Abstracting Dependencies between
Software Configuration Items

Carl A. Gunter
University of Pennsylvania

http://wew.cis.upenn.edu/~gunter

Abstract

This paper studies an abstract model of dependencies be-
tween software configuration items based on a theory of con-
current computation over a class of Petri nets. The primary
goal is to illustrate the descriptive power of the model and
lay theoretical groundwork for using it to design software
configuration maintenance tools or model software configu-
rations. As a start in this direction, the paper analyzes and
addresses certain limitations in make description files using

a form of abstract interpretation. N

1 Introduction

A variety of formalisms have been created to aid phases
of the software engineering life cycle. For instance, logical
languages such as Z can be used to describe functional spec-
ifications, while structures like flow charts and Petri nets are
useful in detailed design. Automated formal verification has
been shown feasible in certain cases where system behavior
can be described using a finite state machine. However, less
attention has been directed at the application of abstract
models to the maintenance aspects of software. The aim
of this work is to study one aspect of software maintenance
from this perspective. The approach advocated here is based
on ideas and structures from the formal semantics of con-
currency but adapts them to the particular goals arising in
software configuration maintenance.

Even a modest software project entails the creation of a
collection of what are sometimes called software configura-
tion items. Such items may be held in files, one item per
file, or they may be more abstractly described and stored.
A characteristic example is the collection of source, object,
executable binary, and archive files that arise in a program-
ming project. Some of the files are directly modified by
a programmer or the ‘environment’ in some general sense,
while others are produced by the use of tools, such as a com-
piler or other processing tool. Certain of these produced
items are ones the project ultimately ships as the ‘product’
of the effort. It is essential therefore that the implications
of any changes in the source items be properly reflected in
the items directly or indirectly produced from them. This
can become an overwhelming task if the project environment
does not provide automated support for it. A recognition

Permission to make digitalhard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGSOFT '96 CA, USA
© 1996 ACM 0-89791-797-9/96/0010...$3.50

167

of the ubiquity of this problem, and the insight that a tool
could address it in a wide range of cases, led Stuart Feld-
man to develop the Unix tool, make [4]. In this limited ap-
plication domain, the special-purpose make description files
were easier to write and maintain than general purpose pro-
grams, so the tool quickly gained widespread use. An ex-
ample of a make description file for a small configuration of
C-programming files appears in Figure 1. The lines with

table : a.out indata
a.out
a.out : main.o datanal.o lo.o /usr/cg208/lib/gen.a

cc main.o datanal.o lo.o /usr/cg208/lib/gen.a

main.o : main.c
cc -c main.c

datanal.o : datanal.c
cc -c datanal.c

lo.o : lo.s
as -o lo.o lo.s

Figure 1: Sample Makefile

the colons express the dependencies between the software
configuration items of interest.! The lines indented by tabs
indicate how the target, the file to the left of the colon, is
to be produced from its pre-requisites, the files to the right
of the colon. The make description file thus records the de-
pendencies between software configuration items and the ac-
tions required to establish consistency of the system based
on these dependencies.

In the time since make was introduced, it has been ex-
tended many times and has seen substantial competition
from its chief rival approach, the Integrated Development
Environment (IDE) (see [5] for an analysis of the chief chal-
lenges to make). IDE’s are often capable of maintaining
dependencies automatically through an ‘understanding’ of
the semantics of the systems they integrate. For example,
Microsoft’s Visual C++ IDE maintains its own make-like
description file, which is not directly modified by the pro-
grammer. The advantage of such a system is that the pro-
grammer is relieved of the tedius and error-prone manual
maintenance of the description file. However, a disadvan-
tage is that an IDE may not integrate all of the component

'It is convenient not to identify software configuration items as
a general concept with operating system files. However, make es-
sentially does make this identification, with various advantages and
disadvantages.



production tools a project requires: the ‘openness’ of a tool
like make enables the interoperation of a wide spectrum of
tools possibly combined in original and unexpected ways,
but this may not be possible for an IDE. It is therefore res-
onable to look for a basic theory of dependencies between
software configuration items. This may lead to good ap-
proaches to communication between software environments
combining the advantages of open systems like make with
those of IDE’s that address make’s himitations.

This paper examines the idea of using an adaptation of
a modelling technique from concurrent and distributed sys-
tems called a Petri net to model dependencies between soft-
ware configuration items. The focused goal is to show how
one can model and extend various approaches to optimizing
builds of configurations. A concurrency formalism has been
chosen because the typical state of a build configuration con-
tains a great deal of potential course-grained parallelism, so
it i1s natural to model the build directly as a concurrent
computation. The goal here is not to provide a semantics of
make, although make inspires a number of the problems con-
sidered, nor is it feasible in this short paper to deal with all
of the issues that challenge a software configuration main-
tenance tool (for example, version control is not discussed).
Instead, the aim is to treat rigorously the correctness criteria
for build optimizations and the modular description of these
optimizations, as, for instance, a collection of interoperating
IDE’s might report them in a suitable data structure.

The structure of the paper is as follows. After this in-
troduction, the second section describes a structure called a
production net (p-net) which is used to describe dependen-
cies. The third section uses this formalism to discuss a va-
riety of pragmantic build-optimization ideas that have been
considered over the years as the result of configuration main-
tenance experience. The fourth section introduces a concept
of model for p-nets that enables the build-optimizations to
be suitably modelled and their correctness criteria formal-
ized and proved. The final section reflects on what has been
accomplished and what more would be required to carry
the formalisms further toward direct application. Since this
is an abstract, the reader is referred to the full paper for
proofs, further examples, and a fuller discussion of various
computational and implementation-related issues.

2 Production Nets

In this section the graph structures used to represent re-
lationships between software configuration items are intro-
duced. They are a kind of Petri net, so the terminology and
notation draws on that used for Petri nets. We start with
the following concept:
Definition: (Nets.) A net is a four-tuple
N =(B,E,S5T)

where

e B is a finite set of conditions,

o F is a finite set of events,

¢ S C B x E is the pre-condition relation, and

o T C E x B is the post-condition relation. 0

168

O @/@\
® O
\ / /

Figure 2: Example of a Net.

O

The letters z, y, z and the like are used to denote both con-
ditions in B and events in F, whereas letters ¢, f, g are typ-
ically used for events in E. For anet N = (B, E, S, T), it is
convenient to write z S e for (z,e) € S and to write e T' z
for (e,z) € T. When working with more than one net, sub-
scripts and/or superscripts can be used to distinguish parts
of the respective nets; for example N' = (B',E', S, T").
However, when it is clear which net is meant for the various
sets and relations, the following notation is more succinct.
Given anet N = (B, E, S, T), and an event € € E, we define
e ={z |z Se}and e* = {r | e T z}. These are respec-
tively called the pre-conditions and post-conditions of event
e. Figure 2 shows an example of a net using the Petri net
figure conventions: circles are used for conditions, rectangles
are used for events, relations in .S are arrows pointing into a
rectangle, and relations in T are arrows pointing into a circle.
In the Figure 2 example, ‘e = {z,u} while ¢* = {y, 2}. It is
also convenient to have a notation for the union of the pre-
and post-conditions of an event, so we define *e®* = *e Ue"’.

