu. If this is not

de�ned Easel will construct some default window whose size and place-

ment are designed to make good use of screen real estate. Line 5 provides

the list of options to be shown, namely, those stored in variable ~list.

Delimiters for the list are speci�ed as space, tab, or newline characters.

Line 6 builds a list of the logins selected by the user and stores the result

in the variable ~to. This variable is used in the menu's title given in line

4 to give immediate feedback to the user on the current set of selections.

Line 9 returns the value of ~to to the calling frame.

1: {frame select ~list

2: {menu :(~pers == ~null) ~pers

3: .window(x=5, xlen=50, y=0, ylen=10)

4: Mail To: ~to

5: {option ~list " \t\n"

6: ~to = ~to * ~pers * " "

7: }o

8: }m

9: ~return ~to

10: }f

A screen snapshot of select is shown in Figure 4.3. Note that the

frame stack email:select shows the traversal sequence in the frame

network to get to the frame select.

The third email task is to display a mail form and let the user �ll it

in. Following is the frame mform. The context block beginning on line 2 is

used to group the enclosed question blocks so that they will be displayed

together as a unit or form. The .form statement on lines 3 to 8 speci�es

that answer �elds should be shown in color 2 (typically underlining on

black and white terminals), with attributes set to printable characters.

The .form statement also includes a template for the form and indicates

which question variables correspond to which answer �elds. For example,

line 4 indicates that the answer �eld is the ~To variable, which, in this

case, was passed as an argument to the frame. Thus any menu selections

made by the user in the select frame will be shown on the form as soon as

148 Snyder and Vo

Figure 4.3 The select screen.

it is displayed. The user can edit the answer �eld on the form or move on

to the next �eld. Lines 10 to 12 provide help text for this form should the

user request help. Although not shown here, help text may include Easel

variables as well as hypertext links. Lines 13 to 22 are the question blocks

used to build up the form; each provides a variable to collect the user's

response to that question. The .field statement in line 20 overrides the

suggested template and speci�es that the answer ~Mesg �eld be repeated

ten times for a ten-line answer. If the user types beyond the tenth line, the

answer �eld will scroll (unless the answer has been restricted to the length

speci�ed). Although the syntax for specifying a form is a bit verbose with

its .form statement and group of question blocks, it saves frame designers

from counting row and column coordinates and allows entry conditions

on question blocks to tailor �eld access dynamically. Line 24 returns the

values in ~To, ~Subj, and ~Mesg back to the calling frame. Figure 4.4

shows a screen snapshot of the form.

1: {frame mform ~To

2: {context

3: .form(c=2, a=p,

4: To: <_____________________ $ ~To

5: Subj: <___________________________ $ ~Subj

6:

7: Mesg: <___________________________ $ ~Mesg

8:)

9: Mail Form

10: {descript

11: Some HELP for the form

Tool- and Application-Building Languages 149

Figure 4.4 The mform screen.

12: }d

13: {question ~To

14: To:

15: }q

16: {question ~Subj

17: Subj:

18: }q

19: {question ~Mesg

20: .field(r=10)

21: Mesg:

22: }q

23: }c

24: ~return ~To ~Subj ~Mesg

25: }f

The �nal task, if the user has provided non-null text for the addressees

and the message, is to send the user's e-mail, as coded in the following

frame msend. Line 2 gets the current value of the environment variable

$LOGNAME and stores it in the Easel variable ~LOGNAME (for use in the

mail message body). Lines 3 to 14 communicate with the same coprocess

/bin/ksh as was set up in the frame users. This time, what is being sent

to the shell is a multiline mail command that is parameterized by several

Easel variables. The variable ~efsdate in line 8 is an Easel read-only

150 Snyder and Vo

variable containing the current date as a string, for example, Sat May 21

01:40:10 EDT 1994.

1: {frame msend ~To ~Subj ~Mesg

2: ~getenv ~LOGNAME

3: {process "/bin/ksh"

4: ~!"ShIsDone\n","echo ShIsDone\n"

5: ~$

6: mail ~To <<!!

7: Subj: ~Subj

8: Date: ~efsdate

9:

10: ~Mesg

11:

12: Thanks! ~LOGNAME

13: !!

14: }p

15: }f

The actual text for the mail command, as sent to the shell, follows.

In prototyping and early testing of a frame, the process block for the

mail command in lines 3 to 14 might be enclosed in a write block (to the

screen or to a �le) to simply write out the mail command as it would be

sent to the coprocess to let the command be checked without sending any

unnecessary mail.

mail gsf kpv <<!!

Subj: cpp macros

Date: Sat Apr 30 01:40:10 EDT 1994

Can we get together Tues

after lunch to discuss

name=value macros for cpp and Easel?

Thanks! jjs

!!

That has been a quick look at Easel as a language and system to

build end-user systems. As the email application shows, the application

design process starts with identifying tasks from the user's perspective.

These tasks can be quickly prototyped in the Easel language without

lower-level computations. In this way, the tasks can be tested out with

users to see if they are suitable. In parallel to or with user testing, com-

putational tasks can be implemented and tested. This cycle continues

until the system is complete. Figure 4.5 shows this system construction

method.

Tool- and Application-Building Languages 151

 User Interface
Frames

Computations
Data

Requirements

Prototype

User Test Releases

Figure 4.5 Easel frame system development cycle.

4.2.4.2 Building Higher-Level Abstraction with Macros

The availability of a language suitable for design programming enables

design reuse in the traditional style of building macro templates and code

libraries. It is clear how frames parallel traditional library functions and

can be reused as such. In many projects where families of applications are

built, higher levels of reuse can be achieved by de�ning macro templates.

Such templates are useful because they:

� Reduce programming time of repetitive tasks

� Standardize the look and feel of the user interface

� Standardize the access to lower level computational functions

For example, consider the task of obtaining a list of logins in frame

users of the email application. The shell communication can be ab-

stracted to the actions of:

� Sending the shell a set of commands

� Reading responses from the shell

� Assigning responses to an appropriate Easel variable

Following is a macro de�nition of this task in an extended C preproces-

sor language [KR78, Fow88]. The macro KSH_get takes two arguments,

152 Snyder and Vo

Cmd and Var, that de�ne the command to be sent to the shell and the

variable to store any responses. The default values for Cmd and Var are

the string echo ok and the variable name ksh_out.

1: #macdef KSH_get(Cmd="echo ok", Var=ksh_out)

2: {process "/bin/ksh" > ~Var

3: ~!"ShIsDone\n","echo ShIsDone\n"

4: ~$

5: Cmd

6: }p

7: #endmac

The following instantiation of the macro KSH_get generates the equiv-

alent code on lines 2 to 6 of frame users:

KSH_get(Var=users, Cmd="ypcat passwd | cut -d: -f1 | sort -u | xargs")

The communication protocol with the shell, as de�ned in this example,

is relatively simple. For other tools, it can be much more complex. By

using macro templates, frame developers can focus directly on what needs

to be performed without having to worry about how it is performed, which

helps avoid inadvertent errors.

The same technique can also be applied to the menu task in the select

frame. Following is the macro template to do that. Here, macro parame-

ters are used to describe the main components of a menu block. In this

example, the menu window is constrained to always appear with the top

left corner at location x=5 and y=0 and dimensions xlen=50 and ylen=10.

This is somewhat contrived (by default, windows are automatically sized

and placed by a best-�t rule) but it serves to show how interface con-

straints can be standardized using macro templates.

1: #macdef Menu_list(Title=Selections, List=list, Sel=sel, Ans=ans)

2: {menu :(~Sel == ~null) ~Sel

3: .window(x=5, xlen=50, y=0, ylen=10)

4: Title: ~Ans

5: {option ~List " \t\n"

6: ~Ans = ~Ans * ~Sel * " "

7: }o

8: }m

9: #endmac

For completeness, the following instantiation of Menu_list generates

the same code for the menu block on lines 2 to 8 of frame select:

Menu_list(Title=Mail To, Sel=pers, Ans=to)

Tool- and Application-Building Languages 153

4.2.5 Experience with Building an Application
Family with EASEL

Within AT&T, several projects have successfully used Easel to build

sophisticated network management applications. In particular, a project

that we shall call Project D made extensive use of Easel to generate

families of end-user applications for a variety of end-users, including:

� Switch engineers{to monitor, forecast, plan, and equip switches to han-

dle tra�c loads e�ciently

� Operations support sta�{to monitor and evaluate operator services

throughout a network

� Service planners{to conduct tra�c analyses of specialized services and

provide reports

Much of the raw data for these systems is generated automatically by

the switches themselves in the telephone network. Portions of this data

are periodically downloaded onto UNIX servers and stored in relational

databases for use by applications. These applications are often written in

C with embedded SQL calls. The C code can be complex, sophisticated,

and not easy to use by non-experts. But to better serve telephone cus-

tomers, it is becoming more and more important to make such capabilities

readily available to end-users.

When Project D �rst started, it recognized the needs to reuse exist-

ing C code and to provide friendly user interfaces. They found lots of

literature on user interfaces, such as [Sch87], and a variety of user in-

terface packages inspired by the early work at Xerox PARC [Gol84], in-

cluding Apple Macintoshes and PCs with Microsoft Windows; but what

was needed was to wrap a friendly user interface around large existing C

applications running on UNIX systems. Easel was chosen for this task.

In building applications, Project D's architects recognized that there

were many tasks that are repeated again and again, such as:

� Obtaining information from the database

� Formatting data for display to end-users

� Collecting end-user responses via menus and forms

� Providing hypertext help

154 Snyder and Vo

� Storing new information into the database

� Time-stamping and posting messages to end-users

This led Project D architects to layer their code as follows:

� A library of high-level objects

� Easel frame code

� Application-speci�c libraries, including database access utilities (C and

SQL)

� A relational database

The high-level objects currently number about 70 and are implemented

as macros that expand into Easel code (using awk and cpp). Code gen-

erated by the macros reference a library of about 90 utilities, written

both in Easel and C, many of which interface with the database. As

new reusable objects or object attributes are found and de�ned, Easel

code and database access utilities can be expanded as needed.

To date, Project D has built nearly a dozen di�erent end-user sys-

tems, each consisting of hundreds of Easel frames. During the initial

phase of the project, many new objects were discovered, implemented in

macros and, as necessary, supported by new low-level C functions and/or

database transactions. Application architects have said that the capabil-

ity to write new macros and new code at any level avoids hitting \brick

walls" and makes this approach based on Easel even more powerful than

a typical 4GL. Recent applications have been built entirely out of prede-

�ned macros. The expansion of common macros can be \personalized" to

meet particular requirements of particular customer sets.

A typical Project D source code �le written with macros averages

about 100 to 200 lines long, which, after macro expansion, averages about

1,000 lines of Easel source code. Thus, use of the macros reduces code

size roughly by a factor of 5 if compared to straight Easel code. It is not

as easy to get a similar comparison between Easel code and equivalent

code in C, but it is not hard to conclude that the code size reduction

would be much larger than that. Project D developers have estimated that

programming in Easel alone (without macros) o�ers a 10 to 1 advantage

in terms of implementation time over writing the same end-user system

in C.

Tool- and Application-Building Languages 155

This high-level of software reuse has allowed Project D to employ small

teams to interact with customer focus groups, design, test, and rapidly

re�ne prototypes, using customer feedback to
esh out features for pro-

duction releases. The end results for Project D are customers who feel that

they are getting what they really want. Finally, from an organizational

point of view, an important aspect of having high-level macro objects

is that they are easily learned by developers new to the project. New

Project D developers typically can begin to build screen objects within a

few days of training.

4.2.6 Reuse Experiences in EASEL's Evolution

Easel has grown and matured signi�cantly over the years, thanks to two

complementary forces. One has been feedback from designers and develop-

ers using Easel to build end-user systems. Many discovered leading-edge

ways to use Easel, pushing at its frontiers and suggesting new features.

The other has been continued involvement and interaction with other

software engineering researchers. Discussions frequently led to the recog-

nition of common problems, some of which eventually lent themselves to

common solutions to the bene�t of more than one project.

An example of users' feedback is the recent addition of an interactive

frame builder efb. For many years, Easel provided a language and en-

vironment to program and execute end-user systems. We have discussed

the bene�ts of having a language suitable for implementing the high-level

design of such systems. However, an aspect of user interface design that

cannot be easily addressed by a textual language is that of experiment-

ing with di�erent screen layouts. The frame builder efb addresses this

need by allowing users to write Easel code and lay out the screen in-

teractively. It is interesting to note that efb itself is implemented in the

Easel language as a frame system consisting of about 150 frames and

three coprocesses written in C.

Easel is based on a number of standard libraries; the original list

included: curses, for screen manipulations, malloc for memory allocation,

regex for regular expression matching [KP84], and stdio, the standard

input/output library. In the course of Easel's evolution, we found that

156 Snyder and Vo

some of these libraries needed improvement and that new libraries were

needed.

The earliest version of Easel, around early 1982, was based on the

original curses library on the BSD4.1 UNIX System. Aside from a num-

ber of bugs, this version of curses also su�ered from lack of features

(such as hardware scrolling) and from poor performance. After much con-

sideration, curses was rewritten to improve code quality and e�ciency.

The new library, screen (Section 2.2.4), remains upward-compatible with

curses and includes new features, such as screen editing, menu display,

and mouse support. It is also fully internationalized and supports mul-

tiple international multibyte character sets. Because of screen, Easel is

perhaps the only current application construction system that enables

applications that run transparently in multiple countries using di�erent

character code sets across Asia and Europe.

Easel uses the malloc package for dynamic memory allocations. Early

in its development, it was discovered that standard malloc implementa-

tions, both on System V and BSD UNIX systems, had severe de�ciencies,

either in terms of space fragmentation or time performance or both. This

prompted a 1985 study by Korn and Vo [KV85] to compare all available

malloc implementations. At that time, a new malloc package based on

the best-�t strategy was also implemented. The study found that this

package provides the best trade-o� in both time and space. This ver-

sion of malloc is now part of the standard System V UNIX distribution.

More recently, we found that certain large Easel applications may have

hundreds to thousands of users running concurrently on the same server.

This indicates that there is much to be gained by using shared memory for

storing frames online. Coupled with certain other needs, this prompted a

generalization of malloc to vmalloc (Section 2.3.4).

When event-handling was added to Easel, it was discovered that sig-

nals could cause the screen to be only partially updated. The bug was

tracked down to the stdio library, which drops data if a write system

call is interrupted by a signal. This and other shortcomings of stdio led

to the writing of s�o, a faster, safer I/O library (Section 2.3.1).

Along the way, it was found that several pieces of software in the de-

partment, including Easel, would bene�t from a library for online dic-

Tool- and Application-Building Languages 157

tionary management{for example, to access variables in a symbol table.

A
exible dictionary library, libdict , was written to handle both ordered

and unordered objects using binary trees or hash tables (Section 2.3.3).

The need to distribute low-level libraries that depend on system calls

and other environmental parameters for a wide range of hardware and

software platforms led to the development of an installation tool to auto-

mate the process. The tool, called i�e [FKSV94], probes and then con�g-

ures the software automatically without human intervention (Section 3.2).

4.2.7 Alternatives

The �rst version of Easel, called Ifs [Vo90], was �rst developed in the

early part of 1982. At that time, there were few alternative languages for

building end-user applications. Within AT&T, the best-known tool for

form-based applications was Fe, a form-entry system [Pri85]. As Fe fo-

cused on forms, it could not be used for more general applications requir-

ing menus or windows. More recently, there are a number of commercial

character-based packages with comparable functionality to Easel. Most

notable are the Fmli package distributed with UNIX System V and the

Jam package [Jya94]. Fmli is based on the curses library and uses a

syntax similar to the shell language enhanced with constructs to write

forms and menus. The heavy reliance on separate scripts for forms and

menus makes Fmli cumbersome to use. Jam runs on both PC and UNIX

systems and is based on proprietary software for screen handling. Jam

relies more on an interactive screen builder to prototype screens than on a

language to write applications. Though this makes it easy to build single

applications with few screens, it can become cumbersome when families

of applications must be built along the line of Project D, as discussed in

Section 4.2.5. In fact, Project D developers investigated both Jam and

Easel and decided to use Easel because its open-ended architecture

makes it easy to add new functionality at any number of architectural

levels, such as, high-level macros, Easel's code, processes, or C routines.

On the bit-mapped graphic side, the tcl/tk language and toolkit is com-

patible to Easel in the basic approach to tool and application design.

In fact, it would be interesting to rewrite the display library of Easel

based on tcl/tk or a similar toolkit. An advantage of doing this is that

158 Snyder and Vo

Easel-based applications could run transparently on character terminals

and graphical workstations.

4.2.8 Conclusion

We have described Easel as a language and system for building end-

user systems. From an application builder's point of view, the success

of Easel derives directly from its philosophy of separating Design pro-

gramming from Computational programming by providing a programming

language suitable for design implementation. This enables a style of sys-

tem development that focuses on partitioning tasks as seen from users'

perspectives and increases the chance of matching users' expectations.

Having a high-level language for design programming brings in tradi-

tional reuse techniques, such as code libraries and templates. In addition,

by de�ning precisely a small number of standard interfaces to external

code, Easel encourages the construction of reusable code. We described

experiences with a project where a family of end-user applications were

built based on these ideas. In this case, the application builders themselves

claimed at least a factor of 5 reduction in code size and corresponding

productivity improvement.

We have also touched on our own experiences of software reuse in the

construction and evolution of Easel. The total size for Easel and as-

sociated libraries stands at a little over 60,000 lines of C code. For many

years, this body of code was maintained and enhanced by essentially a

single person (Vo). This is not normally feasible but for the high-level

of reusability in the internal code. As the software evolves, we gradually

abstract pieces of it into reusable libraries. The construction of such li-

braries has sometimes led to new and interesting theoretical problems.

For example, early in the rewrite of the curses library, it was recognized

that screen scrolling is best modeled by a string-matching problem in

which matches have weights. This led to the development of a new heavi-

est common subsequence algorithm [JV92]. Recently, new algorithms and

heuristics for memory allocation were developed in building the vmalloc

library. Thus, reuse permeates our way of building software and drives

the interplay between theory and practice.

5

Self-Checking Programs and

Program Instrumentation

David Rosenblum

5.1 Introduction

Assertions are formal constraints on software system behavior, which are

commonly written as annotations of a source text. The primary goal in

writing assertions is to specify what a system is supposed to do, rather

than how it is to do it. Assertion features are available today as program-

ming language extensions, as programming language features, and in com-

plete high-level formal speci�cation languages. The C programming lan-

guage [KR88] has traditionally provided a simple assertion facility as an

assert macro, which is expanded inline into an if-statement that aborts

the program if the assertion expression evaluates to zero. Extensions have

been proposed for other languages, such as C++ [Str91], that originally

provided no higher-level assertion capability [Gau92, CL90]. Still other

programming languages, such as Turing [HC88] and Ei�el [Mey88], pro-

vide assertion features as part of the language de�nition. Such languages

can be used to specify system behavior at the design level. These uses of

high-level formal speci�cations o�er a practical alternative to mechanical

proof of correctness.

App is an Annotation PreProcessor for C programs developed in

UNIX-based programming environments. App has been designed to be

159

160 Rosenblum

easily integrated with other UNIX development tools. In particular, App

was designed as a replacement for the standard preprocessor pass of C

compilers, making the process of creating and running self-checking pro-

grams (that automatically check their own assertions) as simple as build-

ing unannotated C programs. Furthermore, App provides complete
ex-

ibility in specifying how violated assertions are handled at runtime and

how much checking is to be performed each time a self-checking program

is executed. In addition to assertion checking, it has been natural to

extend App to support other kinds of instrumentation. All of the instru-

mentation capabilities that App provides to a program are controllable

at program runtime through a UNIX shell environment variable called

APP OPTIONS; this way, the program need not be recompiled when-

ever a modi�cation in the instrumentation behavior is desired. App does

not require complete speci�cations for its correct operation, and the as-

sertions one writes for App typically are not complete speci�cations in

any formal sense.

This chapter begins with a brief description of the features and oper-

ation of App. It then describes the architecture of App and its construc-

tion from reusable components described in previous chapters. It �nishes

with some thoughts on how the work on App has contributed to the im-

provement of reusable components on which App is based, and to the

development of tools that use App as a component.

5.2 Assertion Constructs

In an empirical study by Perry and Evangelist, it was shown that most

software faults are interface faults [PE85, PE87]. Hence,App was initially

designed to process assertions on function interfaces, as well as assertions

in function bodies. App also supports a number of facilities for specifying

the response to a failed assertion check and for controlling the amount of

checking that is performed at runtime.

App recognizes assertions that appear as annotations of C source text.

In particular, the assertions are written using the extended comment in-

dicators /*@ : : : @*/. Informal comments can be written in an assertion

Self-Checking Programs and Program Instrumentation 161

region by writing each comment between the delimiter // and the end of

the line, as in C++.

Each App assertion speci�es a constraint that applies to some state of

a computation. The constraint is speci�ed using C's expression language,

with the C convention that an expression evaluating to zero is false, while

a non-zero expression is true. To discourage writing assertion expressions

that have side e�ects, App disallows the use of C's assignment, increment

and decrement operators in assertion expressions. Of course, functions

that produce side e�ects can be invoked within assertion expressions, but

such expressions should be avoided except in the rarest of circumstances,

since assertions should simply provide a check on the computation rather

than be a part of it.

App supports two enhancements to the C expression language within

assertion regions. First, the operator in can be used to indicate that an

expression is to be evaluated in the entry state of the function that en-

closes the expression. Second, bounded quanti�ers can be speci�ed using

a syntax that is similar to C's for-loop syntax. Both of these extensions

are illustrated below.

App recognizes four assertion constructs, each indicated by a di�erent

keyword:

� assume|Speci�es a precondition on a function.

� promise|Speci�es a postcondition on a function.

� return|Speci�es a constraint on the return value of a function.

� assert|Speci�es a constraint on an intermediate state of a function

body.

The �rst three kinds of assertions are associated syntactically with func-

tion interface declarations, while the last kind is associated syntactically

with statements in function bodies. The assert construct corresponds to

the assert macro found in many C implementations, in the sense that it

constrains only the state of the program at the place of the assert.

Note that an assumption for a function is a constraint that the call-

ing environment must satisfy in order for the function to satisfy any

of its postconditions. App generates runtime checks in such a way that

postconditions are checked independently of preconditions. Thus, a failed

precondition check on a function call reveals a fault in the program, even

162 Rosenblum

int square root(x)

int x;

/*@

assume x >= 0;

return y where y >= 0;

return y where y*y <= x && x < (y+1)*(y+1);

@*/

{

...

}

Figure 5.1 Speci�cation of function square root.

in the presence of successful checks for all postconditions for the same

call. However, information from failed postcondition checks may not be

reliable in the presence of a failed precondition check for the same call.

To brie
y illustrate these four constructs, consider �rst a function

called square root that returns the greatest positive integer less than

or equal to the square root of its integer argument. Such a function can

be speci�ed in the manner shown in Figure 5.1. The �rst assertion is a pre-

condition of square root, as indicated by the keyword assume. It states

that the implementation of the function assumes it is given a non-negative

argument; if this precondition is not satis�ed at runtime, nothing can be

guaranteed about the behavior of the function. The remaining two as-

sertions are constraints on the return value of square root, as indicated

by the keyword return. Each return constraint declares a local variable

(called y in the return constraints of this example) that is used to refer

to the return value of the function within the constraint. The �rst return

constraint states that the function returns positive roots. The second one

states the required relationship between the argument and the return

value. It is, of course, possible to conjoin these two return constraints

into a single one; however, it is often useful to separate constraints not

only for the sake of clarity, but especially when using App's severity-level

and violation-action features (described later in Section 5.3). Note that

all of these assertions merely state what the function does, not how it

does it.

Self-Checking Programs and Program Instrumentation 163

void swap(x,y)

int *x, *y;

/*@

assume x != 0 && y != 0;

assume x && y; // equivalent to the first assumption

assume x != y;

promise *x == in *y;

promise *y == in *x;

@*/

{

*x = *x ^ *y;

*y = *x ^ *y;

/*@

assert *y == in *x;

@*/

*x = *x ^ *y;

}

Figure 5.2 Speci�cation of function swap.

Consider next a function called swap that swaps two integers without

using a temporary variable. The function takes as arguments a pointer to

each of the two integers, and it performs the swap through the pointers us-

ing a series of exclusive-or operations on the integer values. The function

can be speci�ed and implemented in the manner shown in Figure 5.2. The

�rst two assumptions are equivalent (as indicated by the informal com-

ment), and they state the precondition that the pointers x and y should

be non-null. The �rst assumption states this explicitly by saying that the

pointers should not be equal to zero. The second assumption states the

same thing using the C convention that a non-zero expression value is

interpreted as the value true; this convention provides a very convenient

way of specifying nullness and non-nullness constraints on pointers. The

third assumption states the precondition that the pointers x and y are

not equal to each other. The two postconditions, indicated by the key-

word promise, use the operator in to relate the values of the integers

164 Rosenblum

int* sort(x,size)

int size, *x;

/*@

assume x && size > 0;

return S where

S && all (int i=0; i < in size-1; i=i+1)

S[i] <= S[i+1]

&& all (int i=0; i < in size; i=i+1)

(some (int j=0; j < in size; j=j+1)

x[i] == S[j])

&& card(S[i], S, in size) ==

card(S[i], x, in size);

@*/

{

...

}

Figure 5.3 Speci�cation of function sort.

upon exit from the function to their values upon entry. In particular,

the �rst promise states that the exit value of the integer pointed to by

x should equal the value pointed to by y upon entry, while the second

promise states the reverse. The assertion in the body of swap, indicated

by the keyword assert, states an intermediate constraint on the integers

at the point where one of the promises must become satis�ed.

As a �nal example, consider a function sort that sorts two arrays of

integers. The speci�cation shown in Figure 5.3 describes its required be-

havior at a level of abstraction that allows the use of any sorting algorithm

to implement its body. In this function, x is the unsorted input array, and

size is the number of elements in the array. The function returns a pointer

to the sorted result. The speci�cation of sort uses quanti�ers to state both

the obvious ordering requirement of the result, as well as the requirement

that the result must be a permutation of the input array. Note that the

return constraint of sort uses the name S to refer to the pointer returned

by sort; thus, each occurrence of S is treated as a pointer, including the

�rst conjunct, which requires S to be non-null.

Self-Checking Programs and Program Instrumentation 165

An App quanti�er can be thought of as a sequential iterator over a

set of values, with the quanti�ed expression evaluated for each element in

the set; these individual evaluations are combined in the obvious way for

the particular kind of quanti�er. Syntactically, a quanti�ed expression

resembles a for-loop in C. Indeed, App expands each quanti�ed expres-

sion into a for-loop that performs the speci�ed iteration and evaluations,

with nested quanti�ers expanded into appropriately nested for-loops.

As shown in Figure 5.3, an App quanti�er speci�cation contains the

existential speci�er some or the universal speci�er all, followed by a

parenthesized sequence of three �elds separated by semicolons. The �rst

�eld is a declaration of the variable over which quanti�cation is to be

performed, including its name, type, and the initial value of the set. The

second is a condition that must be true in order for the iteration to

continue. The third is an expression that computes the next value in

the set. Thus, the �rst universally quanti�ed expression in the return

annotation says that each element of the result but the last must be less

than or equal to its successor element. The second universally quanti�ed

expression contains a nested, existentially quanti�ed expression to state

that for every element of the input array x, there exists an equal element

of the result array. The second universally quanti�ed expression uses a

cardinality function card (de�nition not shown) to further state that each

element of S must occur the same number of times in both arrays.

5.3 Violation Actions, Prede�ned

Macros, and Severity Levels

App converts each assertion to a runtime check, which tests for the vi-

olation of the Boolean condition speci�ed in the assertion. If the check

fails at runtime, then the additional code generated with the check is ex-

ecuted in response to the failure. The default response code generated by

App prints out a simple diagnostic message, such as the following, which

indicates the violation of the �rst promise of function swap:

promise invalid: file swap.c, line 6, function swap

166 Rosenblum

promise *x == in *y

{

printf("out *x == %d, out *y == %d\n", *x, *y);

}

Figure 5.4 Violation action for promise of function swap.

promise *x == in *y

{

printf("%s invalid: file %s, ", ANNONAME ,

FILE);

printf("line %d, function %s:\n", ANNOLINE ,

FUNCTION);

printf("out *x == %d, out *y == %d\n", *x, *y);

}

Figure 5.5 Enhancement of the violation action of Figure 5.4.

The default response provides a minimal amount of information needed

to isolate the fault that the failed check reveals. However, the response to

a violated assertion can be customized to provide diagnostic information

that is unique to the context of the assertion. This customization is done

by attaching a violation action to the assertion, written in C.

For instance, in order to determine what argument values cause the

�rst promise of swap to be violated, the promise can be supplied with

a violation action, as shown in Figure 5.4 (using C's library function

printf for formatted output). Using some preprocessor macros that are

prede�ned by App, this violation action can be enhanced, as shown in

Figure 5.5, to print out the same information that is printed out by the

default violation action.

The macros ANNONAME and ANNOLINE expand to the keyword

of the enclosing assertion and to the starting line number of the enclosing

assertion. The macros FILE and FUNCTION expand to the name

of the source �le in which the enclosing assertion is speci�ed, and to the

name of the function in which the assertion is speci�ed.

In addition to violation actions, App supports the speci�cation of an

optional severity level for each assertion, with 1 being the default and

Self-Checking Programs and Program Instrumentation 167

1: assume x >= 0;

2: return y where y >= 0;

1: return y where y*y <= x

&& x < (y+1)*(y+1);

Figure 5.6 Severity levels for assertions of function square root.

indicating the highest severity. A severity level indicates the relative im-

portance of its associated constraint and determines whether the asser-

tion will be checked at runtime. Severity levels can be used to control

the amount of assertion checking that is performed at runtime without

recompiling the program to add or remove checks. For example, the asser-

tions on square root can be given severity levels, as shown in Figure 5.6.

Under level-1 checking at runtime, only the assumption and the second re-

turn constraint would be checked. If one of these assertions were violated

at runtime, it might then be desirable to re-execute the program under

level-2 checking in order to additionally enable checking of the �rst return

constraint and obtain more information about the cause of the assertion

violation. Level-0 checking disables all checking at runtime. Severity lev-

els are useful for implementing the two-dimensional pinpointing method

of debugging [LST91]. The mechanism for controlling the checking level

at runtime is described in Section 5.4.

The macro DEFAULTACTION expands to the default violation ac-

tion, while the macro DEFAULTLEVEL expands to the default severity

level. Both of these macros can be rede�ned to alter the default processing

of App.

5.4 Generating and Running

Self-Checking Programs

App has the same command-line interface as cpp, the standard prepro-

cessor pass of cc, the C compiler. In particular, App accepts the macro

de�nition options {D and {U and the interface or header �le directory

option {I, and it performs all of the macro preprocessing of cpp in addi-

tion to its assertion processing. Hence, to compile an annotated C source

168 Rosenblum

nmake (build tool)

. . .

. . .

cc (C compiler)

APP
cpp

Code
Generator

C Source
Annotated

1

cc (C compiler)

APP
cpp

Code
Generator

C Source
Annotated

n

Self-Checking
C Program

Compiled

ld
(linker)libapp

(runtime library)

Figure 5.7 Generating self-checking C programs with App.

�le, App is simply invoked through cc by using appropriate command-

line options that tell cc to use App as its preprocessor pass; such options

are a standard feature of every C compiler. Furthermore, standard build

tools, such as make [Fel79] and nmake (see Chapter 3), can be used to

build executable self-checking programs, with only slight modi�cations

to existing make�les or build scripts. These processing techniques are il-

lustrated in Figure 5.7, which depicts nmake compiling the n source �les

of some program with App and then linking the resulting object �les

together into a self-checking executable. This method of integrating as-

sertion processing with standard C development tools greatly simpli�es

the generation of self-checking programs and requires almost no change

to one's customary use of UNIX and C programming environments.

As shown in the �gure, self-checking executables must be linked with

a runtime library called libapp. This library provides a variety of runtime

Self-Checking Programs and Program Instrumentation 169

support, including generation of diagnostic output for assertion violations,

generation of function trace messages (Section 5.5), control of assertion

checking according to the desired severity level, and freeing of heap mem-

ory that is allocated as a result of evaluating an assertion expression.

Once a self-checking program has been created, it can be executed,

with checking performed according to the severity level speci�ed in a

�eld of the environment variable APP OPTIONS (or at the default

level if the �eld is unde�ned). Note that a self-checking program can be

treated like any other program in a C programming environment. For

instance, a self-checking program can be run inside a symbolic debugger,

such as dbx. The debugger can be used to set breakpoints at assertions,

single-step through them, trace their execution, and so on, all relative to

the contents and line numbering of the original source �les in which the

assertions were speci�ed.

5.5 Instrumentation for Tracing

Because App is essentially a program-instrumentation tool, it has proven

highly desirable and quite easy to enhance App to perform other, more

traditional kinds of instrumentation that can be implemented indepen-

dently of programmer-supplied assertions. In particular, App was en-

hanced to allow instrumentation of programs for tracing of their function

call activity.

Programs that are instrumented for function tracing generate four

kinds of messages during their execution. Figure 5.8 depicts these four

kinds of messages. As shown in the �gure, both function calls and func-

tion bodies are instrumented for tracing. At the place of a call, a Call (or

C) message is generated immediately prior to the call, while an End-of-

call (or E) message is generated immediately following the call. Within

a function body, an Invocation (or I) message is generated upon entry

to the function body, while a Return (or R) message is generated upon

exit from the function body. Each generated trace message is a single

line of text containing the name of the function; the name of the �le in

which the call or body appears; the number of seconds (to a precision

of 1 microsecond) since execution began; the number of seconds (to a

170 Rosenblum

Function Call Function Body

.

.

.

.

.

.

C message

E message
f(e)

.

.

.

I message

R message

int f(p)
int p;
{

}

Figure 5.8 Function tracing with App.

precision of 10 milliseconds) of CPU and system time; and other useful

information.

Because of the execution complexities introduced by the functions

setjmp and longjmp, the beginnings of calls to setjmp and longjmp are

represented by S and L messages, respectively, rather than by C mes-

sages. Furthermore, each such S and L message contains the address of

the jmp buf involved in order to aid matching of corresponding setjmps

and longjmps during processing of the trace output.

Tracing is carried out in one of three modes:

1. Full tracing produces C, S, L, I, R, and E messages for every call

to every instrumented function call and function body. This kind of

tracing is used to support Xray (see Section 11.4).

2. Body tracing produces all I and R messages for every call to every

instrumented function.

3. Summary tracing produces I messages for the �rst call to every instru-

mented function. This kind of tracing is used to support TestTube

(see Section 11.3).

Generation of the trace and selection of the tracing mode are controlled

Self-Checking Programs and Program Instrumentation 171

Self-Checking
C Source

Annotated
C Source

Macro
Preprocessor

Back EndScanner Parser

State
Maintenance

Symbol
Table

Figure 5.9 The architecture of App.

at runtime by �elds in the environment variable APP OPTIONS that

speci�es where the trace is to be stored; if this option is not present, the

trace will not be generated. The trace can be piped directly to another

application for analysis in real time, or it can be saved in a �le for post-

mortem processing.

Of course, programs that run for a long time and call a large number

of functions can generate enormous traces. While text-processing tools

such as awk and sed can be used to �lter large traces, there still ex-

ists the problem of storing the trace on disk prior to �ltering. To avoid

the problem of storing large traces on disk, it is possible to have libapp

perform the �ltering prior to generation of the trace. This is achieved by

specifying one or more �lter �les in a �eld of the environment variable

APP OPTIONS, each such �le containing a list of functions that are

to be �ltered out of the trace. Whenever a C, S, L, or I message for one

of the �ltered functions is encountered during generation of the trace,

the trace is suspended until after the corresponding E or R message is

encountered.

5.6 The Architecture of APP

Figure 5.9 presents a top-level view of the architecture of App. The

architectural style of App is a unidirectional pipeline of analysis compo-

nents akin to those of typical compilation and source-to-source transfor-

mation systems. The scanner breaks the input stream into tokens, the

parser checks the token sequence for syntactic and semantic validity, and

the back end produces the instrumented output. The macro preprocessor

172 Rosenblum

component is an artifact of the C language and is needed for expansion

of preprocessor directives prior to tokenization. The parser uses a symbol

table and state maintenance component to support its operation.

Three related aspects of App's functionality complicate this seemingly

simple architecture:

1. The need to reorder pieces of the input. Function interface assertions

appear syntactically before their associated function body, yet the run-

time checks generated for function interface assertions must be inserted

at di�erent places within the function body. In addition, in-expressions

appearing in assertions require the generation of temporary variables

for their evaluation, and these temporary variables must be placed at

the beginning of the function body to ensure that the entry values

of these expressions are evaluated before any computation takes place

within the function body. Thus, pieces of input text must be periodi-

cally saved in a number of in-memory bu�ers until it is appropriate to

output them.

2. The need to parse comments.BecauseApp assertions are written within

C comment �elds, it is necessary to trap the processing of comments

by the scanner and force their tokenization at the appropriate place in

the input stream.

3. The need for the parser to communicate with the scanner and macro

preprocessor. It is necessary for App to dynamically alter the behavior

of the scanner and macro preprocessor, depending on the current input

context. For example, C++-style comments must be recognized within

assertion regions but not outside of them.

Figure 5.10 presents an enhanced view of the architecture ofApp, showing

in boldface those additional components and component interactions that

are required because of the complications previously discussed. The output

bu�ers component is used to provide temporary storage for reordering

pieces of the input stream, and two-way communication is supported

between the parser and the scanner.

Four reusable components were available to support the implementa-

tion of App: libpp, s�o, and the hash table and stack facilities of libast .

libpp provides all of the functionality needed by the macro preprocessor

and scanner components, including support for the special handling of

Self-Checking Programs and Program Instrumentation 173

Self-Checking
C Source

Annotated
C Source

Macro
Preprocessor

Scanner Back EndParser

State
Maintenance

Symbol
Table

Output
Buffers

Figure 5.10 Enhanced view of the architecture of App.

comments described earlier. The s�o library provides facilities for the

output bu�ers component. In particular, s�o supports manipulation of

in-memory bu�ers as output streams, which allows App to generate its

output in a uniform manner independently of which piece of the input

stream it is processing. libast 's hash table system is a convenient facility

for implementing the symbol table component of App, providing quick

storage and retrieval of information associated with program symbols, as

well as separation of this information into name spaces as de�ned by the

semantics of C. libast 's stack system provides the necessary functionality

for the state maintenance component, which helps the parser track the

traversal of nested scopes and regions of visibility during parsing. Be-

sides these reusable components, the parser is generated with yacc, using

the same C grammar speci�cation that is used in the parser of Cia (see

Chapter 6).

Figure 5.11 presents a �nal view of the architecture of App, showing

the incorporation of reusable components.

5.7 Contributions to Reuse

The quick development of App was made possible by the availability of

libpp, which provided a complete C preprocessing capability in a form

that was highly suited for development of a language-processing system,

such as App. In return, the experience in developing and using App led

to a number of modi�cations of libpp itself. For instance, it was neces-

174 Rosenblum

(stack + hash)
libast

SFIO

libpp

Self-Checking
C Source

Annotated
C Source

Macro
Preprocessor

Scanner Back EndParser

State
Maintenance

Symbol
Table

Output
Buffers

Figure 5.11 The architecture of App with its reusable components.

sary to split libpp's C++ tokenization option into two separate options,

one for tokenization of C++-style comments (needed by App to allow in-

formal comments within assertion regions) and one for tokenization of

C++ keywords (not needed by App). libpp was also modi�ed to support

compilers that allow only eight characters in identi�er and macro names

(treating all names with the same eight-character pre�x as being equiva-

lent). And it was necessary to enhance libpp's treatment of comments and

input bu�ers in order to fully support App's need to rescan and parse

comments. But the most noticeable change to libpp was in the way it

exports terminal token types.

In attempting to port App to many di�erent computing platforms,

two con
icting situations were frequently encountered. On the one hand,

it became apparent that there was no limit to the creativity of C compiler

writers to invent new, nonstandard keywords to support architectural or

environmental oddities (such as the keywords near and far for declaring

pointers in Intel segmented memory architectures). On the other hand,

the versions of yacc that were used on these platforms to generate App's

parser were typically built with a limit of 127 on the number of di�erent

terminal token types. Because each of the nonstandard keywords that

were encountered on these platforms required a corresponding token type

Self-Checking Programs and Program Instrumentation 175

de�nition in libpp's interface, the prevalent limit on token types in yacc

was quickly reached. The solution to this problem was to group non-

standard keywords into a meta-token type called NOISE (or NOISES for

nonstandard grouping constructs) so that the number of token types ex-

ported by libpp would always be less than 127. Of course, because libpp

also provides the string representation of every token that it scans, appli-

cations that need to distinguish among the di�erent NOISE tokens need

only look at their string representations.

In a way, App can be viewed as providing two architectural ser-

vices, program instrumentation and fault detection, that are inserted into

an application at build-time and controlled at runtime. App's cpp-like

command-line interface was a natural by-product of using libpp, and this

interface makes App a natural mechanism for hooking into the program

build process to support dynamic analysis of programs.

Furthermore, the ease with whichApp could be modi�ed to support in-

strumentation for tracing led to the rapid development of two trace-based

dynamic analysis tools, and to an increased interest in instrumentation

technology within the department. App's ability to provide monitoring of

the runtime workings of a program naturally complemented cia's ability

to discover static relationships within a program. cia had already been

integrated with dag (later dot ; see Section 11.2) to provide static views of

program relationships. What was needed to support graphical display of

dynamic data was the ability to animate graphs, such as those produced

by dag for cia. The arrival of lefty (also described in Chapter 11) and

its integration with dag led to the development of Xray , which required

only small enhancements to App's back end to support instrumentation

for runtime tracing. Xray was quickly followed by the system TestTube

for selective regression testing. Xray and TestTube are discussed in

Chapter 11.

5.8 Conclusion

This chapter has described a tool called App, an assertion-processing

and instrumentation tool for C programs. App was designed for seam-

less integration with C programming environments, allowing it to serve

176 Rosenblum

as a replacement for the standard C preprocessor. The implementation

of App exploits reusable components that provide much of the complex

functionality of a C language front-end, plus other components that sup-

port complex manipulation of I/O bu�ers and other data structures. The

ease with which App �ts into C programming environments has not only

made programming with assertions more practical than before, but it has

also engendered the development of tools that use program instrumenta-

tion to support dynamic analysis of program behavior.

6

Reverse Engineering

Yih-Farn Chen

6.1 Introduction

Chikofsky and Cross [CI90] de�ne reverse engineering as a process of

analyzing a subject system to �nd its components and their interre-

lationships, followed by creating representations of the system in an-

other form or at a higher level of abstraction. This chapter describes

Cia, the C Information Abstraction System [CNR90, Che89] designed

to facilitate this process. Cia partitions a C program into a set of en-

tities, analyzes their dependency relationships according to an entity-

relationship model [Che76], and stores the structure information in a

program database. A set of reverse engineering tools then accesses the

database and the tools build on each other to provide successively higher

levels of C structure abstractions.�

Figure 6.1 shows the reuse architecture of Cia as a dependency graph,

where the Cia tools are shown in oval nodes, the program database and

libraries in boxes, and non-Cia tools in diamonds. Edges between nodes

represent dependency relationships. Reusable components that do not

belong to the Cia proper are shaded.