Intuitively a software configuration is modelled as a net
by treating software items—Ilike main.o and main.c in the
description file in Figure 1—as net conditions. On the other
hand, operations—like the application of the compiler cc
with the switch -c to the input main.c—are treated as
events. A fairly readable informal notation that works well
with ASCII characters is to write the names of items (con-
ditions) within parentheses, which are reminiscent of circles,
and the names of operations (events) within brackets, which
are reminiscent of rectangles. The make description file of
Figure 1 is depicted by the net in Figure 3. A formal treat-
ment of the relationship between production nets and com-
putations like those engendered by make description files are
provided by p-net models, which are the topic of Section 4
below.

To provide a tractable theory for our purposes here, nets
must satisfy certain axioms. We need some terminology to
express the desired properties. Let N be a net. The directed
graph defined by N is the directed graph which has BUFE as
its nodes and SUT as its edges. A cycle in a directed graph
is a sequence of nodes zo, ..., Zn such that there is an edge
from z, to zo and, for each i < n, there is an edge from z;
to zi}1. A directed graph is said to be acyclic if it has no
cycles. A net is said to be acyclic if the directed graph it
defines is acyclic.

Definition: (P-Nets.) A net N = (B, FE,S,T) is a produc-
tion net (p-net) if it has the following properties:

1. It is acyclic.
2. (Unique Producer.) If e Tz and e’ T z, then e = ¢’.

3. For each e € E, both *e and e* are non-empty.



(main.¢) =———[cc -c}—{main.o)

(datanal.c) —»{cc -c¢] —»(datanal.o) —=[cc]—(a.out) —=[run]—{(table)

(lo.s) —=[as -0 lo.o] ——(10.0)/

(/usr/cg208/1lib/gen.a)

7

(indata)

Figure 3: Net Corresponding to Makefile in Figure 1

4. For each x € B, there is some e such that £ € *c or
Tz e’

The nets in Figures 2, and 3 are both production nets. Fig-
ure 4 gives several examples of the ways in which a net can
fail to be a p-net. Net (a) contains a cycle; net (b) fails to
satisfy the unique-producer condition 2; nets (c), (d), and
(e) have an event with pre-conditions or post-conditions that
are unacceptable for condition 3; and net (f) has an isolated
condition, in violation of condition 4.

The unique-producer condition 2 is equivalent to saying
that the set T°? = {(z,€) | e T z} is a partial function. The
set of elements on which this partial function is defined are
those conditions  such that there is a (unique) event e such
that e T z; in this case we say that z is a produced item
or condition and that e is the event that produced . The
set, of elements on which T°? is not defined are of particular
importance because, intuitively, they are the ones that are
modified by the environment (wiz. programmers). Given a
condition z, if there is no event e such that e T z, then
z is said to be a source item (or condition). In Figure 2,
z and u are source items, while y, z, and v are produced
items. Items y and z are produced by event e, while item v
is produced by event f.

Since the graph determined by a production net N =
(B, E,S,T) is acyclic, the transitive and reflexive closure
of its edge relation defines a poset Cy relation on B U FE.
The restrictions of Cny to conditions and events are respec-
tively denoted Cp and Cg. For example, in Figure 2, we
have r Cny ¢ Cny y En g whereas conditions y, z are incom-
parable (with respect to Cy and Cp) and events e, f are
incomparable (with respect to Cny and Cg). It is variously
convenient to think of a software configuration in terms of
these three orderings on its production net. The make de-
scription file essentially uses the colon notation to define
the relation Cp on items (files). However, the evaluation
of a make file is based on events (actions) structured by the
dependencies in Cg.

For any poset, (P,C), a subset L C P is left-closed (rela-
tive to C) if # € L and y C = implies y € L. The notion of
state for computation on a production net N will be mod-
elled by left-closed subsets of Cn. Given a subset X C P,
the left-closure of X is the set

1 X={yeP|IreX. yCuz}

Computational state will be represented using certain spe-
cial subsets of p-nets.

Definition: (Markings.) Let N = (B, E,S,T) be a pro-
duction net. A subset M C BU E is condition-closed if, for
every event ¢ € E, ¢* " M # @ implies ¢* C M. A marking

169

M for N is a subset of BU F that is both left-closed (with
respect to Cn) and condition-closed. O

An event is viewed as having one of three states relative to
a marking.

Definition: (Event States.) Let M be a marking on a p-
net N = (B, E,S,T) and let € be an event. We say that e
is enabled by M and write M/e if ‘e C M and e ¢ M. We
say that e is initiated in M and write ¢/M if e € M and
e* N M = 0. We say that e is terminated in M and write
eN\Mife*C M.

Note that ¢ is terminated in M if, and only if, M Ne*® #£
®. The intuition is that M/e is a state in which the pre-
conditions of e are satisfied, but where the event e has not
yet begun. The state e/M is one in which e has begun,
but has not yet finished. The state e Ny M is one in which
e has finished and now its post-conditions are within M.
A pictorial representation of the different states appears in
Figure 5. Under suitable assumptions, the movement from
one state to another with respect to e retains the property
of being a marking.

Lemma 1 Suppose M is a marking of a p-net N
(B, E,S,T). The following three implications hold:

1. If M/e, then M' = M U {e} is a marking with e/M’.

2. Ife/M, then M' = M Ue® is a marking with e \, M'.

3. If M/e, then M' = M U {e} Ue® is a marking with
e\ M.

3 Computation Over Production Nets

The aim of this section is to provide motivation for the way
in which computation over p-nets will be represented. The
idea is similar to providing a set of operational rules for
computation over a Petri net. However, the notion of mark-
ing used for production nets is somewhat different from that
used for Petri nets. This difference is owing to the partic-
ular application for which p-nets are intended, which uses
markings to model system build states. Consider the net in
Figure 2 for example: note the way u is shared by e and
f and the way v is shared by g and h. As a build com-
putes a result, the pre-condition remains intact through the
remainder of the build; sharing in the sense of these exam-
ples does not introduce conflict in the computation. So, the
usual Petri net semantics of placing markings on conditions
and having them consumed by events to which they are pre-
conditions is not a convenient way of thinking of system



.
O—0O

(a)

N/
O

)

O

0 0 O O
g

© (d O ®

Figure 4: Nets that are not Production Nets

O
O

OM
O

E]<O
O

N
7

enabled

M

[e]

initiated

O O\ /O
O

[e]
o o

™~

terminated

Figure 5: Three Relationships between Marking M and Event e

state for builds. Instead, one wants to view a build as hav-
ing achieved consistency between sources and targets in a
subset of the p-net that is left-closed relative to Cp.