The evolution of this architecture, where new members are added con-

stantly, is guided by two major forces:

�We use Cia to refer to the C Information Abstraction System, which consists of cia, the C
information abstractor, and related tools.

177

178 Chen

program database

Daytona cql incl

libcia

cia

libastlibpp

Xray TestTube

dotty

ciao

dot

dagger

DayView subsysciafan ciaql

ciadifffocus deadobjciaed

Figure 6.1 The reuse architecture of Cia.

� Minimize the code size so that the code complexity can be managed

realistically.

� Unify tool interaction styles so that users can master and connect new

Cia tools quickly.

Both call for heavy software reuse at library and tool integration levels.

Most Cia tools are built as reusable ksh (Section 4.1) scripts that invoke

or connect other plug-compatible query, graphics, or analysis tools. If per-

formance or algorithm requirement of a tool dictates a C implementation,

then portable C libraries are used wherever possible, to reduce code size.

Cia tools can be partitioned into the following categories:

� Database Construction Tools: cia, the C information abstractor, parses

a C program to produce a database. It uses libast (Section 2.2.2) for

maximal performance and portability, and the tokenizing preproces-

sor in libpp (Section 2.2.9) to integrate the preprocessing and pars-

ing phases in a single process. Section 6.2 describes the Cia program

database model and how Cia databases are constructed and main-

tained with nmake (Section 3.1.1).

Reverse Engineering 179

� Query Tools: Instead of having each Cia tool access the program

database directly, we provide a layer of basic query tools as building

blocks that can be parameterized and reused in many scripts. The Cia

database can be loaded by most well-designed database management

systems. This feature allows us to provide users with two sets of query

tools, each with its own unique merits: ciaql, based on cql [Fow94],

a
at-�le database query interpreter, and DayView, based on Day-

tona [Gre94], a complete database management system. When con-

structing new tools, C programmers �nd cql pleasant to use because of

its C-like database schema and query expressions. Database program-

mers like to take advantage of DayView's powerful query constructs for

SQL-like manipulations. However, ciaql, DayView, and all Cia tools

maintain the same consistent style of user interfaces. Section 6.3 de-

scribes how the Cia query tools can be used to explore program entities

and relationships.

� Program Visualization Tools: dagger [Che94] is a Cia tool that visu-

alizes program structures with directed graphs. It uses Cia query or

analysis tools to retrieve a subset of program relationships, maps the

set to a directed graph, and then passes it to dot for automatic lay-

out. Section 6.4 describes the Cia program visualization process and

its associated tools.

� Program Analysis Tools: The entity-relationship information stored in

the Cia program database enables the construction of several C analy-

sis tools in substantially reduced e�orts. subsys performs reachability

analysis to help package reusable software components and is used by

deadobj to detect unused program entities. incl [VC92] analyzes ref-

erence relationships in the include hierarchy to detect unnecessary in-

clude �les. For optimal performance, incl implements a special graph

construction and search algorithm in C directly. ciadi� computes pro-

gram di�erences at the entity level and allows users to query the results

using cql. Both subsys and ciadi� were used to construct TestTube

(Section 11.3), a system for selective regression testing. Section 6.5

brie
y describes the capabilities of these analysis tools.

The large number of Cia tools, some not shown in Figure 6.1, makes

it di�cult for users to remember what tools are applicable to what pro-

180 Chen

gram entities or relationships. ciao, an open graphical front-end based

on dotty , a customizable graph editor, provides easy access to all the

Cia tools through a mix of table-based and graph-based interfaces. The

consistent Cia user interfaces and data exchange formats make it possi-

ble in ciao to connect Cia tools in orthogonal ways to produce various

textual, relational, and graphical views. Section 6.6 describes the basic

architecture of ciao and uses a sample session to demonstrate its use.

In terms of the four reuse layers described in Chapter 1, the Cia

system uses libraries in the substrate for maximal portability and bet-

ter performance. Cia also uses several base tools: ksh to provide tool

communications and construction, nmake to help construct and main-

tain program databases, cql and Daytona to provide query services, and

dot and dotty to provide visualization services. Cia itself provides many

standalone tools that build on each other and are also reused by other

connected tools, such as Xray (Section 11.4) and TestTube. Section 6.7

reports how the Cia reuse architecture has evolved through the years to

become the picture shown in Figure 6.1.

One reuse experience in Cia that is probably not shared as much by

other tools described in this book is its reuse through a database or reposi-

tory, which encapsulates the entity-relationship information shared by all

Cia applications. Section 6.8 concludes by proposing a new architecture

style, Aero, based on our design and implementation experience of Cia.

Aero is an attempt to generalize the architecture of all repository-based

reverse engineering tools. We hope reuse guidelines for this architecture

style can help signi�cantly reduce the design and implementation e�orts

of all similar systems.

6.2 An Entity-Relationship Model for C

All Cia tools deal with three main concepts: entities, attributes, and rela-

tionships. A C program is partitioned into a collection of C programming

entities referring to each other. Cia recognizes �ve kinds of C entities: �le,

type, function, variable, and macro. Each entity and relationship kind has

its own set of attributes. For example, consider the following C program:

Reverse Engineering 181

/* file ftable.c */

#include "coor.h" /* defines types COOR and struct coor */

#define TBLSIZE 2

extern COOR *rotate();

extern COOR *shift();

typedef COOR *(*PFPC)();

static PFPC ftable[TBLSIZE] = { rotate, shift };

After processing this piece of code, cia records nine entity declarations

in the database:

�le: ftable.c and coor.h

function: rotate and shift

type: PFPC, COOR, and struct coor

variable: ftable
macro: TBLSIZE

Nine relationships between these entities are also recorded by cia. For

example, ftable refers to the macro TBLSIZE, the type PFPC, and two

functions, rotate and shift, which, in turn, refer to the type COOR. In

addition, the attributes (storage class, data type, de�nition/declaration,

and so on) of each entity declaration are recorded. The complete database

for the above piece of code can be easily mapped to a directed graph, as

shown in Figure 6.2, where �les and functions are shown in boxes, types

in diamonds, variables in ellipses, and macros in plain text.

In summary, the job of cia is to selectively map program source text to

an entity-relationship database, complete at its abstraction level, by ig-

noring certain details, such as data and control
ow information involving

only local variables.

COOR struct coor

ftable

PFPC

TBLSIZE

rotate

shift

ftable.c coor.h

Figure 6.2 The complete graph of a small C program.

182 Chen

The use of an entity-relationship database, where language-speci�c

information is encapsulated as much as possible in the database model,

allows Cia tools to achieve a strong degree of language independence. For

example, although the Cia model for C++ [GC90] incorporates additional

relationship kinds, such as inheritance and friendship, program database

tools for both C and C++ share the same style of query interface.

The process of creating a Cia database is similar to the process of

compiling and linking C programs. The main di�erence is that cia creates

a database �le (.A), instead of a .o �le, for each source �le to store the

corresponding entity-relationship information. For example, the following

commands build a simple Cia database peek.db from three C source

�les:

$ cia -c -Iliblist peekf.c

$ cia -c -Iliblist view.c

$ cia -c xmalloc.c

$ cia -o peek peekf.A view.A xmalloc.A

The similarity allows us to create the ciadb rule for nmake by reusing

the C compilation rule with minor adaptations. Projects that already use

nmake can build a Cia database automatically by simply running the

following command without any changes in their Make�les:

$ nmake ciadb

Most query examples and program graphs presented in this chapter

are derived from the Cia program databases of three tools: peek, a simple

tool that retrieves sets of lines in a �le; incl, a tool that detects unneces-

sary include �les; and xgremlin, an X11 version of a graph drawing tool

called gremlin [OTC86]. The last two programs have many users and

have evolved over the years to meet user demands. Some metrics on the

complexity of these three programs are shown in Table 6.1. The numbers

include all the user and system header �les used by these programs, but

they exclude the source �les of libraries used. Both source and database

sizes are measured in the number of bytes.

While we were able to visualize the complete software structure for the

simple piece of code shown earlier, for any real and complex programs,

we must rely on queries to selectively retrieve subsets of the entities and

relationships to study slices of programs. The next section presents the

Reverse Engineering 183

Table 6.1 Complexity Metrics for Program Database Examples

Program Lines Source Size db Size Entities Relationships

peek 749 19,760 6,491 114 122

incl 1,957 49,963 26,416 392 517

xgremlin 24,582 620,726 390,430 4,842 6,634

basic queries used by many Cia tools to build successively more complex

tools.

6.3 Query Tools

The two Cia query systems, ciaql and DayView, share the same style of

user interface. In this section, we shall focus on ciaql, the query system

based on the C-like query language cql [Fow94]. Ciaql consists of two

basic query commands that retrieve relational views:

� cdef retrieves attributes of C entities

� cref retrieves relationships between C entities

These two commands are the major building blocks used by tools in the

following two categories:

� Entity query tools: Each tool in this category uses cdef to retrieve a set

that matches an entity speci�cation, and then applies an operation to

that set.

� Relationship query tools: Each tool in this category uses cref to re-

trieve a relationship set that matches a (parent entity, child entity) set

speci�cation, and then applies an operation to that set.

Typical operations include closure computation, fanin/fanout computa-

tion, graph-drawing, analysis, and other �ltering tasks. The result of an

operation is frequently another set of entities or relationships, possibly

with additional attributes that are application-speci�c. The uniform tool

interface and data exchange paradigm allow Cia tools to be connected

easily with each other and with many standard UNIX tools.

The following two sections describe the two basic queries cdef and

cref and some of their derivatives in more detail. All query examples are

derived from the Cia database for peek, the �rst tool listed in Table 6.1.

184 Chen

6.3.1 Entity Query Tools

A simple entity query retrieves entities that match an entity pattern in the

form of entkind entname, where an entity name is a ksh pattern or a wild

card in the form of \-". An entity pattern can be further characterized

with a set of selection clauses in the form of attr=value.

For example, the following cdef query retrieves all static variable dec-

larations:

$ cdef var - sclass=static

file name sclass dtype def bline eline

================== ============ ====== ============== ======= ===== =====

view.c fp static struct _iobuf def 13 13

view.c srcfile static char * def 14 14

xmalloc.c msg static char [] def 19 19

The entity-based speci�cation of cdef allows users to retrieve program

entities without knowing where they are located. This is especially cru-

cial for large software projects, where thousands of source �les scatter in

complex directory hierarchies.

MostCia tools are designed as reusable components or �lters for build-

ing more complex tools. To facilitate further processing, an unformatted

form of data representation is provided by both entity and relationship

query tools for exchanging data. The following cdef query shows all the

attributes of the function viewline in the unformatted form:

$ cdef -u func viewline

97;viewline;function;0;view.c;void;static;28;29;45;def;3514062;

Writing tools that operate on this standard entity data exchange form

is an easy task. For example, to count the number of static variable de�-

nitions, simply use:

$ cdef -u var - sclass=static def=def | wc -l

3

If we pipe the raw data to a �lter that uses the location information of

each entity to retrieve its corresponding source text, then we get the vdef

command. For example, to view all static variables in view.c, simply use:

$ vdef var - sclass=static

static char *srcfile;

static FILE *fp;

static char msg[] = "storage allocator out of space";

Reverse Engineering 185

The same information can be used to build ciaed, an entity editor. The

following ksh script shows its simple implementation, where an editor is

invoked to place its cursor on the de�nition of any speci�ed C entity:

Usage: ciaed entkind entname

EDITOR=${EDITOR-emacs}

set $(cdef -u "$@" def=def | cut -d';' -f5,8 | sed -e 's/;/ /')

$1 now set to file and $2 set to bline

$EDITOR +$2 $1

For example, a user can edit the function de�nition of viewlines by

simply invoking:

$ ciaed func viewlines

All entity tools in Cia, including cdef, vdef, ciaed, ciafan, subsys, dead-

obj, focus, and so on, share the same basic interface style to retrieve entity

sets, thus greatly reducing the user's learning and the author's implemen-

tation e�orts.

6.3.2 Relationship Query Tools

cref is the fundamental relationship query tool for examining program

relationships. It takes a relationship pattern, which is the concatenation

of two entity patterns that represent the parent and child of a speci�ed re-

lationship. Once a user becomes familiar with entity queries, relationship

queries come naturally.

For example, the following query �nds all functions that start with

view and refer to static variables (the letter p stands for a C procedure,

that is, function):

$ cref func 'view*' var - sclass2=static

k1 file1 name1 k2 file2 name2

== ================= ================ == ================= ===============

p view.c viewlines v view.c fp

p view.c viewlines v view.c srcfile

p view.c viewline v view.c fp

p view.c viewline v view.c srcfile

As with cdef, some interesting new C tools can be created by using the

data exchange form of cref, which is the concatenation of the cdef data

exchange records of the parent and child with associated attributes of the

186 Chen

speci�ed relationship. The Cia visualization tool, dagger (Section 6.4),

is one example that processes the cref data exchange form further to

generate directed graphs.

As a simpler example, we can construct a pipeline to compute the

�le-fanout of view.c; that is, the number of �les that it includes:

$ cref -u file view.c file - | wc -l

4

ciafan is a more general Cia tool for computing various fanins and

fanouts for a set of speci�ed entities. The tool is interesting because it

�rst uses cdef to retrieve a set of entities, and then uses cref to compute

their fanins and fanouts. For example, we can use ciafan to obtain the

complete set of fanin and fanout numbers for the function de�nition of

viewlines:

$ ciafan func viewlines def=def

file name ifu ofu oma ity oty iva ova ifi ofi itot otot

============== =========== === === === === === === === === === ==== ====

view.c viewlines 1 8 1 0 1 0 2 0 0 1 12

Here, ifu stands for the number of functions that refer to viewlines

(fanin functions), ofu stands for the number of functions that viewlines

refers to (fanout functions), and so on. ciafan also shows the total fanin

(itot) and fanout (otot) numbers. The total fanin is the sum of ifu, ity,

iva, and i�. The total fanout is the sum of ofu, oma, oty, ova, and o�.

cref is also ideal for performing module-dependency analysis. In the

following discussion, we de�ne a module as a logical program unit that

imports and exports some entity de�nitions. In the case of C programs, a

module can consist of a single �le or a set of �les (such as all �les that make

up a library). By simply setting the two �le attributes to patterns that

correspond to the modules of interest, we can use cref to study various

module dependencies. For example, we can �nd out how dependent the

functions in module peekf.c are on external entities by �rst counting all

references from functions de�ned in peekf.c to any entity not de�ned in

that �le. The following query shows that there is a total of 30 external

references originating from functions in peekf.c; three of the references

go to external variables:

Reverse Engineering 187

$ cref -u func - - - file1=peekf.c file2!=peekf.c | wc -l

30

$ cref -u func - var - file1=peekf.c file2!=peekf.c | wc -l

3

As we can see from the fanin/fanout and module-dependency compu-

tations, it is frequently easy to use cref to write software metrics tools

that deal with entity dependencies. For example, the reuse numbers in

column 3 of Table 1.1 were generated with a set of scripts that use cref

and subsys (see Section 6.5.1) to calculate the numbers of entities and

source lines in each library reused by a tool.

Similar to the correspondence between vdef and cdef, vref displays

text of selected references that correspond to the same cref query. For

example, we can retrieve the text of all references in peekf.c to list-

handling functions:

$ vref -n func - func '*_list' file1=peekf.c

000103; insert_list(pairs_list, (VOID *)p);

000111; insert_list(pairs_list, (VOID *)p);

000115; } else insert_list(pairs_list, (VOID *)p);

000095; pairs_list=init_list();

Examples presented in this section attempt to demonstrate that the

power of cdef and cref lies in their simple and
exible query patterns.

The set of possible queries that can be created by mixing di�erent kinds,

symbol patterns, and selection clauses on di�erent attributes, coupled

with di�erent �lters that can be applied to the retrieved sets, represents

a large tool space that most other existing C tools cannot �ll. The next

section presents examples on how a visualization tool, which is also built

on top of cref, was used e�ectively to map programs to graphs.

6.4 Program Visualization Tools

Roman and Cox de�ne program visualization as a process of mapping

programs to graphical representations and give a comprehensive survey

on its various forms [RC92]. This section presents a program visualization

approach that focuses on automatically generating abstractions of the

static code structure. The visualization process consists of a sequence of

selective mappings. First, a parser analyzes the source of a program and

188 Chen

program abstractor
program
database

query

operator

subset mapper graph

layout
tool

graph
browser

Figure 6.3 The process of generating program graphs.

C
source

cia
C program
database

cref

subsys

subset dagger graph

dot

dotty

Figure 6.4 An instantiation of the graph generation process for C.

maps it to a program database, according to an entity-relationship model.

Next, a query or operator retrieves a subset of the database, which is then

mapped to a directed graph. Finally, the graph speci�cation is passed to

layout tools or interactive graph browsers. The complete graph generation

process is diagramed in Figure 6.3.

This process is largely language-independent because of its focus on

entities and relationships. Our instantiation of this process for C includes

cia as the abstractor, cref as the query tool, subsys and other analysis

tools (see Section 6.5) as the operators, the C version of dagger for map-

ping the subset to a directed graph, dot to layout the graph automatically,

and dotty for browsing the graphs (see Section 11.2). By changing a set of

mapping functions, dagger can easily adapt to di�erent entity-relationship

databases and automatic layout tools. Figure 6.4 shows an instantiation

of the graph generation process for C.

dagger generates a large variety of C and C++ program graphs, in-

cluding header �le hierarchy, entity dependency, module binding, type

inheritance, and focus graphs (Section 6.5.1). By default, dagger invokes

the cref tool to obtain a subset of relationships. For example, Figure 6.5

shows the type dependency graph of a C program generated by dagger

and drawn by dot with the following simple command pipeline:

$ dagger type - type - | dot -Tps

Reverse Engineering 189

struct _sfio_

Ciaenv_t struct _ciaenv_

struct _ciaref_

Sfwrite_f

Ciaobj_t struct _ciaobj_

Sfile_t

struct _sfdc_

Sfseek_f

Sfdisc_t

Sfread_f

Sfexcept_f

struct _n_

struct _e_

Node_t

struct _ciafile_

struct _s_

Ciastream_t struct _ciastream_ Sfio_t

Ciafile_t

SFIO

Ciaref_t

Edge_t

Ciarec_t struct _ciarec_

struct _t_Tree_t

Symbol_t

Figure 6.5 A type dependency graph generated by dagger and drawn by

dot.

190 Chen

dbeprint

Node_t Edge_t

levprintexprint subsysprintqexprint dotprintstprintdbvprint

Figure 6.6 All printing functions depend on Node t, Edge t, or both.

The picture reveals several cyclic dependencies and the relative struc-

tural complexity of Ciarec t and Symbol t.

dagger inherits the complete query power of cref. For example, the

following command retrieves a subset of function-to-type relationships

and maps them to the graph shown in Figure 6.6:

$ dagger -R func '*print' type - | dot -Tps

The diagram shows the connections between functions whose names

end with print, and the types they refer to. The picture reveals an inter-

esting structural fact that is not as obvious in the corresponding relational

view: All functions that depend on Edge t also depend on Node t, but

not the other way round. We later con�rmed that this structural fact is

preserved across many programs that use the same pair of data types.

As an example for C++ program graphs, Figure 6.7 shows a typical

type inheritance graph generated from a C++ program database using the

same process. The graph is also generated by dagger, with the language

set to C++ and with the relationship kind to inheritance (rkind=i). Note

that virtual inheritance relationships are properly labeled.

$ export CIALANG=CC

$ dagger type - type - rkind=i | dot -Tps

As an example of more complex graphs, Figure 6.8 shows the include

hierarchies in xgremlin that are generated by the following command:

$ dagger -F file - file '!(icons/*)' | dot -Tps

The diagram has been simpli�ed by using a negation operator in the

child name pattern to ignore all include relationships involving header

�les stored in the icons subdirectory. Unfortunately, the picture is still

Reverse Engineering 191

ostream

ios

istreamiostream

istream_withassign

ostream_withassign

iostream_withassign

stdiostream

fstreambase

ifstream

ofstream

fstream

v

v

v

Figure 6.7 A C++ type inheritance graph.

too di�cult to read on a single page. What the user frequently wants

is a single include hierarchy rooted at a particular source �le, with all

other include relationships ignored. We shall see how this problem can be

resolved in the next section.

While the labels in Figure 6.8 are hard to read, the function reference

graph in Figure 6.9, generated by the following command, seems to be

beyond comprehension:

$ dagger -F func - func - | dot -Tps

The diagram does show some interesting facts, though. The �rst obser-

vation is that a few functions have very large fanins. Identi�cation of and

further studies on these functions can be performed with the Cia tool

ciafan (see Section 6.3.2). Another observation is that many functions do

not seem to be on any of the reference paths from main (the root function

at the lower left corner). There are two possibilities:

� These are dead functions that never get exercised. The Cia tool deadobj

does detect 11 dead functions in xgremlin.

� These are functions indirectly invoked through variables. In this case,

both function-to-function and variable-to-function relationships must

be drawn to complete the static dependency picture. Xgremlin indeed

has many functions de�ned in a variable array for menu selections.

Section 11.4 discusses how dynamic function reference relationships

192 Chen

UINC/sys/types.h UINC/sys/sysmacros.h

UINC/sys/stdtypes.h

gremlin.h

UINC/stdio.h

X11/Xlib.h

UINC/math.h

UINC/stddef.h

db.c

UINC/ctype.h

X11/Xfuncproto.h

X11/Xosdefs.h

X11/X.h

UINC/floatingpoint.h UINC/sys/ieeefp.h

icondata.h

graphics.c vfont.h

graphics2.c

spline.c

pix.c

icondata.c

UINC/sys/fcntlcom.h

UINC/sys/stat.h

UINC/sys/file.h

sun.c

sx.h

menu.c

UINC/errno.h

menu.h

UINC/sys/errno.h

UINC/strings.h

X11/Xutil.h

point.c

undodb.c

long1.c

long2.c

short.c

help.c

help1.c

display.c

UINC/sys/param.h UINC/machine/param.h

UINC/sys/signal.h

path.c
UINC/pwd.h

UINC/vm/faultcode.h

UINC/sys/ttold.h

UINC/sys/ioccom.h

UINC/sys/ttycom.h

text.c

UINC/sgtty.h

UINC/sys/ioctl.h

UINC/sys/filio.h

UINC/sys/ttychars.h

UINC/sys/sockio.h

UINC/sys/ttydev.h

startup.c

main.c

UINC/signal.h

UINC/sys/time.h

UINC/time.h

feedback.c

inter.c

xmenu.c

sxInt.h

Figure 6.8 The simpli�ed include graph of xgremlin.

Reverse Engineering 193

DBCopy

DBCreateElt

PTMakePoint

malloc

strcpy

strlen

UNRembAdd

DBRead
DBGetType

GRSetTextPos

PTMakeTextPoints

POpen

TxPutMsg

error

PTModifyTextPoints

fgets

fscanf

strcmp

fclose

sprintf

sscanf

atoi

DBGravitate

DBInCset

GRPutText

GROpenFont

GRGetCharYSize

GRfontfound

XTextWidth

XChangeGC

XDrawString

perror

XLoadQueryFont

GRSetCurve

Paramaterize

PeriodicSpline

NaturalEndSpline

sqrt

GRFontStrlen

GRStippleInit

GRCopyStipple

GRReadFontFile

BitSwap

free

XSetFunct

XCopyArea

XCreateBitmapFromData

GRCurrentSetOff

GRCurrentSet

GRDisplayJustify

XCopyPlane

GRErasePoint

GRDisplayPoint

GRBlankGrid

GRDisplayGrid

WindowReplOp

GRFontInit

GRArc

GRSetLineStyle

GRVector

log10

pow

max

cos

ceil

floor

sin

GRCurrentSetOn

close

lseek

open

read

GRCurve

GRBlankPoints

pointRoundEnd

XDrawLine

XDrawPo

GRBSpline

UniformCubicBSpline

GRBezier

BezierCubics

menu_left

MNReverseJustify

MNReverse

select_inter

menu_scale

align_up

menu_misc

menu_filer

TxMsgOK

align_down

menu_align

MNSHCommand

MNSHLookup

SHScaleXY

DISClearSetDisplay

SHUpdate

DISHide

SHAgain

DBClearSet

DISIcon

DISOnTop

menu_middle

menu_chstipple

LGMJustify

menu_winexit

mouse_move

MNFindMenuItem

just_index

MNUnShift

MNUnHighLt

MNHighLt

menu_right

menusw_help

justify_help

SHScaleX

SHScaleY

Menu_PullMenuDown

MNDisplayMenu

XDrawRectangle

LGClearPoints

LGShowPoints

LGOPoint

LGGripe

LGWrite

LGSave

LGChDir

LGEdit

LGRead

LGQuit

LGPath

menu_inter

CP

pixsw_help

SHErase

SHGravity

MNShift

LGFont2

LGFont

LGdopan

LGMText

CSP

DISScreenErase

DISScreenAdd

TxKillLine

DBChangeText

UNForget

text_getvalue

LGPan

LGMPoint

MakeArcPoints

UNRembMod

GRClear

PTDeletePoint

PTListLength

DBAddSet

LGChangeStippleMap1

LGChangeStippleMap

DBChangeJustify

LGMSize1

LGMSize

DBChangeSize

LGSize1

LGSize

LGBrush2

LGBrush

LGSize4

LGMBrush6

LGMBrush

DBChangeBrush

fasterase

LGFont1

LGMStipple

DBChangeStipple

LGMBrush4

LGTextDisplay

LGMBrush5

LGMSize2

LGMSize3

LGMStipple6

LGMFont1

LGMFont

DBChangeFont

LGMSize4

LGBrush1

LGSize2

LGBrush3

LGLittlePoint

LGMStipple7

LGStipple7

LGStipple

LGBrush4

LGMStipple8

GetNumParm

LGPoint

LGDrift

LGStipple2

LGBrush5

LGMStipple3

LGChangeStippleMap6

LGStipple3

LGBrush6

LGMStipple4

LGMFont2

LGChangeStippleMap2

LGFont3

LGMPan

LGChangeStippleMap7

LGStipple4

fabs

LGStipple8

LGMStipple1

LGMFont3

LGChangeStippleMap3

LGFont4

LGStipple5

LGTextSW

LGMBrush2

LGStipple6

LGMBrush3

LGMFont4

LGText

LGMBrush1

LGChangeStippleMap5

LGSize3

LGStipple1

LGMStipple2

LGChangeStippleMap4

LGMStipple5

LGChangeStippleMap8

LGVMirror

mirror

DBXform

LGUndo

restorepoints

DBDelete

LGWriteSet

PConvertTilde

prompt_ok

fopen

fprintf

LGGet3

LGGet

LGGet1

LGGet2

LGGet4

LGMPolygon

LGModifyPolygon

DBChangeTypeStipple

DBChangeTypeBrushStipple

LGHMirror

LGMBPolygon

LGBPolygon

LGDrawPolygon
LGPolygon

SHSetArea

SHMSetArea

DBBounded

SHSave2

savemen

DBClearElt

SHScale

SHDrawArc

atan2

SHSave3

SHSave4

SHSave1

help

help_screen

clear_scratch

help_message

XFillRectangle

XSetForeground

get_any_button

textsw_help

short_help

rect_bounding

GRStippleFill

GRSetStippleStyle

GRSetBSpline

GRSetBezier

PSetPath

strncpy

getpwuid

getpwnam

getuid

strncmp

PChDir

chdir

text_putvalue

text_cursor

text_right

TxClearMsg

text_left text_restorecset

text_middle

text_restorebuf

text_output

text_clear

ST2

STerror

STgetnum

STflashoff

STcurve

STtolower

STlookup

STstipplenum

ST3

STbrush

STjustify

tolower

STstartup

STcommand

STfont

STsize

STstipple4

ST1

STgrid

STgravity

STflashon

STstipple7

STlittlepoint

STstipple1

ST4

STstipple5

STalign

SThadjust

STmadjust

STstipple

STstipple3

STsymboliclines

STstipple2

STstipple8

STvadjust

STgremlinrc

fstat

getenv

init_pix

pix_selected

pix_sighandler

printf

XCreatePixmap

exit

XDefineCursor

XCreatePixmapCursor

Sx_HandlerCreate

XFreePixmap

Sx_FocusEnabled

XLookupString

XSetInputFocus

XGetWindowAttributes

main

SetErrorHandler

init_text

init_menu

main_init

XNextEvent

select

XGetGeometry

XCreateGC

XSynchronize

XPending

fflush

XCreateSimpleWindow

Sx_CreatePacked

ICCreate

XSetStandardProperties

XOpenDisplay

Sx_DefaultHeight

XParseGeometry

XSetPlaneMask

XMapWindow

Sx_HandleEvent

ErrorHandler

text_selected

text_sighandler

text_winexit

Sx_SelectionGet

menu_selected

menu_sighandler

make_arrowhead

MNInitMenu

strcat

Sx_TitleMake

TxInit

signal

nop

abort

FBCircle

FBDisplay

FBErase

FBDefine

FBBox

FBDLine

FBAdd

FBChange

INPolyLeft

Button_Interval

INDefineLeft

LGIncludeSet

SHDefineSet

INVectLeft

SHDrawCurve

SHDrawVector

Menu_Create

MenuInit

MenuEventProc

ComputeMenuLayout

Sx_GetDefaultFont

XCreateWindow

MenuEntryDisplay

XUngrabPointer

SxDrawShadow

XUnmapWindow

SxFlashWait

XFlush

XMoveWindow

XGrabPointer

Sx_Panic

XMapRaised

XResizeWindow

UNRembDelete

DBChangeType

XFillPolygon

XSetFillStyle

pix_middle

LGDeletePoint

pix_left

pix_winexit

pix_right

Sx_Notify

PGetDir

PGetPath

LGLineStyle

LGMCurve

LGMVector

LGVAdjust

getwd

LGHAdjust

SHBox

SHArrow

SHCopy

SHTranslate

SHRotate

SHGrid

SHMAdjust

get3_help

vertical_help

stipple6_help

put4_help

boxinc_help

include_help

get1_help

bold_help

stipple5_help

arrow_help

movepoint_help

stipple7_help

grid_help

size3_help

brush2_help

brush4_help

text_help

polygon_help

stipple3_help

bpolygon_help

brush6_help

size1_help

littlepoint_help

put3_help

hmirror_help

get4_help

linestyle_help

curve_help

copy_help

put1_help

vector_help

vmirror_help

filecabinet_help

erase_help

special_help

move_help

stipple2_help

roman_help

box_help

brush3_help

get2_help

gravity_help

scale_help

undo_help

size4_help

pan_help

size2_help

align_help

brush1_help

stipple4_help

arc_help

stipple1_help

put2_help

italics_help

stipple8_help

horizontal_help

rotate_help

misc_help

manhattan_help

brush5_help

ioctl

STS

STR

STI

STB

STpath

INCopyLeft

INTransCenter

INVectCenter

INArrowLeft

INTransMove

INBoxLeft

INVectMove

INMovePtLeft

INUndo

INExit

INArcLeft

INTransLeft

INCopyMove

INPolyCenter

INArcMove

INMovePtMove

INPolyMove

INBoxMove

Figure 6.9 The complex function reference graph of xgremlin.

194 Chen

can be captured during program execution to supplement the static

ones.

A brute-force way to solve the graph complexity problem is to blow up

the diagram. Magnifying complex graphs, however, is usually not satis-

factory because the number of edge crossings increases substantially and

they become a major distraction. In the next section, we show how a

closure operator can work in tandem with dagger to help manage graph

complexity.

6.5 Analysis Tools

This section discusses three program analysis tools that provide good ab-

stractions encapsulated in operators: subsys performs reachability analy-

sis, incl detects unnecessary include �les, and ciadi� compares programs

at the entity level. These operators provide reusable components that

other Cia tools can build on in addition to the basic query operators.

6.5.1 subsys: A Tool for Reachability Analysis

Typical software maintenance tasks might require:

� Finding all program entities that an entity depends on directly or indi-

rectly. This information is particularly useful for partitioning complex

program graphs and for packaging software components for reuse in

other projects.

� Finding all program entities that might be a�ected by the change of

an entity.

� Displaying a focus graph that shows a few layers of relationships cen-

tered around a particular node.

The Cia closure operator subsys is designed to answer these questions

by computing all entities and relationships reachable from selected en-

tities. The reachability computation can be done in either the forward

or backward direction. For example, the following command retrieves all

data types that Symbol t depends on directly or indirectly:

Reverse Engineering 195

graphics.c

icondata.h

UINC/sys/types.h

gremlin.h

UINC/math.h

vfont.h

X11/Xlib.h

X11/Xosdefs.h

X11/X.h

X11/Xfuncproto.h

UINC/stddef.h

UINC/sys/stdtypes.h

UINC/sys/sysmacros.h

UINC/stdio.h

UINC/floatingpoint.h UINC/sys/ieeefp.h

Figure 6.10 The include hierarchy rooted at graphics.c.

$ subsys t Symbol_t

file kind name

========================= ===== =================

incl.h type Symbol_t

incl.h type struct _s_

incl.h type Node_t

incl.h type struct _n_

incl.h type struct _e_

subsys can also retrieve the reachable relationship set (rather than the

reachable entity set) and present the set to dagger to generate reachability

graphs. The include hierarchy of graphics.c, shown in Figure 6.10, can

be extracted by the following command pipeline:

$ subsys -u -e file graphics.c | dagger -i | dot -Tps

In the previous example, only �le-to-�le relationships are traced. How-

ever, it is frequently necessary to compute a complete reachable set, where

all kinds of relationships are considered. For example, subsys can gener-

ate a complete subsystem rooted at the function mustuse of incl, shown

in Figure 6.11. If the function mustuse is to be reused in a di�erent

software project, then all the entities present in this reachable set must

also be available in that project to avoid missing references during the

compilation of mustuse.

The set of graphs generated by dagger can be further extended by

mixing an interesting collection of standard cref data exchange records

and presenting the resulting set to dagger.

196 Chen

mustuse

define

Node_t
reg

Edge_t

N_DEF

N_MUSTUSE

E_INCLUDE

N_SHORTEST

INSERT

markref

DELETE

stcomponent

NULL

NIL

nodelist

Nodelist

refweight

Node

DEQUEUE

N_PATH

tree_list

ENQUEUE

N_DEFSEARCH

struct _n_ struct _e_

E_REFER

N_STRONG

Tree_t struct _t_

Figure 6.11 A complete subsystem graph rooted at the function mustuse.

(Functions are shown in boxes, types in diamonds, variables in ellipses, and

macros in plain text.)

Reverse Engineering 197

mkgraph mksymbol

reg

Node

Node_t

Symbol_t

newSymbol

process

Tree_t

Figure 6.12 A �ve-layer focus graph centered at the function mksymbol.

The following simple shell script concatenates the output of two subsys

commands and generates a focus graph with the speci�ed entity at the

center. The �rst subsys command traverses the graph starting from the

root in a forward direction, and the other one traverses backward.

a simple version of focus

(subsys -u -e "$@"; subsys -u -e -r "$@") | dagger -i | dot -Tps

In general, focus can go as many levels deep as the user desires. Fig-

ure 6.12 shows a focus graph centered at the function mksymbol. The

graph traversals were limited to only two levels deep in each direction.

Even the reachable set of a selected entity may be so complex that fur-

ther simpli�cations are necessary. One common technique is to recursively

partition a reachable set into trackable pieces. During the generation of

a subsystem, we can stop the graph traversal at certain selected nodes,

ignore their subhierarchies, and later expand these nodes as necessary.

For example, Figure 6.13 shows the subsystem of the xgremlin function

GRArc by ignoring the relationship hierarchy rooted at GRVector.

As soon as subsys became available, a Cia user took advantage of it to

implement a script that detects dead functions. The basic idea is simple:

Use subsys to �nd out all functions reachable (including those through

variable initializations) from main, and then compare that list with the

list of functions stored in the database; the di�erence is the set of dead

198 Chen

GRArc

log10

pow

max

cos

ceil

GRVector

sqrt

floor

sin

twopi

POINT

GRSetLineStyle

log2_10

struct point

DOTTED

linestyle

linethickness

linemod

SOLID

DOTDASHED

DASHED

Figure 6.13 A partial subsystem graph rooted at the xgremlin function

GRArc.

Reverse Engineering 199

functions. The script has evolved to become deadobj, which takes general

entity patterns to narrow down the focus. For example, we can restrict

the detection of dead entities to only those macros that end with either

ERR or err:

$ deadobj m '*ERR|*err'

/usr/include/stdio.h macro _IOERR

/usr/include/stdio.h macro clearerr

6.5.2 incl : A Tool to Analyze Include Files

incl is a tool that analyzes C include hierarchies to:

� Detect unnecessary include �les

� Show the include and reference relationships among include �les in

graphical or textual forms

� Provide mechanisms to remove or skip unnecessary include �les

By default, incl lists unnecessary header �les included directly or indi-

rectly by a source �le. The following command shows that six header �les

under the include hierarchy of opendb.c were detected to be unnecessary:

$ incl -l opendb.c

opendb.c

/usr/include/stdio.h

/usr/include/ctype.h~

hdr/db.h+

hdr/dir.h+

/usr/include/sys/stat.h~

/usr/include/sys/types.h~

/usr/include/sys/stdtypes.h~

/usr/include/sys/sysmacros.h~

hdr/cdb.h~

hdr/error.h

incl classi�es �les into three categories and tags them di�erently in the

output:

� used: The ones that are necessary for the compilation of the source �le.

These �les are not tagged.

� unused: The ones that do not have any declarations that are referred

to, directly or indirectly, by the source �le. These �les are tagged with

the \~" character; for example, /usr/include/ctype.h in the previous

example.

200 Chen

opendb.c

hdr/error.h

UINC/stdio.h

hdr/db.h

UINC/ctype.h

hdr/dir.h

hdr/cdb.h

UINC/sys/stat.h

UINC/sys/stdtypes.h

UINC/sys/types.h
UINC/sys/sysmacros.h

Figure 6.14 A graphical view of the include hierarchy of opendb.c with

analysis results.

� onpath: The ones that are necessary simply because they are on one of

the paths to the used ones. Those �les referred to directly or indirectly

by onpath �les are also marked as onpath. All these �les are tagged

with the \+" character; for example, hdr/db.h.

We can also create a graphical view of the incl analysis result The

following drawing conventions are used in drawing the graph: used �les

are drawn in boxes, onpath �les are in diamonds, and unused �les are in

ovals. A dotted edge means that the tail �le directly includes the head

�le but does not refer to any declarations in the head �le; a dashed edge

indicates that the tail �le does not directly includes the head �le but

contains references to the head �le; �nally, a solid edge indicates that the

tail �le both directly includes and makes use of declarations in the head

�le.

There are two ways to deal with unnecessary include �les:

� Delete them: This is usually feasible with the �rst-level include state-

ments only because nested include �les may be shared with other source

�les. We can easily generate an ed script to remove the �rst-level include

statements.

� Skip them: This is achieved by using nmake's cpp to read incl results

and skip those during the C preprocessing and compilation stages.

We have seen signi�cant compilation-time reductions in many software

projects, by simply skipping unused �les detected by incl. Usually between

10 and 35 percent of includes �les are unused. More importantly, the incl

Reverse Engineering 201

analysis helps programmers to understand and clean up their include

architecture.

6.5.3 ciadi� : A Tool for Program Di�erencing

Traditional text-di�erencing tools are not satisfactory for studying

changes in program structures because they present inadequate abstrac-

tions. Attempts have been made to do �ne-granularity syntactic program

di�erencing based on parse-tree comparisons with only a limited degree

of success [Yan91]. We have implemented e�cient program di�erencing

tools for C by comparing program databases of corresponding versions to

detect changed, deleted, and added program entities. A C++ version has

been implemented with various enhancements [Gra92].

As an example, the following query �nds all macro di�erences in the

�le trans.c between versions v1 and v2 of the same program:

$ export CIAOLDDIR=v1

$ export CIANEWDIR=v2

$ ciadiff macro - file=trans.c

tag kind file name chksum

======= ======== ================ ================ ========

deleted macro trans.c DELTA 5e291185

changed macro trans.c FNUM 8185185

added macro trans.c UNIT 38e6811a

Both ciadi� and subsys have been used successfully to implement

TestTube (described in Section 11.3), a system for selective regression

testing. Our experience withTestTube on several projects has suggested

that it has the potential to reduce the set of test cases that need to be

rerun for typical maintenance changes [CRV94].

Following a similar derivation path from cdef to vdef, we can show the

textual di�erences between two versions of a program entity using vdi�,

which is built on top of the Cia vdef command and the standard UNIX

di� command. It compares the text of selected entities:

$ vdiff type 'struct coor'

2,3c2

< int refpoint[DIM];

< int curpoint[DIM];

> int point[DIM];

202 Chen

Figure 6.15 A snapshot of ciao.

vdi� is interesting and useful because it allows a programmer to com-

pare two versions of an entity without specifying their corresponding

source �les and line numbers. Such information is usually not readily

available to the programmer.

6.6 ciao: A Graphical Navigator for C

and C++

ciao [KN94] is a graphical front-end to Cia tools described in previous

sections. Built on top of dotty (Section 11.2), a customizable graph edi-

tor, ciao connects Cia query and analysis tools in UNIX pipes elegantly

through a mix of graph-based and table-based interfaces. Programmers

can use ciao to selectively generate a sequence of graphical, relational, or

textual views to explore the structure and contents of a program.

Figure 6.15 shows the snapshot of a ciao session. Users interact with

ciao through either a query table or a graph. The query table shown in

Reverse Engineering 203

the right of the snapshot helps the user to formulate entity or relationship

queries without memorizing the database schema. Each formulated query

retrieves a set of entities or relationships. The user then decides what op-

erator to apply to that set to produce a desired view. The separation of

query formulation and data representation allows users to generate mul-

tiple views on the same slice of code by using a single query followed by

di�erent �lters. As an example, the query table in the snapshot formu-

lates the following query: Retrieve all function declarations of Eunit not

de�ned in a system header �le under /usr. Several views were generated

from this query: The text view window in the left of the snapshot shows

both the scrollable source text and formulated database records of Eunit.

In addition, a graphical view showing all the interactions with Eunit was

created �rst with the focus operator, which collects all relationships cen-

tered at Eunit, followed by applying the dagger operator, which maps

that set of relationships to a directed graph using the automatic layout

tool dot. This focus graph identi�es all the functions that refer to Eunit

and all entities that Eunit depends on. Focus graphs are used heavily

during the navigation of a program's static structure, because they pro-

vide quick access to entities related to a focal point. In the ciao graphs,

functions and �les are mapped to boxes, types to diamonds, variables to

ovals, and macros to plain text{all in di�erent colors|to help distinguish

between di�erent kinds of entities in the same graph.

After a directed graph is created, each node in the graph becomes an

interactive point with ciao. A pop-up menu is attached to each node,

listing only the legal operators that can be applied to the corresponding

entity. For example, the incl operator can be applied only to �le nodes,

while the cref operator, which shows references to and from a particular

entity, can be applied to any entity. Operators may generate more graphs

for further interactions. For example, the graph window on the left of

the snapshot with the caption \cref function - function GFXevent" was

created by applying a reverse cref operator to the GFXevent node in the

focus graph, followed by an application of the dagger operator.

Because many graphs can be generated easily from ciao and the user

may lose control over what has been generated, a navigation graph un-

der the query table shows the derivation of all the open graph views.

204 Chen

Menus attached to the nodes in this graph allow the user to bring the

corresponding graphs to the foreground or kill them directly.

Graphical programming environments, such as ObjectCenter [MM93],

SMARTsystem [Par91], and Energize [Wol93], have become more avail-

able recently. However, unlike ciao, they usually lack the abstraction and

query power needed to selectively visualize facets of complex structures in

large software projects. Moreover, ciao inherits the ever-increasing graph

drawing capabilities of dot, and enjoys the extensible and customizable in-

terface provided through dotty . New Cia tools can be easily incorporated

by modifying the interface description �le. As the requisite technologies

mature, we expect programmers to rely more heavily in the future on

graphical programming environments, such as ciao, to explore and im-

prove their software structures.

6.7 Reuse Experience

This section summarizes our years of reuse experience with the design

and implementation of Cia tools. We shall focus on the following areas: C

dialects, database and query systems, reachability analysis, and program

visualization.

� C Dialects: The initial implementation of cia faced two major problems:

How to handle C programs written in di�erent C dialects, including

variants of C preprocessors

How to integrate preprocessing, tokenization, and parsing all in a

single process so that references to macros do not get lost after C

preprocessing

The �rst problem was originally solved by inserting undesirable #ifdef

statements, and the second by an awkward modi�cation of Reiser's C

preprocessor followed by postprocessing the cpp output. The result-

ing tool was fragile and inaccurate in many cases. The problems were

later solved by using the tokenizing preprocessor library libpp (see Sec-

tion 2.2.9), which was developed to solve similar problems in dealing

with various dialects of C and cpp on many platforms. Cia's adoption

Reverse Engineering 205

of libpp has also helped enlarge the library's existing user base and

made some contribution to its robustness and generalization.

For example, when we �rst used incl to detect unnecessary include �les

in several large software projects, we realized that those �les had to be

skipped (see Section 6.5.2) rather than removed, because they may be

used by other source �les. The natural place to perform the skipping is

during C preprocessing. Instead of making the preprocessing library

handle just the incl output, a general �le-ignore operation was imple-

mented in libpp, since it is likely to be used in other applications.

� Database and Query Systems:

Initially, Cia used a simple version of InfoView [CNR90] that the au-

thor wrote exclusively for Cia use. When Cia had to start dealing

with large program databases for a project that includes nearly a mil-

lion lines of code, Charles Hayden, a developer in that project, rewrote

InfoView to use a B-tree library to get better performance. However,

when we started building a version of Cia for C++ programs, instead of

making major revisions to InfoView, we decided to switch to general-

purpose database languages and systems, such as cql and Daytona, so

that both C and C++ program databases can be supported.

While both cql and Daytona have served the purpose of implementing

severalCia query and analysis tools, we also found out that C program-

mers who are not familiar with database terminologies prefer writing

shell scripts rather than detailed database queries. To encourage new

tool construction, we had to provide parameterized query commands so

that programmers can combine these query tools easily with other ex-

isting tools in shell scripts to build successively more complex tools. To

make this approach practical, basic queries that serve as fundamental

building blocks must run e�ciently. The current Cia query tools and

their underlying systems have gone through extensive optimizations to

achieve a level of performance that is practical for daily use in software

projects that involve millions of lines of code.

As an example, for a typical project that includes 6,228 �les and

861,939 lines of C code, the Cia database, including over 70,000 pro-

gram entities and 46,000 relationships, is 6.3 megabytes. Both the

database and its indices are roughly 47 percent of the source size, which

206 Chen

is 13.4 megabytes. A typical use of the Cia relationship-retrieval query

cref, which �nds all functions that refer to a particular data type, was

run on the database. The query took 0.51 CPU seconds (user and sys-

tem time combined) on an SGI Indy R4400 workstation running IRIX

5.2 to retrieve the 129 function entities that match the speci�cation.

� Reachability Analysis: We have repeatedly found the need to perform

reachability analysis using an e�cient closure operator, which is not

a widely available query construct. Currently, we have di�erent im-

plementations embedded in incl and subsys. The new version of subsys

employs the closure construct in the Daytona database management

system to obtain an e�cient implementation that can be generalized

for use by other tools. Tools that perform reachability analysis have

been received enthusiastically by both developers and managers be-

cause they help clean up existing software architectures.

� Software Visualization: Selectivity is essential to successful visualiza-

tion of complex software structures. Our initial naive attempt in gener-

ating complete program graphs failed miserably for even medium-size

projects. Labels were illegible and edge-crossings cluttered up most of

the space in blown-up graphs that could cover a complete wall. We

have learned to manage the complexity by using database queries to

retrieve only slices of the program graph, and by using closure operators

to selectively ignore and expand subgraphs.

Initially, Cia uses dag, the predecessor of dot, to generate only pas-

sive displays of program structures. The new dot graph format, which

allows user-de�ned attributes to be carried along with each graph node,

makes it easy to attach Cia attributes to the dot graphs that dagger

produces. The attribute information has been used in ciao to customize

each node menu so that only proper operators that are applicable to a

Cia entity are listed. The �le attribute information is used in Xray to

help cluster function nodes that belong to the same �le or module to

reveal module dependencies.

The interactions between Cia and other libraries and tools have ben-

e�ted both sides. Cia is both a consumer and a producer. The author

of Cia selects the best reusable libraries and tools available (in his own

opinion and criteria) to assemble the Cia system. Because Cia has a

Reverse Engineering 207

large user base, the adoption by Cia helps increase the user base and

robustness of a reusable component. On the other hand, the increasing

applications of Cia reusable tools in a project (for example, subsys in

Xray and TestTube), helps o�set and justify the overhead introduced

by creating a Cia database. It is such a Free Market (see Section 1.2) that

drives each reusable component used and produced by Cia to achieve its

current state and moves it toward greater reusability.

6.8 Conclusion

Advances in software and hardware technologies have made the gener-

ation of program databases and presentations of various abstractions of

software structures an inexpensive reality. Our years of research and de-

velopment experience with Cia, a set of reverse engineering tools that

help explore software structures, have demonstrated the feasibility of this

repository-based approach. We are beginning to reap the bene�ts of these

tools, which have now been put in use in many large software projects.

We are currently exploring the integration and con�guration manage-

ment of program databases for multiple languages, including C, C++, ksh,

nmake, and yacc, so that we can complete the software structure picture

for many of our own projects. Since the design of Cia is largely language-

independent because of its emphasis on entities and relationships, we

would like to maximize the reuse of Cia experience in the new e�orts.

repository-based reverse engineering tools. Aero stands for attribute,

entity, relationship, and operator. The style consists of an abstractor that

converts a software document according to its entity-relationship model

into a database; a query subsystem that employs a database service to

provide basic entity and relationship query tools that produce exchange-

able data formats; a visualization subsystem that employs a visualization

service to map relationship query outputs to directed graphs; and an op-

erator subsystem that builds successively higher levels of operators using a

script tool to connect basic query tools and other operators. Note, again,

that the main concepts behind all the Cia operators{subsys, deadobj,

incl, ciafan, focus, and ciadi� {are simply entities, attributes, and rela-

208 Chen

tionships; therefore, the algorithms behind these tools can be generalized

to handle many other kinds of software documents.

We hope a reusable architecture style, such as Aero, would help fuel

further research work in reverse engineering, con�guration management,

software visualization, and all other technologies that Aero depends on.

In return, we expect the Aero architecture style to help produce highly

reusable components that �nd exciting applications in other software en-

gineering projects.

7

Security and Software

Engineering

Steven Bellovin

7.1 Introduction

The program understanding tools app and cia, described in Chapters 5

and 6, provide a means to analyze software. The analysis is, however, at

an intra-software entity level, that is, the relationships among the pro-

gram entities. Beyond such relationships, certain dynamic aspects of the

program are crucial in many applications. Two of the important crite-

ria of computer programs are security and high availability. This chapter

focuses on the security aspect, while the next chapter will discuss high

availability.

One does not have to be an expert in the �eld to know that com-

puter programs are often buggy. Any regular newspaper reader has seen

countless stories to that e�ect. Of late, though, the stories have focused

on computer security problems that are often the result of bugs in the

design or implementation of software systems.

To some extent, security holes can be reduced or eliminated by the

same techniques that are used to eliminate other bugs; but there is one

crucial di�erence: System penetrations are generally the result of deliber-

ate attacks. In other words, someone is trying to trigger the bugs. In the

209

210 Bellovin

security �eld, you are dealing with an active enemy; more than the usual

amount of care is needed.

7.2 Keeping It Simple

It is a truism in the software engineering business that large programs

are much buggier than small ones, and that bugs increase roughly as

the square of the size of the program. It follows, therefore, that security-

critical programs should be as small as possible.

The remote shell protocol (rsh) provides a good example. The rsh

command is used to run commands on di�erent systems. Users often

invoke rsh directly; the same protocol is also used by such commands

as rcp and rdist. We will discuss the security-critical aspects of the

protocol here.

The caller creates a socket with a local port number below 1024. Ac-

cess to such low-numbered ports is restricted to root . The calling process

transmits the identity of the calling user. This information is believed,

since only root could have created that socket. The target machine com-

pares the name of the calling machine against two lists of authorized

callers, one system-wide and one per-user. If everything checks out, the

call is accepted and the user's command is executed.

What are the options for an application wishing to use this protocol?

The �rst answer, of course, is to have it invoke the rsh command

itself, with pipes for input and output. This is the simplest and cleanest

answer, and for many situations it is the right answer. But it su�ers from

a serious shortcoming: It is ine�cient if large amounts of data are being

passed to or from the remote program, since all input and output must be

passed through the pipes and, hence, take an extra trip to the kernel and

back. Accordingly, there are some programs, such as rcp and rdist, that

attempt to emulate rsh. Predictably, these attempts have been disastrous

from a security viewpoint.

The issue is one of simplicity. In rsh, there are less than 100 lines

of code between where the connection is set up and where the program

exits. Virtually all of it is concerned with input and output on the �le

descriptors set up earlier; almost none of it executes in privileged state.

Security and Software Engineering 211

While some of the code is rather delicate, it is not security-sensitive; in

particular, there are almost no operations performed that will cause any

sort of access-control checks and, hence, there are almost no openings for

attack. (The one minor exception{a call to kill(){is easily seen to be

correct.)

In contrast, rcp and rdist do complex things after opening the con-

nection. In particular, many �les are opened, and the names of these �les

are under user control. The programs attempt to do the right thing, but

that's a tough job{and there have, in fact, been security problems with

both of them, as documented in advisories from the Computer Emergency

Response Team.

The point here is not that the design itself is bad (though in fact

it is; see the following section); rather, the problem is that some of the

implementations of it are too complex to be veri�able. Privileges should

be extended only to code worthy to wield them.

A better approach would be to design a simple privileged module that

initiated the connection and transmitted authentication data, and then

handed o� control to a completely unprivileged program. The privileged

program could be short enough that it was easily veri�able; additionally,

it would be reusable. There are several possible ways to implement such a

function; the simplest would be a command that created the connection

and then exec()ed the actual command.

7.3 Assumptions and Interface Design

If it is impossible to make large programs secure, the only solution is

for security-sensitive programs to be small. But, that alone is not a full

solution; the privileged operations must still take place, and we must

still ensure that the small privileged programs cannot be tricked by their

callers. Accordingly, the design of the interfaces to privileged programs is

quite important.

We must also be explicit about the input assumptions. That is, any

program is invoked in a certain environment; if the actual environment

di�ers from the one assumed, security breaches can result. The best de-

212 Bellovin

fense here is to make the assumptions explicit; that way, the privileged

module can verify its inputs and either take corrective action or abort.

For a case study, we will use the aforementioned rsh program. Let us

list the obvious assumptions made by the target's rshd daemon.

1. The callingmachine is one with the concept of a privileged root account.

2. Only root can create low-numbered ports.

3. Root can be trusted to identify the calling user correctly.

The �rst assumption states that the machine is one that has multi-

ple states of trust. On a single-user PC, this is not generally the case.

The second assumption concerns the behavior of the TCP on the remote

machine. Not all TCP implementations restrict access to low-numbered

ports; indeed, such a restriction is not required by the TCP speci�cation.

The target, then, must believe that the caller is running a particular kind

of operating system, one with certain properties that are not universal.

If this trust is misplaced and a nonconforming machine is listed as au-

thorized, a security breach can occur. This could happen in a number

of ways, including replacement of a trustable machine by one that can't

safely carry out the protocol.

The third assumption is more subtle. If the calling machine has been

subverted|or if one of its privileged users has been subverted|then the

target should not trust it. Of course, there is generally no way of knowing

this a priori. This is the assumption that fails most often in the real world.

Computer break-ins spread this way; a single machine is penetrated by

whatever mechanism; following that, any machine that trusts it is likely

to fall in short order because of a pattern of trust.

It follows from these observations that trust should not be granted

casually. The person responsible for granting trust must ensure that all

three assumptions hold; but the third may fail without warning, possibly

as a result of inadequate care taken by the calling machine's adminis-

trator. It is reasonable, then, to restrict the ability to grant trust. The

machines under a system administrator's control may not all be secure;

however, they are more likely to be run at roughly equivalent levels of

security and, hence, share the same risk of penetration. Thus, there is

little incremental risk to trusting them.

Security and Software Engineering 213

Unfortunately, most versions of rshd permit the user to grant trust as

well. In other words, the human interface here can lead to violations of

our security assumptions.

The rsh system actually makes more assumptions that do not always

hold. First, for rsh to transmit the user's identity to the server, it must

know the user's name. On Unix systems, this generally entails a call to

the getpwuid() function. Is that call reliable and secure? On standalone

systems, it was; on modern distributed systems, getpwuid() often con-

sults a network-resident database, in which case, its integrity is open to

question. It is perfectly reasonable to decide that the incremental risk

to rsh from attacks on the user name database is low, since an attacker

who could corrupt access to it could also subvert the login process; but

that is not a given. The essential point we are making here is that the

correct behavior of getpwuid() is essential to the security of rsh; this

assumption must be stated explicitly.

A related assumption is that the target machine's rshd can reliably

determine the identity of the caller. This in turn depends on the reliability

of the underlying network protocol, and on the routine that maps the

network address to a host name. Neither assumption is safe in the presence

of a determined opponent; see, for example, [Mor85, Bel89, Sch93].

Bear in mind that these attacks do not mean that rsh is hopelessly

insecure. Rather, we are saying that under certain circumstances it is

insecure; it is only by making the environmental assumptions explicit

that one can assess its security in any given circumstance.

We applied this methodology to the authentication routine in the libcs

library (Section 2.2.7). What are its basic assumptions?

Fundamentally, the authentication routine assumes that only the legit-

imate user could create a �le with the speci�ed attributes. That is, only

the owner (or the superuser) can set those modes and timestamps for a

�le. The parenthetical note is important: We are assuming that the ad-

ministration of the machine is trustworthy. Given networked �le systems,

the security of the routine therefore depends on further premises: that

the �le resides on a machine operated by a trustworthy administrator,

and that the networked �le system connection between that machine and

the server is secure.

214 Bellovin

This realization leads us to an important constraint: that the server,

not the client, must specify the name of the �le to be created. If the client

chooses the name, it can create a �le on a machine that isn't trustable,

thereby deceiving the server. In fact, the original version of the authenti-

cation routine did have this
aw; it was uncovered only when an explicit

analysis of assumptions was done.

A security-conscious site should not neglect the question of

NFS [SGK+85] (Network File System) security; it is indeed open to ques-

tion. However, the consequences of failures along those lines are so severe

that we will not discuss them further in the context of libcs.

There is one more assumption to examine here: that the server can

reliably retrieve the attributes of the �le. Again neglecting NFS issues,

there is still a weak point: If the stat() system call is used instead of

lstat(), a client could create a test �le on an untrustworthy machine,

and create a symbolic link to it using the name supplied by the server.

The lstat() call will not honor the link, thereby blocking the fraud.

The analysis of the
aws in libcs authentication routine point to a more

fundamental issue: the ability to establish trust boundaries. Fundamen-

tally, the old routine failed because an indication of trustworthiness{the

set-uid bit{could be imported from outside the security perimeter. In its

intended meaning (granting privileges upon execution), the operating sys-

tem does have the ability to disregard it if from an untrusted source. The

authentication route overloaded the meaning of the set-uid bit, but could

detect the boundary crossing. Alternative semantics for the network �le

system|deleting this bit on input{would also have solved the problem,

had the designers of NFS so chosen. The symbolic link issue also arose

because of boundary crossings; again, the server did not have the ability

to detect what had happened.

An issue akin to assumptions is validation of input. It is obvious that

a program should not trust input from untrustworthy sources. It is less

obvious what \trust" means in this context. A properly suspicious pro-

gram should never rely on untrusted input; similarly, great care must be

taken when passing such input to any other programs, since they may

not know the source.

The best-known example is the Internet Worm [Spa89a, Spa89b,

Security and Software Engineering 215

ER89, RE89]. One of the ways it spread was by overwriting the input

bu�er of the finger daemon so that the stack frame was corrupted. In

particular, the return address was modi�ed to point to code transmitted

by the Internet Worm; in turn, that code invoked a shell.

Trust need not be extended in real time. Some attacks can be launched

by depositing a trap in some location that will be used later. For example,

many systems have clock-driven accounting daemons. If, for example, one

of these uses the sort command, which is not generally security-sensitive

in and of itself, an intruder who replaced it would be able to compromise

a system account in a comparatively short period. Similarly, a bogus

program deposited in an anonymous ftp area is harmless, unless and

until someone carelessly executes it.

7.4 Security and Reuse

Given that we cannot trust large, complex programs, and given that de-

veloping even a small secure program is a di�cult task, it makes sense

to put some e�ort into producing a library of reusable security modules.

While the speci�c design will vary depending on your exact needs, we can

lay out certain general classes.

The �rst, and most important, concerns the security primitives that

your code will rely on. A precise de�nition of their properties and limita-

tions is vital. Consider, for example, the chroot() system call on UNIX

systems. This call declares a section of the �le system to be the entire �le

system. As such, it is a valuable tool for restricting access to �les. But

attempting to use it for more general forms of containment is risky.

The problem lies in the abstraction implemented by chroot(). Though

it blocks access to one set of resources, there are other resources still

shared; among these are the machine's network identity and its access to

real I/O devices. An intruder who can execute a program in this isolated

area can still do much damage.

UNIX subsystems that swap internal uid's to implement access con-

trols are exposed to even greater risks under similar circumstances. Again,

other resources are not isolated and the relevant system calls do not pro-

vide full virtual machines. Furthermore, the same calls that the subsystem

216 Bellovin

uses to change access rights are available to any program that an intruder

can execute in this environment.

The problem we see here is not that the primitives are inadequate.

Rather, their domain of applicability is limited; attempting to use them

for other purposes is chancy. But, within their proper scope, they are

quite valuable.

The latter example shows a second rule for security primitives: Im-

plement a function once. The UNIX kernel already has a reliable access

control mechanism; attempting to emulate that mechanism at user level

is a dangerous proposition. A subsystem that can use this mechanism for

its own access controls is more likely to be correct|hence, secure|than

one that tries to build its own; and it enjoys the more traditional advan-

tage of hiding an implementation decision: If the host's overall security

policy is changed, the subsystem's access decisions will re
ect this new

policy automatically. This is a very real issue, given the advent of UNIX

systems that implement mandatory access controls.

Reuse isn't always a boon. Secure programs need to avoid using some

routines that are useful in more benign contexts. Anything called from a

secure routine must be trustable; if it is not, it can be abused to penetrate

the secure system.

An example will make this clearer. Suppose that an automatically

invoked resource-use reporting daemon uses a sort command to produce

its reports. If this sort command has been booby-trapped, the account

under which the management daemon runs will be compromised. Since

such accounts are often privileged, the entire system can be subverted.

The problems in this vein are not restricted to maliciously bad pro-

grams. Rather, they can be due to ordinary programs being invoked in a

hostile environment. If, say, a network server runs a shell script to per-

form its function, every program invoked by that script becomes security-

sensitive. Other programs may have the same
aw as the Internet Worm

exploited in the finger daemon{but this is irrelevant unless they are

invoked by an untrusted party.

For truly sensitive areas, even the development environment needs to

be scrutinized. Thompson even showed how examining the source code

Security and Software Engineering 217

may not su�ce [Tho84]. (Also see [KS74] for an earlier discussion of the

problem.)

Reuse of security can have its drawbacks; Yeast (Chapter 9) provides

a good example.

The most obvious weakness is that the reused software can be buggy.

Yeast uses libcs for user authentication, which means that it inherits any

problems that libcs has. The security
aws in older versions of the library

meant that any user of Yeast could have used it to crack any other uid

on the system. (Contrariwise, when the library was �xed, Yeast was also

secured.)

A second point, though, is that any user of the libcs authentication

library must satisfy its input assumptions. Thus, since it requires a shared

�le system between clients and servers, Yeast must as well. This, in

turn, constrains how one can deploy Yeast: It is impossible to have a

central server without using NFS, which itself has profound security and

operational implications.

We thus see the trade-o�s. Using an existing authentication mecha-

nism obviated the necessity of writing a new (and possibly buggy) mech-

anism of its own. On the other hand, it opened up a vulnerability and

constrained how Yeast could be deployed.

7.5 Logging and Auditing

Another essential component of any secure system is adequate logging;

but great care should be taken in the design of the logging mechanisms

or the output they produce will be useless.

Obviously, logs must be accurate. More subtly, they must be complete

enough to be useful. Speci�cally, a log �le must give enough information

that one can identify the ultimate source of any suspect action. A log �le

that simply notes that some event has occurred is useless. One that sup-

plies, say, the process id that generated the event may be better, but only

if there is an easy link between that �eld and the user or network con-

nection associated with it. Best of all is a succinct message that identi�es

the source and the action.

This is illustrated in Figure 7.1, which contains an excerpt from our

218 Bellovin

15:30:05 ftpd[9313]: connection from foo.bar.edu 1.2.3.4

15:30:06 ftpd[9313]: USER anonymous

15:30:06 ftpd[9313]: PASS user@bar.edu

15:30:06 ftpd[9313]: ANONYMOUS FTP LOGIN FROM foo.bar.edu 1.2.3.4, user@bar.edu

15:37:08 ftpd[9313]: file /etc/passwd fetched

Figure 7.1 An excerpt from the anonymous FTP log �le on our �rewall.

The source information has been edited.

FTP log �le. The �rst three lines are simply transaction entries; they

log events as they happen. The fourth line is a valuable summary line;

it ties together the information from the previous lines. But, the really

interesting entry is the last line.

Apparently, someone tried to grab /etc/passwd from our anonymous

FTP area. This action could be indicative of hostile activity [CB94];

but the only source information in that line is the bracketed process id,

[9313]. To use it, one needs to retrieve all lines from that session and, in

particular, the summary line. Also, given that process ids can be reused,

it may be necessary to discard entries from a di�erent instantiation of

process 9313. It would be easier to act on the logs if the last line included

the identity tag from the previous entry, from which it could be separated

by quite some distance (notice the timestamps).

To be sure, there is a countervailing force, which is why our log �les

don't read that way. In any heavily used system, the size of the log �les

is a serious concern. A log �le that can be searched by standard UNIX

tools (awk, grep, and so on) is much more valuable than one containing

randomly formatted lines. It's always easier to produce fancy reports from

�xed-format log �les than vice versa; systems should always generate the

latter and use back-end programs to produce the former if desired.

By far, the easiest way to produce consistent log �les is to use a com-

mon set of routines to generate all entries. A small amount of code in one

spot can be kept consistent; random print statements scattered through-

out a large system cannot.

Note that we are not talking here about a log �le output mechanism,

such as syslog(). A simple mechanism for physically writing the mes-

Security and Software Engineering 219

sages is useful; however, we are focusing here on the content of the mes-

sages.

Two related issues concern selective auditing and denial of service at-

tacks. It is often useful to be able to log material selectively. Information

that is too voluminous to be kept in general, such as traces of all open()

requests, may be useful when focused on a particular user. The logging

subroutines need the ability to alter the scope of such messages dynami-

cally.

In the other direction, attackers have been known to swamp log �les

with irrelevant entries before a real invasion. The idea is to �ll up disk

space, or to bury the people responsible for reading the logs with a mass

of trivia so that they miss the important messages.

It is very hard to do much to defend against denial of service attacks.

Some mechanisms are obvious, such as storing log �les on a di�erent disk

than high-bandwidth input sources, such as mail. Other things that can

help are semantic compression (log counts of repeated identical messages,

rather than including each in its entirety) and attempts at rate-limiting

message or input sources. But there is no general solution as long as it is

cheaper for the attacker to generate a message than it is for the target to

process it.

7.6 Evaluating Security

No discussion of security and software engineering is complete without

some mention of the famous \Orange Book" [DoD85a]. The Orange

Book{more formally, the Department of Defense Trusted Computer Sys-

tem Evaluation Criteria{contains the standard the U.S. military uses to

evaluate secure computer systems. Ratings range from D{a system that

doesn't meet the minimum criteria for any other class{through C1, C2,

B1, B2, B3, and A1.

Most people cite lists of features as the major di�erence between the

di�erent levels. Thus, B1 adds mandatory access controls, wherein an

administrator can control who has access to various �les. But, such lists

miss an important point: the increasing assurance requirements at di�er-

ent levels.

220 Bellovin

This can be seen clearly by contrasting B2 to B3. Few new features are

required; what is di�erent is the degree of con�dence demanded; much

of which is to be achieved by proper structuring of the TCB (Trusted

Computing Base).

Much of the required structure mirrors what we have said here. Con-

sider this requirement, from Section 3.3.3.1.1:

The TCB shall be designed and structured to use a complete, conceptually simple
protection mechanism with precisely de�ned semantics. This mechanism shall play
a central role in enforcing the internal structuring of the TCB and the system.
The TCB shall incorporate signi�cant use of layering, abstraction and data hiding.
Signi�cant system engineering shall be directed toward minimizing the complexity
of the TCB and excluding from the TCB modules that are not protection-critical.

In other words, sound software engineering principles should be fol-

lowed. Note, also, that it is di�cult to retro�t B3 security to an existing

insecure system without a major rewrite; the TCB must be highly struc-

tured with clean interfaces to security services enforced.

Other requirements have a similar
avor. For example, the log �les

must contain su�cient information to show which authorized user has

performed any sort of privileged operations.

Assurance is important for two reasons. First, of course, one needs to

know that a system is secure, with a fair degree of con�dence. Only then

can one make a rational decision about how much trust should be placed

in it. A less secure (and probably less expensive) system might su�ce for

noncritical applications; on the other hand, a highly rated system would

be more appropriate for such things as nuclear weapons command and

control.

In the military world, this, too, is formalized. A sister publication to

the Orange Book{the Yellow Book [DoD85b]{derives how secure a system

need be based on the sensitivity of the information stored on it and the

security clearances of the users of it. An unrated system can hold Top

Secret data{but only if all users of it are cleared for that data. If uncleared

users will be present, a highly rated system must be used instead.

The second reason for demanding assurance of security is less obvious.

A complex system is extremely unlikely to be secure; making a system

simple enough to understand and evaluate will, in and of itself, make

it more secure. In other words, the process itself helps to produce the

Security and Software Engineering 221

desired e�ect. Again, this is apparent in the process by which Orange

Book evaluations are performed. One does not hand a completed system

to the evaluators; instead, the system is developed in cooperation with

them to assure that the structuring is adequate. (It is also necessary to

use systems of a certain minimum security level when developing more

secure systems, to avoid attacks on the development machines.)

As useful as the Orange Book is as a model, the precise security crite-

ria it outlines are not universally applicable. Speci�cally, it concentrates

on access control: ensuring that unauthorized individuals cannot get at

classi�ed data. While the civilian world has that concern as well, data

integrity is generally far more important. Put another way, while a bank

may not want an outsider to read customer account data, it would much

prefer that to the chance of an outsider modifying account data. Accord-

ingly, new sets of evaluation criteria are being developed. This is not just

a U.S. e�ort [FCI92]; the Canadian government [NIT93] and the Euro-

pean Community [ITS91] are developing their own standards, and there

is an e�ort underway to harmonize the di�erent standards.

Apart from di�erences in the desired functionality, assurance is now

orthogonal to the feature list. To quote the Canadian document:

The Assurance criteria, on the other hand, re
ect the degree of con�dence that a
product correctly implements its security policy. Assurance applies across the entire
product under evaluation. For example, a product given a T-4 assurance rating has
had this level of assurance applied across all the security services within the product.

The minimum assurance level (T-1) requires such things as use of an

approved con�guration management system and an informal description

of the system architecture; the highest level (T-7) requires formal design

descriptions, physical security during the development process, personnel

security practices, and so on. All of these things are related. A determined

adversary may �nd it easier to bribe an employee than to �nd a
aw in

the code{but the end result is the same.

7.7 Conclusions

No development techniques can guarantee that a given system will be

secure. That is simply beyond the state of the art. Even the best formal

222 Bellovin

methods will not su�ce here; no formal system we have seen can prove

that an employee is incorruptible but it is possible to shift the odds.

More than in most other areas, sound software engineering principles

help. Modularity, simple designs, and explicit preconditions are always a

good idea. This is especially true for security modules, even though the

actual code is likely to be quite small. The key, though, is design that

incorporates security from the beginning.

8

A Software Fault Tolerance

Platform

Yennun Huang and Chandra Kintala

8.1 Introduction

The previous chapter dealt with one of the important properties of com-

puter programs, namely, security. This chapter deals with another such

property: fault tolerance and high availability . Often the high-availability

property e�ectively determines the usefulness of a piece of software. Just

like a partially insecure program, software that is not fault tolerant may

render it useless. This chapter discusses techniques and software compo-

nents for providing fault tolerance for a wide range of software.

In a telecommunications network, switching systems are known to have

the highest degree of reliability, that is, availability and data consistency.

There are, however, hundreds of other systems to provision, process, oper-

ate, administer, and maintain a large reliable telecommunications network

and its services.

It would be desirable to have all those systems be also highly available,

like switching systems, if the costs and technologies permit them to be

so [Ber93]. Traditionally, high availability is provided through fault toler-

ance technology in the hardware, operating system, and database layers

of a computer system executing the application software (see Figure 8.1).

223

224 Huang and Kintala

Application Software

Hardware

duplex, TMR, ...

signals, mirroring, FT-DBMS, ...

Layers Techniques

Operating/Database System

RO
watchd, libft, REPL

Figure 8.1 Layers for fault tolerance.

Two trends are emerging in the marketplace and are changing this

tradition for providing fault tolerance:

1. Standard commercial hardware and operating systems (for example,

Sun and Silicon Graphics workstations and desktop PCs) are becoming

highly reliable, distributed, and inexpensive to the extent that they

are now o�-the-shelf commodity items. We refer to those systems as

standard computers to contrast them with fault-tolerant computers (for

example, Tandem's FT Systems) which have special architectures to

handle hardware and operating system faults.

2. The proportion of failures due to faults in the application software

is increasing due to increased size and complexity of software being

deployed [GS91, SS92], and to increased hardware reliability.

Taking advantage of the �rst trend, we propose a network of standard

computers to provide fault tolerance service and increase the availability

of an application inexpensively. The application will be running actively

on one computer (host or node), and another node on the network will be

a backup node for that application. The application would need mecha-

nisms to checkpoint its data, log its messages, watch, detect, restart, and

recover from failures. Implementing these fault tolerance tasks individu-

ally requires expertise in fault tolerance, and should not be done ad hoc

in each application.

A Software Fault Tolerance Platform 225

We developed a set of reusable software components (watchd , libft ,

and Repl [HK93]) to perform those fault tolerance tasks in any applica-

tion executing on that generic platform. watchd is used to detect failures

of processes and processors. libft is a collection of C and C++ routines

for checkpointing and recovering internal data, and for fault-tolerant in-

terprocess communication. Repl provides services for replicating critical

�les onto a backup computer. These three components are reusable, that

is, they can be embedded in any application with minimal software de-

velopment e�ort and no additional hardware. They have been ported to a

number of UNIX platforms, including Sun, SGI, Motorola, and HP. The

generic platform and these three components are described in Section 8.2.

The second trend listed earlier forces us to focus more on failures

(also called software errors) due to software faults (also called software

bugs). We assume that most responsible software products, especially

distributed telecommunications software systems, are thoroughly tested

before they are deployed in the �eld. However, the size and complexity of

software in those systems is such that even the most advanced software

validation and veri�cation methods and tools do not remove all possible

faults in that software. So, there are residual faults in most software

systems deployed in the �eld.

But, unlike in hardware, all those faults in software are design and cod-

ing faults and are permanent. However, the failures exhibited by those

software faults can be transient, that is, the failure may not recur if

the software is reexecuted on the same input. This is because the be-

havior of a program, especially a client-server application running on a

distributed system, depends not only on the input data and message

contents, but also on the timing and interleaving of messages, shared

variables, and other state values in the operating environment of the ap-

plication [HJK94]. Thus, the residual faults get triggered occasionally,

leading to erroneous behavior or failures. This observation leads us to

employ the following methods for transient software error recovery, using

the reusable software components, watchd , libft , and Repl mentioned

earlier.

One method is to simply rollback and restart the failed process and re-

play the logged messages. It is hoped that some part of the environment

226 Huang and Kintala

will change during replay so that the process will not fail upon reexecu-

tion. Another method is to reorder the messages during replay [WHF93]

so that errors due to unexpected event sequences can be masked. These

methods are reactive in nature, that is, they attempt to recover the ap-

plication after a failure has occurred.

There is also a complementary approach, called software rejuvenation,

to handle transient software failures. Software rejuvenation prevents fail-

ures from occurring by periodically and gracefully terminating an applica-

tion and immediately restarting it at a clean internal state. Restarting an

application involves queuing the incoming signals and messages temporar-

ily, respawning the process or processes corresponding to the application

at an initial state, reinitializing the in-memory volatile data structures,

logging administrative records, and so on. The interval for periodic re-

juvenation, if used, can be determined through analysis [HKKF94] and

experience with the application.

Even though the above methods (rollback, restart, and rejuvenation)

are widely used in hardware, and sometimes manually in some applica-

tions, they have not been previously available as reusable components

to provision the techniques automatically in an application. Our com-

ponents and libraries, watchd , libft , and Repl, facilitate embedding of

those methods for high availability in any application easily. As men-

tioned in Section 1.6.2, those components form the infrastructure for

fault tolerance as an architecture service in an application. The appli-

cation developers get large-scale reuse of the software inside those com-

ponents for performing the basic but complex tasks for fault tolerance.

Also, the components provide enough
exibility for con�guring the fre-

quency and amount of checkpointing, frequency for polling the liveness of

the application processes, frequency for rejuvenation, �les for replication,

and various other application-dependent aspects of fault tolerance. The

three components have been found to be useful in a wide spectrum of ap-

plications on AT&T's worldwide telecommunications network, including

Transmission, Communication Services, Operations Systems, and Switch-

ing Systems. We discuss some examples of how they have been used in

Section 8.3.

A Software Fault Tolerance Platform 227

8.2 Platform and Components

For simplicity in the following discussions, we consider only client-server

based applications running in a local or wide-area network of computers

in a distributed system. Each application has a server process executing in

the application layer on top of a vendor-supplied hardware and operating

system. To get services, clients send messages to the server; the server

process acts on those messages one by one and, in each of those message

processing steps, updates its data. We sometimes call the server process

the application. Each executing application has process text (the compiled

code), volatile data (variables, structures, pointers, and all the bytes in

the static and dynamic memory segments of the process image), and

persistent data (the application �les being referred to and updated by the

executing process).

For fault tolerance purposes, the nodes in a distributed system are

viewed as being in a circular con�guration so that each node can become

a backup node for its left neighbor in that circular list. We use a mod-

i�ed primary-site approach to software fault tolerance [HJ92b]. In the

primary site approach, the service to be made fault tolerant is replicated

at many nodes, one of which is designated as primary and the others as

backups. All requests for the service are sent to the primary site. The pri-

mary site periodically checkpoints its state on the backups. If the primary

fails, one of the backups takes over as primary. Huang and Jalote [HJ92b]

have analyzed this model for frequency of checkpointing, degree of ser-

vice replication, and the e�ect on response time. This model was slightly

modi�ed to build the three components described in this chapter.

The tasks in our modi�cation of the primary site approach are illus-

trated in Figure 8.2 and described here:

� A watchdog process (watchd in our platform) runs on the primary node

watching for application failures, that is, crashed or hung processes.

� A watchdog process running on the backup node watches for primary

node crashes.

� The application periodically checkpoints its critical volatile data (using

libft in our platform).

228 Huang and Kintala

Clients

Application
Process Volatile

Data

Persistent
DataOperating/Database System

(Watchd)

Primary

Backup

(libft)

Backup

(REPL)

Figure 8.2 Platform and components of software-implemented fault toler-

ance.

� Client messages to the application are logged between checkpoints (us-

ing libft).

� Application replicates its persistent data and makes them available on

the backup node (using Repl in our platform).

� When the application on the primary node crashes or hangs, it restarts,

if possible, on the primary node; otherwise, on the backup node.

� The application is recovered to the last checkpointed state and the

logged messages are reexecuted.

� If the application restarts on the backup, the replicated �les on the

backup node are connected to the application.

Observe that the application process on the backup node is not running

until it is started by the watchdog process; this is unlike the process-pair

model [GS91], where a backup process will be passively running even

during normal operations.

The degree to which the above software fault tolerance tasks are used

in an application determines the availability and data consistency of that

application. They are adjusted by tuning the number of nodes in the dis-

A Software Fault Tolerance Platform 229

tributed computing network supporting the application and the amount

and frequency of checkpointing and logging of application data that is

to be recovered after a failure. Each application determines its degree of

availability by doing an engineering trade-o� between the need and costs

for providing the required level of fault tolerance.

Many applications perform some of these software fault tolerance fea-

tures by coding them directly in their programs. We developed three

reusable components|watchd , libft , and Repl|to embed those features

in any application with minimal programming e�ort. These are described

shortly.

8.2.1 watchd

watchd is a watchdog daemon process that runs on a single machine or on

a network of machines to detect application process failures and machine

crashes. It continually watches the life of a local application process by

periodically sending a null signal to the process and checking the return

value to detect whether that process is alive, hung, or dead. watchd runs

on each machine, and a machine crash is detected if the watchd that

was running on that machine fails to respond to a polling request. Once

a machine crash is detected, the watchd that discovered the failure can

take a prede�ned action to recover applications on the failed machine.

To make fault detection and the recovery mechanism reliable and e�-

cient, the design of watchd is based on the following principles:

� Simplicity: There are no complicated diagnostic and recovery messages

between nodes and between processes.

� Fairness: The responsibilities for fault diagnosis and recovery are

shared among all participating nodes.

� No central control: Information, decision, and control of the fault re-

covery protocol are fully distributed.

� Flexibility: Removing or adding machines and processes is easy to do.

watchd detects a process crash by either polling the process (using

kill(0,pid)) or receiving a SIGCHLD signal. watchd detects whether

that process is hung by using one of the following two methods. The

�rst method sends a ping-like command to the local application process

230 Huang and Kintala

using IPC (Inter Process Communication) facilities on the local node and

checks the return value. If it cannot make the connection, it waits for

some time (speci�ed by the application) and tries again. If it fails after

the second attempt, watchd interprets the failure to mean that the pro-

cess is hung. The second method allows the application process to send a

heartbeat message to watchd periodically, and watchd periodically checks

the heartbeat. If the heartbeat message from the application is not re-

ceived by a speci�ed time, watchd assumes that the application is hung.

libft provides the function hbeat() for applications sending heartbeats

to watchd . The hbeat() function takes an argument that speci�es the

maximum duration between heartbeats.

When it detects that the application process crashed or hung, watchd

recovers that application at an initial internal state or at the last check-

pointed state. The application is recovered on the primary node if that

node has not crashed; otherwise, on the backup node for the primary,

as speci�ed in a con�guration �le. If libft is also used, watchd sets the

restarted application to process all the logged messages from the log �le

generated by libft . Since the messages received at the server site are logged

and only the server process is recovered in this scheme, the consistency

problems that occur in recovering multiple processes [Jal89] are not issues

in this implementation.

Each watchd watches one neighboring watchd (left or right) in a circu-

lar fashion to detect node failures; this method is similar to the adaptive

distributed diagnosis algorithm [BB91]. When a node failure is detected,

the neighboring watchd can execute user-de�ned recovery commands and

recon�gure the network. When a node is repaired, it can rejoin the net-

work simply by starting the watchd daemon. To distinguish node failures

from link failures, although not de�nitively, watchd can use two commu-

nication links for polling a neighboring node. It reports a node failure

only when it fails to contact a neighboring node through both links.

To make watchd itself very reliable, we implemented a self-recovery

mechanism into watchd in such a way that it can recover itself from an

unexpected software failure. When watchd �nishes initialization, it forks

a backup watchd , which executes a loop and keeps polling the primary

watchd . If the primary watchd fails, the backup watchd breaks the polling

A Software Fault Tolerance Platform 231

loop and resumes the primary watchd responsibility. At the same time,

it spawns another backup watchd for watching itself (the new primary

watchd). If the backup watchd fails, the primary watchd gets a signal

from the operating system, since the backup watchd is a child process of

the primary watchd .

watchd also facilitates restarting a failed process, restoring the saved

values, and reexecuting the logged events, and provides facilities for re-

juvenation, remote execution, error reporting, remote copy, distributed

election, and status-report production. Several commands are also pro-

vided for operating, administrating, and maintaining a network using

watchd daemons. For example:

addnode Adds a machine into the watchd ring

delnode Removes a machine from the watchd ring

addwatch Informs watchd to watch a process

delwatch Removes a process from the watch-list of the watchd

addrejuv Registers a process to watchd to be rejuvenated at a scheduled

time

moveproc Moves a process from a node to another node

8.2.2 libft

libft is a user-level library of C functions that can be used in application

programs to specify and checkpoint critical data, recover the checkpointed

data, log events, and locate and reconnect a server.

libft provides a set of functions (such as critical()) to specify critical

volatile data in an application. These critical data items are allocated in a

reserved region of the virtual memory and are periodically checkpointed.

Values in critical data structures are saved using memory copy functions,

and thus avoid traversing application-dependent data structures. When

an application does a checkpoint, its critical data are saved on the pri-

mary and backup nodes. Unlike other checkpointing methods [LFA92],

the overhead in our checkpointing mechanism is minimized by saving only

critical data and avoiding data-structure traversals. This idea of saving

only critical data in an application is analogous to the Recovery Box

concept in Sprite [BS92].

232 Huang and Kintala

The following functions in libft perform the necessary critical memory

allocation, checkpointing and recovery:

� ft start() reserves a block of critical memory. The function takes two

arguments{the size of the critical memory and the �lename for check-

point data. When in recovery, ft start() restores the data structures

from the critical memory in reserved address space.

� t critical() declares critical global variables, along with an id to

identify the thread that made the call; function critical() is similar

to t critical() without the identi�er. Both functions take a list of

variables and their sizes as input arguments.

� t checkpoint() and checkpoint() save the values of critical variables

and the critical memory onto a �le.