The pair of operational rules in Figure 6 provide a basic
representation of the observable events of the concurrent
computation. An event e engenders two forms of observable

- Mle
Initiation I ——
M -— M U{e}

Termination /M

M Mue

Figure 6: Basic Operational Rules

behavior: € is the initiation of e and & is its termination.
For example, the net in Figure 2 has the following possible
evaluation sequences starting from the marking consisting
of its minimal three conditions to the marking consisting of
the whole net:

Concurrency of events is represented by the overlapping of
their interval of execution, that is, the interval between é
and € for any event e. A sequential computation over this
net—such as most make evaluators provide—would have the
form of either the first or last of these possibilities, in which
no event begins before all the events that began before it
have terminated.

170

Let us write M —* M’ for the transitive, reflexive clo-
sure of the labeled relation. That is, M —* M’ pro-
vided M is M’ or there is a marking M" and a label [

such that M —* M" —5 M’. The number of steps
in the relation M —* M’ is the minimum number of
markings Mo, ..., M, such that My = M and M, = M’
and there are labels li,...,l,—1 such that the relations

M, Ay N M, all hold. Although we will quickly re-
place the simple semantics provided by the rules in Figure 6
by something more realistic (and interesting), it is worth
noting briefly the following basic property:

Proposition 2 If M is a marking of a net N and M —*
M', then M' is also a marking.

The proposition is proved by an induction on the number
of steps in the relation —*. Each case follows immediately
from Lemma 1.

A build over a p-net N = (B, E, S,T) may now be viewed
as follows. First, a selection X C B of targets is made. Then
an initial marking M is chosen to consist of the minimal el-
ements in J X. From this initial marking, the events in | X
are executed to produce a marking M’ which contains X.
The events may evaluate as concurrently as their depen-
dencies allow until all events in | X are terminated in M'.
However, this is potentially a very inefficient way to ensure
that targets properly reflect changes. For example, it may
be that no condition among the minimal elements of | X has
been modified since the last time the targets in X were built,
so no computation is required: the targets remain accept-
able. The program make optimizes by examining the dates
assigned to files by the operating system. Let us attempt to
formalize this idea.

The dates associated with files by the operating system
can be viewed as a function on conditions. An augmented
form of production net includes the needed additional struc-
ture.



Definition: (DP-Nets.) A dated production net (dp-net)
is a 5-tuple N = (B, E, S, T, ) where (B, E,S,T) is a p-net
and 4 is a function from B into w called the date.

Given a dp-net N = (B, E, S,T, §), it is convenient to define
a pair of functions that provide greatest and least dates on
pre- and post-conditions of events. The pre-date function
*0: E — w is defined so that *4(e) is the greatest value in
the set {d(b) | b € *e}. The post-date function §* : E - w
is defined so that *6(e) is the least value in the set {4(b) |
b € *e}. With this, the concept of an ‘up-to-date’ target is
given as follows:

Definition: (Up-to-Date Markings.) A marking on the dp-
net N is a marking on the underlying p-net (B, E,S,T).
Such a marking M is said to be up-to-date if every event e
whose post-conditions are contained in M satisfies *d(e) <

8 (e).

A semi-formal explanation of the make ‘date optimization’
can now be given in terms of dated production nets. First
of all, if M/e and the post-conditions of e are not up-to-date
then the post-conditions of e must be built (initiation):

M,§ % M U{e},6

If, on the other hand, e/M holds, then the date function 4,
is altered to a new date function 6> (termination):

M, 8 = MUe®, 6,

where §, assigns dates to the postconditions of e that are
later than the dates é;(b) for any b, and otherwise assigns
the same dates as §;. Finally, if M/e but e is up-to-date,
then no build is needed:

M,6 < Mu{e}ue’,d

This rule, which captures the optimization of recognizing
that an up-to-date event does not need to be run, is what
we will call an omission rule. That this is correct is based
on assumptions that are essential to the correctness of make-
controlled builds: if a target exists, its pre-requisites ex-
ist, and the target is up-to-date with respect to its targets,
then the target was created from the pre-requisites, and it
does not need to be rebuilt from its pre-requisites if its pre-
requisites are themselves based on up-to-date productions.
We will return to the issue of build invariants and correct-
ness later.

There are several ways in which the make optimization
based on dates provides less than one would want in certain
cases. Over the years, make extensions have attempted to
address some of these problems, others are addressed only
in IDE’s. Let us consider three of these, each of which is
based on common experience with system maintenance. The
first concerns parsing tools, the second concerns SML pro-
gramming language compilations, and the third concerns C
header files.

Figure 7 illustrates a production net which arises in in-
stances where one is using the parser-generator yacc. The
yacc tool takes an input file in a special format and produces
from a C source file, y.tab.c and a C header file y.tab.h.
The header file describes the information about keywords
declared in foo.y, which is all of the information generated
from this file that is needed to create the lexer, lex.o. The
input file foo.y also describes a possibly intricate collection

O

171

(lex.c)\

[ce]l—(lex.0)
(y.tab.h)

(foo.y) —= [yaCC]\ /[cc]-———b(y.tab.o)
(y.tab.c)

Figure 7: Identity of Old and New Inputs

of actions used to determine the parsing in y.tab.o. This
collection of actions often requires debugging or optimiza-
tion, so the actions in foo.y may be modified much more
frequently than the keyword declarations there. However, if
only the actions in foo.y have been modified, then the gen-
erated header file y.tab.h will not change. Nevertheless, its
date will change with the new generation, thus making the
lexer object file out-of-date and thereby inducing a recompi-
lation of lex.c when the lexer object file is again required.
The effort is wasted though, because the file y.tab.h did
not really change, only its date did.

Another example, this one involving the SML program-
ming language, appears Figure 8. Unlike typical C pro-

foo.sml

e
O=0-0=0-~0=0-0=0-0

Figure 8: Hash Keys to Avoid Cascading Recompilation

foo.sig.sml bar.sig.sml bar.sml

grams, SML programs generally have deeply nested depen-
dencies, often dozens of files long. In the figure, the SML
signature F0OO in the file foo.sig.sml, together with some
basic environment, is compiled into a target environment.
The implementing structure Foo of this signature is then
compiled and incorporated into this environment. After
this, a signature BAR, which is stored in a file bar.sig.sml
and uses names from F00 and Foo, is compiled and incor-
porated. Finally, its implementing structure Bar, which is
in a file bar.sml and uses names from F0O0, Foo, and BAR,
is compiled and incorporated. Now, if even a comment is
changed in foo.sig.sml, then all of the steps used to gen-
erate this final target will need to be rerun if one uses only
the standard make date optimization. When dealing with
such deeply nested dependencies, it becomes worthwhile to
retain information sufficient to recognize when it is prob-
able that the cascading sequence of recompilations can be
cut off. In the Compilation Manager (CM) IDE of Matthias
Blume [1], which is part of SML/NJ system, targets of com-
pilations are assigned ‘fingerprints’. A fingerprint is a bit
string computed from a file in such a way that files with
the same fingerprint are very unlikely to be different.? This
provides a pragmatic aid when development is under way;
even the low probability of error due to the imperfection
of the fingerprint assignment can be eliminated by deleting
the target files to induce complete regeneration before final
testing. Time saved avoiding recompilations quickly repays
the overhead of calculating the fingerprints in typical SML
programming projects.