� t recover() and recover() restore the values of critical variables and

critical memory.

� ftmalloc(), ftcalloc(), and ftrealloc() are used to allocate space

from the critical memory, and function ftfree() is used to free space

to critical memory.

libft also provides ftread(), and ftwrite() functions to automati-

cally log messages. When the ftread() function is called by a process in

a normal condition, data is read from a channel and automatically logged

on a �le. The logged data is then duplicated and logged by the watchd

daemon on a backup machine. The replication of logged data is neces-

sary for a process to recover from a primary machine failure. When the

ftread() function is called by a process that is recovering from a failure

in a recovery mode, the input data is read from the logged �le before

any data is read from a regular input channel. Similarly, the ftwrite()

function logs output data before it is sent out. The output data is also

duplicated and logged by the watchd daemon on a backup machine. The

log �les created by the ftread(), and ftwrite() functions are truncated

after a checkpoint() function is successfully executed. Using functions

checkpoint(), ftread(), and ftwrite(), one can implement either a

sender-based or a receiver-based logging and recovery scheme [Jal89].

There is a slight possibility that some messages during the automatic

restart procedure may get lost. If this is a concern to an application,

A Software Fault Tolerance Platform 233

an additional message synchronization mechanism can be built into the

application to check and retransmit lost messages.

The following functions in libft perform fault-tolerant versions of the

network and �le system calls:

� getsvrloc(), getsvrport(), ftconnect(), and ftbind() facilitate

clients to locate servers and reconnect to them in a network environ-

ment. They intercept standard socket function calls for transparent

client-server reconnection once a network failure is detected.

� ftfopen(), ftfclose(), ftcommit(), and ftabort() help in commit-

ting and aborting �le updates. Files updated using ftfopen() can be

committed only by calling ftfclose() or ftcommit(). Therefore, in

the case of process rollback recovery, �le updates can be rolled back to

the last commit point.

The program fragment in Figure 8.3 is an example of a server program

using libft library for checkpointing. In this example, the server reads a

number from a client program and pushes the number onto the top of

a stack. The stack is implemented as a linked list. Critical data for the

server program are the stack itself and the pointer to the head of the

stack.

The critical data in the program shown are the stack and the pointer

to the head, pHead. To save the head pointer, we declare variable pHead

critical. To save the contents of the stack, we have to store the stack in

critical memory, which is created by the ft start() function. To allo-

cate critical memory, we use function ftmalloc(). The size of the critical

memory is declared to be 16 kilobytes. The size of the critical mem-

ory can be dynamically increased as needed. The checkpoint �lename is

/tmp/examp1.ckp, speci�ed by the ft start() call, and the log �lename

is /tmp/examp1.log, speci�ed by the setlogfile() call. The
ag INFILE

indicates that the checkpoint data is to be saved on and recovered from a

stable �le system. Normally, each message is read and logged by function

ftread(). When in recovery, function ftread() reads data from the log

�le instead of the regular socket channel, so. Note that the �le descriptor

so is not used in recovery. A checkpoint is taken after every 200 messages

234 Huang and Kintala

#include <ft.h>

...

struct llist {

struct llist *link;

int data;

...

}

...

main(){

struct llist *pHead=NULL, *ptmp;

int s, indata;

...

ft_start("/tmp/examp1.ckp",16384);

setlogfile("/tmp/examp1.log");

critical(&pHead, sizeof(pHead),0);

...

if (in_recovery()) recover(INFILE);

for (;;) {

...

if (!in_recovery()){

cnt++;

if (cnt>200)

checkpoint(INFILE);

so=accept(..);

}

...

ftread(so,indata,MaxLen);

ptmp=(struct llist *) ftmalloc(sizeof(struct llist));

ptmp->link=pHead;

ptmp->data=indata;

pHead=ptmp;

...

}

}

Figure 8.3 Use of libft for checkpointing.

A Software Fault Tolerance Platform 235

received by the server. Every checkpoint saves the data in variable pHead

and data in the critical memory. When a checkpoint is performed, the log

�le is truncated to zero length. In recovery, function ft start() preal-

locates critical memory and, when function recover() is called, critical

data is restored from the checkpoint �le to the critical memory.

Speed and portability are primary concerns in implementing libft . The

libft checkpoint mechanism, as it is currently implemented, is not fully

transparent to programmers. However, it checkpoints only the critical

data and reduces the checkpointing overhead. In addition, libft does not

require a new language, a new preprocessor, or complex declarations and

computations to save the data structures [GS91]. The sacri�ce of trans-

parency for speed has been proven to be useful in many projects using

libft . Installation of libft doesn't require changes to UNIX-based operating

systems; it has been ported to several platforms.

8.2.3 REPL

Repl � is a �le replication mechanism running on a pair of machinesy

for online replication of critical �les, which are speci�ed by users using

an environment variable. It is often used in conjunction with the n-DFS

shared library (Section 2.5), but is not always necessary. The mechanism

uses dynamic-shared libraries (such as n-DFS) to intercept �le system

calls. When a user program issues a �le update, the shared library in-

tercepts the request, performs the update locally, and passes the update

message to the remote Repl servers. Upon receiving the message, the re-

mote Repl servers then replay the message and perform the �le update.

Repl is built on top of standard UNIX �le systems, so its use requires

no change to the underlying �le system. Speed, robustness, and replica-

tion transparency are the primary design goals of the Repl replication

mechanism.

Repl consists of four main components (see Figure 8.4):

�The authors would like to thank D. Korn, G. Fowler, and H. Rao for their help in the design and
development of Repl.

yIt can be used on any number of machines; but, for simplicity, we discuss only the duplex archi-
tecture here.

236 Huang and Kintala

WD WD

APPL

DISK1

DISK2

NODE A NODE B

APPL

bcplog
bcpproc

cns

lcp

n-DFS

Figure 8.4 Software architecture of the Repl mechanism.

A Software Fault Tolerance Platform 237

� Relay server (lcp): Its tasks, when the remote is up, are to establish a

connection to bcplog (a Repl logging process on the remote backup

node described shortly), read messages from applications (linked with

the n-DFS library), and pass those messages to the remote bcplog;

when the remote is down, its tasks are to create a log �le and save data

to the log �le.

� Connection server (cns): It is used to establish a connection to the

lcp, maintain a �le descriptor for the connection, and send the �le

descriptor to applications.

� Log server (bcplog): It receives update messages from the lcp on the

other node and logs the messages onto a log �le.

� Process server (bcpproc): Normally, it reads the log �le generated by

bcplog and replays the update messages; in recovery, it copies �les

from the other node for �les resynchronization.

Note that all four components are active on both machines. Therefore,

updates of critical �les can originate from either machine. However, to

avoid update contention, it is recommended that all the processes be-

longing to one application designate one machine as the primary and use

the other as the backup. Load can be distributed when applications are

allocated on di�erent machines.

When an application opens a critical �le for the �rst time, the Repl

shared library intercepts the open system call and sends a request to cns.

Upon receiving the request, cns returns a �le descriptor to the application

(normally, it is the connection between cns and lcp). The Repl library

then uses the �le descriptor to pass messages to the backup.

There are two other processes which are used to ensure data con-

sistency between the machines: �le-check process (bcpchk) and name-

mapping process (fnmapper). In case of an update failure on the backup

machine, two recovery actions could be taken, depending on the sever-

ity of the failure. If the failure is recoverable (such as lost or corrupted

messages), the information for the update operation (device number and

i-node number) is passed by the backup bcpproc to the backup bcpchk.

Then, the bcpchk process sends a request to the primary fnmapper to

locate the �lename using the device number and i-node number. Once

the �lename is located, the �le is copied by the bcpchk process to the

238 Huang and Kintala

backup machine to ensure data consistency. On the other hand, if the

failure is nonrecoverable (such as a �le system being full or an I/O error),

after a few retries, the backup bcpchk shuts down the backup machine

to prevent any out-of-date data from being read.

The implementation of Repl uses the following technologies:

� s�o library: for reliable and fast �le input and output

� libcs library: for �le descriptors passing between processes

� watchd daemon: for fast recovery and failure detection remote �le copy,

remote command execution, and �le descriptor checkpoint

� libft library: for checkpoint and recovery of critical data in Repl pro-

cesses

Repl itself is a good reuse example; it uses watchd and libft to achieve

high availability. Details of this reuse are described in Example 4 in the

next section.

8.3 Experience

Fault tolerance in some of the newer telecommunications network man-

agement products in AT&T has been enhanced using watchd , libft , and

Repl. Experience with those products to date indicates that these tech-

nologies are indeed economical and e�ective means to increase the level of

fault tolerance in application software. All three components are highly

portable: They have been ported and used on many hardware platforms

running UNIX operating systems. The performance overhead due to these

components depends on the desired level of fault tolerance, the amount

of critical volatile data being checkpointed, frequency of checkpointing,

and the amount of persistent data being replicated. Experience shows

that the overhead ranges from 0.1 percent to 14 percent depending on

the application and the above factors. We describe some of these prod-

ucts to illustrate the availability,
exibility, and e�ciency in embedding

software fault tolerance using these three components. To protect the pro-

prietary information in these products, we use generic terms and titles in

the descriptions.

A Software Fault Tolerance Platform 239

8.3.1 A Network Service Application

Application C monitors and analyzes data in a special-purpose, online

billing system on AT&T's network. It uses watchd to check \liveness"

of some service daemon processes in C at 10-second intervals. When a

process fails, that is, crashes or hangs, watchd restarts that process at its

initial state. The application C is started by a shell script that also brings

up watchd . Then, 30 seconds later, the command addwatch is issued to

register all critical processes. In this product, the use of watchd required

no change to the application and a small change to the startup script.

Other potential uses of this kind of fault tolerance would be in general-

purpose computing environments for stateless network services, such as

those provided by lpr, finger, or inet daemons. Using checkpointing in

those daemons would be unnecessary.

8.3.2 An Event-Action Tool Application

watchd and libft are used to make Yeast (see Chapter 9) tolerant to

machine crashes. Yeast triggers actions when speci�ed event patterns

are matched in a computing environment. The critical data in Yeast are

the event tables and all the global variables that reference those tables.

cia (see Chapter 6) was used to generate and identify the list of global

critical data in Yeast and the function checkpoint() is inserted into

the Yeast server code to save critical data on a backup machine. To save

the critical data in critical memory, the function ftmalloc(), instead of

regular malloc(), is used for dynamic memory allocation. In the event

of a primary machine crash, watchd on the backup machine detects the

failure and migrates the Yeast server to the backup machine with its last

checkpoint state. The number of lines added or changed in the original

Yeast source code of 10K lines is only 40. The checkpointing overhead,

in terms of increase in response time from the service, is measured to be

about 10 percent. (Also see Section 9.6.2.1.)

8.3.3 A Call-Routing Application

Application N maintains a certain segment of the telephone call rout-

ing information on a Sun server; maintenance operators use workstations

240 Huang and Kintala

running N's client processes communicating with N's server process using

sockets. The server process in N was crashing or hanging for unknown

reasons. During such failures, the system administrators had to manually

bring back the server process, but they could not do so immediately be-

cause of the UNIX delay in cleaning up the socket table. Moreover, the

maintenance operators had to restart client interactions from an initial

state. Replacing the server node with fault tolerant hardware would have

increased their capital and development costs by a factor of four. Even

then, all their problems would not have been solved; for example, since

the client processes run on standard workstations, their states of inter-

actions would not have been saved. Using watchd and libft , system N

is now able to tolerate such failures. watchd also detects primary server

failures and restarts it on the backup server. Location transparency is

obtained using getsvrloc() and getsvrport() calls in client programs,

and ftbind() in server program. The critical data in the server process

are the call routing information, the client information, and the client-

server connection information. These data are needed in recovery to locate

the clients, reconnect the clients, and regain the call data. libft 's check-

point and recovery mechanisms are used to save and recover all critical

data. Checkpointing and recovery overheads are below 2 percent. The

use of the watchd and libft in application N required a small change to

the server code. Installing and integrating the two components into the

application took six person-days.

8.3.4 REPL Application

Repl relies on watchd for crash detection and fast recovery, and uses

libft functions for checkpoint and recovery (including communication

and data). As mentioned earlier, Repl consists of four main processes{

bcplog, bcpproc, lcp, and cns; (see Figure 8.4). If one of the components

fails, watchd daemon detects the failure and recovers the failed compo-

nent. For example, if bcpproc fails, watchd daemon restarts the bcpproc

process immediately. Using the libft checkpoint and logging mechanism,

bcpproc is restored to the state just before the failure. The critical data

in bcpproc is a table that maps device numbers and i-node numbers to

�lenames on the other machine. An entry is inserted into that table in

A Software Fault Tolerance Platform 241

bcpproc when a new �le is opened for update. Later, when a write oper-

ation on the �le is performed, a message is sent to the backup with only

the device number and the i-node number of the �le, but not the �le-

name. The remote bcpproc has to locate the �le using the device number

and i-node number to perform an update. Therefore, the table is essential

for the bcpproc to process �le replication requests. Without checkpoint

and message logging, the crash of the bcpproc process could result in

a loss of the table and make the recovery of the bcpproc process very

di�cult. To improve the search e�ciency, a hash table based on i-node

numbers is used. To recover the state of bcpproc, both tables have to be

checkpointed. To save space and time in checkpointing, we use the libft

dynamic memory allocation routines, ftmalloc() and ftfree(), for al-

locating entries in both tables. When function checkpoint() is called,

both tables are saved onto a checkpointed �le.

If bcplog on the backup machine fails, the connection between lcp and

bcplog is broken. In this case, the recovery procedure is more complex.

It takes the following steps to recover a failed bcplog:

1. The watchd on the backup node brings up bcplog immediately. Once

restarted, bcplog creates a new communication channel; the informa-

tion for this new channel is recorded by the watchd .

2. bcplog sends a signal to the lcp on the primary node to inform lcp

that a new bcplog is up.

3. Upon receiving the signal, lcp on the primary node asks the watchd

for information for the new channel; with the information, lcp re-

establishes the connection.

4. Finally, lcp forwards all �le updates to the new bcplog.

Bcplog reads messages from the lcp process and writes them to a log

�le. Since the size of a log �le is limited, bcplog has to switch to a new

log �le once the size of the current log �le is over a prede�ned threshold.

Thus, the critical data for process bcplog is the name of the current log

�le. During recovery, bcplog restores the �lename, reopens the �le, puts

an end message, closes the �le, and switches to a new log �le.

If lcp fails, the following recovery procedure is taken:

1. cns receives a SIGCHLD signal when lcp dies.

242 Huang and Kintala

2. cns restarts the lcp.

3. After restart, lcp sends a signal (SIGTERM) to the remote bcplog

through watchd to kill the remote bcplog.

4. The remote watchd detects the failure of the bcplog and restarts the

bcplog.

5. lcp reconnects itself with the restarted bcplog and the recovery is

complete.

When lcp is restarted, the communication channel between applica-

tions and the old lcp fails. In this case, all applications that use the Repl

shared library get an I/O error (for example, SIGPIPE). As a result, all

applications talk to cns to receive a new connection to the newly started

lcp. With the new channel, the applications can again pass the �le update

information through lcp to the remote bcplog.

If cns fails, watchd restarts cns immediately. When cns is restarted,

it retrieves the communication channel information (connection between

cns and lcp) from watchd and reuses the communication channel. In this

case, no other process needs to be restarted. The critical data for cns is

the communication channel information. It is checkpointed when cns is

started.

If the remote machine fails, the primary watchd detects that failure

within 20 seconds (tunable parameter) and sends a signal (SIGPIPE) to

the local lcp. Then, lcp opens a local log �le and writes all incoming

update messages to that �le (see Figure 8.5).

After the remote (backup) machine is repaired and rebooted, the re-

mote bcplog is restarted and the the local lcp receives a signal (SIGTERM)

from watchd . Upon receiving that signal, lcp establishes communica-

tion with the remote bcplog and forwards �le update requests to the

remote bcplog. At the same time, bcpproc on the backup machine is

also restarted. It �rst copies the down-time log �le (created by lcp when

the backup machine is down) from the primary machine. Then, it pro-

cesses the log data to catch up with the state of the primary �le system

(see Figure 8.6).

There are two modes that bcpproc may use to catch up with the pri-

mary �le systems: replay mode and copy mode. The replay mode replays

A Software Fault Tolerance Platform 243

WD

APPL

CNS

LCP

DISK1

NODE A
NODE B

down

down-time
logfile

n-DFS

Figure 8.5 Failure of the backup node in Repl.

WD WD

APPL

DISK1

DISK2

NODE A NODE B

cns

lcp

bcplog
bcpproc

n-DFS

Figure 8.6 Rejoin of the backup node in Repl.

244 Huang and Kintala

each message in the down-time log �le, while the copy mode copies all the

critical �les from the primary �le systems. The replay mode is invoked

when the down-time log �le is smaller than a limit determined by the

application; otherwise, the copy mode is used. Once the down-time log �le

is processed, bcpproc replays the log �les created by the bcplog during

recovery. The backup recovery is complete when the bcpproc consumes

all the logged data (created by lcp and bcplog).

8.3.5 A Switching Data-Processing Application

Application U is a real-time telecommunication network system which

fetches data from a switch, �lters the data, and stores them for some o�-

line operations systems. In addition to the previous requirements for fault

tolerance, this product needed to get its persistent �les online immediately

after a failure recovery on a backup node. During normal operations on

the primary server, Repl replicates all the critical persistent �les on a

backup server with an overhead of less than 14 percent. When the primary

server fails, watchd starts the application U on the backup node and

automatically connects it to the backup disk on which the persistent �les

were replicated. To distinguish a node failure from a link failure, watchd

was con�gured to use an Ethernet and a Datakit (an AT&T Virtual

Circuit Switch (VCS) based networking product) for polling. A fail-over

takes place only when the watchd on the backup site cannot poll the

primary site using both Ethernet and Datakit. The fail-over takes about

30 seconds to �nish. Most of the processes in application U are stateless

and, hence, require no checkpointing. However, to prevent message loss in

the event of a machine crash, messages are logged before processing. To

make �le update atomic, functions ftfopen() and ftfclose() are used.

8.4 Conclusions

The three components, watchd , libft , and Repl, form the core technol-

ogy to provide fault tolerance as an architecture service. They allow fault

tolerance to be embedded when applications are being newly designed or

reengineered. They also give
exibility in the level and amount of fault

A Software Fault Tolerance Platform 245

tolerance to be implemented. This
exibility, of course, comes at certain

cost in transparent use of these components. For example, libft requires

users to insert some code in the application programs to declare critical

data structures and Repl requires users to specify critical �les. This form

of architecture service provided by these components forces users to care-

fully think about the recovery techniques and apply them only when and

where they are appropriate. In our experience, it is di�cult to achieve an

e�cient and robust fault tolerant mechanism in software systems without

users' participation. We made the platform and its components simple,

portable, and reusable to reduce that e�ort.

The three components reuse each other, as well as use other compo-

nents described in this book. In summary, Repl uses watchd and libft

for its own fault tolerance, watchd watches itself for self-recovery, all the

three components use s�o and vmalloc, and Repl uses the n-DFS shared

library for intercepting �le system calls to perform �le replication; it also

provides a lighter version of shared library (librepl.a) for replicating �les

and transactions on �les.

As mentioned in Chapter 1, research, development, and deployment of

these software fault tolerance components in the �rst few projects took a

remarkably short time compared to any of our previous experiences with

new technologies. We attribute this success largely to our customers: If

the value of goods we supply to them is not higher than what they can �nd

in the market, they simply will not use our products. It may not sound

profound to the general business community, but software researchers are

still learning this fact. Also, interacting with the customers in the early

stages gave us positive feedback to the research and technology in those

components.

The three components described in this chapter have been used within

AT&T and are also available from Tandem Computers Incorporated as a

product named HATS (High-Availability Transforming Software). Inter-

ested readers should contact the authors ([cmk,yen]@research.att.com) or

Tandem Computers for further information.

9

Generalized Event-Action

Handling

David Rosenblum and Balachander Krishnamurthy

9.1 Introduction

An event-action system is a software system in which events occurring in

the environment of the system trigger actions in response to the events.

The triggered actions may generate other events, which trigger other ac-

tions, and so on. A wide variety of software applications can be naturally

characterized as event-action systems.

Most existing event-action systems are special-purpose systems that

support a particular application domain. For example, Field [Rei90] is a

tool integration service for software development environments, support-

ing tool integration with a broadcast message server (BMS) that allows

tools to register interest in events that are generated by other tools. Ac-

tive databases are database systems containing an event-action subsys-

tem in which the events typically correspond to violation of an integrity

constraint on the database, and the actions are operations that restore

database integrity.

Given the prevalence of event-action processing within a multitude

of applications, it would be desirable to provide a general event-action

capability that can be easily and reliably integrated with applications

247

248 Rosenblum and Krishnamurthy

that need its services. In this chapter, we describe a general-purpose

event-action system called Yeast (Yet another Event-Action Speci�ca-

tion Tool). Yeast is a platform for constructing distributed event-action

applications using high-level event-action speci�cations. Yeast can sup-

port a wide variety of event-action applications, including calendar and

noti�cation systems, computer network management, software con�gu-

ration management, software process automation, software process mea-

surement, and coordination of wide-area software development. Yeast

enhances and generalizes the capabilities of the systems just discussed in

several ways{by supporting automatic recognition of a rich collection of

prede�ned event classes, by providing extensibility as user-de�ned events,

and by providing a general, application-independent encapsulation of the

event-action model.

9.2 Architecture and Operation of YEAST

Figure 9.1 depicts the architecture of Yeast. The �gure depicts processes

in ovals and data objects in rectangles, with interactions between com-

ponents being either synchronous (solid arrows) or asynchronous (dashed

arrows). As shown in Figure 9.1, the architectural style of Yeast is that

of a client/server system, in which the server is a central entity accepting

client commands from many (possibly remote) users. The user invokes

client commands through the computer system's command interpreter

(such as the KornShell|see Section 4.1); the interaction between user

and server during client command invocation is synchronous and interac-

tive. Client commands are used to register speci�cations with the server

and to perform various de�nition, query, and speci�cation management

chores. Client commands can originate from any machine, including ma-

chines outside the local network in which the server is running. The client

commands are described in further detail in Section 9.3.2.

Each Yeast speci�cation comprises an event pattern and an action.

The event pattern is a pattern of primitive event descriptors. The action

is any valid sequence of commands that can be executed by the computer

system's command interpreter, including Yeast client commands.

Generalized Event-Action Handling 249

ksh

Yeast Server

Polling

Matching

Client
Communication

.. .Yeast Client
Process

Yeast Client
Process

Polled
Event Queue

Announced
Event Table

Files

File Systems

Users Hosts

TTYsDirectories

Network Operating System

Timing

Command
Interpreter

Processes

Specifications

Definitions

&
Object Class

Figure 9.1 Architecture of the Yeast system.

250 Rosenblum and Krishnamurthy

The server invokes the computer system's command interpreter to ex-

ecute the action component of a speci�cation at the earliest possible

time after it has matched the event pattern of the speci�cation. The

action is executed on the host on which the server is running; however,

the action can explicitly call remote execution commands, such as the

UNIX command rsh, to execute all or part of the action on remote ma-

chines. The action is executed using the user's environment information

that was in e�ect at the time the user registered the speci�cation; in a

UNIX system, this environment includes the user's command search path,

current working directory, alias list, and so on. Because the user inter-

acts with the server solely through brief client command invocations, any

other speci�cation-related information the server must communicate to

the user|such as problems that arise during speci�cation matching, or

output from a speci�cation action|is sent via electronic mail to the user

who registered the speci�cation.

A primitive event corresponds to a change in the value of an attribute

of an object belonging to some object class. Prede�ned primitive events

can be automatically detected by the server; in particular, the server

polls the system environment for their occurrences. User-de�ned primi-

tive events must be announced to the server by a user, because the server

does not have su�cient knowledge about the semantics of user-de�ned

events to detect their occurrences automatically. Prede�ned primitive

events involve prede�ned object classes and attributes that the server can

poll. User-de�ned primitive events involve user-de�ned object classes or

attributes. The server stores a speci�cation's event descriptors for prede-

�ned primitive events in the Polled Event Queue in the order in which the

server will next poll for a match. The server stores a speci�cation's event

descriptors for user-de�ned primitive events in the Announced Event Ta-

ble, where they are consulted as the server receives announced events.

The server stores speci�cations and their associated information (such

as the login ID of the owner of the speci�cation) in the Speci�cation

Database while the speci�cations are active. The Speci�cation Database

includes a persistent copy of the speci�cation stored in the �le system.

Whenever the server is restarted after a machine crash, the server reregis-

ters the �le-system copies of speci�cations that were active at the time of

Generalized Event-Action Handling 251

the crash. The server stores the de�nitions of object classes and attributes

in the Object De�nition Database. This latter database contains the def-

initions of object classes and attributes that are prede�ned at the time

of starting the server, and of object class and attribute de�nitions that

are de�ned by users. The set of prede�ned object classes can vary from

machine to machine and is dependent on the resources that are available

in the computer system on which the server executes.

9.3 Features of YEAST

In this section, we �rst describe the language of Yeast speci�cations,

including a description of the prede�ned object classes and attributes.

We then describe the client commands that are used to interact with the

Yeast server.

9.3.1 The YEAST Speci�cation Language

A Yeast speci�cation consists of an event pattern along with an action,

written with the following syntax:

event pattern do action

The event pattern contains two kinds of primitive event descriptors:

(1) time-event descriptors, which match prede�ned temporal events, and

(2) object-event descriptors, which match either prede�ned or user-de�ned

nontemporal events. Compound patterns of primitive event descriptors

are formed using the connectives then (sequence-of), and (all-of), and

or (one-of).

9.3.1.1 Time-Event Descriptors

A time-event descriptor matches the passage of a relative amount of time

(for example, 20 minutes) or the occurrence of an absolute time (for ex-

ample, 7 A.M. Monday).

Relative time-event descriptors are speci�ed by the keywords in and

within, and the relative times can be speci�ed in days, hours, minutes,

and seconds. An in event descriptor matches forever after the speci�ed

252 Rosenblum and Krishnamurthy

time has elapsed, while a within event descriptor matches until the spec-

i�ed time has elapsed. The following are some examples of relative time-

event descriptors:

� in 2 hours 10 minutes{matches forever after 2 hours and 10 minutes

have elapsed from now.�

� within 6 days 10 hours{matches from now until 6 days and 10 hours

have elapsed.

Absolute time-event descriptors are speci�ed by the keywords at and

by. An at event descriptor matches forever after the speci�ed time has

been reached, while a by event descriptor matches until the speci�ed

time has been reached. Absolute times must at least specify a time of

day, with an optional day of week or date; the optional date can specify

either a day, a month and a day, or a month, day, and year. Absolute time

speci�cations implicitly specify the next occurrence of the speci�ed time.

The following are some examples of absolute time-event descriptors:

� at 8am{matches forever after the next occurrence of 8 A.M.

� by 8am{matches from now until the next occurrence of 8 A.M.

� at 8am saturday{matches forever after the next occurrence of 8 A.M. on

a Saturday.

� at 8am 31{matches forever after 8 A.M. on the last day of the current

month.

� by 8am august 31{matches from now until 8 A.M. on the next occurrence

of August 31.

� at 8am august 31 1960{matches forever from now, since the speci�ed

time and date have already passed.

� by 8am august 31 1995{matches from now until 8 A.M. on August 31,

1995.

Absolute time-event descriptors can be modi�ed by one of the following

modi�ers, which constrain matching to individual days:

� daily, today and tomorrow{used only with a time of day.

� weekly{used with a day of week.

� monthly{used with a day of month.
�In Section 9.3.1.3, we describe in more detail what \now" and \next" mean to the Yeast server.

Generalized Event-Action Handling 253

� yearly{used with a month and day of the month.

The modi�ers have their obvious meaning, with the further constraint

that at event descriptors match between the speci�ed time and the end

of the day on matching days, while by event descriptors match between

the beginning of the day and the speci�ed time on matching days. The

following are some examples of modi�ed absolute time-event descriptors:

� by 10pm today{matches between now and 10 P.M. today, or never if it

is after 10 P.M. today.

� at 8am daily{matches between 8 A.M. and the end of the day every day.

� by 8am saturday weekly{matches between the beginning of the day and

8am every Saturday.

� at 8am 31 monthly{matches between 8 A.M. and the end of the day on

the last day of every month (including months with less than 31 days).

� by 8am dec 31 yearly{matches between the beginning of the day and 8

A.M. every December 31st.

9.3.1.2 Object-Event Descriptors, Object Classes, and

Attributes

Object-event descriptors use a relational test to specify a change in the

value of an attribute of an object. They have the following syntax:

object class object name object attribute relational test

The object class and object attribute must either be prede�ned or must

have been de�ned to Yeast using the client commands defobj and de-

fattr (described shortly). The relational test of an object-event descriptor

is a test against the value of the speci�ed object attribute of the speci-

�ed object name at the time a match of the descriptor is attempted. The

special relational tests changed and unchanged are available for some

prede�ned attributes. The object attribute has a type, which is one of

the prede�ned types boolean, integer, procstatus (status values of

operating system processes), real, reltime (relative times), string, and

systime (unmodi�ed absolute times).

Table 9.1 lists the prede�ned object classes and their prede�ned at-

tributes. The following examples illustrate event descriptors involving

some of the prede�ned object classes and attributes:

254 Rosenblum and Krishnamurthy

Table 9.1 Prede�ned Object Classes and Attributes of Yeast

Object Class Attribute Description
dir atime Last access time

(directories count Number of �les in the directory
in the �le mode Access permissions
system) mtime Last modi�cation time

owner Login ID of owner
file atime Last access time

(�les in the mode Access permissions
�le system) mtime Last modi�cation time

owner Login ID of owner
size Number of bytes in the �le

filesys capacity Percentage of total capacity in use
(mounted �le systems) size Total capacity in kilobytes

host load Load average
(named computer up Whether or not the host is operational

hosts) users Number of users logged on
process etime Elapsed clock time
(operating size Kilobytes of memory used
system status Execution status

processes) stime CPU time in privileged mode
utime CPU time in user mode

tty mode Access permissions
(terminal devices) mtime Last modi�cation time

user location Tty of login session
(user login IDs) loggedin Whether or not the user is logged in

� �le foo mtime > 8am Jan 1 1994{matches forever once �le foo has been

modi�ed after 8 A.M. on January 1, 1994.

� �le foo mtime changed{matches forever after the next time �le foo

has been modi�ed.

� user dsr@research loggedin == true{matches whenever user dsr is

logged in on host research.

� host research load < 2.0{matches whenever the load on host research

is less than 2.0.

All �le, dir, and tty objects named without full pathnames are implic-

itly pre�xed by the current working directory that was in e�ect at the

time the enclosing speci�cation was registered. Event descriptors involv-

ing prede�ned attributes of the object class �le have special semantics

when the speci�ed �le is a directory. In particular, the event descriptor is

matched if it matches either for the speci�ed directory itself or for any of

the �les contained in the directory. This semantics applies only to the top

level directory, not recursively to the complete subdirectory structure.

Generalized Event-Action Handling 255

9.3.1.3 Compound-Event Descriptors

As mentioned at the beginning of this section, compound-event patterns

are formed using three connectives, which, in order of decreasing priority,

are then, and, and or. Parentheses can be used to enforce any desired

grouping. A compound-event descriptor combined with and is matched

whenever the constituent event descriptors match at the same time. A

compound-event pattern combined with or is matched whenever any of

the constituent events match. For a then connective, the server matches

the event pattern on the left side of the operator then before it attempts

to match the event pattern on the right side of the operator then; only

after the right side is matched is the complete pattern combined with

then considered to be matched.

Note that, in general, it is possible to write speci�cations whose event

patterns will never match once certain time-event descriptors stop match-

ing. If the server detects that a speci�cation is unmatchable, the server

removes the speci�cation, and the user who registered the speci�cation is

noti�ed of the failed match by electronic mail.

9.3.2 Client Commands

Users interact with the Yeast server through a collection of client com-

mands that are invoked through the computer system's command inter-

preter. The Yeast client commands can be categorized as follows:

1. addspec and readspec{Commands for registering new speci�cations

2. defobj and defattr{Commands for de�ning new object classes and

attributes

3. announce{A command for generating events involving user-de�ned

object classes or attributes

4. lsspec, rmspec, fgspec, suspspec, andmodgrp{Commands for ma-

nipulating registered speci�cations

5. lsobj, rmobj, lsattr, and rmattr{Commands for manipulating object

classes and their attributes

6. authobj, authattr, and lsauth{Commands for controlling and deter-

mining access to object classes and attributes

256 Rosenblum and Krishnamurthy

7. regyeast and unregyeast{Commands for registering and unregister-

ing users with Yeast

Users must register themselves with the Yeast server via the client com-

mand regyeast before they can carry out other client interactions.

9.3.2.1 Registering Speci�cations

Users register speci�cations with the Yeast server via the client com-

mand addspec, which has the following syntax:�

addspec [repeat] f+group nameg Yeast speci�cation

The syntax of the Yeast speci�cation was described in Section 9.3.1. The

optional speci�er repeat indicates that the speci�cation is to be imme-

diately reregistered with the Yeast server whenever the server matches

the event pattern and triggers the action, or whenever the server removes

the speci�cation because it is unmatchable. A speci�cation can option-

ally be given one or more group names. Group names are used in client

commands that manipulate speci�cations (such as those commands in

category 4 listed in the previous section) to refer to a group of speci�ca-

tions with a single name, and to refer to speci�cations from within the

action component of other speci�cations.

The client command readspec can be used to register a collection of

speci�cations stored in a �le.

9.3.2.2 De�ning Object Classes and Attributes, and

Announcing Events

New object classes and attributes are de�ned to Yeast with the client

commands defobj and defattr, respectively. Events involving user-

de�ned object classes and attributes must be announced to Yeast with

the announce command, which has the following syntax:

announce object class object name object attribute = attribute value

Given the importance of announcements as the fundamental mechanism

for generating user-de�ned events, a version of the client command an-
�In describing the syntax, we use the convention that square brackets denote optional tokens,

while curly braces denote tokens that can appear zero or more times.

Generalized Event-Action Handling 257

nounce is available as a library routine that can be linked with applica-

tion programs that need to generateYeast announcements. Applications

can invoke the announce routine at appropriate points from within their

application.

9.3.2.3 Manipulating Speci�cations, Object Classes, and

Attributes

Several client commands are available for manipulating existing speci�-

cations, object classes, and attributes.

The command lsspec lists a user's active speci�cations and shows the

internal number that the Yeast server has assigned to each speci�cation.

Rmspec is used to remove speci�cations. Suspspec is used to suspend

matching on the event patterns of speci�cations, while fgspec is used

to resume matching on the event patterns of speci�cations. Modgrp is

used to add speci�cations to and remove speci�cations from speci�cation

groups. All of these commands operate on both speci�cation numbers

and speci�cation groups. Users can execute these speci�cation-related

commands only for the speci�cations they have registered via addspec.

The command lsobj lists all the prede�ned and user-de�ned object

classes, and the command lsattr lists the attributes of an object class

along with their types. Rmobj is used to remove a user-de�ned object

class, while rmattr is used to remove a user-de�ned attribute.

9.3.2.4 Controlling and Determining Access

All client interactions with the Yeast server undergo authentication to

ensure that Yeast users do not interfere with one another (accidentally

or otherwise). When a user de�nes a new object class via defobj, the

new object class is owned by that user; ownership is determined likewise

for attributes de�ned via defattr.

An owner can use the client commands authobj and authattr to give

another user one of four levels of access to an object class or attribute,

respectively:

� Read access{The user can make speci�cations whose event patterns

involve the object class or attribute.

258 Rosenblum and Krishnamurthy

� Announce access{The user can announce events involving the object

class or attribute; announce access includes read access.

� Write access{The user can de�ne and remove attributes of the object

class; write access includes announce access.

� Owner access{The user can delete and remove the object class or at-

tribute; owner access includes write access.

For example, the owner of an object class might give other users an-

nounce access for a particular attribute and read access for all other

attributes. The commands authobj and authattr can also be used to

remove a user's access privileges. The prede�ned object classes and at-

tributes are owned by Yeast, and all users are given read access to

them. The client command lsauth lists the authentication information

of an object class and its attributes.

9.4 Elimination of Polling in YEAST

In this section, we describe some details of the implementation of Yeast,

including a discussion of how we avoid polling in one version of Yeast

for �le-related events.

The Yeast server is a single process that must handle both client con-

nections and checking the queue of polled-event descriptors for potential

matches. If the server is busy checking event descriptors in this queue,

client connections may be blocked. Likewise, if several client communica-

tions occur in a row, the server may not be able to check the Polled Event

Queue, thus delaying the triggering of actions. Fairness is guaranteed by

ensuring that every so often client connections are checked. There is a

slight bias in favor of checking the Polled Event Queue to ensure that

speci�cations already registered with Yeast are promptly matched.

File-related events are frequently of interest to Yeast applications,

and we therefore took a close look at improving the e�ciency of match-

ing these events. Users are typically interested in �le creation, change,

and deletion events. With the 3D File System [KK90], Yeast is able to

automatically detect occurrences of such events without having to poll.

Since the 3D File System implementation traps all operating system

calls that correspond to Yeast �le events, we enhanced the 3D File

Generalized Event-Action Handling 259

System to announce occurrences of Yeast �le events to the Yeast server.

These enhancements required a small change to 3D File System, which

was then generalized and implemented in a system called COLA [KK92].

Generating announcements to user-level processes was further generalized

and built into the new version of 3D File System{n-Dimensional File

System (described in Chapter 2).

The advantage of this scheme is that it eliminates wasteful polling for

events that may happen infrequently, and it never misses events that may

be missed because of long polling intervals. Being able to trap speci�c �le

events e�ciently is a useful ability. We made signi�cant use of this when

we reused Yeast as a component of Provence (Chapter 10).

9.5 An Example Application of YEAST

As described brie
y in Section 1.3.1, we developed a collection of Yeast

speci�cations that automate portions of a software distribution process.

We describe the process in more detail here and illustrate some of the

Yeast speci�cations.

As should be clear by now, many of the tools in our department are

dependent on one another. Thus, each tool owner must keep track of the

activities of several other tool owners. The management of this collec-

tion of tools has been centralized under the control of a meta-user called

Advsoft, who gathers and distributes the o�cial versions of the tools.

Figure 9.2 depicts the process that Advsoft manages. In the �gure,

the circles represent subprocesses, and the arrows represent data
ow

between subprocesses. As shown in Figure 9.2, tool owners submit the

newest versions of their tools to Advsoft in cycles that currently occur

two times a year. The �gure depicts in detail how the process is carried

out for the tool libx (solid lines), while showing that an identical process

is carried out for all other tools T in parallel (dashed lines). The rest of

the diagram should be self-explanatory.

We describe a collection of Yeast speci�cations that automate the

primarily bookkeeping activities of Advsoft. The speci�cations auto-

mate the portions of the diagram of Figure 9.2 that appear in boldface.

260 Rosenblum and Krishnamurthy

Prepare
Enhanced

T
(T’s owner)

Approve
T

(advsoft)

Rebuild
libx

(advsoft)

Test

(Dep Owners)

(Yeast)

Approve
libx

(advsoft)

Distribute
Approved
System

(advsoft)

Initiate
Cycle

Announcement of

Success
Announcement o

f

Failu
re

Notific
ation

Mail to
 Dependent

Owners

Announcement of

New Cycle

Announcement of

Acceptance

Announcement of

Rejection

Announcement of

New Cycle

Approved T

Prepare
Enhanced

libx
(libx’s
owner)

New
libx

Fixes to

Tools
lib

x

Depends on

Fix libx
(libx’s owner)

Fixed
libx

Approved
libx

Notify
Owners

Dependent

libx
on

Figure 9.2 The Advsoft software tool distribution process.

Generalized Event-Action Handling 261

9.5.1 Object Classes

To model the Advsoft process in Yeast and develop the speci�cations,

it was �rst necessary to identify the kinds of objects that Advsoft man-

ages, along with their attributes. The object classes we identi�ed include

tools and tool owners, which have the following attributes:

� Tools:

Rebuilt{A boolean-valued attribute that becomes true for a tool T

whenever a new version of T has been built successfully.

Accepted{A boolean-valued attribute that becomes true for a tool

T whenever T has been accepted by all owners of tools that are

dependent on T .

� Owners:

Accepts{A string-valued attribute specifying a tool T that has been

accepted by an owner U .

Rejects{A string-valued attribute specifying a tool T that has been

rejected by an owner U .

The owner of a tool is simply the person or persons who built the tool

and who are responsible for making �xes and enhancements to the tool.

The following commands register these object classes and attributes with

Yeast:

defobj tool

defattr tool accepted boolean

defattr tool rebuilt boolean

defobj owner

defattr owner accepts string

defattr owner rejects string

Because these object classes are user-de�ned, their events must be an-

nounced to Yeast. As will be seen, all of the necessary announcements

are generated automatically by Yeast speci�cations and by other pro-

grams.

262 Rosenblum and Krishnamurthy

9.5.2 Speci�cations

To initialize the Advsoft process, we run a command script called

genspecs that generates all the speci�cations that are used to automate

the process. The speci�cations are generated for all tools and owners that

are known to Advsoft, using dependency information maintained in the

Advsoft tool database. As an example of the speci�cations generated

by genspecs, the following speci�cations automate the \Notify Owners"

subprocess of Figure 9.2 for the tool libx:

addspec repeat +advsoft +libx �le /home/advsoft/src/libx/BUILT mtime

changed do announce tool libx rebuilt = true

addspec repeat +advsoft +libx �le /home/advsoft/src/libx/ERROR mtime

changed do announce tool libx rebuilt = false

addspec repeat +advsoft +libx tool libx rebuilt == true

do Mail -s \libx was rebuilt" uid1 uid2 : : :

The �rst two speci�cations de�ne the low-level, prede�ned Yeast

events that determine when a new version of a tool has been built. Each

tool (such as libx) exists in its own subdirectory of /home/advsoft/src.

Whenever a tool is rebuilt, the �le BUILT is created in the tool directory

if the build succeeded, while the �le ERROR is created if the build failed.

The �rst speci�cation says that whenever the �le BUILT is modi�ed, then

the high-level event \tool libx was successfully rebuilt" is automatically

announced. The second speci�cation says that whenever the �le ERROR is

modi�ed, then the high-level event \tool libx was unsuccessfully rebuilt"

is automatically announced. Thus, the �rst two speci�cations serve to

translate the low-level �le system events into process-level tool-change

events. The third speci�cation illustrates one of the actions that is per-

formed as a result of a successful rebuild; it says that whenever libx has

been rebuilt, electronic mail is sent to uid1, uid2, : : :, who are the owners

of tools that depend on libx (as determined by genspecs).