A somewhat more subtle issue of dependence is illustrated
in Figure 9. Header files allow separate compilation of C

2The method for calculating fingerprints used in CM is based on



(my.c)———%lcc -c]— (my.o)

(foo.h)\

[cc -¢] == (f00.0) == [cc -0] — (ourbin)
(foo.c)

(your.¢) =——=[cc -c]—= (your.o)

Figure 9: Changes in Headers

programs. Given a collection of C files Cy,...,C, and a col-
lection of corresponding header files Hy,..., Hy, one seeks
to organize things so that any given file C; can be compiled
with a suitable subset of the header files. In particular, no
other C files are required. This has the advantage that one
may compile C; even if the C implementations of header
files needed for the compilation are not available, perhaps
because they are under development. In Figure 9 compila-
tion of my. c and your.ccan be done using foo.h. If foo.cis
modified then the files my.o and your.o do not become out-
of-date as a result, although the linking of the three object
files does become out-of-date. This provides a valuable form
of support for separate compilation, allowing significant in-
dependence between programmers as well as an opportunity
for the use of parallelism in builds. Suppose, however, that
the programmer in charge of your.c asks that an additional
function £ be included in foo.c and its proto-type placed in
foo.h. This results in a change in foo.h, causing the compi-
lation of my.c to become out-of-date. However, the program
my . c may not make any use of £ or depend on it in any way.
An intuitive and inexpensive approach to recognizing this
state of affairs automatically was introduced by Tichy [15]
under the sobriquet ‘smart’ recompilation. Tichy’s bench-
marks suggest that the analysis is well worth the time spent
on it, as one might intuitively predict. His implementation
was actually for Pascal with modules rather than C pro-
grams, so the example of Figure 9 should be taken with an
appropriate grain of salt, but the basic idea is fairly lan-
guage independent. The idea has inspired several subse-
quent studies, including one on ‘smarter’ recompilation [13]
for C programs and ‘smartest’ recompilation for SML [14].

4 P-Net Models and Abstractions

To really represent the kinds of issues described in the pre-
vious section, it is essential to provide a model for a pro-
duction net that describes the kinds of entities involved in
a build over the net and the relations they are expected to
satisfy. By way of illustration, consider the following very
basic p-net:

O
o

This net has many models. For example, it might be the
case that z is interpreted as a C source file, y as a header
file, and z as an object file. The event e is interpreted as
the relation between the input files and output files which

[—@©

Rabin’s CRC polynomials; see [2] for an exposition.

172

holds when the interpretation of the output could be the
outcome of a correct C-compilation of the interpretations of
its inputs. In another model, z is interpreted as an object
file, y as a file containing data, and z as another data file.
The desired relation is that z (that is, the interpretation of
z) should be the result of using z to process the data in
y. This view allows one to understand more precisely the
role that the labels were meant to play in something like
Figure 3: they suggest the intended model of the underly-
ing p-net. Similarly, the concept of a dated p-net is one in
which the intended model is expected to associate dates with
conditions. One can get along with leaving the model as an
informal concept up to a certain point, but a more precise
interpretation requires more structure. In particular, the
goal of this section is to explore ‘abstract interpretations’ of
dependencies between software configuration items. As in
other cases, such as the well-known application of strictness
analysis [3], an abstract interpretation is based on the use
of a ‘non-standard’ model which, to be useful, is simpler in
certain regards than the ‘standard’ model but retains key re-
lationships to the standard model. Regarding the example
above, the value of z may be a C file, but its abstract inter-
pretation may be its modification date. This is the abstract
interpretation exploited by make.

To provide the key definitions, some mathematical ma-
chinery is reqired. An indezed family of sets is an indexing
collection [ together with a function associating with each
element 1 € [ a set S;. Such an indexed family will be writ-
ten S = (S; | 1 € I) and we say that S is ‘indexed over I'. A
section s = (s; | i € I) of such an indexed family of sets S
is a function associating with each 1 € I an element s; € 5;.
The product TI(S; | ¢ € I) is the set of all sections of 5. A
partial section of an indexed family of sets (S; |1 € [)is a
section s = (s; |1 € I') of (Si |1 € I') where I' C . In
this case I’ is called the domain of existence of s and we say
that s; exists if 1 € I'. The partial product TI(S; | 1 € I)
is the set of all partial sections of S. We will generally be
concerned with partial sections. In examples, it will be con-
venient to write down some partial sections: if iz, j,k are
elements of [ and q,b,c lie in S;, 5;, Sk respectively, then
s = (1, 3,k — a,b, c) is the partial section with {¢, j, k} as its
domain of existence and with s;, s;, sk respectively equal to
a,b, c.

A model of a p-net is a family of sets indexed over a
subset of the conditions of the net and an family of relations
indexed over a subset of the events of the net.

Definition: (Models.) A model A = (B',E’,V,R) of a p-
net N =(B,E,S,T)is

o a family of sets V = (V, | z € B’) indexed by condi-
tions B’ C B, and

o a family of relations R = (R. | e € E’) indexed by
events ' C E

such that, for each ¢ € E’, we have *¢* C B’ and
R. CTI(V, |z € %) x (Vs | z € %)
0

When dealing with multiple models, components can be dis-
tinguished by superscripts: A = (B4, E VA, RA).

To clarify ideas, let us consider an example of a model.
Constder the production net in Figure 10, which corresponds

A is a total model of Nif B=B'and E=FE'.



@\@———@
7
®
- \D O

W —[
\@/

Figure 10: P-net for Example of a Model

to the one in Figure 7. The ‘standard’ model for the con-
ditions u,v,z,y,z associates sets as follows: V, is the set
of yacc input files, V; is the set of C header files, V,,V,
are both the set of C files, and V; is the set of object files.
The events e, f are interpreted as follows: R, is the relation
between yacc input files and output files, Ry is the rela-
tion between C input files and the object files producted by
compiling them.?

Given a model, the association of conditions and events to
elements of the model provides the concept of system state:

Definition: (States and Consistent Events.) Suppose
A= (B, E'V,R)

is a model of the p-net N = (B, E,S,T). A state of A is
a partial section of (V; | z € B'). Given a state s of A we
write A, s |= € just in case

(sili€’e) R (si|i€€’)

An event e is said to be consistent in state s if 4,5 E e.
A left-closed subset L of B U E is consistent with respect
to s if, for each non-minimal condition z in L, the event
that produced z is consistent. A marking on N is said to be
consistent if its left-closure relative to Cy is consistent. {

To give some help on the notation here, we can think of
A as a being a multi-sorted model of first-order logic that
interprets relation symbols R. corresponding to events e €
E'. Variables corresponding to conditions are interpreted in
A by the state s. For example, for the net in Figure 2, A, s =
e is shorthand for something like A, s = R.(z,y, 2). Note,
however, that the state s can be partial on the variables,
and the variables have different types (sorts); the relation
may still hold even if s is undefined on one of the variables
z,u,y,z. Unlike first order models, the relations in the p-
net model do not provide any order for the variables in the
way they appear in a relation expression like R.(z,u,y, z).