Once tool owner uidi receives a \libx rebuilt" message, that owner

runs regression tests on his or her dependent tools, and then makes one

of the following two announcements, corresponding to the \Acceptance"

Generalized Event-Action Handling 263

and \Rejection" announcements of Figure 9.2:

announce owner uidi accepts = libx

announce owner uidi rejects = libx

In practice, these announcements can be generated automatically by the

regression test scripts themselves. These announcements trigger other ac-

tions that are de�ned by the following speci�cations, which partially au-

tomate the \Test" subprocess of Figure 9.2; in these speci�cations, uidlibx

is the owner of libx:

addspec repeat +advsoft +libx owner uid1 accepts == libx

and owner uid2 accepts == libx

and : : :

do Mail -s "libx accepted" advsoft uidlibx

announce tool libx accepted = true

addspec repeat +advsoft +libx owner uid1 rejects == libx

or owner uid2 rejects == libx

or : : :

do Mail -s "libx rejected" advsoft uidlibx

announce tool libx accepted = false

The �rst speci�cation automatically announces acceptance of libx once all

dependent tool owners have announced his or her individual acceptance

of libx. The second speci�cation automatically announces rejection of libx

once any dependent tool owner announces his or her individual rejection

of libx.

In testing some dependent tool against a new version of libx, the owner

of the dependent tool may �nd it necessary to submit a new version of

the dependent tool in order to account for interface changes and/or new

features in the new version of libx. In such a situation, the dependent

owner might withhold acceptance or rejection of libx until the new ver-

sion of the dependent tool has itself been developed and made ready for

submission to the Advsoft process.

264 Rosenblum and Krishnamurthy

9.5.3 Changes to Tools and Owners

The tool dependency speci�cations shown in the previous section can be-

come obsolete as the owners of and dependencies among existing tools

change, and as new tools come into existence. Other speci�cations are

used to automatically delete obsolete tool dependency speci�cations and

add new ones whenever such events occur. This is accomplished by com-

bining the speci�cations in the previous section into several speci�cation

groups, each of which can be removed by name and reconstructed as

changes in dependencies occur. For instance, the acceptance and rejec-

tion speci�cations shown in the previous section are in the speci�cation

group libx. The following speci�cation regenerates the libx speci�cations

whenever changes are made to the libx tool area:

addspec repeat +advsoft dir /home/advsoft/src/libx mtime changed

do rmspec libx

genspecs libx

That is, if the libx tool directory is modi�ed, then the libx speci�cation

group is removed using theYeast client command rmspec, and genspecs

is invoked to regenerate the libx speci�cations.

Similarly, if a brand new tool is submitted to Advsoft, then all of

the existing Advsoft speci�cations are assumed to be obsolete because

of the potential introduction of new or altered dependencies between

tools. Therefore, the following speci�cation is used to delete and regen-

erate the complete set of speci�cations (such as the speci�cation group

advsoft) whenever a new tool is introduced (as indicated by a change in

/home/advsoft/src):

addspec repeat dir /home/advsoft/src mtime changed

do rmspec advsoft

genspecs

9.5.4 Discussion of ADVSOFT

Advsoft provides a real-world application for gaining experience with

Yeast and identifying shortcomings in Yeast. Indeed, the speci�cation

Generalized Event-Action Handling 265

group feature was added in response to the need for the action of one

speci�cation to manipulate other speci�cations.

We have illustrated just a few of the speci�cations we have developed

to automate the Advsoft process. In total, Advsoft controls 64 tools,

which require 291 Yeast speci�cations to automate the portions of the

process we have automated. The regularity of the speci�cations allows

the use of the simple command script genspecs to generate the entire set

of speci�cations.

Note that because many events in this process are represented by

Yeast announcements, individual tool owners can register additional

speci�cations that provide other kinds of automated support customized

to their particular needs (such as daily reminders to test their dependent

tools). Note also that the process as currently de�ned contains several

\holes", such as a lack of enforced deadlines. Such re�nements to the

process can be easily incorporated with additional speci�cations.

The Advsoft process, of course, involves another set of activities;

namely, those associated with the management of distribution requests

and problem reports from external tool customers. We have just begun

to model and automate these activities.

9.6 Reuse

9.6.1 Architectural Style of YEAST Applications

Yeast is a tool that naturally aids event/condition/action applications.

An application that can be modeled as a set of conditions that are satis�ed

when a set of events occur, which, in turn, results in a set of actions being

triggered, can use Yeast directly as an implementation vehicle. Unlike

other tools, Yeast's extensibility (the ability to de�ne new object classes

and attributes as explained in Section 9.3.2.2) enables applications to

map their conditions into the various event classes of Yeast. By default,

Yeast tracks a variety of system events, but user-de�ned events are

tracked through announcements. The open nature ofYeast, whereby any

system action can be invoked, makes it possible for arbitrary applications

to use it. By separating the action language portion of Yeast to be ksh,

266 Rosenblum and Krishnamurthy

arbitrary scripts in the ksh language can be executed as a result of event

patterns being matched.

The event/condition/action style (see Section 1.4) is general, and sev-

eral Yeast applications can be cast naturally in this paradigm. With

Yeast, arbitrary collections of users and application programs can in-

teract in a loose manner via the event broadcast (and matching) mecha-

nism [GN91]. A tool that embodies an architectural style may constrain

the application, but the tool's implementation should be open so as not

to interfere with the speci�c needs of the application. Keeping this in

mind, Yeast was designed with a clear separation between the events

being matched and the actions that could be triggered. There are no con-

straints on what actions can be triggered via Yeast including internal

Yeast actions. However, there are constraints on the range of applica-

tions for which our implementation of Yeast could be reused. While the

range of events matched by Yeast is wide, it is probably not suitable for

applications with real-time constraints.

9.6.2 Architectural Services

The architectural services used by Yeast are fault tolerance and visu-

alization. In Section 1.6.2, we used Yeast as an example for both these

architectural services. We go into more detail here.

9.6.2.1 Fault Tolerance

As discussed in Sections 1.6.2.1 and 8.3.2, Yeast has been made fault-

tolerant by grouping the critical data structures in a separate section of

the code. When Yeast is linked with libft , the critical data structures are

checkpointed and can be automatically recovered via recovery routines

available also as part of libft . To detect machine failures and recover from

them, Yeast is registered with a shadow process (watchd) along with

a list of compatible hosts on which the Yeast server process can be

restarted.

There were several requirements in makingYeast fault tolerant. Since

Yeast runs as a continuously accessible server and accepts client com-

mands from anywhere on the network, remote users should not be aware

Generalized Event-Action Handling 267

of the server machine failure. Additionally, events can occur at any time

and speci�cations may be matchable at any time. Even if the server is

restarted on a di�erent machine upon machine failure, users on the net-

work would have to be able to access it as before, that is, in a location-

transparent manner. Additionally, sinceYeast speci�cations can be com-

plex (event descriptors linked with combinators), the partial match status

of speci�cations has to be preserved to ensure that matching continues

from the point where the last checkpoint was made.

9.6.2.2 Visualization

As with fault tolerance, visualization is another architectural service that

is used by Yeast. However, use of visualization is not at a library level,

but rather at a language level and at a process level. Yeast speci�cations

can be visually represented as simple graphs with the event descriptors

and combinators (and/or/then) as nodes, and the connection between

the events represented as edges. Thus, the following speci�cation

addspec at 8a and file foo mtime changed do action

is visualized, as shown in Figure 9.3. The speci�cation label, the action

string, and the connector (and) are shown along with the primitive-event

descriptors. In the case of the temporal-event descriptor, the time at

which it will be matched is displayed. For the object-event descriptor,

the object class (�le), the name of the object (/home/bala/foo), the

attribute being matched (mtime), and the time at which the next at-

tempt will be made to match this event descriptor are displayed.

Figure 9.4 shows a few more speci�cations; repeatable speci�cations

are shown with an arrow pointing back to the speci�cation.

Users wanted a dynamic, graphical front end showing the current par-

tial match state of their Yeast speci�cations, that was updated as and

when the speci�cation matching state changed. In reusing an existing

visualization tool, there were two design goals in mind: minimizing em-

bedded knowledge of the visualization tool in Yeast (and vice versa),

and ensuring that the dynamic front end did not impact the performance

of Yeast.

268 Rosenblum and Krishnamurthy

1
action

and

Object event
file

/home/bala/foo
mtime

Sun Jul 10 12:10:36 EDT 1994

At time event
Mon Jul 11 08:00:00 EDT 1994

Figure 9.3 Front end to Yeast{fey .

The graphical front end for Yeast fey is a per-user front end; that is,

each Yeast user invokes fey to visualize its collection of speci�cations.

The displayed speci�cations include both active and suspended ones. fey

shows the matching status and the time of the next matching attempt of

each primitive-event descriptor in the speci�cation.

When the fey front end is started, a Yeast client command dumpspec

extracts a description of the user's set of speci�cations in the dot language

format from the Yeast server. This dot description is sent to dotty ,

which generates the layout. The interesting aspect about fey is that

it is a dynamic front end. Since the architectural service provided by

dotty is via a running dotty process, we set up a dynamic link between

Yeast and dotty . Thus, whenever there is a change in the status of any

speci�cation of a user, a noti�cation is generated by Yeast and sent to

the dotty process, which reinvokes dumpspec to get a new layout. The

dotty process can stack the change noti�cations it receives from Yeast

before requesting an update, lowering the burden on the Yeast daemon.

In keeping with the architectural-service notion, there is a clear sep-

aration of tasks between Yeast and dotty . Yeast continues to match

events and only noti�es fey about state changes. fey requests raw layout

information at appropriate times, creates an aesthetic layout, and updates

the display dynamically. There is no code dealing with layout handling,

display, interaction with the front end, and so on, in Yeast. There is

Generalized Event-Action Handling 269

2
dodiff

Object event
file

/n/corpus/ap/94/07/20/INDEX
mtime

Wed Jul 20 08:30:51 EDT 1994

4
apnewscan

At time event
Thu Jul 21 01:00:00 EDT 1994

3
tail -5 /tmp/xisdn

Object event
file

/tmp/xisdn
mtime

Wed Jul 20 08:30:56 EDT 1994

5
figmod

and

Object event
file

/home/bala/figs/fig1
mtime

Wed Jul 20 08:32:56 EDT 1994

In time event

1
popupmail

Object event
file

/usr/spool/mail/bala
size

Wed Jul 20 08:33:13 EDT 1994

Figure 9.4 fey showing a collection of Yeast speci�cations.

270 Rosenblum and Krishnamurthy

n-D File System

ksh

libast
(hash)

libast
(hash)

libcs + SFIO

Yeast Server

Polling

Matching

Client
Communication

.. .Yeast Client
Process

Yeast Client
Process

Polled
Event Queue

Announced
Event Table

ssd

File Systems

Users Hosts

TTYsDirectories

Network Operating System

libast (tm)

Timing

Command
Interpreter

Specifications

Definitions

and
Object Class

ProcessesFiles

Figure 9.5 Enhanced architectural view of Yeast showing reused

components.

Generalized Event-Action Handling 271

no event matching code in fey . The architectural service of visualization

provided by dotty makes this separation natural.

9.7 Reuse of Libraries and Components

Figure 9.5 shows the same architectural view of Figure 9.1, with the

reused components highlighted. Figure 9.5 shows Yeast reusing libraries

and components at all of the four levels discussed in Section 1.5. The

following is a list of the stages at which we reuse existing components in

our Yeast implementation:

� Linking with libraries

� Con�guration and assembling

� Fault detection

� Reverse engineering

� KornShell as action language

� Auxiliary commands with running Yeast

� Distribution

9.7.1 Linking with Libraries

Signi�cant use is made of libast 's hash table, time, and error-handling

routines. The safe/fast I/O (s�o) library routines are used for a variety

of bu�ers, from the commonly used error-message bu�er to reading in

incoming packets over the network. The libcs library is used for service

naming. The numerous advantages of using libcs include the ability to run

multiple instantiations of the same service using various restrictions (such

as user=uid or group=gid) to restrict access, and client authentication

(without requiring a privileged service). Details on libcs can be found in

Section 2.2.7.

9.7.2 Con�guration and Assembling

Yeast was jointly developed by the authors of this chapter and we

worked o� the same code base. One author used n-DFS (see Chapter 3)

exclusively for viewpathing to ensure that changes made during devel-

272 Rosenblum and Krishnamurthy

opment did not a�ect the other author. The other author used the view-

pathing mechanism of nmake at build time to share the sources. The

maintenance of multiple parallel versions{a requirement because there

were several simultaneous extensions being made to Yeast (visualiza-

tion, semantic analysis, and so on){was thus made easier.

For portability, we relied on i�e (Section 3.2). Since kernel data struc-

tures vary across machine architecture, code relating to the prede�ned

object-class process required di�erent features. The choice of the mail

program (used to send the result of any Yeast-triggered action), the

absence or presence of system �les (and, if present, their location such as

/usr/spool/rwho �les), and so on, were all determined via use of i�e.

We also used proto to convert our code to be ANSI-C compliant.

9.7.3 Fault Detection

Yeast provided the �rst opportunity to apply App, the Annotation Pre-

Processor for C (see Chapter 5), to the development of a serious applica-

tion. One of the authors used App assertions{116 assertions were made

in 95 assertion regions. Of these 95 assertion regions, 39 are function

interface speci�cations, which contain a total of 61 assertions.

In the course of applying App to the development of Yeast, faults were

found in the App implementation, and App's capabilities were adjusted

in minor ways to make the tool and assertion language easier to use. More

signi�cant, however, was the bene�t App brought to the development of

Yeast, proving App's utility as a high-level, systematic aid to fault de-

tection and isolation. In particular, since �rst releasing Yeast to other

people within AT&T, we have discovered and removed 19 faults. Of these

19 faults, eight were discovered by one or more assertion violations. Of the

11 faults that were not detected by assertions, six could have been caught

by assertions that were not written; two were detected by a heap storage

certi�cation routine; and the remaining three could have been detected

only with an assertion language more powerful than App's. The experi-

ence of applying App to the development of Yeast has been described

in detail separately [Ros92].

Generalized Event-Action Handling 273

9.7.4 Reverse Engineering

Both during development and debugging, we used cia and the collection

of tools built on top of cia (see Chapter 6). Speci�cally, while adding a

new feature toYeast, we were able to quickly locate the parts of the code

that would be a�ected by the proposed enhancement. After the feature

addition, we were able to go back and generate the collection of �les and

functions that were a�ected by the enhancement; this enabled isolation

of �les and functions that needed to be looked at while debugging the

feature.

After a few early versions of Yeast, we went back and used incl to

weed out unnecessary include �les that had agglomerated. Function call

graphs generated via dagger (Section 6.4) were handy as the code in-

creased in size and complexity. While making Yeast fault tolerant, cia

was used to generate a list of global data structures. This resulted in the

creation of a routine (gblgen) that has since been reused in many other

projects that required fault tolerance. This is a good example of how work

on top of a tool for use within another tool in the department led to a

generic routine that has since been reused many times for tools outside

the department.

9.7.5 KornShell As Action Language

Yeast speci�cations consist of event patterns and KornShell actions to

be triggered when the pattern has been matched. The advantages of using

KornShell as the action language of Yeast include:

� Command interpretation is outside of Yeast, enabling separation of

tasks as well as reducing the size of Yeast.

� Numerous language features and existing command scripts of KornShell

can be used in Yeast.

� Since KornShell is the command interpreter of choice for a very high

percentage of users, anything that can be done via ksh can be triggered

as a result of matching a Yeast speci�cation. This factor has led to

easier comprehension, quicker appreciation, and widespread usage of

Yeast.

274 Rosenblum and Krishnamurthy

9.7.6 Auxiliary Commands

Two processes that we use in conjunction with Yeast are cs (the con-

nection service) and ssd (the system status daemon). The cs command

can be used to inquire about the status of a collection of Yeast speci-

�cations. The ssd process reports network status that the cs server uses

for matching event descriptors using attributes of host object class.

9.7.7 Distribution

Yeast was distributed like other tools in our department to many sites

within the company. During this process, we came up with the notion

of modeling the distribution process itself, as well as to use Yeast to

automate parts of the process. In Sections 1.3.1 and 9.5 we discussed the

Advsoft process. Yeast's modeling led to better understanding of the

process.

9.8 Conclusion

We have described the event-action system Yeast. Several projects

within AT&T are using it for a variety of applications. Some of these

applications include wide-area software development, requirements trac-

ing, software tracking, security monitoring, and process measurement.

The generality and extensibility of Yeast have made it highly amenable

to the di�ering needs of these applications. The availability of several

lower-level libraries have enabled a signi�cant amount of software reuse

within Yeast. Additionally, Yeast has shown the viability of reuse of

architectural services (such as fault tolerance and visualization).

10

Monitoring, Modeling, and

Enacting Processes

Naser Barghouti and Balachander Krishnamurthy

10.1 Introduction

This chapter describes a process-centered software development environ-

ment called Provence, built by connecting several of the tools de-

scribed earlier in the book. The connection, unlike the tools described

thus far, is at a component level. Provence is an example of a tool in

the connected tools layer, as described in Section 1.5. We begin with a

description of a software development process, followed by a description

of the architecture of a process-centered environment. We then explain

the details of Provence, an instance of this architecture, with an eye

toward reuse and componentization.

10.2 Software Development Process

A software development process is a partially ordered set of steps that are

followed in developing a target system. Processes vary across organiza-

tions and involve both humans and tools. A process-centered environment

(PCE) is a software tool that assists in modeling and enacting software

processes. The thrust of research in the area of process-centered envi-

275

276 Barghouti and Krishnamurthy

ronments has focused on two objectives: (1) to devise useful notations,

called process modeling languages, by which the environment is tailored

to the desired process; and (2) to investigate mechanisms, called process

enactment engines, by which PCEs assist users in analyzing, simulating,

carrying out, and automating the speci�ed processes.

By providing a powerful process modeling language, the PCE enables

a systems/process engineer to write a speci�cation that models the struc-

tural attributes of a system (often called the data model or the infor-

mation model) as well as the behavioral attributes (the processes). The

enactment engine of the PCE uses the speci�cation to tailor its runtime

assistance. In particular, existing PCEs provide the following forms of

assistance

� Monitoring the actual process execution to verify that developers are

following a particular process

� Planning future development activities

� Automating parts of the process

� Enforcing a speci�c process

These forms of assistance, if provided in a nonintrusive manner, are

particularly useful in software engineering environments. For example,

they would allow a systems engineer to model a reengineered process,

simulate the execution of this new process in a test environment, and

analyze the performance of the process before actually employing the

new process. PCEs also enable process engineers to collect data about

the performance of various processes and measure the e�ectiveness of

these processes.

Several PCEs have been proposed and some have been built in the

past few years [Tho91, Wil93]. Most existing PCEs, however, have been

built as monolithic systems with a closed interface in which users (soft-

ware developers, process engineers, managers, and so on) work entirely

within the PCE; that is, all interaction between the users and the project's

components is done via the PCE. This approach, called the monolithic

environment approach, assumes that organizations adopting process tech-

nology will alter their working environment signi�cantly.

Message-passing environments, such as Forest [GI90] and Field [Rei90],

remove the restriction that all development has to be done from within

Monitoring, Modeling, and Enacting Processes 277

the environment. However, this approach, called the tool integration ap-

proach, requires that all tools used during the execution of a process be

enveloped to permit interaction via the message server in the environ-

ment; that is, the developers cannot use a new tool without enveloping

it. Tool envelopes range from simple wrappers to complicated encapsu-

lations of tool functions, depending on the function of the tool and the

level of desired integration.

Both of these approaches su�er from major drawbacks. First, it is

di�cult to convince software developers to move to a completely new

family of software development environments (SDEs), especially when

the advantages of PCEs over more traditional SDEs have not yet been

demonstrated. Second, the two approaches cannot readily integrate ex-

isting technology or use new technology, such as software tools, but must

instead provide alternatives.

In this chapter, we present a PCE architecture, called Provence,

that overcomes both of these shortcomings. With respect to the �rst

shortcoming, the architecture makes it possible to introduce features

of process-centered environments incrementally to convince developers

that there is an added value to using them. Second, the architecture is

component-based, where software tools that are already being used by

developers �ll in as most of the components; new tools can be integrated

through a well-de�ned interface among the components.

10.3 The PROVENCE Architecture

The main principle behind the Provence architecture is to distinguish

between the enactment of a software process model and the actual ex-

ecution (or performance) of the process itself. The conceptual distinc-

tion between the two has been pointed out by Fernstr�om and Dow-

son [Fer93, DF93]. Separating the two domains is the means through

which Provence is able to provide nonobtrusive process-centered assis-

tance, that is, without changing the project's working environment (the

set of tools and the �le system utilities used by project personnel, the way

the project's information is organized, and so on). Figure 10.1 illustrates

278 Barghouti and Krishnamurthy

Event MonitorTranslatorProcess
 Server

Process Enactment
 Domain

Process Execution
 Domain

 Mapping
 and
Synchronization

Process Model Execution Events

Figure 10.1 Separating model enactment from process execution.

the separation between process model enactment and process execution

in Provence.

We have analyzed the requirements for achieving this separation and

have identi�ed six necessary components:

1. A process server that stores and enacts a model of the processes

2. A data management system that stores process and product data in

one or more databases and permits querying of the databases

3. An operating system monitor that detects and announces system-level

events, such as tool invocations and events related to �le accesses

4. An event-action engine that matches arbitrary event patterns and trig-

gers corresponding actions

5. A translator that maps process steps onto system-level events

6. A visualizer to display an up-to-date view of the process state

Figure 10.2 depicts how these six components are integrated in

Provence.

The architecture achieves our main objective as follows. The structural

and behavioral attributes of the system under purview is modeled in

the process server, using the process modeling language provided by the

process server. The model includes a description of the process steps, a

portion of which corresponds to actions performed on entities that reside

on the native Operating System, such as modifying a �le, invoking a

tool, and using a device. This is the portion of the process steps that

can be automatically monitored. A single process step may correspond to

a sequence of primitive Operating System events. For example, the step

Monitoring, Modeling, and Enacting Processes 279

Event-Action
 Engine

report events
related to project

request transitions
in model enactment

add specifications

Translator

Process
 Server

Process
 Model

Operating System
 Monitor

 announce
file and tool-based
 primitive events

Visualizer

Database
Manager

store/retrieve
enactment data

Figure 10.2 The Provence architecture.

\review document" may correspond to four primitive events: Invoke the

editor, open the document, read and perhaps modify the document, and

close the document. A set of these monitorable steps is generated and

conveyed to the translator.

Given the set of process steps, the translator generates a set of event-

action speci�cations. Each speci�cation is of the form \if the event pattern

x occurs, send a noti�cation to the translator and provide relevant infor-

mation about the events." These speci�cations are registered with the

event-action engine, which activates them.

The operating system monitor traps primitive operating system calls

(for example, open a �le) via a library, and, when a system call occurs, a

corresponding announcement is generated. The announcements are sent

to the event-action engine, which matches the detected events against

the event patterns in active speci�cations. When an event pattern of a

speci�cation is fully matched, the translator is noti�ed.

The translator sends a process step noti�cation to the Process Server

to notify it that the particular step has occurred. The Process Server

can then use this information to make a transition in its process model

enactment, and, based on that, perform other forms of computer-aided

280 Barghouti and Krishnamurthy

process control, such as sending noti�cations or automatically invoking

actions.

10.3.1 Assumptions

Provence makes several assumptions about the projects that might

bene�t from it:

� The project either has clear, well-de�ned processes that can be modeled

in a process modeling language, or is willing to develop a model of the

processes.

� The project has a well-understood structure from which an information

model can be developed, which identi�es the components of the system,

how they are related, and the organizational structure corresponding

to the components.

� There are two kinds of activities involved in the project: online activ-

ities (such as software tool invocations and accessing �les) and man-

ual activities (such as attending meetings and making decisions). On-

line activities can be detected automatically, whereas the occurrence of

manual activities must be announced.

� There is a mechanism to announce the occurrence of manual activities

to a software tool through a simple interface (for example, command-

line oriented).

Given a project that meets these expectations, Provence:

1. Monitors the development process of a project without forcing devel-

opers to change their working environment.

2. Maintains data about the process and the end product of a project.

3. Answers queries about the status of the software process and the var-

ious components of the project, based on the information it collected

during the life cycle.

4. Dynamically visualizes transitions in the process.

A further step would be to letProvence automate certain parts of the

process in as nonintrusive a manner as possible. Eventually, Provence

will have the capability to enforce a speci�c process. The level of intrusion

can be calibrated, depending upon the strictness of enforcement.

Monitoring, Modeling, and Enacting Processes 281

10.3.2 A High-Level Example

The functionality of Provence is illustrated by a simple example. The

development process of a software project typically consists of several

phases. Considered here is the �rst phase, which involves business plan-

ning and requirements engineering. Business planning ensures that the

end product makes business sense, and requirements engineering involves

drafting a document that speci�es the technical and functional require-

ments that the end product must meet. The business planning step is

carried out by the business planning (BP) team headed by a manager.

The requirements engineering step is done by the architecture team com-

posed of two architects.

Assume the following process: The requirements engineering step can-

not be started until the business planning team has created a draft of

the business information. The architecture team uses the business infor-

mation to draft a set of requirements for the project. Further steps, such

as design, coding, and documentation, cannot start until a draft of the

requirements document is created. Both the business planning document

and the requirements document are stored as �les; the two documents

are modi�ed in the working area of the project and moved to the released

area upon �nalization.

The following scenario illustrates the kind of assistance that

Provence would provide. Say that after the business planning team

has worked on the business document for some time, the team's man-

ager approves a draft of the document, which he or she moves to the

released area. The operating system monitor component automatically

detects that a draft has been created and noti�es the process server via

the event-action engine and the translator. The process server, through

its automation, in turn noti�es the architecture team that it can start

working on the requirements document. In addition, the process server

updates the project database to indicate that the business planning step

has been completed and that the requirements engineering step can be

started.

The two members of the architecture team create the requirements

document and work on it for some time in the working area. Finally, they

both agree on a draft of the document and move that draft to the released

282 Barghouti and Krishnamurthy

area. Again, this is automatically detected and the design team is noti�ed

that they can start working on the design document.

The project manager can inquire about the status of various project

components or the state of the process. Since the developers' activities

have been tracked, these queries can be answered accurately. In addition,

Provence can visualize all changes to the project components and the

process.

10.4 A Realization of PROVENCE

To realize the Provence architecture, we have mapped four existing

software tools to �ve of the components of Provence:

� Marvel [BK91], which �lls the roles of the process server and the

database manager.

� The n-Dimensional File System (n-DFS , described in Chapter 3), which

maps to the operating system monitor.

� Yeast (Chapter 9), which maps to the event-action engine.

� dotty (described in Section 11.2), which serves as the visualizer.

The di�erent technologies of these four tools complement each other,

and they can be combined to provide assistance in modeling and manag-

ing the development process.

Whereas Marvel's rule language can be used to model the software

process at a high level, Yeast can serve as a low-level monitor of process-

related events. Yeast accepts noti�cation of �le-based events, which are

automatically generated by n-DFS . dotty can visualize the information

in the process and project database maintained by Marvel and update

the display whenever the database changes. Furthermore, the user can

interact directly with dotty , providing another interface to the process

server.

Figure 10.3 depicts how Marvel, Yeast, n-DFS , and dotty are con-

nected. This is one realization of the Provence architecture; other real-

izations that use a di�erent set of tools can be achieved with roughly the

same amount of e�ort.

Monitoring, Modeling, and Enacting Processes 283

process
and data
models

report events
related to project

request transitions
Y

dotty

Enactor
process and data models add specifications

visualize
enactment

 announce
file and tool-based
 primitive events

announce
human
events

Users
Non-File/Tool
 OS Entities

poll OS
entities

n-DFS

 File System

Tool

Tool

Tool

execute
access

MARVEL EAST

Figure 10.3 A realization of Provence.

All four tools, which provide most of the functionality of the compo-

nents, are fully implemented and currently available. n-DFS ,Yeast, and

dotty were designed to be open tools in the sense that they can interact

with other tools at the operating system level (for example, via inter-

process communication, �les, and so on). We did not have to introduce

any changes to n-DFS and dotty . The connection between n-DFS and

Yeast and the connection between Marvel and Yeast, which is done

via another tool called the Enactor , required extending Yeast with the

notion of event contexts and constraints (explained later).

In the rest of this section, we brie
y describe Marvel, the Enactor , the

extensions to Yeast, and how we connected the four tools.

10.4.1 MARVEL

Marvel is based on four main ideas: (1) a powerful process modeling

language called MSL that combines object-oriented data modeling with

rule-based process modeling; (2) an enactment engine that supports rule

inferencing and forward and backward chaining among rules; (3) facili-

284 Barghouti and Krishnamurthy

tating the integration of conventional UNIX tools into the tailored PCE

rather than building specialized tools; and (4) supporting cooperation and

coordination among multiple developers within a single software process.

MSL provides object-oriented constructs for modeling the structural

aspects of a system (such as the components of the system, how they are

organized, relationships among components, and organizational informa-

tion) in terms of object classes. Each class de�nes a set of typed attributes

that can be inherited from multiple superclasses. The set of classes consti-

tutes the information model. Loading the information model into Mar-

vel instantiates a project-speci�c environment. Users create the actual

project components as instances of the classes;Marvel stores all objects

in a project database that is controlled by a centralized server.

With objects, MSL provides condition-action-e�ects rules that are used

to model the project's development process. Each rule de�nes the condi-

tion for initiating a process step, the action (for example, invoking a tool)

involved in the step, and the possible e�ects of the step on the objects in

the database.

When a developer requests a command from the menu,Marvel auto-

matically �res a rule that implements the command by manipulating the

attributes of the objects in the database. If the e�ect of a rule changes

the values of objects' attributes in such a way that the conditions of other

rules become satis�ed, all of those other rules are �red automatically, in

a forward chaining manner. Alternatively, if the condition of a rule is not

satis�ed, backward chaining is performed to attempt to make it satis�ed.

If that fails and the condition remains unsatis�ed, then the rule cannot

be executed at that time.

The interaction between Marvel and its users is closed in the sense

that developers must request all development activities via Marvel. In

the graphical interface, this is done by clicking on a command from either

the built-in command menu or the project-speci�c command menu that

corresponds to the loaded rules. All project components must be stored

in the project database, which is controlled by Marvel. Furthermore,

all the tools used by a project must be enveloped to be integrated into

the Marvel environment.

In Provence, we use Marvel not as a closed environment, but as a

Monitoring, Modeling, and Enacting Processes 285

process server. The role ofMarvel is to accept as input a process model

that describes the actual processes that occur outside of Marvel, and an

information (or data) model that describes the actual data involved in the

project. We useMarvel's database to store only an image of the project's

data. The actual data (project artifacts, such as code, documentation,

requirements and plans, information about personnel, resources, and so

on) is expected to be stored on the �le system and manipulated by the

same set of tools that developers currently use.

Marvel's role is to enact the process model on the image of the data.

The enactment is driven by the actual process execution and not by user

requests. By studying the information produced and maintained byMar-

vel during process model enactment more carefully, one can distinguish

between two kinds of information: internal enactment information and ex-

ternal project information. Enactment information is maintained by the

enactment engine either to drive the rest of the enactment or to represent

the state of the enactment. Project information, in contrast, represents

external real-world objects, such as project artifacts, resources, person-

nel, and so on. Whereas transitions involving enactment information are

triggered exclusively based on the state of the enactment, transitions in-

volving project information could be triggered based on the occurrence

of certain external events.

Consider a network maintenance process: When a sensor detects a

failure, it logs the error in a special �le called alarm and sends a visual

noti�cation to a human operator; the human operator retrieves the error

log, creates a trouble ticket, and forwards it to the failure resolution team.

An enactable process model might represent the �le alarm as an object

with an attribute called modified that indicates whether the actual �le

has been modi�ed. The model might also represent each network failure

as a separate object that has an attribute called state, which maintains

the state of process enactment involving the failure.

The attribute modified is classi�ed as project information because it

represents the state of an external real-world object. The intention is to

have the insertion of a failure log into the �le alarm somehow trigger an

enactment transition to change the value of the attribute modified of

the corresponding object to re
ect that. More speci�cally, this enactment

286 Barghouti and Krishnamurthy

transition corresponds to a sequence of three external events: opening

the �le alarm, writing an entry into it, and closing it. In contrast, the

attribute state of an object representing a network failure is classi�ed

as internal enactment information because its value re
ects part of the

internal enactment state; the transition to update this attribute is trig-

gered by the occurrence of other enactment transitions and not directly

by the process execution state.

The two kinds of information can be distinguished inMarvel via the

class de�nition and inheritance facilities provided by MSL. We created an

MSL speci�cation that de�nes four classes corresponding to the real-world

entities that can be automatically monitored: �les, directories, tools, and

user-announced events. For each of the four classes, the MSL speci�cation

de�nes a set of rules whose triggering condition corresponds to a sequence

of external events. The process model of any project in Provence must

import this MSL speci�cation; all objects in the enactment domain that

correspond to real-world objects that should be monitored must be made

instances of one of these four classes (or one of their subclasses).

The following is the class de�nition of one of the four classes, a moni-

tored �le, and one of the rules pertaining to it:

MonitoredFile :: superclass ENTITY;

path: string; # pathname of external file

modified: boolean; # has the file been modified

accessed: boolean; # has the file been accessed

host: string; # host on which file accessed

user: user; # user who accessed it last

timestamp: time; # timestamp of last access

end

hide file_modified[?f:MonitoredFile]:

: # triggered by external event

{ } # no action

(and (?f.modified = true)

(?f.timestamp = CurrentTime));

hide reset_file[?f:MonitoredFile]:

: # triggered by file modification

(or (?f.modified = true)

(?f.accesses = true))

{ } # no action

(and (?f.modified = false)

(?f.accesses = false));

Monitoring, Modeling, and Enacting Processes 287

In the model of the network trouble resolution process just described,

the object representing �le alarm would be an instance of MonitoredFile,

where the attribute path would be set to the pathname of alarm.

Unlike in a closed Marvel environment where all rules are triggered

either directly by the user or indirectly during chaining, rules associ-

ated with monitored classes, like the rule file modified just shown, are

triggered by the occurrence of one or more external events. The event-

monitoring components of Provence can automatically detect the oc-

currence of such events. The execution of the rule file modified would

cause the �ring of any other rule whose condition includes a predicate that

checks if the attribute modified of an instance of MonitoredFile has the

value true. This way, the actual modi�cation of a �le outside of Mar-

vel can trigger rules that enact the process model. The rule reset file

makes sure that the values of the attributes of monitored �le object are

reset. This is necessary for correct functioning of triggering in Marvel.

To notify Marvel about external events, there is a need for a liai-

son betweenMarvel and the event-monitoring component. The Enactor

plays this role.

10.4.2 The Enactor

The job of the Enactor is twofold: (1) to translate the monitorable steps

in Marvel's process model to system-level event patterns that can be

monitored; and (2) to accept noti�cations about the occurrence of speci�c

patterns of system-level events and translate these into process model en-

actment transitions. More concretely, the Enactor must generate a set of

Yeast speci�cations based onMarvel's high-level process and informa-

tion models, and translate the matching of events in Yeast to actions

that Marvel can perform.

The Enactor is built as a client tool to both Marvel and Yeast. It

�rst establishes a connection toMarvel, and then opens another channel

for submitting Yeast speci�cations and accepting updates. The Enactor

obtains from the Marvel server the set of rule de�nitions and database

objects belonging to the project and generates appropriate Yeast spec-

i�cations. These speci�cations are registered with Yeast. The action

portion of the speci�cations require a simple noti�cation to be sent to

288 Barghouti and Krishnamurthy

the Enactor on matching of the speci�cation. The Enactor maintains a

translation table that map Marvel rule names to Yeast speci�cations

generated by the Enactor .

The Enactor assumes that Marvel has complete information about

all the real-world objects that are part of the project (such as the path-

names of �les and executable tools). This is needed to be able to monitor

these objects. For every object that is an instance of one of the four mon-

itorable classes mentioned earlier, the Enactor generates Yeast spec-

i�cations that monitor events on the corresponding real-world objects.

Whenever speci�c sequences of events occur on these objects, Yeast

(via n-DFS) supplies the Enactor with information about the contents

and context of the events (explained in the next section). The Enactor

maps these pieces of information to the name of a rule and the actual

parameter of that rule. Finally, the Enactor instructsMarvel to �re the

rule, causing Marvel to make all necessary transitions and updates in

its database.

In the present model,Marvel ensures that the events generated in the

system are only the ones that can be mapped to the process model. This

ensures that there can be no inconsistency between the events generated

within Marvel and those that are sent to Marvel from the Enactor .

10.4.3 YEAST with Event Contexts and
Constraints

As explained earlier, Yeast receives announcements about the occur-

rence of system-level events from n-DFS , and matches these announce-

ments to event patterns in active speci�cations that are supplied by the

Enactor . The Yeast speci�cation language (described in detail in Sec-

tion 9.3.1) lacked two features that were necessary to ful�ll the role of

the event-action component in Provence.

First, the Yeast language did not provide constructs for capturing in-

formation about the context in which a matched event has occurred (such

as the user identi�er of the user who generated the event, or the machine

on which the event was generated). Although this kind of information is

not necessarily part of the event, it constitutes the context in which the

Monitoring, Modeling, and Enacting Processes 289

event occurred. This information is needed by the Process Server to make

the correct transitions in its enactment of the process model.

The second shortcoming was the inability to relate di�erent event de-

scriptors in the same event pattern by common variables or constraints.

For example, one could not specify that the events that match various

parts of the same event pattern must have been generated by the same

user or on the same machine. This kind of constraint is often necessary for

monitoring sequences of events in a multiuser distributed environment like

Provence, where similar events might be generated by di�erent users

and might occur on di�erent machines.

We extended Yeast with the notion of event context and language

constructs for accessing the information obtained in an event context and

for constraining event matching based on this information. The elements

of an event context include such things as the user responsible for the

event, the time of the event, and the machine on which the event occurred.

Capturing the context of a matched event and storing the values of its

elements enables the monitoring system to make these values available

both for matching and for the action part.

As explained in Section 9.2,Yeast distinguishes between polled events

and announced events. While context is a generic concept, relevant to

both polled events and announced events, it is impossible to capture the

correct context of a polled event in Yeast. The reason is that a polled

event is detected after it has occurred; thus, the context surrounding the

occurrence of the event may be lost.

Unlike polled events, announced events occur within a context that

can be captured at the time of the occurrence of the event. The reason

is that the Yeast daemon is noti�ed explicitly about the occurrence of

these events immediately. In Yeast, a noti�cation is generated explicitly

by a user or a program to announce the value of a single attribute of a

single Yeast object. In Provence, all relevant events are announced

either by users or by n-DFS . Thus, it is possible to capture the context

of these events.

Several contextual elements are of interest to Provence:

1. The name of the machine (host) from which the event was generated

2. The process identi�er (pid) of the process that generated the event

290 Barghouti and Krishnamurthy

3. The user identi�er (uid) of the user who owns that process

4. The value assigned to the attribute involved in the event

5. The Yeast object on which the event occurred

Knowing the machine and the process identi�er locates the source of

the event, and knowing the user establishes ownership. The value element

can be an aid in either matching additional events of the same pattern

or in the action portion of the speci�cation. The object contextual ele-

ment enables the construction of event descriptors that match multiple

announced events involving di�erent objects. For example, the event pat-

tern in the speci�cation

addspec file /bin/% tested == true

do notify file in /bin has been tested

contains a wildcard character (%); thus, it matches any announced

event of the form

announce file /bin/<name> tested = true

where <name> is the name of any �le in the directory /bin. By making

the actual name of the object part of the context we capture, we can pass

this name to the action part of the speci�cation.

10.4.3.1 Naming Event Contexts

Once we capture and store the context of an announced event, we must

be able to refer to it. We introduce naming of event descriptors as a

mechanism for binding a name to the context of the event that matches

the named descriptor. The syntax is

addspec N: <primitive event descriptor> ... do action

where N is an identi�er and primitive event descriptor describes an

announced-event descriptor. The name N is used as a placeholder for the

context associated with the event that matches the event descriptor. In

that sense, N can be thought of as a variable whose value is bound to the

context of an announced event upon a successful matching.

Elements of the announced event's context that matched the event

descriptor are accessed through the name using the syntax

Monitoring, Modeling, and Enacting Processes 291

N:<context_element>

where <context element> is one of pid, host, uid, object, or value. The

names of di�erent event descriptors in the same speci�cation must be

di�erent; otherwise, a syntax error results.

The information contained in the context of an announced event can

be used in two places: in the action part of a speci�cation, and in the

matching constraints associated with other event descriptors in the same

speci�cation. We explain both uses in the next two sections.

10.4.4 Using Event Contexts in the Action

The information contained in the context of an announced event can be

used in the action portion of the speci�cation by referring to the name

of the descriptor that matched the announced event and the announced

event's contextual element within `%%' marks, as follows:

addspec N1: e1 and N2: e2 do .. %N1:uid% .. %N2:value% ..

where both e1 and e2 are primitive event descriptors that match an-

nounced events, and N1 and N2 are names that will be bound to the

events that match e1 and e2, respectively. Once an announced event

matches either e1 or e2, the values of the elements of the event's context

are replaced in the string that represents the action part.

Consider the following improvement on the speci�cation that monitors

completion of testing of tools in the /bin directory:

addspec N: file /bin/% tested == true

do notify Tool %N:object% tested by %N:uid% on %N:host%

When this speci�cation matches an announced event, the noti�cation

program notify will have access to the actual name of the tool that was

tested, the uid of the user who made the announcement, and the host of

the machine on which the announcement was made. These three pieces of

information can now be used in the noti�cation program to send a more

useful noti�cation than the generic one we had before.

An anomaly can result in the case of an or combinator in the event

pattern. Consider, for example, the following speci�cations:

292 Barghouti and Krishnamurthy

addspec N1: e1 or N2: e2 do ... %N2:uid% ...

addspec N1: e1 or N2: e2 do notify .. %N1:uid% .. %N2:uid%

Say that an announced event that is matched by e1 is received. Since the

combinator used in the event pattern is or, matching e1 is su�cient to

trigger the action. In the case of both speci�cations, e2 would not have

been matched and, thus, Yeast would not be able to replace %N2:uid%

with an actual value. There are three options: detecting such anomalies

at the time the speci�cation is added; aborting the action when an un-

bounded event name occurs in the action; or imposing an and semantics

on the event pattern. The current implementation uses the second option.

The use of event contexts to constrain matching in Provence will be

explained in a detailed example.

10.4.5 Visualization

Two kinds of visualization are possible in Provence. The �rst is a high-

level visualization of the process-related information (from the Marvel

database) by the Enactor . The second is a lower-level visualization of the

Yeast speci�cations registered by the Enactor . We reuse dotty as the

visualization component, and the manner in which both the high-level

and low-level visualization is achieved is similar.

The low-level Yeast speci�cations can be visualized using the fey

front end described in Section 9.6.2.2. There, Yeast opened a full du-

plex connection to a dotty process and sent noti�cations about changes

in speci�cation state resulting in an updated picture. The low-level visu-

alization is likely to serve more as a debugging aid in Provence.

For the high-level visualization, the Enactor initially translates the

process-related information that Marvel stores in its database into a

dot speci�cation and sends it to the dotty process. The display gener-

ated by dotty at this stage represents the process model, which shows all

the possible transitions. Whenever a process transition occurs, the Enac-

tor sends a message to dotty to update the visual representation of the

process, showing the transition graphically. dotty might use color cod-

ing to indicate the initiation, progress, and completion of process steps.