An important property of the relation A,s k= e is that
it is dependent only on the values on *e®. It is helpful to
introduce some notation. Given a partial function f: X —
Y and a subset U of the domain of f, we will denote by
f | U the restriction of f to U. It usually does not matter
whether f | U is to be viewed as a partial function with U

3A technical quibble here is that each of the sets V; in this example
is really the set of files. In particular, any sort of file could be input
to yacc by a programmer having a bad day, so the view that there
is a special set of yacc inputs is slightly misleading. The case is less
misleading for produced files, which must be in the specific class of
files that could be produced by programs like the C compiler.

as its domain or whether the domain of f { U is X and f is
undefined outside of U, but for the purposes of this paper it
is taken to be the latter. The proof of the following can be
obtained by simply unrolling the definition:

Lemma 3 Let A be a p-net model N and let e be an event
in N. For any pair of states s,s’, if A,s' =€ and (s | *e*) =
(s'| %e®), then A,s k= e. a

Our theory of system builds will involve two kinds of
mathematical entities. First, there are the relations or in-
variants which embody the correctness property of the build
and its optimizations. Second, there are the servers which
drive the computation. We begin with the definition of the
kinds of invariants required. The goal is to describe a rela-
tion between a pair of models A and B for a given net N,
wherein B can be viewed as an abstraction of A. The moti-
vating example is the make date abstraction: the model A is
the ‘standard’ model in which conditions are interpreted as
things like C source files and object files, while the model B
instead interprets these conditions as dates. The relations
on A are things like ‘input source file z compiles to output
object file y’, while the relations on B are things like ‘the
date of z is earlier than the date of y’. More precisely, what
we need is a relation between states s of A and states ¢ of
B such that the relation holds when ¢ is to be viewed as a
correct abstraction of s. Here is the precise formulation:

Definition: Suppose A and B are models of the p-net N =
(B,E,S,T). An abstraction ® : A — Bis arelation between
A-states and B-states that satisfies the following rules for
each A-state s, B-state t, and subset U C B:

. ®(s,t) BitEe
P
[Production] Y
. B(s,t)
1 __2sE)
[Deletion] SG1U, ¢10)

The first of these two rules is soundness with respect to pro-
duction and the second is soundness with respect to dele-
tion.

To understand the names and origins of the two rules, we
must appreciate the invariants expected of a system for
which an abstraction will be used. First of all, the aim of
an abstraction is to signal when a production does not need
to be performed. To be sound, it must be the case that if
B says that a production step is not needed, then the cor-
responding A values have the desired relationship. Hence
soundness ‘with respect to production’ is the basic correct-
ness criterion. To understand the second rule, consider the
invariants that make is expected to satisfy. Source files may
be modified (or possibly even deleted) while produced files
may be deleted but not modified. Modifying a produced file
would generally be an unusual thing to do and might very
well result in an incorrect build. Refering to the description
file in Figure 1, suppose, for example, that after modifying
main.c, one ‘touched’ the file main.o, thus giving it a more
recent date than main.c. A build using the date optimiza-
tion would then fail to update the produced object file to
consistency with the source file on which it depends: an in-
correct build would result. On the other hand, deleting the
object file would not cause a problem, because the deleted
file would be properly rebuilt from the up-to-date source file.
It is common to delete produced files, for example, to save

173



space. Source files may also be deleted, since it will some-
times be the case that an event does not require one or more
of its inputs to be defined: perhaps it is reasonable just to
think of deletion as an extreme form of modification! Thus
soundness ‘with respect to deletion’ is a natural requirement
to impose on abstractions.

To carry out a system build it is essential to have a col-
lection of servers that can produce the desired outputs from
the available inputs. For instance, the description file in
Figure 1 requires a C compiler to process C source files and
an assembler to process assembly code. When one is dealing
with abstractions, another server is needed to calculate the
desired abstractions. In the case of the make date optimiza-
tion, this task consists only of noting the date. However,
some of the other examples discussed in the previous sec-
tion require a more sophisticated collection of operations.
For example, smart recompilation [15] requires a ‘history’
attribute which is used to cache information required for as-
sessing the effect of a change. In each of the ways a value
in a state may change, a server is required to recalculate
an abstraction that takes the change into account. Changes
come in three forms: a source item is modified by the envi-
ronment, an item is produced in the course of a build, or an
item is deleted. In the last case the corresponding abstrac-
tion values are deleted (made undefined) and correctness is
ensured by the rule for soundness with respect to deletion,
so no special server is required. The former pair of cases
apply to a set U of source items, or to a set e* of produced
items. We need a name for this pair of cases:

Definition: Let N = (B, E, S,T) be a p-net. A generation
of conditions is a subset U C B such that

1. each element of U is a source, or
2. there is an event e such that U = e°. il

We may now define the key server concepts. First, some
notation. It will be useful for us to consider the restriction
of f to the complement of the set U. This will be denoted
ftu.

Definition: Suppose A and B are models of the p-net N =
(B,E,ST) and & : A — B is an abstraction.

A build server for A is a function o which takes as its
arguments an event e and A-state s and returns as its value
an A-state s’ such that s{e® =s'te® and 4,s' |=e.

An abstraction server for ® is a function ¢ which takes
as its arguments a generation of conditions, an A-state, and
a B-state; it returns as its value a B-state. Abstractions
must satisfy the following rule for any pair of A-states s, s/,
generation U C B, and B-state ¢:

stU=s§"{U
1 U is consistent in s’
(s, t)
O(s’, (U, s',t))

[Abstraction]

O

With these definitions it is possible to describe the rules for
computation in Figure 11. These rules can be viewed as
the generalization of the ‘date optimization’ rules described
earlier to a class of similar optimizations determined by the
choice of the abstraction ® : A — B. Initiation occurs when
a build must be carried out because the abstraction B does

174

M/e B,tlEe

Initiation —
M, s, t <> M U {e}, s, ¢t
I—
Termination e/]YI s = ale,s)
M, s, t S MuU e*, s, p(e®, s, t)
.. Bt
Omission M]e tEe

M,s,t—i)MU{e}Ue',s,t

Figure 11: Computation Relative to Servers o and ¢

not indicate it is unnecessary. When termination occurs,
the build result and the abstraction are updated by o and
¢ respectively in the new state. Omission occurs when the
abstraction B indicates that a rebuild is unnecessary.

The principle soundness result for the rules in Figure 11
is the following:

Theorem 4 Let @ : A — B be an abstraction between mod-
els of a p-net N = (B, E, S,T). Suppose s is a state of A
and t is a state of B such that ®(s,t). Let M be a consistent
marking of A,s. If M,s,t —* M',s',t' with respect to a
build server o for A and an abstraction server ¢ for ®, then

1. M' is a consistent marking of A, s’ and
2. ®(s',t"). a

The theorem is proved by inducting on the length of the
evaluation from M, s,t to M',s',t'.

5 Applications of Abstractions

An application of the concept of an abstraction requires the
the demonstration of a model, an abstraction relation, and
an abstraction server. Suppose we are given a model A for
apnet N = (B, E,S,T). To define an abstraction for .4 we
need:

Abstraction Model We must define a model B for N
which is to serve as the space of abstractions. This
entails selecting the conditions B that are to be ab-
stracted, and the events E? for which the abstractions
are to be tested. For each element z € B%, a space
V.B of abstract values is required, and for each e € E® ,
a relation R? between B-states of the pre- and post-
conditions of € is required. It is fajr game to use VA
to define V.2, although it will be unusual to use RA
to define R2. The relationship between RZ and R? is
most likely to be expressed in the abstraction relation.

Abstraction Relation We must define the relation ® be-
tween A-states and B-states. This relation needs to sat-
isfy the two rules for abstraction relations, but it may
also involve other properties that are to be assumed as
invariants preserved by the abstraction server.

Abstraction Server [t is necessary to define a server func-
tion ¢ for the abstraction ®. If the abstraction ® is
chosen unwisely, it may be difficult or impossible to
find a feasibly computable server for it.



Having selected these three things, it still remains a question
of the application itself whether the abstraction will be use-
ful. The axioms for abstraction relations and servers ensure
only that the abstraction optimization is sound.

Date Abstraction
Let A be a total model for a p-net N = (B, E, S,T).

Model The model B takes B® = B and E? = E. For each
z € B, we define V.2 = w. For each event e € E, define
(t]*e) R.® (t|e®) to hold iff ¢ is defined on *¢® and

(1)

Relation The abstraction relation is defined by stipulating
that ®(s,t) holds iff, for every event e such that ¢ is
defined on *e® and Inequality 1 holds, the A-state s is
also defined on *e¢® and A, s [ e.

max{t; [z € *e} < min{t, |y €¢e*}

Server Suppose U is a generation of conditions and s’ is
an A-state and ¢ is a B-state. The state t' = ¢(U, ¢, t)
has the same values as t outside of U. For each z € U,
if s is defined, then
f=1+maxite o€ e} U (@)
That is, the date on z is ‘later’ than anything related
to it by Cg. If s, is undefined, then ¢, is also taken to
be undefined.

Our proof burdens are to show that ® is an abstraction
relation and that ¢ is an abstraction server for ®. In effect,
this means proving that the rules [Production], [Deletion],
and [Abstraction] are satisfied by B, ®, and ¢. Let us do
this fully for this example. We start with soundness with
respect to production:

B(s,t) Bitke
AskEe )

This rule has essentially been defined to hold for this exam-
ple.* If B,t k= e then t is defined on *¢* and Equation 1
holds. By the definition of ®(s,t) these conditions imply
A,s = e. To see that it is sound with respect to deletion,
suppose U C B; we must show that the following rule is
satisfied:

B(s, t)

(s | U, t| V)

Suppose the hypothesis of the rule holds, let s’ = s | U and
t' =t | U, and suppose e € E. If t' is defined on ‘*e® then
it must be the case that *e®* C U so ¢ is also defined on ‘e,
where it has the same values as ', If s’ is undefined on any
of the elements of *¢*, then so is s, hence also t (because
®(s,t)), and consequently t' too, contrary to assumption.
Moreover, the values of s’ must be the same as those of

son *c*. If max{t, | z € "¢} < min{ty | y € ¢*} then

4To some readers this may seem like a cheat. To appreciate the
idea better, think of proving a property by induction. Sometimes it
suffices to carry out the induction with nothing more than the desired
property, but sometimes it is necessary to prove more than the desired
property in order to carry out all of the inductive steps. Specifying
the abstraction invariant requires a similar balance where the relation
may need to satisfy more than its basic requirement in order for all
of the parts to fit. In this case, it suffices to assert only that the
production rule is satisfied.

175

Inequality 1 holds too, so A, s’ = e follows from ®(s,t) and
the fact that s’ has the same values as s on *e®.

To prove that ¢ is an abstraction server for ®, we must
show that the following rule is satisfied:

B(s,t) stU=s"tU

(s, t")

LU is consistent in s’

where t' = ¢(U,s',t) and U is a generation. Let ¢ be an
event and suppose that t' is defined on *e® and

max{t, |z € *e} < min{ty, |y €’} (3)
We must show that s’ is defined on *e® and A4,s’ Ee. If
*e*NU = @, then the values in question are the same as those
for s,t, so the desired conclusion follows from the fact that
®(s,t) holds. Suppose therefore that *e*NU # . Because U
is a generation it cannot contain elements of both *e and e*.
Suppose first that U N *e # 0. Then there is a contradiction
with Inequality 3 because the values of ¢’ to the right of
must be the same as those of £ but the definition of ¢ says
that ¢, is larger than any of these. Suppose second that
Une®* # §. Then there is no problem because [ U was
assumed to be consistent in s’ and e € L U.

Equation 2 is, of course, different from the dates that
would be assigned to modified files by consulting the system
clock, so it is not exactly the same as the make abstraction
server. This underscores the fact that a given abstraction
may have many servers that could implement it. It is im-
portant for any choice of server to prove that it does indeed
satisfy the expected invariant. For example, the server above
doesn’t leave one to wonder about the correctness of builds
made after a reboot has caused or corrected an error in the
time on the system clock.

A Customized Abstraction

Let us consider the optimization proposed for the p-net in
Figure 7. In this example, it seems potentially worthwhile
to retain the header y.tab.h for comparison to subsequent
versions with later dates to avoid recompiling the lexer if
no changes have occurred. To describe the abstraction, we
refer to the names for p-net elements appearing in Figure 10.
Let A be the standard model for this production net as we
described it earlier. The abstraction is as follows:

Model Only conditions z,y,z are of interest, so B® =
{z,y, 2}, and only the event e will be tested for the
optimization, so E® = {¢}. We take V¥ = V;* and
VF =V xwand V;° = w. The relation B, t |= e holds
iff t is defined on *e¢® and t, is a pair (u,n) such that
u=t, and n > t,.

Abstraction The relation ®(s,¢) holds iff two conditions
hold: (1) if ¢ is defined on z, then so is s and sz = ts; (2)
if ¢ is defined on y, z and ¢, = (u, n) where £, > n, then
s is defined on y, z and (z,2z — u, s;) RZ (y — sy).

Server Suppose U is a generation. The value of ¢ =
(U, s', t) is the same as that of ¢ outside of U. If x € U,
then t; = s;. If y € U, then ¢ty = (fz, ¢, + 1) assuming
¢ is defined on z, z, otherwise t; is undefined. If z € U
and ty = (u,n), then t; = n + 1, but, if ¢, does not
exist, then ¢, = 0.