Monitoring, Modeling, and Enacting Processes 293

PROJECT :: superclass ENTITY;
business plan: DOC; # business planning document
requirements: DOC; # the requirements document
release: MonitoredDir; # the release area of the project
arch team: TEAM; # the architecture team
. . .

end

DOC :: superclass MonitoredFile;
status: (Empty,Initial,Draft,Baselined) = Empty; # Default is Empty
owner: user; # The user ID of the document's owner
. . .

end

Figure 10.4 Data model of example in Marvel.

Similarly, color coding and size of nodes may be used to indicate the

completion status of a project component.

10.5 Revisiting the Example

To illustrate the realization of Provence, we revisit the example dis-

cussed in Section 10.3.2, and present the details of how the various tools

assist in carrying out the process. The example postulated a business

planning team creating a business plan. When the plan becomes a draft,

the requirements architects need to be noti�ed about it so that they can

proceed with their editing of the requirements document.

The �rst step is de�ning the information model described in Sec-

tion 10.3.2. This includes the organization and structure of project data

and the data that needs to be maintained about the process. Figure 10.4

shows theMarvel classes that specify a subset of the information model.

In this model, we need to represent two real-world objects: the business

planning document and the requirements document. This is done by de�n-

ing a class called DOC and making that a subclass of MonitoredFile,

shown earlier in Section 10.4.1.

We also need to represent the release area, which is a directory that

contains released documents. We can represent this as an instance of the

294 Barghouti and Krishnamurthy

draft bp [?proj: PROJECT]:

(and (exists MonitoredDir ?rel suchthat (member[?proj.release ?rel]))
(exists DOC ?bp suchthat (member [?proj.business plan ?bp]))
(exists TEAM ?arch suchthat (member[?proj.arch team ?arch])))

:
condition: If a document whose name is business plan is
moved to the release area
(and (?rel.inserted = true)

(?rel.name = \business plan"))

fMAIL send mail ?arch "draft of BP info available"g

e�ects:
(?bp.status = Draft); # business plan is in draft form

Figure 10.5 Process model rules in Marvel.

class MonitoredDir, which is not shown but is similar to the de�nition

of MonitoredFile.

Next, we de�ne the process model of Section 10.3.2 in terms of the

Marvel rule shown in Fig. 10.5. The rule speci�es that if a �le named

business plan is inserted in the directory that represents the release area,

then notify the architecture team (via e-mail) that a draft of the business

plan exists. In addition, update the value of the attribute status of the

object that represents the business plan document in the enactment model

to Draft.

Given the rule and the data model, the Enactor generates several

Yeast speci�cations to watch for the events that are relevant to the

process. While many speci�cations are generated to monitor events on the

requirements document and the business planning document, we discuss

only one:

addspec repeat e1: file /proj/release/% syscall == created

do tell_enactor file_created %e1:host% %e1.pid%

%e1.uid% %e1.object%

The event descriptor in this speci�cation is matched whenever a new �le

is created in the release area of the project. In the action part of the

speci�cation, the hostname, the process identi�er, the user identi�er, and

the name of the created �le are sent to the Enactor .

The Enactor maps this information to the rule directory modified.

The Enactor sends a message to Marvel instructing it to �re the rule,

Monitoring, Modeling, and Enacting Processes 295

and passes to it the object representing the release area and the name of

the new �le. Executing this rule causes a forward chain to �re the rule

bp draft just shown. The net e�ect will be that Marvel will send a

noti�cation to the members of the architecture team and update infor-

mation in its database, re
ecting the process transitions that have taken

place.

Note that the members of the business planning and architecture teams

work without unnecessary intrusions by Provence, since they do not

have to inform Provence manually about automatically detectable ac-

tivities. Moreover, they can use any tools (editors, formatters, and so on)

to perform their activities. The advantages of nonintrusiveness (through

automatic data capture) and open environments are re
ected in the fore-

going simple example.

10.6 Reuse

10.6.1 Architectural Style

Provence, a process-centered software development environment, con-

sists of multiple components. The components range in architectural

styles corresponding to their roles in Provence. For example, Yeast

supports the event-action style, Marvel in the transaction processing

style, and n-DFS in the �lter style. Provence provides an interesting

test bed to contrast di�erent styles being reused in a single \tool." There

is a clear separation of components in Provence, and their interaction

is well de�ned. There is no direct link between Yeast and Marvel, for

example.

10.6.2 Architectural Services Used

dotty provides visualization service for Provence.Marvel has its own

built-in visualization mechanism. dotty has been used to provide visual-

ization for both the higher-level model and the lower-level event Yeast

speci�cations.

As described in Section 9.6.2.1, fault tolerance service is provided to

one of the components of Provence: Yeast. Marvel has an external

296 Barghouti and Krishnamurthy

daemon that starts up the server but, unlike watchd , the external dae-

mon does not automatically restart the server if it were to die. The fault

tolerance (like visualization) is built into the Marvel code.

10.6.3 Reuse of Libraries and Components

Provence reuses four existing components: Marvel (a tool built out-

side of AT&T), n-DFS , Yeast, and dotty ; and it uses a new component

(Enactor). The internal components all use other libraries, as discussed

in their relevant chapters.

� Linking{libraries

� Con�guration and assembling

� Component reuse in Provence

10.6.3.1 Libraries

Several libraries used by the components were thus implicitly reused by

Provence. The new code written (relatively insigni�cant compared to

the overall size of the project) was in the Enactor ; the high-level model

was written in Marvel's rule language, and the low-level speci�cations

were written in Yeast. Enactor , like Yeast, uses the connection stream

library (libcs) for communication as well.

10.6.4 Con�guration and Assembling

Marvel was an external tool that we used without modi�cations. Since

each of the components were developed independently, there was no over-

lap in building software. Assembling the components was straightforward,

since the interfaces to each of them were
exible enough to be combined at

the component level. Each component was assembled separately and then

connected. Component-level connection led to easier assembling once the

interconnection at the interface level was worked out.

10.6.5 Component Reuse in PROVENCE

Provence is built by connecting existing components. We were able to

reuse all these components as described earlier. However, we were also

Monitoring, Modeling, and Enacting Processes 297

able to achieve signi�cant reuse in the manner in which visualization

support was added to Provence. The code added to theMarvel client

to notify dotty about changes in internal state was similar to the manner

in which the front end to Yeast, fey , (see Section 9.6.2.2) was created.

However, not all components were reused without modi�cations or ex-

tensions. Extensions toMarvel did not require changing of theMarvel

language (see Section 10.4.1). We made an important addition to Yeast,

matching semantics to take advantage of contextual (as described in Sec-

tion 10.4.3) information in announced events. The changes were local to

Yeast and did not a�ect any of the other components. The extension

was generic enough to be usable in future Yeast applications.

10.7 Conclusions

We presented Provence, a component-based architecture for modeling,

enacting, and visualizing the software process. Provence departs from

recent work on process-centered environments in two main respects:

1. The main components of a process-centered environment have been

identi�ed and separated with clear interfaces, making them more easily

replaceable. This contrasts with the monolithic architectures, where

these components are tightly coupled and made to work only with

each other.

2. The realization of Provence we presented is based on existing tools

that, together, can be used to provide the needed assistance in modeling

and managing software processes. It is possible to replace any of the

tools or to extend the set of tools. However, each of the tools must

conform to the set of interface requirements for the component to which

it is mapped to guarantee openness. For example, the operating system

monitor component must provide information about �le-related events

and operating system process invocations in a format that is accepted

by the event engine.

We believe that the open architecture of Provence is more appropri-

ate to the experimental nature of software process work. This is important

because it is di�cult to determine the forms of process-related assistance

298 Barghouti and Krishnamurthy

that are needed by development organizations. Thus, an architecture that

can be easily extended or changed to incorporate di�erent tools is more

appropriate than one that �xes its components and functionality.

Currently, all the tools discussed in Section 10.4, as well as the in-

terfaces between them, have been implemented. The pending portion of

the implementation is the automatic generation of speci�cations for the

Enactor . After implementing a prototype realization of Provence, we

shall conduct several experiments involving projects in development or-

ganizations. Our aim is to model the processes of these projects within

our system, employ the system in a manner similar to what we have de-

scribed in this paper, and measure the e�ects of employing the system on

the software process. We hope that these experiments will help us achieve

the following goals:

1. Identify the appropriate form(s) of process-centered assistance that de-

velopment organizations need to increase their productivity. Expected

forms of assistance include:

� Monitoring of the process for the purpose of analyzing it both dy-

namically and statically

� Automating parts of the process to relieve developers from menial

chores

� Measuring the actual duration of each step in a process for the pur-

pose of planning future processes or the remaining parts of the pro-

cess

2. Detect shortcomings and ine�ciencies in existing processes.

3. Determine the e�ectiveness and feasibility of our approach.

From the reuse point of view, Provence is proof of our ability to

reuse at the component level.

11

Intertool Connections

Yih-Farn Chen, Glenn Fowler, David Korn,
Eleftherios Koutso�os, Stephen North,
David Rosenblum, and Kiem-Phong Vo

11.1 Introduction

This chapter presents a collection of interconnected tools built by the

combining of tools described earlier in this book. The manner of connec-

tions vary, but a common theme linking the tools is vertical integration.

The tools aid in visualization, testing, analysis, and animation of software.

A few principles that have served well in the integration process are:

� Instrumenting programs can pay rich dividends.

� Simple speci�cation languages are an e�ective glue.

� Open interfaces and extensible architectures lead to rapid integration.

Section 11.2 discusses a graph editor that, owing to its malleability,

has served as a vehicle for visualization of a signi�cant number of tools,

some of which are described here. dotty is built by combining dot , a graph

layout mechanism, and lefty , a programmable graphics editor at a process

level.

Section 11.3 describes a technique (and a tool called TestTube) for

selective regression testing by analyzing a software system. The static

and dynamic analysis information available via Cia and App are used to

build TestTube.

299

300 Koutso�os and North

Section 11.4 describes a function call animator used to display the

dynamic behavior of a program. Xray is built by combining App, Cia,

and dotty . App helps generate a function trace log that is merged with

the program database generated by Cia and fed to dotty to animate.

Section 11.5 describesVpm, a tool built by combining n-DFS and dotty

to view real-time process execution on a network of machines. The process

noti�cation service of n-DFS is merged with the visualization ability of

dotty to display system call invocations across multiple processes and

machines.

11.2 dotty

11.2.1 Introduction

dotty [KN94] is a customizable graph editor. It can run as a standalone

editor but, more importantly, it is also a programmable front end for other

applications. Unlike most GUI systems, where the graphical elements are

simple buttons, menus, and bitmaps, dotty 's main user interface objects

are graph drawings and diagrams.

As discussed brie
y in Section 2.4, graph drawings are one of the best

ways to show relationships between objects. Data structures, database

schemas, program call graphs, �nite state machines, and source �le de-

pendencies are a few conventional examples of structures that can be

made easier to understand when presented as graphs.

This section presents a set of tools for displaying and operating on

graphs. From the user's point of view, the primary tool is dotty . Fig-

ures 11.1 and 11.2 show two snapshots of dotty in use. Figure 11.1 shows

dotty running as a standalone editor. A graph depicting the historical

relationships of our department's tool is being edited. Figure 11.2 shows

dotty as a front end for Vpm, a process management tool.

In its high-level architecture, dotty incorporates several fundamental

trends in user-interface design:

1. It o�ers a convenient graphical user interface with operations controlled

through a WYSIWYG (What You See Is What You Get) interface.

Intertool Connections 301

Figure 11.1 A snapshot of dotty as a standalone editor.

Figure 11.2 A snapshot of dotty as a graphical front end.

302 Koutso�os and North

These include conventional menu-driven commands for viewing graphs

in multiple windows, editing nodes and edges, updating attributes, and

loading and saving graphs in the �le language described in Section 2.4.

2. dotty is extensible. It was constructed by programming a generic 2-D

graphics editor. This editor's control program is de�ned in a high-level

scripting language. Scripts can be loaded to add or rede�ne functions

controlling dotty 's behavior. For example, one could add a function

that sets the color of every node as a function of its degree or distance

from some other node. This allows reprogramming of the WYSIWYG

interface. For example, one could rebind the left mouse button action

to highlight all incident edges when a node is selected. This design,

based on a high-level interpretive scripting language instead of a large

class-based toolkit, re
ects an important current trend in interactive

systems.

3. dotty was designed to be a front end for other systems. Its language

has primitives to start external processes and establish interprocess

communication channels. In this context, graphs can represent state

information maintained by a back-end process, and user actions can be

bound to functions that translate graph operations to corresponding

state change requests sent to the back end.

4. dotty works with external layout utilities and graph �lters in a client-

server relationship [BGST90]. It is not a monolith as are many other

graph layout systems. Instead, dotty can work with di�ering layout

programs and other language-based batch �lters for graphs.

We have customized dotty for a number of applications including:

� Finite state machine animator

� C/C++ source code database browser

� Distributed process monitor

� Debugger with graphical data structure displays

� Program trace animator

� GUI for the Yeast event-action speci�cation tool [KR91]

� GUI for the Provence process modeling tool [KB93]

Intertool Connections 303

� GUI for the ship process

Internally, dotty is constructed from two cooperating processes, dot

and lefty . lefty is a programmable graphics editor that displays graphs on

the screen and allows the user to operate on them. dotty 's programming

language is actually that of lefty . lefty executes dot as a separate process

to make graph layouts. These programs communicate through pipes, a

UNIX interprocess communication method. Figure 11.2 shows the two

processes and the pipes that connect them (the bottom two nodes).

11.2.2 Design

We now describe the design of our tools and compare our design approach

with that of some other graph editors: EDGE [PT90], GraphEd [Him89],

daVinci (University of Bremen), the XmGraph toolkit (Douglas Young,

University of Iowa), and the Graph Layout Toolkit [Tom] are some of the

most widely known. Since dotty is built by combining other tools, we �rst

present an overview of the pieces: the graph language and accompanying

library, the layout tools, several graph �lters, and the graphics editor

lefty . Finally, we describe the design decisions embodied in dotty itself.

Graph language and library. All of our tools that read or write

graphs use libgraph. Thus, there is no �xed set of attributes; any key-

value pair can be speci�ed in any �le. While graph processing utilities

may look up speci�c attributes, by default, any attributes that a tool

ignores are passed through unchanged when the graph is written. This

simpli�es composing graph �lters as pipelines; existing �les and tools do

not have to be changed when a new attribute is introduced. Almost all the

other graph viewing programs do not provide enough language support

for combining tools this way.

Graph layout tools. Our system has two main layout tools. dot

makes hierarchical layouts of directed graphs [GKNV93] that are ap-

propriate for software-related diagrams, where asymmetric relationships

seem to be predominant. It was written as a successor to dag [GNV88],

which incorporated results of War�eld, Carpano, and Sugiyama and oth-

ers [War77, Car80, STT81]. dot usually makes good layouts and has an

assortment of graphics and layout controls. neato is an undirected graph

304 Koutso�os and North

farsided

parc lawndart

dartvader

ames

la

sri

dc

lbl

isi

bbn

udel

mit

box

saffron

vet

guy

asm

ant

pogo

beauregard

Figure 11.3 A sample layout from neato.

main

parse

init

cleanup

printf

100 times

execute

make a
string

compare

Figure 11.4 A sample layout from dot .

embedder based on the virtual physical models proposed by Kamada and

Kawai [KK89]. Such layouts emphasize path distance and connectivity,

and are more suitable for symmetric relationships (such as the computer

network illustrated in Figure 11.3).

As both of these tools present the same interface (such as reading and

writing graphs in our graph language), dotty can use either or both of

them just by specifying a di�erent pathname.

By default, dot draws directed graphs with edges aimed from top to

Intertool Connections 305

bottom and drawn as solid lines; nodes are drawn as ellipses labeled by

node names. These defaults may be overridden by setting certain at-

tributes of the input graph. Tables 11.1 through 11.3 list the options. For

example, dot can draw data structure graphs, displaying records as nested

box lists, with node ports for connecting pointers. Figure 11.4 shows the

dot layout for a sample graph. dot has the ability to emit graphs either in

our graph language or in several graphical languages, such as PostScript

and HPGL. In addition, dot incorporates an algorithm for drawing graphs

with clusters or recursive node set partitions [Nor93]. A cluster is iden-

ti�ed as any subgraph whose name has the seven-letter pre�x cluster.

Clusters at the same level are drawn in nonoverlapping rectangles. Clus-

ter layout has applications in diagrams of hierarchical structures, such as

dependencies of objects within nested source code modules.

neato has the same options as dot to control the drawing of individual

nodes and edges (for example, to set sizes, shapes, colors, and fonts for

nodes and edges). Its particular layout algorithm employs a spring model,

so instead of using dot 's layout controls, the weight and len (ideal spring

length) attributes of edges can be set to adjust node placement.

dotty bene�ts from having dot and neato to make layouts. Consider-

able e�ort was spent on developing their layout algorithms and creating

robust and e�cient implementations. They can make good quality layouts

quickly and without extensive manual correction. This permits interactive

graph layout (for most reasonably sized graphs) with acceptable response

times. Robustness is also important because graphs from real applications

often can have multiple edges, self-arcs, degenerate components, and so

on. Some systems provide a wider variety of layout algorithms (GraphEd

3.0 had 18), but the implementations are often not robust or practical.

Being able to run dot as a standalone tool made debugging easier. It

was debugged and pro�led totally independent of other tools. dot was

developed approximately a year before dotty . One drawback with using

dot in the context of dotty is that dot always computes the complete

layout of a graph. Whenever dotty needs a new layout, it sends the entire

graph to dot and gets back positions and coordinates for all the nodes

and edges. Such an exchange does not guarantee that making a small

change to a graph will result in a layout that is close to previous layout.

306 Koutso�os and North

Table 11.1 Node Attributes

Name Default Values

color black Node shape color

comment Emitted by target code generator

fontcolor black Type face color

fontname Times-Roman PostScript font family

fontsize 14 Point size of label

height,width .5,.75 Height and width in inches

label Node name Any string

layer Selects active range in multi-page overlays

shape ellipse ellipse, box, circle, doublecircle, diamond,

plaintext, record, polygon

style graphics options, such as bold, dotted, filled

Table 11.2 Edge Attributes

Name Default Values

color black Edge stroke color

comment Emitted by target code generator

decorate If set, draws a line connecting labels with their edges

dir forward forward, back, both, or none

fontcolor black Type face color

fontname Times-Roman PostScript font family

fontsize 14 Point size of label

layer Selects active range in multipage overlays

id Optional value to distinguish multiple edges

label Label, if not empty

minlen 1 Minimum rank distance between head and tail

style Graphics options, such as bold, dotted, filled

weight 1 Integer re
ecting importance of edge.

Intertool Connections 307

Table 11.3 Graph Attributes

Name Default Values

center When true, center picture on page

clusterrank local May be global or none

color black Cluster box stroke color

comment Emitted by target code generator

concentrate Enables edge concentrators when TRUE

fontcolor black Type face color

fontname Times-Roman PostScript font family

fontsize 14 Point size of label

label Any string

layer Range in multipage overlays

margin .5,.5 Margin included in page

mclimit 1.0 If set, adjusts mincross iterations by factor

nodesep .25 Separation between nodes, in inches

nslimit If set, factor bounds network simplex iterations

ordering out (for ordered edges)

orientation portrait May be set to landscape

page Unit of pagination, for example, 8.5,11

rank same, min, or max

rankdir TB LR (left to right) or TB (top to bottom)

ranksep .75 Separation between ranks, in inches

ratio Approximate aspect ratio desired, or fill

size Drawing bounding box, in inches

308 Koutso�os and North

Sometimes, the graph layout changes signi�cantly in response to a small

change, and that is disconcerting to users.

We are currently designing incremental layout algorithms. Such algo-

rithms will improve drawing stability and, perhaps, also improve through-

put in movies of graphs.

dot is about 13,000 lines of C.

Graph �lters. Layouts of large graphs are often complex and di�cult

to read. Though good layout algorithms help, sometimes a graph is simply

too large or dense to understand visually. E�ective techniques for �ltering,

partitioning, collapsing, and coloring can help to convey properties of

interest. We have written utilities for these operations:

tred computes transitive reductions of directed graphs. When applied

to dense graphs, it removes many edges but leaves reachability between

nodes invariant.

un
atten adjusts lengths of leaf edges or wide fanout/fanin patterns.

When applied to bushy graphs, this yields layouts having less extreme

aspect ratios.

gpr (for graph processor) is a powerful, generic utility that applies a

given predicate expression on nodes or edges to select a subgraph that is

emitted. A command-line option enables path contraction on nonselected

nodes and edges. One use is to remove long chains in control
ow graphs

by applying a node degree predicate and path contraction.

colorize allows setting seed colors on some nodes, then propagates these

colors along edges to �ll in the rest of the graph. This helps distinguish

nodes that are logically related even when dispersed in the layout, taking

advantage of the ability of the human eye to quickly locate similarly

colored objects in a collection.

The graphical editor lefty. lefty [KD91] is a two-view graphics ed-

itor for technical pictures. This editor has no hard-wired procedures for

speci�c picture layouts or editing operations. Rather, each picture is de-

scribed by a program that contains functions to draw the picture and

perform editing operations appropriate for the speci�c picture. Primi-

tive user actions, such as mouse and keyboard events, are also bound to

functions in this program. Programmability allows the editor to handle a

variety of pictures, but is particularly useful for pictures in technical con-

Intertool Connections 309

texts, such as graphs and trees. Also, lefty can communicate with other

processes. This feature allows it to run existing tools to compute layouts

and similarly allows external processes to call the editor as a front end to

display their data structures graphically.

The language implemented by lefty was inspired by the language in

the EZ system [FH85]. It is at a higher level than C or C++, which is what

programmers use to customize most other graph editors. This makes it

more productive for building user interfaces (which is true for many other

user-interface languages, such as tcl [Ous94]). Its main characteristic is

the use of tables. A table is a list of key-value pairs, where the key is

a scalar and the value is either a scalar or a subtable. Unlike C or C++

data structures, where the set of �elds in a structure is �xed, any lefty

table can contain any set of key-value pairs. lefty built-in functions that

take tables as arguments look for speci�c �elds in these tables. They do

not, however, destroy or modify any �elds they do not care about. This

concept is similar to the graph attributes concept of our graph library.

When lefty reads in a graph, the key-value pairs for the graph attributes

become key-value entries in lefty tables.

lefty provides some convenient built-in functions. One important set

contains functions for managing windows. lefty presents an abstracted

view of the underlying window system. This view hides most of the de-

tails of the window system and provides extra features, such as mapping

between world coordinates and pixel coordinates. This made it possible

to port lefty fairly easily from UNIX/X Windows to Microsoft Windows.

Only this library of windowing operations and the library for accessing

some system services had to be changed. No changes were made to any

lefty scripts (including those that implement dotty).

Another set of built-in functions allows lefty to open channels to other

processes. Under UNIX, these channels can be pipes, sockets, or pseudo-

tty connections. Under Microsoft Windows, we had to implement our

own pipes. As these I/O functions were already separate, the changes

were limited.

lefty provides a built-in function for reading graphs. This is not im-

plemented by libgraph. Instead, lefty uses only the graph grammar de-

scription of libgraph (a yacc �le). This was done because lefty needs to

310 Koutso�os and North

store graphs in its own tables. If we used libgraph, we would have to �rst

load and store graphs in C data structures and then convert them to lefty

tables, which would be ine�cient. lefty is a 12,000 line C program.

The graph editor dotty. One drawback of dag and dot is that their

pictures are static. Once generated, they can be printed out or viewed

on a workstation using a PostScript viewer, but there is no way to in-

teract with them structurally. We felt that having the ability to operate

on graphs would signi�cantly increase the usefulness of layouts. Many

dot users were sending us similar comments. We felt that having a truly

graphical user interface, involving drawings of graphs representing tech-

nical information, would provide a powerful user interface for many sys-

tems and applications. The graphs could represent the state of a system

or some decision process, with its nodes and edges being objects that the

user could select and perform operations and queries on.

Since we already had dot and lefty , we realized that creating an inter-

active system by combining them as two cooperating processes would be

more practical than constructing a new system from scratch. Reuse at the

process level has many advantages. Having several smaller tools, where

each one performs a speci�c task well and has a cleanly de�ned interface,

helps enforce a strict modular design. Individual modules can be tested

and debugged independently. For example, dot 's layout algorithms can

be debugged standalone; there is no need to involve lefty . Similarly, the

lefty side can be driven through scripts and is thus easier to debug and

pro�le. This is desirable because debugging user-interface programs by

manually reproducing user actions is di�cult.

This style of software reuse can be thought of as an extension to the

UNIX/Shell concept of pipelines. The main di�erence is that in Shell-

style programming, information usually
ows one way (from one tool to

another). The Shell itself, however, can be thought of as the text-based

equivalent of lefty , a program that interacts with the user and can use

several other programs to accomplish what the user wants. Process-level

reuse is an obvious approach for constructing graphical user interfaces to

preexisting text-based tools and systems.

One potential problem is that the �nal application may spend a signi�-

cant fraction of its time merely in interprocess communication. This could

Intertool Connections 311

result from having individual tools that do little processing in comparison

to I/O. The design and selection of the process modules should therefore

take this into account. For dotty , computing layouts does take longer than

reading and writing the graphs (except for small graphs, where the total

time is already negligible), so the balance is reasonable. By having sep-

arate layout processes, dotty achieves a form of parallel processing. The

user can ask for a layout and, while dot is running in the background,

switch to another graph and continue editing (or even ask for a layout

of that graph as well, in which case, a second dot process is started in

parallel).

Another problem is that some amount of duplicate code cannot be

avoided. One example is interpreting node and edge labels. A label is

a string containing control characters for indicating line breaks or �eld

breaks (for record labels). dot needs to parse the labels so that it can

allocate enough space for the nodes and edges in the layout computations.

dotty also needs to parse the labels to extract the lines and �elds, since

these have to be drawn one at a time. Fortunately, for dotty , the duplicate

code is a small fraction of the total system.

dotty is implemented as a lefty process, one or more dot processes

and a program in the lefty language that customizes lefty so that it can

handle graphs and their components. The program includes functions

to insert and delete nodes and edges, as well as to draw these objects

according to such attributes as color, shape, and style. There is also a

function that computes the layout. This function sends the graph to a

dot process running in the background. The dot process computes the

layout and sends the graph (with layout information inserted as graph

attributes) back to the lefty process. lefty then updates the node and

edge coordinates and redraws the graph on the screen. Figure 11.2 shows

how the two processes are connected.

The lefty program is organized in two layers. The lower layer (called the

dot layer) implements the necessary data structure operations, such as

insertion and deletion of nodes, edges, and subgraphs. This layer includes

functions for reading and writing graphs from �les, internet sockets, or

UNIX pipes. The higher layer (called the dotty layer) implements the

necessary graphical operations. For example, function dotty.insertnode

312 Koutso�os and North

dot.insertnode =

function (graph, name, attr) {

...

graph.nodedict[name] = nid;

graph.nodes[nid] = [

'nid' = nid;

'name' = name;

'attr' = copy (dot.nodeattr);

'edges' = [];

];

return graph.nodes[nid];

};

dotty.insertnode =

function (gt, pos, name, attr) {

...

if (~(node = dot.insertnode (gt.graph,

name, attr)))

return null;

node.pos = pos;

node.size = size;

dotty.drawnode (gt.views, node);

return node;

};

Figure 11.5 Functions for inserting a new node.

inserts a new node by calling function dot.insertnode and then drawing

the node on the display using the node's color and shape attributes.

Figure 11.5 shows the main parts of these two functions.

Overall, the lefty program implements the following operations:

� Create or destroy graphs

� Create or destroy views of graphs (a graph may have several views)

� Load or save graphs to �les (or sockets and pipes)

� Insert or delete nodes, edges, and subgraphs

� Pan or zoom within a view

� Search for a node by name

� Geometrically move a node (and have all its edges follow)

� Edit attributes of an object

Intertool Connections 313

User actions can be bound to graph operations. For example, pressing

the left mouse button can be bound to a function that inserts a new node

at the position of the cursor. This can be done by writing a function called

leftdown that calls the function dotty.insertnode with the appropriate

arguments. By default, the left mouse button is bound to inserting or

moving nodes, the middle button is bound to inserting edges between

existing nodes, and the right button brings up a menu for selecting the

rest of the operations mentioned in the foregoing list. There are also node-

and edge-speci�c menus.

An important feature of dotty is that it can be easily customized,

which amounts to modifying its lefty program. For example, the user in-

terface functions (such as leftdown) can be rede�ned to perform di�er-

ent actions. Alternatively, the functions that operate on the graph data

structures (such as dot.insertnode) could be modi�ed to allow only

operations that are appropriate for a speci�c type of graph. The most

interesting class of customizations is the one where dotty is programmed

to act as a front end for another process. In this context, a tool that gen-

erates and maintains information that can be expressed as a graph can

use dotty to display this information graphically. dotty provides high-

quality layouts and a simple way to implement a user interface. Graphs

are �rst class citizens in such an interface; they are used not only to view

information, but also as a way to operate on this information. An added

advantage of this approach is that it requires little or no change to the

original back-end tools.

The lefty program that implements dotty is 1,700 lines long. Most of

this program is a library that is reused by the applications built on top

of dotty .

11.2.3 dotty Applications

As mentioned at the outset, dotty has already been applied in creating

graphical user interfaces for several applications. Many of these applica-

tions are described in other sections in this book.

Creating these applications has proved simple. It generally takes no

more than a day or two to build a prototype. We can then make additions

314 Koutso�os and North

and changes depending on the features needed. Our largest applications

are around 1,000 lines of lefty code.

The remainder of this section presents a short example. This applica-

tion provides a graphical view of the ship area. Whenever a user receives a

new tool or a new version of a tool through Advsoft, he or she uses ship

scripts to unpack and build the tool. ship maintains a subdirectory per

tool, where archives and other information is kept, including information

about whether the tool was built. The owner of the software distribution

process has such an area that contains all of our tools. As individual re-

searchers send new versions of the various tools, they are installed and

built in that area. As the number of packages grew, keeping track of the

status of each version of each tool became hard. This led us to try a

graphical approach.

Color Plate 1 shows a snapshot of shipview , the graphical user in-

terface for ship. This is a trimmed-down version of our main ship area.

Rectangular nodes represent directories, while ellipses represent �les.

The �rst-level node (on the left) is the root of the ship directory. The

second-level nodes represent tools. The third level shows speci�c versions

of individual tools, such as the March 30, 1994 version of Xray . The

fourth level shows the various �les that each release contains. The nodes

are colored to show the state of each tool. Red (such as node app) means

that the build failed. In this case, the build of version 940411 failed. If

there were several versions for that tool, the tool node would be colored

according to the state of the latest version. Green (such as node cql)

means that the tool was built successfully. Blue (such as node Xray)

means that the tool was uncrated (the individual �les were extracted

from the archive), but no attempt was made to built it yet. Finally, gray

(such as node nohup.out) is used when none of the foregoing criteria can

be applied.

shipview initially displays the �rst two levels of nodes, colored white.

Calculating the color for a node involves searching its subdirectories. Col-

oring all the level-two nodes (about 100 nodes) is time-consuming. Instead

of requiring the user to wait while all the node colors are computed, dotty

does this in the background; while there is no user input to service, dotty

executes a function that picks a node from a list of white nodes and com-

Intertool Connections 315

putes its color. Upon startup, shipview starts up a ksh process and estab-

lishes a two-way communication with it, using pipes. Whenever shipview

needs to compute the color for a node, it sends the node name to the

shell. The shell script that the shell is executing reads in the node name

and searches its subdirectories to �gure out the state of the node. The

script uses tw, our tree walk program, to search the �le system. When

the state of the node is computed, the shell script sends the answer back

to shipview , which uses the result to compute the appropriate color.

As this is happening in the background, the user can proceed to browse

the graph and perform queries. If the user presses a mouse button over

a directory node, it expands to show its contents (such as directory node

app). If the directory is already expanded, it reverts to its closed state.

Pressing a mouse button over a �le brings up a text window showing its

contents. The type of the �le is checked to select the viewing method (for

example, vi, more, pax -v).

Even though this is just the �rst version of this tool, it already seems

useful. A quick look at the top-level picture is enough to inform the user

which tools are built and which tools had problems. Checking to see what

versions exist for a speci�c tool is also easy. Being able to browse around

and inspect speci�c �les helps detect the reason of any failures. An obvious

improvement is to allow the user to ship packages to customers just by

selecting the tools that must be sent.

This version of shipview took about one hour to build. This is because

only 150 lines of lefty code and 80 lines of ksh code had to be written.

shipview uses dotty , ksh, pax , tw , �le, and a variety of standard sys-

tem utilities. Such reuse encourages rapid prototyping and often leads to

software that can be used on a regular basis.

11.2.3.1 Conclusions

We have described how new graphical applications have been created from

smaller, general-purpose tools: a programmable graphics editor, graph

layout tools, and text-based applications. The ease with which they were

created suggests that small, well-focused, programmable tools can be a

better starting point than large C or C++ libraries.

316 Chen, Rosenblum, and Vo

11.3 TESTTUBE

As software systems mature, maintenance activities become dominant.

Studies have found that more than 50 percent of development e�ort in

the life cycle of a software system is spent in maintenance; of that, a large

percentage is due to testing [Mye79, LS80]. Except for the rare event

of a major rewrite, in the maintenance phase, changes to a system are

usually small and are made to correct problems or incrementally enhance

functionality. Therefore, techniques for selective software retesting can

help to reduce development time.

There is a clear analogy between retesting and recompilation of soft-

ware. Good examples of tools for selective recompilation are make [Fel79]

and nmake [Fow85]. These tools implement a simple strategy whereby

recompilation is carried out only on source �les that have changed and

on �les that depend on the changed �les. Similarly, a test suite typically

consists of many test units, each of which exercises or covers some subset

of the entities of the system under test. A test unit must be rerun if,

and only if, any of the program entities it covers has changed. However,

unlike system recompilation, where the dependency between a program

and its source �les is speci�ed in build scripts or make�les, it is not easy

to identify the dependency between a test unit and the program entities

it covers. Computing such dependency information requires sophisticated

analyses of both the source code and the execution behavior of the test

units. Fortunately, the requisite technologies for performing such analyses

are now available.

TestTube is a system for selective retesting that identi�es which

subset of a test suite must be rerun to test a new version of a system.

The basic idea behind TestTube is illustrated in Figure 11.6. In the

�gure, the boxes represent subprograms and circles represent variables.

The arrows represent static and dynamic dependency relationships (for

example, variable references and function calls) among the entities in

the system under test and the test units, with the entity at the tail of

an arrow being dependent on the entity at the head. Suppose that the

shaded entities were modi�ed to create a new version of the system under

test. Under a naive retest-all strategy, all three test units must be rerun in

Intertool Connections 317

System Under Test

Test 1 Test 3Test 2

Figure 11.6 Selective retesting of a new version.

order to test the changes. However, by analyzing the relationships between

the test units and the entities they cover, it is possible to eliminate test

units 1 and 2 from the selective regression testing of the new version and

rerun only test unit 3.

In a recent paper [CRV94], we described our initial results of apply-

ing TestTube to some modestly large C programs, and we compared

TestTube to other approaches to regression testing that have been de-

scribed in the literature. In this section, we focus on a description of the

technology behind TestTube and on the reusable components that we

have used to implement a version of TestTube for C.

11.3.1 The TESTTUBE Methodology

11.3.1.1 Basic Method and Terminology

The method underlying TestTube is simple. First, we partition a soft-

ware system into basic code entities. These entities are de�ned in such a

way that they can be easily computed from the source code and moni-

tored during execution. We then monitor the execution of each test unit,

analyze its relationship with the system under test, and, in this way, de-

termine which subset of the code entities it covers. When the system is

changed, we identify the set of changed entities and then examine the

previously computed set of covered entities for each test unit and check

318 Chen, Rosenblum, and Vo

to see if any has changed. If none has changed, the test unit need not be

rerun. If a test unit is rerun, its set of covered entities must be recom-

puted. Note that the notion of what constitutes a change in the system

is programming-language dependent.

This approach works well if the code entities are de�ned so that the

partitioning of a software system can be done e�ciently while still al-

lowing e�ective reduction in the number of test cases that are selected.

At one extreme of testing, the retest-all approach is simply that of con-

sidering the entire software system as a single code entity. On the other

hand, the data
ow approaches mentioned in Section 11.3.4 treat each

statement as a code entity and thus obtain extremely precise information

about which code entities are covered by each test unit. But the large

cost of data
ow analysis may overwhelm the bene�ts of test reduction.

To strike a balance, we consider a software system S as being made up of

two sets of entities: F, functions and V, nonfunctions.

� Functions{These are the basic entities that execute program semantics

by creating and storing values. We assume that every action of a pro-

gram must be carried out in some functions. An advantage of using

functions as a basic code entity is that there are readily available pro-

�ling tools that can monitor program execution and identify the set of

covered functions.

� Nonfunctions{These are nonexecuting entities in a program, such as

variables, types, and preprocessor macros. Variables de�ne storage ar-

eas that functions manipulate. Among other things, types de�ne the

storage extent of variables. We assume that every storage location that

is potentially manipulated by a function can be statically or dynami-

cally associated with some variable. Typically, these entities cannot be

directly monitored during execution without great cost. However, they

can be deduced from the source code and function call trace.

Next, we de�ne a program in the software system S as a composition

of some subsets of F and V. A test unit T for the system S is de�ned

as a program and some �xed input.� Fixing the input means that the set

of functions covered by the test unit T can be determined by a single

�We view input as comprising both input data values and environment e�ects, such as signals.

Intertool Connections 319

execution. This set of functions is called Tf . The set of nonfunctional

entities that are used by these functions is called Tv.

11.3.1.2 Safe Test Skipping

The working of TestTube relies on a premise that all value creations

and manipulations in a program can be inferred from static source code

analysis of the relationships among the functional and nonfunctional en-

tities. This premise is valid for languages without pointer arithmetic and

type coercion. In that case, we can summarize TestTube as follows:

Proposition Let T be a test unit for a software system S. When

changes are made to S, if no elements in Tf and Tv are changed, then T

does not need to be rerun on the new version of S.

However, with such languages as C and C++, it is not always simple

to infer all value manipulations just from analyzing the variables and

pointers used by functions. For example, the following C code uses type

coercion to convert an integer value to an address value so that the cre-

ation of the value 0 in the memory store is not associated with any visible

variable:

((char)0x1234) = 0;

Another problem with languages, such as C and C++, that allow arbi-

trary pointer arithmetic is that pointers may violate the memory extents

of areas to which they point. This means that values may be manipulated

in ways that are not amenable to source code analysis. In the following ex-

ample, the pointer expression *(xp+1) points beyond the memory extent

de�ned by the variable x (whose address has been stored in the variable

xp). On many hardware/compiler architectures, it may, in fact, point to

the same memory area de�ned by y, so the value of y is changed without

ever referring to y.

int x, y;

int* xp = &x;

...

*(xp+1) = 0;

320 Chen, Rosenblum, and Vo

To account for such memory violations, we assume the following hy-

potheses:

Hypothesis 1 (Well-de�ned memory) Each memory segment

accessed by S is identi�able by a symbolically de�ned variable.

Hypothesis 2 (Well-bounded pointer) Each pointer variable or

pointer expression must refer to some base variable and be bounded by the

extent of the memory segment de�ned by that variable.

For applications written in such languages as C and C++, the well-

de�ned memory assumption is reasonable. This is because it is seldom

the case that one needs esoteric constructs that would coerce a plain

integer value to an address value, except for programs that require direct

manipulation of hardware addresses, such as device drivers. However, in

cases where they are required, the addresses represented by such integer

values are usually well separated from the memory space occupied by

normal variables. Thus, we do not need to worry about values of variables

that are changed without ever mentioning the variable names. In addition,

for maintainability, such values are often assigned symbolic names using

macros, which are amenable to source code analysis.

On the other hand, the well-bounded pointer hypothesis sometimes

fails in real C and C++ programs due to memory-overwrite and stray-

pointer faults. These faults are among the hardest to detect, isolate, and

remove. A number of research techniques and commercial tools are avail-

able to help detect these faults (for example, see Austin [ABS93], Pu-

rify [HJ92a], and others). Whenever such a fault is detected during

testing, an attempt must be made to identify the entities that are af-

fected by the fault; for example, memory overwrites are often con�ned to

the functions that cause them. If the a�ected entities can be identi�ed,

then these entities must be added to the set of changed entities identi-

�ed by TestTube for the current round of testing. In extreme cases,

where the e�ects of such faults are too di�cult to determine, it must be

assumed that all parts of memory are potentially damaged and, hence,

all test units must be rerun in order to ensure thorough testing of any

code that exercises the fault. The successful use of TestTube depends

on the quick removal of such faults so that they do not propagate from

Intertool Connections 321

Analyze
Source

Test Suite

Test 1 . . .

Analyze
Source

Program
Database

Program
Database

Identify
Changes

Select
Tests

Selected
Tests

Covered
Functions

Covered
EntitiesReachability

Analyze

Execute
&

Instrument

Test n

Under Test
System

version n

Under Test
System

version n+1

Figure 11.7 Application of the TestTube methodology.

version to version. Once a software system has successfully grown into a

maintenance phase, it is hoped that such faults will be few.

11.3.2 The TESTTUBE Architecture

We often use the name TestTube to refer to the selective regres-

sion testing system that we have built for C programs. Yet, as was

described in the previous section, TestTube at its most general

is a platform-independent, application-independent, and programming

language-independent method for regression testing. This method im-

poses certain constraints on the functionality of the tools used to im-

plement the method and on their order of invocation. Yet, by no means

does the method require a particular architecture for its implementation.

If there is such an architecture, it is a very open architecture of loosely

coupled, highly independent components that may be easily interchanged

with components of like functionality.

Figure 11.7 depicts the TestTube methodology in terms of the com-

322 Chen, Rosenblum, and Vo

CIA
(subsys)

app

(ciadiff)

CIA

CIA

CIA

Analyze
Source

Test Suite

Test 1 . . .

Analyze
Source

Program
Database

Program
Database

Identify
Changes

Select
Tests

Selected
Tests

Covered
Functions

Covered
EntitiesReachability

Analyze

Execute
&

Instrument

Test n

Under Test
System

version n

Under Test
System

version n+1

Figure 11.8 Implementation of the TestTube methodology for C.

ponent technologies required for its application. The �gure illustrates

testing of version n+ 1 of some system under test, which was created by

making changes to version n. The �gure shows how static and dynamic

analyses are applied to select test units for version n+1 from an existing

test suite for the system. By necessity, the technology used to develop and

maintain the test suite will be highly application-dependent and heavily

in
uenced by the nature of the test cases and the means used to run them

on the system under test.

11.3.3 An Implementation of TESTTUBE for C
Programs

Our version of TestTube for C was designed and implemented around

a number of existing analysis tools. Figure 11.8 depicts our implementa-

tion of the TestTube methodology for C, using the graphical diagram

of the method from Figure 11.7. The �gure shows the existing analysis

components that we used for our implementation for C. In addition, we

Intertool Connections 323

built a number of new tools (all of whose names begin with the pre�x tt)

that basically serve to tie together these analysis components.

The collection of tools can be partitioned into three categories:

� Instrumentation Tools{The system source code is automatically instru-

mented by App, the Annotation PreProcessor for C [Ros92]. The in-

strumentation causes each run of a test unit T to produce a function

trace list , that is, the set Tf of all functions covered by T as de�ned in

Section 11.3.1.