We must show that ® is an abstraction. To prove sound-
ness with respect to production, suppose that ®(s,t) and
B, t I= e. This means that ¢ is defined on *e¢® and t, is a pair
(u,n) where u = t, and n > t.. This means that ¢ satisfies
the hypotheses of the second condition for the difference ab-
straction, so s is defined on *e® and (z,2 + u,s.) R (y —
sy). But t also satisfies the first condition for the abstraction
®, s0 sz = t, = u, which means A, s = e as desired. Sound-
ness with respect to deletion is straight-forward. The proof
that ¢ is an abstraction server is omitted; it is a hybrid of
the proof above for the date abstraction and the argument
below for difference abstractions.

Is this really an ‘abstraction’? Since old concrete values
were kept for comparison with new values, the ‘abstract’
model is not more abstract for such values than the standard
one. This terminological foible can be considered in light of
the remaining two examples of abstractions considered here.

Difference Abstraction

The difference abstraction caches the sources that were
used to build a target. This information can be used to
avoid subsequent rebuilds when sources have not changed.
To describe the abstraction precisely, we need some more
mathematical notation. Given a product X x Y, let fst :
X xY — X be projection onto the first coordinate, and
snd : X x Y — Y be projection onto the second. When
working with expressions that may not exist, like s; where
s is a partial section, it is useful to write equations using
Kleene equality: given expressions P and @, we write P ~
to mean that (1) P exists if, and only if, Q does and (2) if
P, Q exist then P = Q.

Model Define B® = B and E® = E. Define

VB={

o(t, z) ~ {

vA Z a source
VA x H(VyA | y € *e*) <z produced by e.

if z is a source
if z is produced.

te
fst(tz)

And, for each B-state t and e € F, define
(t] %) RS (] e")
if, and only if, there is a condition y € ¢* such that

(c(t,z) | z € "€®) = snd(ty).

Abstraction For any A-state s and B state t, the relation
(s, t) holds iff

o for every source z, t; >~ s,, and

¢ for every produced z, £, is defined iff s, is defined,
and, if they are defined, then t; = (4, (s’ | *¢*))
for some A-state s’ such that A,s' |=e.

Server For any generation U C B and A-state s’ and B-
state t define ¢(U, s', t), ~ s., if z is a source condition
in U, but if z is a produced condition in U, define
H(U, 8" t)e ~ (sh,(sy | y € *e*)) where € is the event
that produced z. If z is not in U, define ¢(U, s', ), =~
te.

176

To show that ® is sound with respect to production, sup-
pose ®(s,t) and B, t |= e for some s, t,e. We must show that
A, s |= e also holds. The fact that B, t p= ¢ means that there
is a post-condition y € e°® such that snd(t,) is the partial
section u = (c(t,z) | z € *e®). Now, the assumption that
(s, t) holds tells us two things. First, c(t,z) ~ s, for each
x; this means that u is (s | *e®). Second, since t, is defined,
it has the form (sy, (s’ | *¢*)) where A4,s' |= e. But, by
Lemma 3, these facts imply that A, s |= e, as desired. That
® is also sound with respect to deletion is straight-forward,
noting that the domains of existence of s,t are the same
if ®(s,t) holds, so the domains of existence of (s | U) and
(t | U) will also be the same for any set of conditions U.

To see that ¢ is a server for @, let U be a generation of
conditions, let s be a A-state, and let ¢ be a B-state. Suppose
that ®(s,¢) and s’ is a A-state such that s { U = s’ { U and
4 U is consistent in s'. We must prove that t' = ¢(U,s’,t)
satisfies ®(s’,t'). First, if z is not in U, then s, t. are the
same as $z,l,; the desired properties hold because ®(s,t)
does. Suppose z € U. If z is a source, then t, ~ s by
definition and the condition on @ for sources is therefore
satisfied. If, on the other hand, z is produced by e, then
ty ~ (s, (s' | *€*)). But e € JU and }U is consistent in s/,

.
thus, in particular, A4, s’ E=e.

Fingerprinting Abstraction

The difference abstraction is inefficient in some ways: the
abstraction keeps the entirity of the old values used to pro-
duce the new ones, and the abstraction condition must check
whether this value is equal to new values, possibly many
times. To save space and time, it might be worthwhile to
save a compressed version of the old value and compare this
to compressed versions of the new values. We could choose
to do the compression in such a way that the compressions
of two values are the same if, and only if, the values them-
selves are the same. That is, we could choose an injective
compression map. However, we are not generally interested
in uncompressing the values in this case, only in keeping
enough of a record of the values that an equality test can
be carried out efficiently. This leads us naturally to the idea
that if the ‘compression’ is almost injective, then this will be
good enough, because the probability of the ‘compressions’
of two different values being the same is acceptably low.
This is the idea behind fingerprinting, as discussed earlier in
the context of the SML/NJ Compilation Manager and ap-
plied in numerous other contexts. To fit fingerprinting into
the theoretical framework of this paper demands that we
reconcile the fingerprinting concept of being correct almost
always with the correctness criteria for abstractions, which
stipulates correctness in all cases.

Perhaps the simplest way to achieve this reconciliation
between correctness and almost-correctness is to focus the
uncertainty about correctness in the relation between the
actual model and an approzimate model. Let A be the in-
tended model for a production net N = (B, E,S,T) and
supose « 1s a build server for A. For each z € B, let us
assume we are given a space Fy of ‘fingerprints’ and a fin-
gerprinting function f. : V* = F,. We define a new model
A as follows. The events and conditions of 4 are the same
as those of A, that is, BA = B* and EA = E*. For each
z € B, we define VA = VA x F,, and for any event ¢ and
A-state s, we define (s | *e) RZ (s | €*) if, and only if, there



is an A-state s’ such that
(o1 %) B2 (s' | %)

and, for each « € *e®, fz(s},) ~ snd(s:). That is, a relation
R. holds in A iff the values of the pre- and post-conditions
have fingerprints that could have been obtained from a re-
lated set of values in .A. In particular, if f, is an injection,
then fo(sy) ~ snd(s=) = fu(fst(ss)) so s = fst(sz). If
fo is an injection for each x € B, then A and A are iso-
morphic. Thus the fidelity of A to A is measured by how
closely the fingerprinting function approximates being an in-
jection. A server for A is also needed. For any e, s, z, define
&(67 s),, = (a(e’ 5)17 fi”(a(ev 3)’”))'

We are now prepared to describe fingerprinting as an ab-
straction of the approximate model A.

Model Define B® = B and E® = E. Define

VB =

{ F. if z is a source
xT

F. x TI(Fy | y € *¢*) if « is produced.

if z is a source

bz
et z) > { fst(tz) if x is produced.
And, for each B-state t and e € E, define
(t]%e) RS (¢]e")
if, and only if, there is some y € e*® such that
(c(t,z) | z € *e®) = snd(ty).

Abstraction For any A-state s and B state ¢, the relation
(s, t) holds iff

e for every source x, - ~ fo(5.), and

o for every produced r, t, is defined iff s, is
defined, and, if they are defined, then ¢, =
(snd(sr) (fy( y) | y € *e*)) for some A-state s’
such that A,s" Ee.