� Program Database Tools{For each version of the system under test, a

C program database is built using the C information abstractor, cia

(Chapter 6). This database contains information about the C entities

that the system comprises and the dependency relationships among

them. Then, for each test unit, the TestTube tool ttclosure uses

the program database to expand the function trace list Tf to an entity

trace list, such as the set Tf [Tv as de�ned in Section 11.3.1. When

there are two versions of the source code, the TestTube tool ttdiff

uses the Cia tool ciadi� to analyze the two corresponding program

databases and produces an entity di�erence list.

� Test Selection Tools{Three tools are provided to assist selective retest-

ing: ttselect, ttidentify, and ttcoverage. The tool ttselect

checks to see if there is an intersection between the entity di�er-

ence list and the entity trace list of each test unit; test units with

nonempty intersections must be rerun. To estimate retesting cost, the

tool ttidentify computes the list of test units that need to be re-

run if certain speci�ed entities are changed. Finally, ttcoverage �nds

entities that are not covered by the existing test suite.

As was described in Chapter 6, C entities recognized by Cia are func-

tions, variables (including pointers and their base variables), preprocessor

macros, types, and �les; however, only global entities that can be used

across entity declaration and de�nition boundaries are recorded. A C en-

tity is considered to be changed if any token in the sequence of tokens

that constitute the entity has changed. Thus, the Cia database provides

the right code-entity partition required by the TestTube methodology.

We can illustrate the use of the TestTube tools on the test suite of

incl (Section 6.5.2), a program for detecting and removing unnecessary

324 Chen, Rosenblum, and Vo

#include directives from C programs [VC92]; such directives are used

to incorporate interface or header �les into C programs. There are eight

test units for incl . We �rst instrumented version 1 of incl with App and

built a Cia database for it. We then generated the entity trace list for

each test unit. Such lists are stored in �les whose names end with .clo.

Note that this initialization step is necessary only for the �rst version of

incl . For later versions, only the entity trace lists of test units that are

rerun need to be updated.

We then built a Cia program database for version 2 of incl . The fol-

lowing example shows that ttdiff was run to compare the two databases

(contained in directories v1 and v2, respectively) and to store the entity

di�erence list in tt.dfl. Then, tt.dfl was printed out by cat to show

that four program entities were changed from version 1 to version 2:

$ ttdiff -o v1 -n v2 > tt.dfl

$ cat tt.dfl

function;incl.c;dagprint

function;incl.c;dbeprint

function;incl.c;qexprint

macro;incl.h;N_LEVPRINT

We next ran ttselect to check for intersections between tt.dfl and

the .clo �les. The output of ttselect showed that four out of the eight

existing test units for incl had to be rerun and that their .clo �les had

to be regenerated:

$ ttselect tt.dfl *.clo

rerun test t.3

rerun test t.5

rerun test t.6

rerun test t.8

While it is possible to use ttselect to predict the testing cost implied

by a set of changes by manually constructing a hypothetical tt.dfl �le,

the tool ttidentify simpli�es this process. Given a Cia entity pattern

(which speci�es an entity kind and a regular expression to match names

of entities of that kind), ttidentify identi�es which test units must be

rerun if any matching program entities are changed. For example, the

following query �nds the list of all functions de�ned in incl.c whose

names end with print and then lists the test units that cover them;

Intertool Connections 325

the output of the query shows that changes to di�erent functions incur

di�erent testing costs:

$ ttidentify 'function *print \

file=incl.c' *.clo

incl.c dagprint:

rerun test t.3

rerun test t.6

incl.c dbeprint:

rerun test t.8

incl.c dbvprint:

rerun test t.8

incl.c exprint:

rerun test t.1

incl.c levprint:

rerun test t.2

incl.c qexprint:

rerun test t.5

incl.c stprint:

rerun test t.1

rerun test t.2

rerun test t.3

rerun test t.6

incl.c subsysprint:

rerun test t.3

rerun test t.6

The entity trace lists provided by TestTube can also be used as

an aid in evaluating the adequacy of a test suite. Given a Cia entity

pattern, ttcoverage �nds entities matching the pattern that are not

present in any entity trace list. For example, the following command �nds

all functions in incl that are not covered by any of the eight test units:�

$ ttcoverage 'function -' *.clo

NOT COVERED:

incl.c subsys

tree.c t_delete

tree.c t_free

util.c delNode

util.c delSymbol

util.c fatal

As seen in the following, the Cia tool deadobj �nds that only t delete

is truly not used by any incl code and, therefore, more test units should

be added to the test suite:

�The speci�er \-" in a Cia entity pattern is a wild card that matches all entity names.

326 Chen, Rosenblum, and Vo

$ deadobj function

tree.c function t_delete

This completes our illustration of the TestTube tools for C code. The

tools do not require redesigning existing test suites or manually modify-

ing code. They are driven by data readily obtainable from program anal-

ysis tools, such as App and Cia. Furthermore, even the dependency on

such program analysis tools can be removed. For example, if a project

already uses a tracing tool that can provide function trace lists from

program executions, then we do not need to instrument code with App.

With minimal textual transformation, the output from such a tool can be

used by TestTube. The same is true of Cia. Finally, outputs generated

by TestTube and the analysis tools �nd applications beyond selective

retesting. In particular, Cia databases created for selective retesting can

also be used to study program structure, eliminate dead program entities,

and skip unnecessary header �les during compilation.

11.3.4 Conclusion

We have described a system called TestTube that implements a selec-

tive regression testing method through dynamic and static analysis of a

software system and its test units. The choice of analysis methods used in

any selective retesting strategy is governed by a spectrum of trade-o�s be-

tween the desired detail and accuracy of the analysis and the time/space

costs required to perform the analysis. For instance, data
ow analysis

can provide information about a system at the granularity of a source

code statement, but its relatively poor time complexity may make it pro-

hibitive for analysis of large systems. In comparison with previous selec-

tive retesting techniques, TestTube employs relatively coarse-grained

analysis of the system under test, producing a reasonable and practical

trade-o� between granularity of analysis and time/space complexity.

Each phase of TestTube|instrumentation, program database con-

struction, and test selection|contributes some amount of overhead to se-

lective retesting. Instrumentation with App for dynamic tracing typically

increases object code size by about 19 percent, although compilation and

linking with uninstrumented system libraries usually reduces this space

cost to around 2 percent of the fully-linked executable. Furthermore, the

Intertool Connections 327

Table 11.4 Overhead of TestTube for Selective Regression Testing

Phase Space Overhead Time Overhead

Instrumentation 19% of object code � 0

Program DB 50 to 150% of source code 70% of compile time

Test Selection O(TU) O(TU� CE)

runtime cost of generating the trace is insigni�cant, although this may

not always be the case if low-bandwidth I/O devices are used to collect

the trace (such as in an embedded real-time system). Construction of a

Cia database typically requires about 50 to 100 percent disk space as

the original source code (and about 150 percent in the worst case) and

about 70 percent of the time needed to compile the source code. Note that

projects that already use App for assertion processing and Cia for source

code analysis are already incurring these costs. The rest of the overhead of

TestTube comes from the test selection tools ciadi� , subsys, ttselect,

ttidentify, and ttcoverage. ciadi� produces output that is linear in

the size of the number of changed components. The test selection tools

currently use naive algorithms for their computations; thus, we have not

yet determined the minimum expected costs for these tools.

Table 11.4 presents a summary of the (current) overhead of using

TestTube for selective regression testing. TU is the number of test units,

while CE is the number of changed entities. Note that while it is easy to

bypass the tracing code at minimal runtime cost in a �eld-grade release

of a system, projects that choose not to release instrumented code to

customers must incur an additional complete recompilation.

11.4 Xray

11.4.1 Introduction

Xray is a program animation system that graphically animates the se-

quence of function calls that takes place during a program execution. The

328 Chen, Koutso�os, and Rosenblum

source
code

instrumented
source code

APP

program
database

cia

executable
APP

trace
log

executioncompiler

post-
processing

Xray
trace
log

graph

Figure 11.9 Processing steps for Xray .

pictures and animation information generated by Xray help the user an-

alyze the performance of a program, visualize its dynamic behavior, and

detect bugs or ine�ciencies.

Xray was built by combining several tools. Figure 11.9 shows the pro-

cessing steps of Xray and how a set of tools were invoked to create the

static and dynamic information necessary for animation. App is used to

preprocess the user program to generate instrumented source code, which

is then compiled to build an executable. A trace log of function calls is

produced during each execution of that program against a test case. cia

is used to analyze the program source to build a program database. The

postprocessing step merges the static database information with the dy-

namic trace log to generate a merged program graph and a modi�ed trace

log with explicit call sequencing information. Finally, a front end based

on dotty takes the �nal graph and trace log to animate the sequence of

function calls both on the directed graph and on a stack.

The executable generated by App is instrumented in such a way that

it can be used both for TestTube and Xray processing. The graph

generated in the postprocessing step is basically the static call graph

with possibly a few extra edges. These extra edges represent dynamic

function calls through pointers that are not amenable to static analysis,

but detectable by analyzing the trace log.

11.4.2 Program Animation with Xray

Color Plate 2 (top) shows an Xray snapshot. The graph shows the

static and dynamic function-to-function references, represented as di-

rected edges between function nodes. Colors of nodes and edges are

changed dynamically when the animation is in progress. Di�erent col-

Intertool Connections 329

ors help distinguish between hot and cold spots, and to locate functions

that are on or o� the stack.

Active functions on the calling stack at a given point of execution

and their associated chain of references are painted yellow in the graph.

In the snapshot, the stack consists of main, makepairs, init list, and

chkmalloc. As the animation is played through, the yellow path extends

and retracts through the graph, just as the stack drawn in a separate

window grows and shrinks.

Unexercised functions and references during a particular execution are

painted blue. For example, in the particular execution shown in the snap-

shot, main did not call makeargs. This is revealed in the picture by paint-

ing the node for makeargs and the edge between it and main blue. Most

pro�ling tools (with the exception of call path pro�ling [Hal92]) concen-

trate only on statistics of individual functions, while Xray gathers and vi-

sualizes information on both functions and their calling paths. In general,

a function might never be called if there was some
aw in the program

logic or if the test suite does not provide adequate coverage. This can be

detected visually by accumulating the results gathered from all trace logs

during Xray animation.

Except for functions and references on the active stack, all others that

are exercised at least once are painted green. For example, viewline was

called in this test case, but only from walk list, so that edge is painted

green. On the other hand, function viewlines did not call viewline, so

the edge between these two functions is painted blue.

A threshold n can be set so that all nodes or edges that are exercised

more than n times in a trace are painted red to highlight hot spots, areas

of focus for potential performance improvements.

The animation of function calls can be run either in continuous mode

or single-step mode. The sequence can also be played in reverse. Playing

the sequence continuously is useful for observing patterns in the execution

of the program, while single-stepping is useful for detailed analysis of a

section of a trace log. Breakpoints can also be set in the continuous mode

so that the execution may run for a while and then stop at a selected

node, possibly followed by detailed, single-stepped analysis of another

program segment.

330 Chen, Koutso�os, and Rosenblum

When running Xray on the previous test case in continuous mode, we

see that the yellow path (representing the stack) �rst goes through the top

section of the graph (above the error node), then moves to the bottom.

By running cia source-retrieval queries on these functions to display their

code, we �nd that the top portion of the graph corresponds to functions

used for parsing the command line arguments, while the functions in the

bottom portion execute the actions requested by those arguments.

To help highlight module-to-module dependencies, Xray can group all

the functions de�ned in the same �le into a single cluster, which is shown

as a rectangle containing only the corresponding function nodes. Color

Plate 2 (bottom) shows the cluster graph representation of the graph

from Color Plate 2 (top). Note that all uninstrumented library functions

are clustered inside the same rectangle labeled <library>.

11.4.3 Managing Complex Traces and Graphs

For large programs both the graphs and trace logs handled by Xray may

become big and complex. A complex graph may not �t into a display

window comfortably. Even with the zoom out and scroll features of dotty ,

either labels become illegible or edge crossings clutter up the picture,

causing users to lose track of the animation. Moreover, large trace logs

take a long time to generate and consume a lot of disk space when saved.

Xray o�ers several ways to work around these problems:

� Hiding uncovered code{Xray allows a user to hide all uncovered code

of a particular test case, such as all blue nodes and edges from the

graph. The resulting graph tends to be much smaller, especially in large

programs, since a single test case may exercise only a small portion of

a program. However, hiding uncovered code also has the disadvantage

of losing the visual coverage information of individual test cases.

� Collapsing clusters to single nodes{Xray can also collapse all the func-

tions in a speci�c �le to a single node. For example, in Color Plate 2

(bottom), the four functions in cluster list.c can be replaced with a

single meta-node labeled list.c. Any edges from or to nodes outside

the cluster will be replaced with edges to or from the meta-node. The

trace log maintained by Xray is also adjusted accordingly. This option

Intertool Connections 331

can reduce the sizes of both the graph and the Xray trace log signif-

icantly. It is especially useful when the user is interested only in the

details of a couple of modules (�les); all other functions can be col-

lapsed into their corresponding module nodes with only the interesting

functions visible.

� Selective deletion of nodes and edges{Another alternative that Xray

provides is to allow users to delete individual nodes and edges that

they have understood or are not interested in. The user can remove a

single edge, a single node, or all nodes belonging to a single module.

The trace log is also adjusted to remove calls to the deleted objects. For

example, every time the function chkmalloc in Color Plate 2 (bottom)

is called, it in turn calls the library function malloc(). Once the user

understands this, seeing the same calling sequence repetitively is not

interesting. Also, if users are interested only in seeing how the func-

tions they wrote interact with each other, they can �rst collapse all the

library functions into a single node and then remove it. This will make

the picture and the log much smaller and allow the user to focus on

the user-developed functions in the program.

� Pre-�ltering of trace logs{Users can also specify what functions to ig-

nore during the generation of the trace log. This technique, as opposed

to generating the full log and then removing functions from the graph,

takes less time to generate the trace log and less space to save the log

on the disk.

Color Plate 3 shows a snapshot from running Xray on a much larger

program (12,000 lines of C). The graph shown here is about ten times

smaller than the complete graph of the program. Several types of �lters

were applied: Pre�ltering excluded several functions from appearing in

the trace log, all dead nodes and edges were removed, and several groups

of functions were collapsed into single nodes. Also, clustering was applied

to show module dependencies.

11.4.4 Conclusion

Xray has bene�ted signi�cantly from the components that it was built

on. It inherits and takes advantage of their new features and performance

332 Fowler, Korn, Koutso�os, and North

improvements. For example, the new clustering operator in dotty was

used e�ectively in Xray soon after it became available.

Using program animation provided by Xray , we have been able to

identify some subtle bugs in certain projects that went unnoticed by their

authors for a long period of time. Advances in Xray 's underlying tech-

nologies, including static analysis, dynamic analysis, graph drawing, and

browsing tools, have made program animation a practical technique to

help programmers understand, debug, and �ne-tune their complex soft-

ware systems.

11.5 VPM

11.5.1 Introduction

Visual Process Manager (Vpm) is a tool that provides real-time views of

processes executing on a network of UNIX machines. The processes, any

system resources they use, and the computers they run on are shown as

objects in a graph.

Color Plate 4 (top) shows a sample Vpm view. Outlined boxes, such as

toucan and gryphon, represent computer systems. Filled boxes represent

processes. Double circles shown within a computer box represent UNIX

pipes, while double circles outside any boxes represent sockets. Finally,

ellipses represent regular �les. Processes and pipes are shown within a

computer box to indicate that they can be accessed only from within that

computer. Sockets and regular �les are shown outside, since they can be

accessed by other computers. There are two kinds of edges: edges between

processes and edges between a process and a �le (pipes and sockets are

special kinds of �les in UNIX). An edge between two processes indicates

that these processes have a parent-to-child relationship. For example,

process 17551 created (forked) process 17604. An edge between a process

and a �le indicates that the process has opened the �le for input or output

or both. For example, process 15349 has opened the �le dotty for input

(the arrow speci�es that information is
owing from the �le to the process

that is, the �le is opened for reading).

The picture shows a coshell server (process 17572) having started a

Intertool Connections 333

dotty process on machine toucan. The user initiated this by running a

coshell client (process 17604). The client sent the request to the server

using the pipe shown in the gryphon box. The coshell server uses sockets

(the two double circles outside the computer boxes) to collect any textual

output that the processes on machine toucan may produce. Any such

output is forwarded to the user's terminal.

Color Plate 4 (bottom) shows another Vpm snapshot. nmake is being

used together with coshell to run a distributed compilation of some tool.

Vpmwas built by combining several other tools and libraries. The trace

log that Vpm uses to generate its graphical views is generated by n-DFS .

This functionality of n-DFS is implemented using libcs. The graphical

views and user interface of Vpm are implemented using dotty .

Previous work in the area of debugging and performance analysis for

distributed programs has considered methods of collecting and examining

trace logs. The most common software-only approach is to write trace

logs via a debugging version of the standard programming library. Some

systems also rely on special features of the operating system to monitor

events, such as context switches, that would be transparent to a user

process. Other systems require modi�cations to the operating system to

allow them to collect tracing information.

PVM [BDGS93] has a library that implements its abstract parallel vir-

tual machine. A debugging version of the library emits traces read by a

monitoring process with an attached text log browser. ParaGraph [HE91]

is a debugging system for a real-time multiprocessor without tasking, so

only postmortem logs are available. HMON [Dod92] traces events using

a combination of C library and kernel support to capture low-level trace

information on a hexagonal mesh parallel computer. A language-based

approach was proposed for concurrent Ada programs, but such issues as

dynamic task creation were not considered. For UNIX system program-

ming, the proc interface in Eighth Edition UNIX and Plan 9 provides

a name space for distributed processes that aids debugging [PPTT90,

Win94]. Plan 9 makes it easier to request state information on demand,

but does not provide an event-monitoring scheme.

Vpm di�ers from the systems mentioned here in several ways. Most of

the other systems generate logs of events in some custom model of process

334 Fowler, Korn, Koutso�os, and North

interaction. To trace a distributed application, the application must be

written or modi�ed to obey that model. Vpm traces the actual system

calls so that any process and any distributed application can be traced.

In fact, Vpm is nonintrusive; there is no need to modify or recompile a

program to trace it. n-DFS is implemented as a shared library that gets

loaded at runtime and intercepts system calls as they are being executed.

Also, Vpm does not require any operating system modi�cations. This

minimizes the e�ort required to integrate Vpm into a user's environment.

Finally, the modular design of Vpm allows parts of it to be used indepen-

dently. n-DFS traces can be generated and traced without the graphical

front end. The graphical front end could be replaced by some other front

end. A di�erent trace log generator could be used to replace n-DFS and,

as long as the trace is similar to n-DFS traces, the graphical front end

could be used as is. This would be useful, for example, for animating

traces generated by an embedded system.

11.5.2 Implementation

Trace generation is implemented using the ability in n-DFS to attach

servers to speci�c parts of the �le system and speci�c processes running

under n-DFS . The tracing server is set up to apply to the entire �le

system and (by default) all the processes in an n-DFS user session. A

per-process table is maintained, indicating which (if any) system calls to

report and whether to use a verbose or terse format for each call. The

following list of system calls can be selectively reported:

� Process management system calls, such as fork, exec, and exit{In Color

Plate 4 (top), when dotty forks process 15350, this is shown by creating

a node for the new process and linking it to the open �le nodes of its

parent (such as the socket 4269). When process 15350 execs a program

called lefty, the label of node 15350 is updated correspondingly.

� I/O channel management system calls, such as open, close, dup, and

pipe{Network connections are traced using open and close calls. For

example, the two nodes at the bottom right of Color Plate 4 (top)

are UNIX pipes created by the lefty process. lefty then spawned dot,

Intertool Connections 335

[15350 37506] fork () = 15362

[15362 37506] fork () = 15350

[15362 37506] exec ("/home/ek/work/bin/lefty" ...) = 0

[15362 37506] close (116842+2595 0x2ba8c3fb) = 0

Figure 11.10 Vpm trace sequence.

which also inherited the two pipes. Arrows in process-to-�le edges show

�le access modes (read, write, or both).

� I/O operations, such as read and write.

The per-process table of system calls to report is inherited from process

to process, but it can also be modi�ed anytime during the lifetime of a

process. This makes it possible to focus the visualization on a speci�c

process by monitoring more system calls for that process only and by

setting the monitoring mode to verbose.

Figure 11.10 shows an excerpt from the monitoring information gen-

erated by Vpm. It corresponds to having process dotty in Color Plate

4 (top) spawn a process that eventually runs program lefty . When the

dotty process performs a fork, two messages result: one from the parent

and one from the child. The �rst number in brackets is the process id of

the process performing the action. The second number identi�es the host

on which the process runs. The �nal close occurs because process dotty

had the �le descriptor for �le dotty marked as close-on-exec.

The front end for Vpm is implemented as a customized version of

dotty . dotty reads the n-DFS message channel and translates its trace

entries into graph operations. An open system call, for example, is trans-

lated to inserting a new node for the �le (unless the �le was already open

by some process) and then inserting an edge between the process that

performed the call and the �le.

Tracing information for a process is generated by the process itself.

This information is then sent to a single server process. The front end

communicates with this server to receive the trace information. One prob-

lem with having each process generate its trace information is that if the

process terminates abnormally, Vpm never receives the �nal exit message

from that process, so it does not know when to remove this process from

the picture. To overcome this problem, we built a pid server. Vpm starts

336 Fowler, Korn, Koutso�os, and North

up one pid server per machine. If Vpm receives no message from a process

for a while, it queries the pid server about this process. The pid server

then replies, indicating whether the process is still around.

Vpm can run either in real-time or in single-step playback mode. In

real time, it reads the trace information as it is being generated and

periodically updates the graphical view. Graph insertions are batched

before a new layout is made (deletions and relabelings can be executed

immediately). Layouts are not made online because dot 's algorithms are

not incrementally stable and, even if improved algorithms are available,

it probably will never be able to keep up with a burst of system calls. In

single-step mode, Vpm reads a previously written trace log and updates

the graphical view after every step (or after a sequence of steps, depending

on the user's selection). The real-time view is good for seeing things as

they happen. The single-step mode provides a more detailed view and is

better suited for debugging.

We are currently working on two features that would increase Vpm's

usefulness as a debugging tool. One feature is to allow the user to specify

that one or more processes are to be suspended when they try to perform

some speci�c task, such as opening a new �le. When this occurs, the node

representing the process changes color to red to show that it has been

suspended. The user can then allow the process to continue by clicking

on the node. Another debugging feature is that the user can click on a

node representing a pipe and, from then on, any data
owing through

this pipe are displayed in a text window.

12

Evaluation of Approach

David Belanger, Balachander Krishnamurthy, and
Kiem-Phong Vo

12.1 Introduction

This book is a study of a collection of practical reusable software tools.

Each of the individual tools or libraries was created to help some aspect

of software development, for example: general purpose libraries, con�gu-

ration management, application construction, security, software fault tol-

erance, reverse engineering, and software process. The process of building

these tools helped to develop a variety of capabilities in both expertise and

software modules. These capabilities have been used over many years to

support hundreds of projects throughout the software development com-

munity within AT&T, and to create a highly synergetic environment in

which to build new software. It is the latter that is the primary subject

of this book. In this chapter, we discuss our experience to date in terms

of what was done right, what could be improved, critical success factors,

experience with technology transfer, and future directions.

12.2 What Went Right

At this time, many things have worked well. Notable among them are:

� Impact{Many of the tools and libraries described in this book are widely

used in AT&T products as well as in the product development process.

337

338 Belanger, Krishnamurthy, and Vo

From a corporation point of view, this has had signi�cant positive im-

pact in both development time and product quality.

� Partnership{Many of our members work closely with product organi-

zations both in technology transfer and in learning problems that exist

in these areas. This helps these organizations to quickly try and use

new technologies. We freely share source code|this helps to increase

trust in research software. Such collaborations help to mature technolo-

gies quickly and provide invaluable information on the detailed needs

of software development.

� Vertical integration{Software tools, such as ksh and Easel (Chapter 4),

formalize powerful methods to build systems out of independent soft-

ware components and are used widely to build products. Within our

own work over the past few years, there have been many cases, such

as Vpm (see Section 11.5), in which we have been able to build so-

phisticated research prototypes quickly (for example, three weeks) by

integrating many pieces of software across all of the levels described in

Chapter 1. These applications would not have been attempted using

standard processes.

� Common view{At face value, the structure of this work is technologi-

cally heterogeneous and appears to be a loosely coupled set of projects.

They are bound by a common view of the needs of our customers,

AT&T developers, and by an evolving view of the process of software

creation. This common view has helped bring about a cohesive, sup-

portive environment that values diversity in work directions. It has also

supported a process of change in our work directions as the needs of

product development have changed.

� Teamwork{Members with di�erent types of expertise often collaborate

on multiple aspects of software engineering research. Such teamwork is

always driven by mutual interests in the problems to be solved. This

helps us to solve problems quickly. It also helps to improve existing soft-

ware, reduce code redundancy, and increase consistency across software

tools. Over the years this mode of work has created a fertile environ-

ment both conducive to professional growth and helpful in orienting

new members.

Evaluation of Approach 339

� Continuous improvement-In any multiyear, multiperson e�ort, there is

ample room to make mistakes and to learn from them. We have made

our share of mistakes and believe that learning from them has led to

signi�cant improvements in our software. For example, in Section 2.4,

we discuss the lack of reusability of the data language of dag making it

hard to create interactive browsers and other tools. This was recti�ed

in libgraph, which de�ned a standard data language that aids in sharing

at various levels, as a result of which graphs could be shared between

programs.

12.3 What Could Be Improved

As with any process, there are areas for improvement. A few are listed

in the following. Most of these are problems that have proven quite hard

and, though there have been successes, we do not yet have a predictable

process to ensure the successes.

� Leverage{Some of the technologies and tools described in this book

have proven valuable in practice, but are still used at only a fraction

of their potential value. There is considerable opportunity to increase

practical value with appropriate, but limited, e�ort and expertise.

� Distribution{Some of the tools (such as nmake) have become de facto

standards within large parts of AT&T. A few (for example curses and

KornShell) have become standards outside; but often the technology

has not been distributed widely or early enough to have e�ective impact

on the software community at large.

� Measuring bene�ts{As with most of the software industry, we have not

been able to quantify the bene�ts and costs of reusing most of these

tools. In a few cases, we got estimates from production users but we

do not yet have adequate measures.

� Exit strategy{It is di�cult to gracefully reduce and end support of tools

that are used by tens or hundreds of product developers, even when

interest in them from a research perspective has been exhausted.

340 Belanger, Krishnamurthy, and Vo

12.4 Success Factors

Several success factors for reuse have been discussed in the literature. We

discuss a few aspects as outlined in [Dav93]: management, application

development, asset development, and process and technology.

� Management factors{The colocation of the book's contributors in a

stable environment for several years has clearly aided the development

of reusable assets. This is a result of successful management. Another

aspect of good technical management is establishing early connections

between organizations with needs and appropriate research technolo-

gies. This leads to a more honest evaluation of the validity of the ap-

proaches and gives better, earlier feedback for improvements in the

software.

� Application development factors{The contributors not only invent, de-

sign, and create the software, but often participate in evaluating ways

it can be reused in the end products. This bene�ts both sides; we learn

how to make our software more generic while the recipients discuss

the software directly with the developers. In such cases as Easel, ksh,

and nmake, the high-level tools also act as the end products that reuse

and drive improvements in other more basic components, such as s�o

or vmalloc. Many of us also use environment tools, such as ksh or n-

DFS, daily. We develop reusable software and use it in our own work.

This close-knit interaction between development and use has proven

to be tremendously valuable in compressing the evolutionary cycle of

reusable assets and ensuring high quality in the resultant software.

� Asset development factors{A signi�cant part of the software base, es-

pecially at the library level, is driven by our own needs during develop-

ment of higher-level tools. Others are created as applications of certain

theoretical considerations. In most cases, well-structured libraries with

carefully thought-out interfaces are created �rst. This makes it possi-

ble to share new algorithms among a wide range of tools, developers,

and projects. Then, concepts are developed at higher levels and imple-

mented in specialized languages. Along with the code, there are docu-

mentation, regression test suites, and exemplary sample applications.

In this way, reusable assets are created.

Evaluation of Approach 341

� Process and technology factors{Many of the higher-level tools and cer-

tain critical parts of the libraries are continually re�ned based on algo-

rithm advances and new insights gained from usage of the tools. Direct

and frequent communication among researchers helps to ensure that

the tools �t well with each other. Conscious e�orts are made to ensure

that changes are either upward-compatible or documented clearly to

help migration. By using ship (Section 3.1.4) as the software distribu-

tion mechanism, we make it easy to propagate changes to user sites. As

all of us are engaged in full-time research, there has not been enough

time spent on direct training and support except where direct partner-

ships are formed. However, all tools come with reference manuals and,

in some cases, extensive user guides.

12.5 Technology Transfer Experience

Technology transfer is important to enabling wide-scale reuse in other

organizations and plays a strong role in improving software quality and

productivity. Three main ingredients in successful technology transfer are

technology, application, and support. First, a set of reusable components

is assembled. Then, a set of applications that can use these components

needs to be identi�ed. In cases where technologies were developed to

meet known applications, this is easy. In other cases, where technologies

are created without speci�c target applications, management must take

a strong role in establishing connections with organizations that may

have needs for such technologies. The third area of support deals with

maintenance, documentation, training, process descriptions and ongoing

monitoring of progress. We shall discuss more on support in the following.

In transferring a technology to di�erent organizations, many barriers

arise. Here are our approaches to reducing or removing such problems:

� Not invented here{Often, when a new piece of software is brought to

an organization, a common hurdle is reluctance in accepting it due to

either competing extant software or other ongoing work. By preparing

for this a priori and introducing new software only in sites where there

are clearly perceived bene�ts over locally available and commercial al-

ternatives, we have been successful in getting over this hurdle.

342 Belanger, Krishnamurthy, and Vo

� Risk management{Recipients of research software are often wary of us-

ing untested software that may upset their production environment.

Over a long period of time, our record of successful transferring ex-

periences and the quality of our software help to reduce this concern

by recipients. In certain cases, where we feel that a closer relation-

ship would increase trust and speed up the transfer process, we form a

partnership with the target organization.

� Radical changes in work/programming environment{Nonintrusiveness

of technology is vital; changes should be introduced gradually without

requiring wholesale changes in the environment. We spend considerable

e�ort to ensure this both in low-level libraries (such as s�o replacing

stdio, as discussed in Section 2.2.1.9, and n-DFS ensuring unobtrusive-

ness, as discussed in Section 2.5.2) and in higher-level components (such

as nonintrusive assistance in process automation; see Section 10.2).

� Operability on application platform{Portability is a large factor, espe-

cially in AT&T where a wide variety of platforms are used. This often

requires that the tool creators do the necessary porting. Fortunately,

our experience with portability is available in the form of consultation

and documentation (see Section 3.2).

� Continuing support{A minimal requirement for successful technology

transfer is adequate documentation (even for self-explanatory software)

and training for recipients. But successful transfer of new technologies

often requires continuing interactions between transferor and transferee

for some period of time. In particular, ongoing e�ort must be applied to

improve the technology transfer process. This is especially important

in organizations, such as ours to reduce the workload for researchers.

Our department has a group devoted to supporting technology transfer

whose responsibility is to monitor the progress in improving transfer

processes. The group assures interim support and creates a long term

support program. This has helped assure users that their problems will

be solved quickly.

Evaluation of Approach 343

12.6 Future Directions

This book has described ongoing work on the reuse of software at many

levels. It cites some of the lessons we have learned from both organi-

zational and technological viewpoints. Though the software described is

extensive, it by no means covers all the needs. There are many aspects of

software construction that we need to understand better. Among these

are:

� Software distribution{The Advsoft process has gone a long way in

providing a solution. Its con�guration and distribution technology is

advanced and will continue to be improved. But wide-area networks

also are advancing; interactive speeds are possible even between conti-

nents. We must understand how software distribution should be done

in such an environment.

� Software testing{This is an area that we have touched only peripher-

ally. As larger and larger systems are built, more work must be done

to ensure the quality of such products both in terms of defect discov-

ery and online recovery from hidden defects. Research on testing and

software fault tolerance will combine to achieve this goal. The combi-

nation of n-DFS, nmake, and TestTube also o�ers a tantalizing hint

at a software development process in which code and test development

can be shared e�ectively among developers and testers. This integra-

tion can be made practical by minimization techniques in much the

same way that oldmake and nmake made practical the reconstruction

of large software systems during the development cycle.

� Software architecture{This area is growing quickly in the software en-

gineering community. From a software reuse point of view, this should

help in easing the construction of new software by matching archi-

tecture templates, and in choosing appropriate reusable components

for implementations. Architecture deals with components and, more

importantly, the linkages between the components. If we are able to

identify a few templates that span many software applications, we can

use the templates to classify new software. Once classi�ed, we would be

able to select reusable components as well as indicate the best manner

in which the linkages can be made.

344 Belanger, Krishnamurthy, and Vo

12.7 Summary

We have taken the view that break-through ideas can arise equally from

theory or from observing and measuring the performance of software.

This should be evident in reading about the projects described in this

book. The collective experience has been presented from several angles in

the hope that this will help other software researchers and developers.

In closing, note that the people involved in this work understand how

real product software works, write code, and often work side by side with

product developers. This has proved critical not only to create mutual

trust between providers and users of software, but also to create a feed-

back process that generates better, more timely reusable assets. It is

probably the most important factor in the success of this software reuse

program.

Bibliography

[ABS93] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi.

E�cient Detection of All Pointer and Array Access Errors.

Technical Report TR 1197, Computer Sciences Department,

University of Wisconsin at Madison, December 1993.

[All86] Eric Allman. An Introduction to the Source Code Control

System. In Unix Programmer's Manual Supplementary Doc-

uments Volume 1. University of California at Berkeley, April

1986.

[ANS90] American National Standard for Information Systems{

Programming Language{C, 1990.

[Arn84] K. C. R. C. Arnold. Screen Updating and Cursor Movement

Optimization: A Library Package, 4.2 BSD UNIX Program-

mer's Manual Supplementary Documents. University of Cal-

ifornia at Berkeley, July 1984.

[AWK88] Al Aho, Peter Weinberger, and Brian Kernighan. The AWK

Programming Language. Addison-Wesley, 1988.

[BB91] R. Bianchini and R. Buskens. An adaptive distributed

system-level diagnosis algorithm and its implementation. In

Proceedings of the 21st International Symposium on Fault-

Tolerant Computing, pages 222{229. IEEE Computer Soci-

ety Press, June 1991.

[BDGS93] Adam Beguelin, Jack Dongarra, Al Geist, and Vaidy Sun-

deram. Visualization and debugging in a heterogeneous en-

vironment. IEEE Computer, 26(6):88{95, June 1993.

[Bel89] Steven M. Bellovin. Security problems in the TCP/IP pro-

tocol suite. Computer Communications Review, 19(2):32{48,

April 1989.

345

346 Bibliography

[Ber93] L. Bernstein. Innovative Technologies for Preventing Net-

work Outages. AT&T Technical Journal, 72(4):4{10, July

1993.

[BGST90] G. Di Battista, A. Giammarco, G. Santucci, and R. Tamas-

sia. The architecture of diagram server. In Proceedings of

IEEE Workshop on Visual Languages (VL'90), pages 60{65,

1990.

[BK89] Morris Bolsky and David G. Korn. The KornShell Command

and Programming Language. Prentice Hall Press, 1989.

[BK91] Naser S. Barghouti and Gail E. Kaiser. Scaling Up Rule-

Based Development Environments. In Proceedings of the

Third European Software Engineering Conference, ESEC

'91, pages 380{395, Milan, Italy, October 1991. Springer-

Verlag. Published as Lecture Notes in Computer Science

no. 550.

[BK95] Morris Bolsky and David Korn. The New KornShell Com-

mand and Programming Language. Prentice Hall Press, 1995.

[BP88] Brian Bershad and Brian Pinkerton. Watchdogs: extending

the UNIX �le system. In USENIX Association 1988 Winter

Conference Proceedings, pages 267{275, February 1988.

[BS92] M. Baker and M. Sullivan. The Recovery Box: Using Fast

Recovery to Provide High Availability in the UNIX environ-

ment. In USENIX 1992 Summer Conference Proceedings,

pages 31{43, June 1992.

[Car80] M.J. Carpano. Automatic Display of Hierarchized Graphs for

Computer Aided Decision Analysis. IEEE Transactions on

Systems, Man and Cybernetics, SMC-10(11):705{715, 1980.

[CB94] William R. Cheswick and Steven M. Bellovin. Firewalls

and Internet Security: Repelling the Wily Hacker. Addison-

Wesley, Reading, MA, 1994.

[Che76] P. P. Chen. The Entity-Relationship Model{Toward a Uni-

�ed View of Data. ACM Transactions on Database Systems,

1(1):9{36, March 1976.

[Che89] Yih-Farn Chen. The C Program Database and Its Applica-

tions. In Proceedings of the Summer 1989 USENIX Confer-

Bibliography 347

ence, pages 157{171, Baltimore, June 1989.

[Che94] Yih-Farn Chen. Dagger: A Tool to Generate Program

Graphs. In Proceedings of the USENIX UNIX Applications

Development Symposium, pages 19{35, Toronto, Canada,

April 1994.

[CI90] Elliot H. Chikofsky and James H. Cross II. Reverse Engi-

neering and Design Recovery: A Taxonomy. IEEE Software,

7(1), January 1990.

[Cic88] S. Cichinski. Product administration through Sable and

Nmake. AT&T Technical Journal, 67(4):59{70, July{August

1988.

[CL89] Brent Callaghan and Tom Lyon. The automounter. In Pro-

ceedings of 1989 Winter USENIX Technical Conf., pages 43{

51, San Diego, California, 1989. USENIX Association.

[CL90] Marshall P. Cline and Doug Lea. Using Annotated C++. In

Proceedings of C++ at Work, September 1990.

[CNR90] Yih-Farn Chen, Michael Nishimoto, and C. V. Ramamoor-

thy. The C Information Abstraction System. IEEE Transac-

tions on Software Engineering, 16(3):325{334, March 1990.

[CRV94] Yih-Farn Chen, David Rosenblum, and Kiem-Phong Vo.

TestTube: A System for Selective Regression Testing. In

Proceedings of the 16th Internation Conference on Software

Engineering, pages 211{220, Sorrento, Italy, May 1994. IEEE

Computer Society.

[Dav93] Ted Davis. The Reuse Capability Model: A Basis for Im-

proving an Organization's Reuse Capability. In Proceedings

of the Second International Workshop on Software Reusabil-

ity, pages 126{133. IEEE Computer Society, March 1993.

[DF93] Mark Dowson and Christer Fernstrom. Towards Require-

ments for Enactment Mechanisms. In Proceedings of the

Third European Workshop on Software Process Technology,

pages 90{106, Grenoble, France, February 1993. Springer-

Verlag.

[DoD85a] DoD trusted computer system evaluation criteria, 1985.

5200.28-STD.

348 Bibliography

[DoD85b] Technical rationale behind CSC-STD-003-83: Computer se-

curity requirements, 1985. CSC-STD-004-85.

[Dod92] PS Dodd. Monitoring and Debugging Distributed Real Time

Programs. Software|Practice and Experience, 22(10):863{

877, 1992.

[EP84] B. Erickson and J. Pellegrin. Build|A Software Construc-

tion Tool. Bell System Technical Journal, 63(6):1049{1059,

July 1984.

[ER89] M. W. Eichin and J. A. Rochlis. With Microscope and

Tweezers: An Analysis of the Internet Virus of November

1988. In Proceedings of IEEE Symposium on Research in Se-

curity and Privacy, pages 326{345, Oakland, CA, May 1989.

[FCI92] Federal criteria for information technology security, version

1.0, December 1992. (Draft).

[Fel79] Stuart I. Feldman. Make|A Program for Maintaining

Computer Programs. Software|Practice and Experience,

9(3):255{265, March 1979.

[Fer93] Christer Fernstr�om. State Models and Protocols in Process-

Centered Environments. In Proceedings of the 8th Inter-

national Software Process Workshop, pages 72{77, Schloss

Dagstuhl, Germany, March 1993. IEEE Computer Society

Press.

[FH85] C. W. Fraser and D. R. Hanson. High-Level Language Fa-

cilities for Low-Level Services. In 12th ACM Symposium on

Principles of Programming Languages, pages 217{224, 1985.

[FHKR93] Glenn S. Fowler, Yennun Huang, David G. Korn, and Her-

man C. Rao. A User-Level Replicated File System. In

USENIX Cincinnati 1993 Summer Conference Proceedings,

pages 279{290, June 1993.

[FHO92] Glenn S. Fowler, J.E. Humelsine, and C. H. Olson. Tools

and Techniques for Building and Testing Software Systems.

AT&T Technical Journal, 71(6):46{61, Nov-Dec 1992.

[FKSV94] Glenn S. Fowler, David G. Korn, J. J. Snyder, and Kiem-

Phong Vo. Feature Based Portability. In Proceedings of the

USENIX Symposium on Very High Level Languages, pages

Bibliography 349

197{207, October 1994.

[FKV89] Glenn S. Fowler, David G. Korn, and Kiem-Phong Vo. An

E�cient File Hierarchy Walker. In USENIX Summer 1989

Conference Proceedings, pages 173{188, Baltimore, MD,,

1989. USENIX Association, Berkeley, CA.

[Fow85] Glenn S. Fowler. The Fourth Generation Make. In Proceed-

ings of the USENIX 1985 Summer Conference, pages 159{

174, June 1985.

[Fow88] Glenn S. Fowler. cpp{The C language preprocessor, 1988.

UNIX Man Page.

[Fow90] Glenn S. Fowler. A Case for make. Software|Practice and

Experience, 20(S1):35{46, June 1990.

[Fow94] Glenn S. Fowler. cql{A Flat File Database Query Lan-

guage. In Proceedings of the USENIX Winter 1994 Con-

ference, pages 11{21, San Francisco, January 1994.

[Gau92] Philippe Gautron. An Assertion Mechanism Based on Excep-

tions. In Proceedings of the Fourth C++ Technical Conference,

pages 245{262. USENIX Association, August 1992.

[GC90] Judith Grass and Yih-Farn Chen. The C++ Information Ab-

stractor. In Proceedings of the Second USENIX C++ Confer-

ence, pages 265{277, San Francisco, April 1990.

[GHM+90] Richard Guy, John Heidemann, Wai Mak, Thomas Page,

Gerald Popek, and Dieter Rothmeier. Implementation of the

Ficus replicated �le system. In USENIX Conference Proceed-

ings, pages 63{71, June 1990.

[GI90] David Garlan and Ehsan Ilias. Low-cost, Adaptable Tool In-

tegration Policies for Integrated Environments. In SIGSOFT

'90: Proceedings of the Fourth Symposium on Software De-

velopment Environments, pages 1{10, Irvine, CA, December

1990. ACM SIGSOFT.

[GJSO91] David Gi�ord, Pierre Jouvelot, Mark Sheldon, and James

OToole. Semantic File Systems. In Proceedings of the Thir-

teenth ACM Symposium on Operating System Principles,

pages 16{25, October 1991.

[GKNV93] Emden R. Gansner, Eleftherios Koutso�os, Stephen C.

350 Bibliography

North, and Kiem-Phong Vo. A Technique for Drawing Di-

rected Graphs. IEEE Transactions on Software Engineering,

19(3):214{230, March 1993.

[GLDW87] Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mary S.

Weeks. Shared libraries in SunOS. In USENIX Conference

Proceedings, pages 131{145, Phoenix, AZ, Summer 1987.

USENIX.

[GN91] David Garlan and David Notkin. Formalizing Design Spaces:

Implicit Invocation Mechanisms. In Proceedings of VDM'91:

Formal Software Development Methods. Springer-Verlag, Oc-

tober 1991. Published as Lecture Notes in Computer Science

551.

[GNV88] Emden R. Gansner, Stephen C. North, and Kiem-Phong Vo.

DAG{A Program that Draws Directed Graphs. Software|

Practice and Experience, 18(11):1047{1062, 1988.

[Gol84] A. Goldberg. Smalltalk-80, The Interactive Programming

Environment. Addison-Wesley, 1984.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Con-

cepts and Techniques. Morgan Kaufmann Publishers, 1993.

[Gra92] Judith E. Grass. Cdi�: A Syntax Directed Di�erencer for C++

Programs. In USENIX C++ Conference Proceedings, pages

181{193, Portland, Oregon, August 1992.

[Gre94] Rick Greer. All About Daytona. AT&T Bell Laboratories In-

ternal Memorandum, July 1994. Available from the author:

rxga@research.att.com.

[GS91] J. Gray and D. P. Siewiorek. High-Availability Computer

Systems. IEEE Computer, 24(9):39{48, September 1991.

[Hal92] Robert J. Hall. Call Path Pro�ling. In The 14th Internation

Conference on Software Engineering, pages 296{306, 1992.

[HC88] Richard C. Holt and James R. Cordy. The Turing Program-

ming Language. Communications of the ACM, 31(12):1410{

1423, December 1988.

[HE91] M. Heath and J. Etheridge. Visualizing the Performance of

Parallel Programs. IEEE Software, 8(5):29{39, September

1991.

Bibliography 351

[Him89] M. Himsolt. GraphEd: An Interactive Graph Editor. In

Proceedings of STACS 89, volume 349 of Lecture Notes in

Computer Science, pages 532{533, Berlin, 1989. Springer-

Verlag.

[HJ92a] Reed Hastings and Bob Joyce. Purify: Fast Detection of

Memory Leaks and Access Errors. In Proceedings of the

Winter 1992 Usenix Conference, pages 125{136. USENIX

Association, January 1992.

[HJ92b] Yennun Huang and Pankaj Jalote. E�ect of Fault Toler-

ance on Response Time{Analysis of the Primary Site Ap-

proach. IEEE Transactions on Computers, 41(4):420{428,

April 1992.

[HJK94] Yennun Huang, Pankaj Jalote, and Chandra M. R. Kintala.

Two Techniques for Transient Software Error Recovery. In

M. Banâtre and P. A. Lee (Eds.), editors, Hardware and Soft-

ware Architectures for Fault Tolerance: Experience and Per-

spectives, pages 159{170. Springer-Verlag (Lecture Notes in

Computer Science No. 774), 1994.

[HK93] Yennun Huang and Chandra M. R. Kintala. Software Im-

plemented Fault Tolerance: Technologies and Experience.

In Proceedings of 23rd International Symposium on Fault-

Tolerant Computing Systems, pages 2{9, Toulouse, France,

June 1993. IEEE.

[HKKF94] Yennun Huang, Chandra M. R. Kintala, Nick Kolettis, and

N. Dudley Fulton. Software Rejuvenation: Analysis, Module

and Applications. Submitted for publication, October 1994.

Available from: cmk@research.att.com.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees,

David A. Nichols, M. Satyanarayanan, Robert N. Side-

botham, and Michael J. West. Scale and performance in

a distributed �le system. ACM Transactions on Computer

Systems, 6(1):51{81, February 1988.

[Hor82] Mark Horton. The New Curses and Terminfo Package. In

USENIX Conference Proceedings, pages 79{91, Boston, MA,

Summer 1982. USENIX.

352 Bibliography

[IEE93] IEEE Standard 1003.2-1992, ISO/IEC 9945-2, IEEE, 1993.

[ITS91] Information technology security evaluation criteria (ITSEC),

Provisional harmonised criteria, June 1991.

[Jal89] P. Jalote. Fault Tolerant Processes. Distributed Computing,

3:187{195, 1989.

[Joy80] William Joy. An introduction to display editing with vi li-

brary package, September 1980. Revised by Mark Horton.

[JV92] Guy Jacobson and Kiem-Phong Vo. Heaviest Increas-

ing/Common Subsequence Problems. In Combinatorial Pat-

tern Matching: Proceedings of the Third Annual Symposium,

volume 644 of Lecture Notes in Computer Science, pages 52{

65, 1992.

[Jya94] Jyacc. Jam application development guide, 1994. Technical

Publications Manager, 116 John St., New York, NY 10038.

[KB93] Balachander Krishnamurthy and Naser S. Barghouti.

Provence: A Process Visualization and Enactment Environ-

ment. In Proceedings of the Fourth European Conference on

Software Engineering, ESEC '93, pages 151{160, Garmisch-

Partenkirchen, Germany, September 1993. Springer-Verlag.

Published as Lecture Notes in Computer Science no. 717.

[KD91] Eleftherios Koutso�os and David Dobkin. Lefty: A Two-

View Editor for Technical Pictures. In Proceedings of Graph-

ics Interface '91, pages 68{76, 1991.

[Ker84] B. W. Kernighan. PIC|A Graphical Language for Typeset-

ting: Revised User Manual. AT&T Bell Laboratories, 1984.

[Kil84] T. J. Killian. Processes as �les. In Proceedings of the 1984

USENIX Summer Conference, Salt Lake City, UT, June

1984.

[KK89] T. Kamada and S. Kawai. An Algorithm for Drawing Gen-

eral Undirected Graphs. Information Processing and Letters,

31:7{15, 1989.

[KK90] David G. Korn and Eduardo Krell. A New Dimension for

the UNIX File System. Software|Practice and Experience,

20(S1):19{34, June 1990.

[KK92] Eduardo Krell and Balachander Krishnamurthy. COLA:

Bibliography 353

Customized Overlaying. In Proceedings of the USENIX Win-

ter 1992 Conference, pages 3{7, 1992.

[KN93] Yousef Khalidi and Michael Nelson. Extensible File Systems

in Spring. In Proceedings of the Fourteenth ACM Symposium

on Operating System Principles, pages 1{14, December 1993.

[KN94] Eleftherios Koutso�os and Stephen C. North. Applications

of Graph Visualization. In Proceedings of Graphics Interface

1994 Conference, pages 235{245, Ban�, Canada, May 1994.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Vol-

ume 3: Sorting and Searching. Addison-Wesley, 1973.

[Knu93] Donald E. Knuth. The Stanford Graphbase: A Platform for

Combinatorial Computing. Addison-Wesley, 1993.

[Koe88] Andrew R. Koenig. Associative Arrays in C++. In Proceedings

of Summer 1988 USENIX Conference, pages 173{186, 1988.

[KP84] Brian W. Kernighan and Rob Pike. The UNIX Programming

Environment. Prentice Hall Press, 1984.

[KR78] B. W. Kernighan and D. M. Ritchie. The C Programming

Lanugage. Prentice Hall Software Press, 1978.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Pro-

gramming Language. Prentice Hall Press, second edition,

1988.

[KR91] Balachander Krishnamurthy and David S. Rosenblum. An

Event-Action Model of Computer-Supported Cooperative

Work: Design and Implementation. In K. Gorling and C. Sat-

tler, editors, International Workshop on Computer Supported

Cooperative Work, pages 132{145. IFIP TC 6/WGC.5, 1991.

[KS74] Paul A. Karger and Roger R. Schell. Multics Security Eval-

uation: Vulnerability Analysis. Technical Report ESD-TR-

74-193, HQ Electronic Systems Division, Hanscom AFB, MA

01731, June 1974.

[KV] David Korn and Kiem-Phong Vo. Vdelta: An E�cient Delta

Mechanism. Available from: kpv@research.att.com.

[KV85] David G. Korn and Kiem-Phong Vo. In Search of a Bet-

ter Malloc. In USENIX 1985 Conference Proceedings, pages

489{506, 1985.

354 Bibliography

[KV91] David G. Korn and Kiem-Phong Vo. SFIO: Safe/Fast

String/File IO. In Proceedings of Summer USENIX Con-

ference, pages 235{256. USENIX, 1991.

[LB85] M. M. Lehman and L. A. Belady. Program Evolution: Pro-

cesses of Software Change. Academic Press, 1985.

[LCM85] David Leblang, Robert Chase Jr., and Gordon McLean Jr.

The DOMAIN Software Engineering Environment for Large-

Scale Software Development E�orts. In Proceedings of the

First International Conference on Computer Workstations,

pages 226{280, November 1985.

[LFA92] J. Long, W. K. Fuchs, and J. A. Abraham. Compiler-Assisted

Static Checkpoint Insertion. In Proceedings of 22nd IEEE

Symposium on Fault-Tolerant Computing Systems, pages 58{

65. IEEE, July 1992.

[LS80] Bennet P. Lientz and E. Burton Swanson. Software Mainte-

nance Management. Addison-Wesley, 1980.

[LST91] David C. Luckham, Sriram Sankar, and Shuzo Taka-

hashi. Two-Dimensional Pinpointing: Debugging with For-

mal Methods. IEEE Software, 8(1):74{84, January 1991.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction.

Prentice Hall Press, 1988.

[MM93] Steve Manes and Tom Murphy. C++ Development. UNIX

Review, June 1993.

[Mor85] Robert T. Morris. A weakness in the 4.2BSD UNIX TCP/IP

software. Computing Science Technical Report 117, AT&T

Bell Laboratories, Murray Hill, NJ, February 1985.

[Mye79] Glenford J. Myers. The Art of Software Testing. Wiley-

Interscience, 1979.

[NH93] Michael N. Nelson and Graham Hamilton. High Performance

Dynamic Linking Through Caching. In Proceedings of Sum-

mer USENIX, pages 253{265, June 1993.

[NIT93] The Canadian Trusted Computer Product Evaluation Crite-

ria, January 1993. Version 3.0e.

[NNGS90] John R. Nestor, Joseph M. Newcomer, Paola Giannini, and

Donald L. Stone. IDL{The Language and Its Implementa-

Bibliography 355

tion. Prentice Hall Press, 1990.

[Nor93] Stephen C. North. Drawing Ranked Digraphs with Recur-

sive Clusters. (submitted for publication), 1993. Abstract

presented at Proceedings of ALCOM International Work-

shop on Graph Drawing and Topological Graph Algorithms,

Paris, 1993.

[NV93] Stephen C. North and Kiem-Phong Vo. Dictionary and

Graph Libraries. In Proceedings of Winter USENIX Con-

ference, pages 1{11. USENIX, 1993.

[Nye90] Adrian Nye. Xlib Programming Manual. O'Reilly & Asso-

ciates, Inc., 1990.

[Olc91] Anatole Olczak. The Korn Shell{User & Programming Man-

ual. Addison-Wesley, 1991.

[OTC86] Mark Opperman, Jim Thompson, and Yih-Farn Chen. A

Gremlin Tutorial for the SUNWorkstation. Technical Report

UCB/CSD 322, Computer Science Division, University of

California at Berkeley, December 1986.

[Ous94] John K. Ousterhout. TCL. Addison-Wesley, 1994.

[Par91] Tim Parker. Pick a Pack of CASE. Software Review, 9(12),

December 1991.

[PE85] Dewayne E. Perry and W. Michael Evangelist. An Empirical

Study of Software Interface Faults. In Proceedings of the

International Symposium on New Directions in Computing,

pages 32{38. IEEE Computer Society, August 1985.

[PE87] Dewayne E. Perry and W. Michael Evangelist. An Empirical

Study of Software Interface Faults|An Update. In Proceed-

ings of the 20th Annual Hawaii International Conference on

System Sciences, Volume II, pages 113{126, January 1987.

[Pet88] Larry L. Peterson. The Pro�le Naming Service. ACM Trans-

actions on Computer Systems, 6(4):341{364, November 1988.

[POS90] POSIX{Part 1: System Application Program Interface [C

Language], 1990. International Standard ISO/IEC 9945-1

IEEE Standard 1003.1-1990.

[PPTT90] Rob Pike, Dave Presotto, Ken Thompson, and Howard

Trickey. Plan 9 from Bell Labs. In Proceedings of the United

356 Bibliography

Kingdom UNIX Users Group, London, England, July 1990.

[Pri85] Reuben M. Pritchard. Front End{A Multi-Interface Form

System. AT&T Technical Journal, 64(9):2009{2223, Novem-

ber 1985.

[PT90] F. Newbery Paulisch and W.F. Tichy. EDGE: An Ex-

tendible Graph Editor. Software|Practice and Experience,

20(S1):63{88, 1990.

[RC92] G.-C. Roman and K. C. Cox. Program Visualization: The

Art of Mapping Programs to Pictures. In Proceedings of

the 14th International Conference on Software Engineering,

pages 412{420, Melbourne, Australia, May 1992.

[RE89] J. A. Rochlis and M. W. Eichin. With Microscope and

Tweezers: The Worm from MIT's Perspective. Communi-

cations of the ACM, 32(6):689{703, June 1989.

[Rei90] Steven P. Reiss. Connecting Tools Using Message Passing

in the Field Environment. IEEE Software, 7(4):57{66, July

1990.

[Roc75] Marc J. Rochkind. The Source Code Control System.

IEEE Transactions on Software Engineering (SE), Vol.SE-1,

1(4):364{370, December 1975.

[Ros92] David S. Rosenblum. Towards a Method of Programming

with Assertions. In Proceedings of the 14th International

Conference on Software Engineering, pages 92{104. Associ-

ation for Computing Machinery, May 1992.

[Ros93] Bill Rosenblatt. Learning the Korn Shell. O'Reilly & Asso-

ciates, Inc., 1993.

[RP93] Herman C. Rao and Larry L. Peterson. Accessing Files in

an Internet: The Jade File System. IEEE Transactions on

Software Engineering, pages 613{624, June 1993.

[Sch87] Bruce Schneiderman. Designing the User Interface. Addison-

Wesley, 1987.

[Sch93] Christopher L. Schuba. Addressing Weaknesses in the Do-

main Name System Protocol. Master's thesis, Purdue Uni-

versity, 1993. Department of Computer Sciences.

[Sed78] R. Sedgewick. Algorithms, 2nd Edition. Addison-Wesley,

Bibliography 357

1978.

[SGK+85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and

B. Lyon. Design and Implementation of the Sun Network

Filesystem. In Proceedings of the USENIX 1985 Summer

Conference, pages 119{130, June 1985.

[Spa89a] Eugene H. Spa�ord. An analysis of the Internet worm. In

C. Ghezzi and J. A. McDermid, editors, Proceedings of the

European Software Engineering Conference, pages 446{468,

Warwick, England, September 1989. Springer-Verlag, Lec-

ture Notes in Computer Science No. 387.

[Spa89b] Eugene H. Spa�ord. The Internet Worm Program: An Analy-

sis. Computer Communication Review, 19(1):17{57, January

1989.

[SS92] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems:

Design and Implementation, chapter 7. Digital Press, 1992.

[ST85] Daniel Sleator and Robert E. Tarjan. Self-Adjusting Binary

Search Trees. JACM, 32(3):652{686, 1985.

[Str91] Bjarne Stroustrup. The C++ Programming Language.

Addison-Wesley, second edition, 1991.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual

Understanding of Hierarchical Systems. IEEE Transactions

on Systems, Man and Cybernetics, 11(2):109{125, 1981.

[Sum94] Steve Summit. Filesystem Daemons as a Unifying Mech-

anism for Network Information Access. In Proceedings of

Winter USENIX, January 1994.

[Sun88] Sun Microsystems, Inc., Mountain View, Calif. Shared Li-

braries, May 1988.

[SVR90] AT&T. UNIX System V Release 4 Programmer's Reference

Manual, 1990.

[Tho84] Ken Thompson. Re
ections on Trusting Trust. Communi-

cations of the ACM, 27(8):761{763, August 1984.

[Tho91] Ian Thomas, editor. Reprints of the Seventh International

Software Process Workshop, Yountville CA, October 1991.

[Tic84] Walter F. Tichy. The String-to-String Correction Problem

with Block Moves. ACM Transactions on Computer Sys-

358 Bibliography

tems, 2(4):309{321, November 1984.

[Tic85] Walter F. Tichy. RCS|A System for Version Control.

Software|Practice and Experience, 15(7):637{654, 1985.

[Tom] Tom Sawyer Software, 1824B Fourth Street, Berkeley, CA

94710. Graph Layout Toolkit, 1.08 edition.

[UNI86] Computer Science Division, University of California at

Berkeley. UNIX Programmer's Manual, 4.3 Berkeley Soft-

ware Distribution, April 1986.

[VC92] Kiem-Phong Vo and Yih-Farn Chen. Incl: A Tool to Analyze

Include Files. In Proceedings of the Summer 1992 USENIX

Conference, pages 199{208, San Antonio, Texas, June 1992.

[Vo] Kiem-Phong Vo. Vmalloc: An E�cient Memory Allocator.

Available from: kpv@research.att.com.

[Vo85] Kiem-Phong Vo. screen(3X) - more <curses>: the <screen>

library, 1985. UNIX Man Page.

[Vo90] Kiem-Phong Vo. IFS: A Tool to Build Application Systems.

IEEE Software, 7(4):29{36, July 1990.

[War77] J. War�eld. Crossing Theory and Hierarchy Mapping.

IEEE Transactions on Systems, Man and Cybernetics, SMC-

7(7):502{523, 1977.

[Wei92] Terry Weitzen. C++ Standard Components Programmer's

Guide, chapter C++Graph Classes: A Tutorial. UNIX System

Laboratories, Inc., 1992.

[WHF93] Y. Wang, Yennun Huang, and W.K. Fuchs. Progressive

Retry for Software Error Recovery in Distributed Systems.

In Proceedings of FTCS23, pages 138{144, Toulouse, France,

June 1993. IEEE.

[Wil93] Wilhelm Sch�aefer, editor. Proceedings of the Eighth Inter-

national Software Process Workshop, Schloss Dagstuhl, Ger-

many, March 1993.

[Win94] Phil Winterbottom. ACID: A Debugger Built from a Lan-

guage. In USENIX San Francisco 1994 Winter Conference

Proceedings, pages 211{222, 1994.

[WO89] Brent B. Welch and John K. Ousterhout. Pseudo-File-

Systems. Technical Report UCB/CSD 89/499, University

Bibliography 359

of California at Berkeley, 1989.

[Wol93] Andrew D. Wolfe Jr. Three Touches of Class. UNIXWorld,

July 1993.

[WS90] Larry Wall and Randal Schwartz. Perl. O'Reilly & Asso-

ciates, 1990.

[WWFT88] Jack C. Wileden, Alexander L. Wolf, Charles D. Fisher, and

Peri L. Tarr. PGRAPHITE: An Experiment in Persistent

Typed Object Management. In Proceedings of ACM SIG-

SOFT '88: Third Symposium on Software Development Envi-

ronments, volume 13(5) of SIGSOFT Notes, pages 130{142,

Nov 1988.

[Yan91] Wuu Yang. Identifying Syntactic Di�erences Between Two

Programs. Software|Practice and Experience, 21(7), 1991.

[You] Douglas Young. Xmgraph. Contributed software to X11R5,

Motif.

[ZL77] J. Ziv and A. Lempel. A Universal Algorithm for Sequen-

tial Data Compression. IEEE Transactions on Information

Theory, 23(3):337{343, May 1977.

Index

Tools are listed �rst. General topics follow.

Advsoft, 3, 5, 8, 259
distribution process, 260
process, 10

App, 159, 323
APP OPTIONS, 160, 171

architectural style, 171
architecture of, 171, 173
function tracing with, 170
parser, 174
quanti�er, 165
reusable components in, 172
severity level, 162, 166
use in Xray , 328
use in Yeast, 272

ast
error-handling, 32
headers, 98
installation, 98
libraries, 25{27, 31, 33, 51, 98
make�le, 94, 97
naming conventions, 39
software, 28
software management, 91
tools, 38

awk, 125, 137
C++, 27, 29, 31, 49, 106

graph class library, 70
cc, 167
cdef, 183, 185

query, 184
cia, 178, 182

use in TestTube, 323
use in Xray, 328
use in Yeast, 273

Cia, 177
database, 182
size, 205

graphical front-end, 202

query tools, 183
entity, 184
relationship, 185

reuse architecture, 177, 178
reuse experience, 204

ciadi�, 179, 201
ciaed entity editor, 185
ciafan, 186
ciao, 202, 204, 206
ciaql, 179, 183
colorize, 308
coshell, 128

daemon, 43
library, 43

cpp, 49, 106, 154, 167, 200
command-line interface, 175
Reiser, 50, 204

cql, 48, 49, 179, 205
cref, 183, 185, 187, 188, 203
cs command, 45
curses, 39, 139, 156
dag, 68
dagger, 179, 188, 190, 203, 206
DayView, 179
dbx, 169
deadobj, 179, 191, 197
di�, 57, 201
dot, 22, 68, 179, 206, 268, 303, 305

sample layout, 304
dotty, 22, 202, 268, 300, 304, 310, 311, 335

applications, 313
architecture, 300
customization, 313
graphical front end, 301
language, 302
standalone editor, 301
use in Provence, 292
use in Xray, 328

360

Index 361

Easel, 139, 143
applications, 144
evolution of, 155
language, 142, 143
programming in, 154
reuse experiences, 155
variables, 144, 149

Enactor, 287
FEATURE �les, 110
fey, 268

use in Provence, 292
�nd, 48
focus, 197, 203
focus graph, 194
getpwuid(), 213
gpr, 308
i�e, 107, 109, 122, 157

interpreter, 112
language, 108, 110
probe output, 111
probing, 33
speci�cations, 109
use in Yeast, 272

incl, 179, 199, 203, 205, 206
analysis, 200
use in Yeast, 273

ksh, 37, 121, 265
evolution for reuse, 126
match pattern, 47
pattern negation, 47
scripts, 121
use in Yeast, 273

ksh-93
associative arrays, 130
changes in, 129
debugging facilities, 135
dynamic linking, 132
hierarchical namespace, 131
internationalization, 133
new features in, 130

lefty, 22, 303, 308, 311
built-in function, 309
operations, 312
table, 309

libast, 36, 38, 173
use in Yeast, 271

libc, 37
libcmd, 38
libcoshell, 43
libcs, 44{46, 85

authentication, 47, 213

aws in, 214
server, 46

libdict, 29, 59, 61, 66, 76
interface, 60
naive use of, 77
online dictionary management, 157

libexpr, 47, 48
libft, 22, 225{227, 231{233, 240, 241, 244,

245, 266
checkpoint mechanism, 235
checkpointing, 234
critical data, 231
heartbeat, 230
memory allocation routines, 241
reusable component, 229

libgraph, 67{71, 303
entry point functions, 75
interface, 75
model, 70
parser for, 75

libpp, 49, 50, 174, 204
�le-ignore, 205
library, 28
probing macros, 50

make, 101, 110
Mamfile, 100

Marvel, 283

data model, 293
external event noti�cation, 287
process model rules, 294
process server, 285
project database, 284
rule �ring, 284

n-DFS, 7, 78, 101, 120, 128, 259, 334
architecture of, 82
implementation, 84
pathname resolution in, 88
viewpathing, 98, 115

navigation graph, 203
neato, 77, 304, 305

spring model, 305
negation operator, 190
nmake, 8, 92, 101, 110, 127, 129, 271

assertion operator, 94, 97, 98
prerequisite, 96

pax, 7, 92, 101
perl, 125, 137
probe, 95
proto, 44, 98, 101, 122

input to, 106
use in Yeast, 272

362 Index

Provence, 275, 277
architectural service, 295
architectural style, 295
architecture, 277, 279
realization, 282, 283
reuse
of components, 296
of libraries, 296

visualization in, 292
purify, 97
Repl, 80, 225, 228, 229, 235, 237

application, 240
software architecture of, 236

root, 212
rsh, 46, 210

case study, 212
security of, 213
security-critical aspects of, 210

screen, 156
library, 39, 40

s�o, 30{33, 38, 53, 55{57, 59, 66, 156
ship, 7, 8, 99, 103, 105, 106

area, 314
shipcrate, 99, 100
shipin, 104, 105
shipout, 99, 104
shipview, 314, 315
stak, 41
stdio, 31, 32, 34, 54
subsys, 194, 195, 197, 206
tcl, 126, 137, 309
tcl/tk, 157
terminfo language, 39
TestTube, 316

architecture, 322
methodology, 317
application of, 321

overhead of using, 327
TestTube methodology

implementation of, 322
tk, 126
tw, 48
vdef, 184, 201
vdelta, 57, 58

compression, 58
discipline, 58
library, 59

vdi�, 201
vmalloc, 62, 63, 65, 67, 156

library, 66
memory allocation strategies, 63

Vpm, 80, 332
as debugging tool, 336
front end for, 335
nonintrusive, 334

vref, 187
watchd, 22, 225{227, 229, 230, 232, 239,

240, 242, 244, 245, 266
wksh, 126
Xray, 327

on a large program, 331
program animation, 328
trace log, 330

Yeast, 5, 8, 10, 14, 21, 129, 217, 239, 248,
287

announcements, 257
architectural service, 266
architectural style, 248
architecture of, 248, 249
authentication, 257
client command invocation, 248
client commands, 255
constraints, 288
elimination of polling, 258
event context, 288, 289
features of, 251
graphical front end, 268
reuse in, 270
reverse engineering, 273
speci�cation
database, 250
group, 264
language, 251
registering, 256

visualization, 267
3D File System, 78, 258

abstract class, 29
abstract compilation model, 97
abstract interface, 53
access control, 215, 221

mandatory, 216, 219
access permissions, 253
access protocol, 81
access rights, 215
accounting daemons, 215
action language, 11, 19
active databases, 247
active enemy, 209
active objects, 131
announced event, 289

context of, 289

Index 363

anonymous FTP area, 218
application family, 140, 153
arbitrary pointer arithmetic, 319
architectural service, 12, 16, 19{22, 175,

244, 245, 267
architectural style, 11, 12, 17, 19, 20, 265

Aero, 207
event/condition/action, 20
reusable, 208
support via high-level language, 24

architecture, 11
architecture conventions, 35
archive

base, 102
delta, 102

arithmetic computations, 134
assertion

construct, 160, 161
expression, 159, 161
facility, 159
features, 159
processing, 168
region, 160, 161, 172, 174

asset development, 340
AT&T, 1, 8, 12, 26, 81, 90, 124, 139, 157,

239, 245, 337, 338, 342
AT&T Bell Laboratories, 1, 27, 78, 123
automatic restart procedure, 232

backup node, 227, 228, 244
backup server, 244
backup site, 244
base rules, 92

assertions, 93
standard, 92, 96

binary compatibility, 33
in ship, 99

block-move algorithm, 118
bogus program, 215
Bourne shell, 123, 124, 134{136
break-through ideas, 343
broadcast message server, 247
BSD

I/O in, 106
sockets, 44
UNIX, 95

bu�er access
safe, 54

build tool, 92
built-in command, 123
byte-order independence, 46

C
ANSI, 31, 49, 106

dialects, 204

GNU, 49

K&R, 31, 106

C libraries, 27

call path pro�ling, 329

callback functions, 138

CDE (Common Desktop Environment),
126

chaining

backward, 283

forward, 283

challenge-response, 46

change control system, 6

checkpoint

data, 233

state, 228, 239
checkpointing

methods, 231

overhead, 235, 239

circular con�guration, 227

class inheritance, 66

classi�ed data, 221

client/server application, 225

code complexity, 178

code duplication

avoiding, 27

code entity, 317, 318

code instrumentation, 97
code quality, 28

code reuse, 25

code template, 112

coding discipline, 33

coding faults, 225

COLA, 259

cold spot, 329

command interpreter, 122, 248

command substitution, 136

command-line editing, 129

commit point, 233

common view, 338

compilation time reductions, 200
compiler

native, 50

vendors, 49

compound-event descriptor, 255

compression

Lempel-Ziv, 58

computation programming, 141

364 Index

Computer Emergency Response Team,
211

computer security, 209
con�guration management, 2, 91, 114, 337

extensible, 115
RCS, 114
Sablime, 114
SCCS, 114

connect stream, 44
active, 45
illusion of libcs, 46
names, 44
remote, 45

connection-stream library, 138
consistency problems, 230
context

matched event, 288
continuing support, 342
coprocess, 146
core technology, 244
COSE (Common Operating System Envi-

ronment), 126
critical data, 231, 233, 240, 242
critical data structures, 245
critical �le, 225, 245
critical memory, 232
critical volatile data, 231
customer feedback, 155
customized algorithm, 30

data compression, 57
data consistency, 223, 228, 237
data di�erencing, 57
data integrity, 221
data name space, 34
database schema, 179
datagram semantics, 44
dead function

detection, 197
dead functions, 191
deliberate attack, 209
denial of service attack, 219
dependency graph, 177
dependency relationships, 177
design faults, 225
design programming, 141
design reuse, 151
determined adversary, 221
dictionary

duplications in, 61
iteration, 60

library, 59
nested scopes, in, 60
ordered, 59
unordered, 59

directory hierarchy, 93
complex, 184

discipline, 27, 51, 52, 55, 57, 59, 61{63, 66
source of reusable code, 67

discipline function, 131, 138
discipline stack, 55, 56
distributed election, 231
distributed programs

debugging, 333
performance analysis, 333

DLL, 95
$INSTALLROOT, 93
downstream distribution channel, 8
downstream technology organizations, 8
dynamic analysis, 175
dynamic dependency relationships, 316
dynamic linked libraries, 95
dynamic linking, 39, 81, 89

of shared libraries, 80
dynamic memory segments, 227
dynamic-shared libraries, 235

Edge, 70
embedded scripting language, 129
enactment engine, 276
end-user application, 139, 140
entity declaration, 181
entity patterns, 185
entity-relationship, 177, 181

database, 181, 182, 188
model, 180

environmental assumptions, 213
event context

named, 290
use in action, 291

event noti�cation service, 80
event pattern, 248
event-action

applications, 248
capability, 247
model, 248
speci�cation, 279
speci�cation tool, 20
system
general-purpose, 247

event/condition/action applications, 265
event/condition/action style, 266

Index 365

exception handlers, 55
existing authentication mechanism, 217
exit strategy, 339
expression context, 47, 48
extensible architecture, 299
external e�ciency, 30
EZ, 309

failed precondition, 161
failure recovery, 244
familiar conventions, 35
fanin numbers, 186
fanout numbers, 186
fault detection, 175, 245

reliable, 229
fault diagnosis, 229
fault recovery protocol, 229
fault tolerance, 6, 21, 223, 227, 238, 244,

247, 266
architecture service, 226
layers for, 224

fault tolerant, 241
computers, 224
hardware, 240
mechanism, 245
robust, 245

�eld splitting, 136
�le hierarchy, 93
�le naming conventions, 93
�le su�x conventions, 95
�le system

events, 115
logical, 78

�lename generation, 136
focus graph, 197, 203
form entry system, 126
form package, 41
formal change management, 7
formal constraints, 159
formal speci�cation, 159
four-level structure, 15, 23
frame, 142

builder, 155
designers, 148
developers, 152
network, 142
network of, 144
prototyping, 150

frame network, 145
traversal sequence in, 147

free market, 2, 4

freeware, 137
function bodies, 160
function call

animation, 329
convention, 35

function interface, 160
function interface assertions, 172
function prototype, 36, 38
function reference graph, 193
function tracing, 169

global critical data, 239
global rules, 93
granting privileges, 214
graph

attributes, 71
clusters, with, 305
data language, 68, 71
data structures, 75
description language, 22
directed, 68
editor, 300
�lters, 308
language, 71
layout, 22
programs, 68

library, 68
toolkits, 69

graph algorithms
e�cient, 70
implementing, 70

GraphBase, 70
GraphEd, 70, 305
graphical front end, 22
graphical user interface, 69

HATS, 245
header �le, 110

include relationship, 190
unnecessary, 199, 200

header interface, 36
headers

compiler, 36
local, 37
omitted, 37
standard, 38

heartbeat message, 230
high availability, 223
high-level tasks, 141
history, 124
hot spot, 329

366 Index

immutable �le, 119
improving software quality, 341
include �les, 94

analysis, 199
skipping, 200
unnecessary, 179

include hierarchy, 179, 195, 200
incremental risk, 212
individual tools, 337
inheritance, 182
inline editing, 124
input assumptions, 211
instrumentation capabilities, 160
instrumentation tools, 323
internet services, 45
Internet Worm, 214
IPC abstraction, 95

key-value pair, 309
keyboard interface, 41
KornShell, 8, 11

layout algorithms, 69
layout style, 68
left neighbor, 227
libraries, 25
library functionality, 53
library interface, 53
library interface headers, 93
library reusability, 67
life cycle, 4
link failure, 230, 244
little language, 47, 68
locale-speci�c dictionary, 133
location transparency, 240
log �les, 218
logging, 217
logical �le, 118
logical layer, 79

as a library, 80
login id, 253

machine crash, 244
macro templates, 152
make abstract machine, 100
make�le

assertions, 92
source level, 98
targets, 92

management factor, 340
market share, 4

memory
allocation, 31
debugging, 65
management, 62, 63
search for free, 64

memory-overwrite fault, 320
message loss, 244
method, 27, 51, 53, 62, 65, 66
Microsoft Windows, 153, 309
modi�ed primary-site approach, 227
modularity, 31
module-dependency analysis, 186
module-to-module dependency, 330
monitorable steps, 279
monolithic environment approach, 276
monolithic systems, 276
MSL, 283, 284
multibyte character sets, 40, 133

name space
global, 84
per-process, 82, 83
Plan 9 (from Bell Labs), 83

naming convention, 34
nested quanti�ers, 165
network failure, 233
network shell service, 128
NFS

security of, 214
node failure, 230, 244
non-feature requirements, 12
nonintrusive of technology, 342
nontemporal events, 251
normal operations, 244

object class, 250
prede�ned, 250, 253
prede�ned attributes of, 253
user-de�ned, 250

object-code compatibility, 35
object-event descriptor, 251, 253
object-oriented database, 114, 115, 138
o�-line operations, 244
online replication, 235
open interface, 299
open-ended architecture, 157
operating system monitor, 279
option conventions, 95
Orange Book, 219

parse tree, 63, 64

Index 367

partial match status, 267
pattern matching notation, 135
periodic rejuvenation, 226
persistent data, 227, 228, 238
persistent �les, 244

critical, 244
pipe, 122
Plan 9 (from Bell Labs), 78, 89, 333
platform, 14
platform speci�cations, 6
pluggable components, 16
point-and-click interface, 68
portability, 6, 24, 29, 33, 69, 106

challenges, 36
feature based, 106
services, 122

portable
applications, 134
C libraries, 178
data, 54
I/O, 54
software, 6

porting
experience with, 342
identifying dependencies, during,, 53
knowledge, 110
problem, 107
simpli�ed, 67

porting knowledge, 113
positive feedback, 245
positive impact, 337
POSIX

compatibility, 106
function, 38
shell, 135
standard, 132
standard shell, 125

prede�ned attributes, 253
preprocessing library handle, 205
preprocessor

directives, 171
K&R, 49

prerequisites
explicit, 92
implicit, 92

primary machine failure, 232
primary node, 228
primary server failures, 240
primary site, 244
primitive event, 248, 250

prede�ned, 250

primitive event descriptor, 251
primitive events

user-de�ned, 250
privileged

account, 212
module, 211
operations, 220
state, 210
users, 212

process enactment engine, 275
process modeling language, 275, 283
process restart, 225
process rollback, 225
process rollback recovery, 233
process server, 279
process step, 278

noti�cation, 279
process-centered assistance

nonobtrusive, 277
process-centered environment, 275, 277
product development process, 337
production users, 8
program

privileged, 211
secure, 215, 216
security-critical, 210

program analysis tools, 194
program animation, 327
program database, 177, 179, 187, 190, 205

comparing, 201
large, 205
tools, 182, 323

program di�erencing, 201
program entities, 209
program fault, 162
program generation, 130
program graph, 188, 190
program instrumentation, 159, 175, 299

tool, 169
program relationships, 179, 185
program understanding, 17
program visualization, 179
program visualization tool, 187
programmer-supplied assertions, 169
Purify, 65, 320

quality, 4
quanti�ed expression, 165

RCS, 57, 114
reachability analysis, 179, 194, 206

368 Index

reachable relationship set, 195
receiver-based

logging, 232
recovery, 232

recovering multiple processes, 230
recovery mechanism, 229, 240
recovery overheads, 240
recovery techniques, 245
redundant code, 32
reference relationships, 179
relational view, 190
relationship hierarchy, 197
relationship pattern, 185
remote shell protocol, 210
remote streams, 44
replicated �les, 228
replication service, 86
replication transparency, 235
repository-based approach, 207
research prototypes, 338
residual faults, 225
resource acquisition, 27, 52
resource management, 52, 66
resource usage, 65
restricting access, 215
retest-all approach, 318
return annotation, 165
return constraint, 164
reusable

graph processors, 70
knowledge, 110
scripting language, 126
security modules, 215
software components, 225
software tools, 140
templates, 140, 141

reusable asset, 121, 340
evolutionary cycle of, 340
timely, 344

reusable code
building, 51

reusable component, 28, 29, 343
successful, 30

reusable graph �le representation, 69
reusable libraries, 25, 69

general, 26
high-level, 27
selecting, 206

reusable scripting language, 133
reusable software, 6, 26

successful, 26

reuse
conditions for, 12
cost of, 4
encouraging, 3
experiences, 18
high-leverage, 24
induction, 16
large scale, 4
levels of, 11, 12, 151
leveraging, 2
process level, at, 310
real, 23
security and, 215
strategy, 24
success factors for, 340
thought process, 16
understanding of, 2
wide-scale, on, 341

reuse architecture, 177
reuse factor, 23
reuse gap, 143
reuse infrastructure, 3
reuse strategies, 4
reverse engineering, 177

repository-based, 207
tools, 177, 207

risk management, 342
runtime check, 161
runtime tracing, 175

safe test skipping, 319
SCCS, 57, 114
screen update algorithm, 40
screen-handling packages, 139
script

portability, 138
scripting language, 122
security, 209

assumptions, 213
breach, 212
evaluating, 219
holes, 209
perimeter, 214
policy, 216
primitives, 215
reuse of, 217

security-sensitive code, 211
selective auditing, 219
selective recompilation, 316
selective regression, 175, 179
selective regression testing, 321

Index 369

self-checking program, 159, 160, 167, 168
self-recovery mechanism, 230
service replication, 227
severity level, 165
shared libraries, 39, 81, 89
shell

arithmetic facility, 124
array facility, 123
as a coprocess, 43
here document, 123, 135
job control, 124
library interface, 127
parallel execution, 128
pattern matching, 125, 134
redirection, 128
service, 126
standard, 125
Thompson, 122

shell discipline, 138
shell functions, 123
shell language, 125
shell pattern, 132
shell script, 122, 123
shell variable, 123
shells

history of, 122
socket library, 95
software

complexity of, 224
development process, 281
maintenance, 316
selective retesting, 316
tracking, 102

software architecture, 2, 343
software component, 5, 8
software con�guration, 7
software con�guration management, 5
software development, 2, 337
software development community, 337
software development environments, 247
software development process, 275, 343
software distribution, 343

automation, 259
software distribution mechanism, 341
software distribution process, 3, 7, 9, 314
software engineering and security, 219
software engineering environments, 276
software engineering principles, 222
software engineering research, 338, 344
software failure

unexpected, 230

software fault tolerance, 21, 223, 343
embedding, 238

software faults, 160, 225
software industry, 339
software management, 91
software management process, 91
software process, 337

enacting, 275
experimental nature, 297
modeling, 275
monitoring, 275

software rejuvenation, 226
software research program, 1
software reuse, 1
software reuse program, 344
software system behavior, 159
software systems, 245
software testing, 343
software visualization, 206, 300
software-implemented fault tolerance, 228
source code, 6

control system (SCCS), 79
security, 216

source dependencies, 94
source hierarchy, 93
speci�cation

unmatchable, 255
splay tree, 60, 76, 77
Spring, 89
stable environment, 340
stack

abstraction, 42
discipline, 56
frame, 42
library, 42
stream, 55

stackable layers architecture, 90
staging area, 93
standalone tool, 17
standard data language, 339
standard input, 122
stray pointer fault, 320
stream library, 95
stream pipes, 46
stream stack, 36, 55
string streams, 54
substrate tools, 15, 16
supportive environment, 338
switching systems, 223, 226
synergetic environment, 337
system architecture, 11

370 Index

system call, 35, 54
�lter, 82
I/O channel management, 334
interception, 79, 84, 235, 237
semantics of, 81
trap, 258, 279

system penetrations, 209
system structure, 142
systems architecture, 2

Tandem Computers, 245
TCP

behaviour of, 212
technology factors, 341
technology transfer, 3, 4, 337, 341

agents, 4
barriers to, 341
process, 342
successful, 341
supporting, 342

telecommunication network system, 244
temporal events, 251
test selection tools, 323
test suite, 316

adequacy of, 325
test unit, 317, 318
testing process, 8
three-dimensional view, 118
time-event descriptor, 251

absolute, 252
modi�ed, 253

relative, 251, 252
token identi�er, 49
tool-building language, 121
tool envelopes, 277
tool integration approach, 276
tool integration service, 247
trace animation, 334
tracing

body, 170
full, 170
function, 170
summary, 170

transient software failures, 225, 226
transparent client-server reconnection, 233
transparent source sharing, 91
transparent use, 245
trust

granting, 212
multiple states of, 212
pattern of, 212

two-view graphics editor, 308
type dependency graph, 188, 189
type inheritance graph, 190, 191

UNIX
malloc implementation, 156
�le access mechanism, 46
kernel, 89, 216
platforms, 225
programming environment, 168
reuse in, 69
Shell, 7
socket table, 240
system shell, 122
systems, 122

user address space, 84
user authentication, 217
user interface, 141, 180
user-de�ned events, 250, 265
user-de�ned recovery commands, 230
user-level library, 84

veri�cation methods, 225
version directory, 119, 120
version �le, 118{120
version management, 92
version object, 119, 120
versioning, 78, 79, 114
versioning service, 80
vertical integration, 299, 338
viewpath levels, 98
viewpathing, 78, 79, 114, 116, 271
viewpathing service, 80, 83, 88, 115

overhead of, 88
performance of, 87

violated assertion, 160, 166
violation action, 165, 166
virtual directory, 79
virtual functions, 29
virtual inheritance relationships, 190
visual process manager (Vpm), 332
visualization, 22

architectural service, 267
successful, 206

volatile data, 227
volatile data structures, 226

watchdog process, 227, 229
Windows NT, 108, 122

X Window System, 139, 309

Yellow Book, 220

For information on availability of the software described in this book see

http://www.research.att.com/orgs/ssr/book/reuse