Server For any generation U C B and A-state s’ and B-
state ¢ define ¢(U,s’,t). ~ snd(s;) if = is a source in
U. If z is a produced condition in U define

$(U,s",t)x = (snd(sz), (snd(sy) | y € *€®)).
If z is not in U, then ¢(U, s, t) 2 ts.

The proofs that ® is an abstraction and ¢ is a server for
it are very similar to the ones given for the difference ab-
straction above {modulo the tedium of some projections and
fingerprintings).

6 Conclusions

The accomplishments of this paper are the introduction of
production nets and their models, the formulation of ab-
stractions and their associated correctness conditions, and
the application of these concepts in a collection of notewor-
thy cases. Questions still remain about the integration of
models, the way in which models should be described and
implemented, and whether a sufficient range of problems
that arise in real system configurations can be treated rea-
sonably using the abstract framework described here. A

177

more limited objective is applying the theory to more of the
cases within its current realm; challenges include a rigorous
treatment of abstractions like Tichy’s smart recompilation
and the treatment of systems with multi-pass builds (or ap-
parent cycles) such as the type-setting program LaTeX. Let
me close by commenting very briefly on the three larger
questions.

From a mathematical perspective, the full version of this
paper provides a satisfactory account of how various mod-
els and abstractions can be combined. To give a hint about
the systems perspective of this mathematics, suppose we are
given a pair of IDE’s and a project that needs to manipu-
late items produced by them. Each of the IDE’s controls
the dependencies, abstractions, and build operations for a
portion of the collection of items included in the project.
Figure 12 illustrates the general idea. The IDE’s supply the

O

HrstIDE D General Operation . Second IDE

Figure 12: Integrating Models

servers that are used in the overall build, which is controlled
by computation over the underlying p-net according to the
rules in Figure 11. Abstractions may be supplied by the
IDE’s (based on special ‘knowledge’ they have about the se-
mantics of the items in their domains) or by other means
(as, for instance, make supplies the date abstraction or CM
supplies the fingerprinting abstraction).

P-nets are, of course, a mathematical abstraction; a sys-
tem that uses them must represent them in a data structure
or allow the programmer (or a system) to describe them
in a language. A tool like makedepend performs this latter
function for C-programming items and make. Also nmake [5]
provides explicit support for dependency-reporting. A more
sophisticated and abstract language than that of make de-
scription files is provided by the Vesta programming lan-
guage [7, 6] which is the description language for the Vesta
configuration management system [8]. Vesta makes some
decisions differently from the way p-nets are applied in this
paper, but the approaches may be complementary in some
ways. The full version of this paper describes implementa-
tions of some of the build computations using the language



Pict [11, 10, 12}, which is based on Milner’s #-calculus and
provides useful high-level constructs for describing the con-
current computations over p-nets. Comparison with other
configuration management languages and systems such as
the various forms of concurrent make would be helpful. In
any case, a suitable data structure or language for p-net
models and abstractions requires further exploration.

As for whether a sufficient range of problems that arise
in real system configurations can be treated reasonably us-
ing p-net abstractions and models, there are several issues
that must be treated seriously before any attempt at vali-
dation seems worthwhile. Key issues include the treatment
of versions/variants (a topic treated in other models such as
Inscape [9] and feature logic [16]} and the incorporation of
changes in dependencies (that is, where a change in a source
item results in a change in the underlying p-net of depen-
dencies). Dynamic determination of dependencies may also
be worthy of consideration. Another interesting issue is the
possibility of restricting one’s view of a p-net of items by
moving a baseline to hide or expose items to change control.

Acknowledgements

I would like to express my appreciation to the following peo-
ple who influenced this work: Benli Pierce, Sandip Biswas,
Luca Cardelli, Tony Hoare, Michael Jackson, Trevor Jim,
CIliff Jones, Dave MacQueen, V. Mahesh, Andy Pitts, John
Reppy, Glynn Winskel. The following agencies, company,
and institute provided partial support for this project: ARO
(USA), EPSRC (UK), NIMS (UK), NSF (USA), Oki Elec-
tric Industry Co., Ltd. (Japan), ONR (USA).

References

[1] Matthias Blume. CM: A Compilation Manager for
SML/NJ. User Manual.

[2] Andrei Broder. Some applications of Rabin’s fingerprinting
method. In R. M. Capocelli et. al., editor, Sequences II:
Methods in Communication, Security, and Computer Sci-
ence. Sprinter-Verlag, 1991.

[3] G.L.Burn, C. Hankin, and S. Abramsky. Strictness analysis
for higher-order functions. Science of Computer Program-
ming, 7:249-278, 1986.

[4] Stuart I. Feldman. Make—a program for maintaining com-
puter programs. Software—Practice and Ezperience, 9:255—
265, 1979.

[6] Glenn Fowler. A case for make. Software—Practice and
Ezperience, 20(S1):51/35-81/46, 1990.

[6] Christine B. Hanna and Roy Levin. The Vesta language for
configuration management. Technical Report 107, Digital
Systems Research Center, 1993.

[7] Butler W. Lampson and Eric E. Schmidt. Practical use of
a polymorphic applicative language. In Proceedings of the
Tenth Annual ACM Symposium on Principles of Program-
ming Languages, 1983.

[8] Roy Levin and Paul R. McJones. The Vesta approach to
precise configuration of large software systems. Technical
Report 105, Digital Systems Research Center, 1993.

178

{9] Dewayne E. Perry. Version control in the Inscape environ-
ment. In Proceedings of the 9th International Conference on
Software Engineering, pages 142-149, Monterey, California,
March 1987.

[10] Benjamin C. Pierce. Programming in the pi-calculus: An
experiment in programming language design. Tutorial notes
on the Pict language. Available electronically, 1995.

[11] Benjamin C. Pierce and David N. Turner. Concurrent ob-
jects in a process calculus. In Takayasu Ito and Akinori
Yonezawa, editors, Theory and Practice of Parallel Program-
ming, number 907 in Lecture Notes in Computer Science,
pages 187-215. Springer-Verlag, 1995.

[12] Benjamin C. Pierce and David N. Turner. Pict: A program-
ming language based on the pi-calculus. To appear, 1995.

[13] Robert W. Schwanke and Gail E. Kaiser. Smarter recompi-
lation. ACM Transactions on Programming Languages and
Systems, 10(4):627-632, 1988.

[14] Zhong Shao and Andrew W. Appel. Smartest recompila-
tion. In Susan L. Graham, editor, Conference Record of
the Twentieth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 439—
450. ACM, 1993.

[15] Walter F. Tichy. Smart recompilation. ACM Transac-
tions on Programming Languages and Systems, 8(3):273—
291, 1986.

[16] Andreas Zeller. A unified version model for configuration
management. In Gail Kaiser, editor, Proceedings of the 8rd
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, volume 20 (4) of ACM Software Engineering
Notes, pages 151-160. ACM Press, October 1995,



