
Abstracting Dependencies between
Software Configuration Items

Carl A. Gunter
University of Pennsylvania

http ://www. c is. upenn, edu/~ gunter

A b s t r a c t

This paper studies an abstract model of dependencies be-
tween software configuration i tems based on a theory of con-
current computa t ion over a class of Petr i nets. The pr imary
goal is to i l lustrate the descriptive power of the model and
lay theoret ical groundwork for using it to design software
configuration maintenance tools or model software configu-
rations. As a s tar t in this direction~ the paper analyzes and
addresses certain l imitat ions in make description files using
a form of abstract interpretation. ,\

1 I n t r o d u c t i o n

A variety of formalisms have been created to aid phases
of the software engineering life cycle. For instance, logical
languages such as Z can be used to describe functional spec-
ifications, while s t ructures like flow charts and Petr i nets are
useful in detailed design. A u t o m a t e d formal verification has
been shown feasible in certain cases where system behavior
can be described using a finite s ta te machine. However, less
a t tent ion has been directed at the application of abstract
models to the maintenance aspects of software. The aim
of this work is to s tudy one aspect of software maintenance
from this perspective. The approach advocated here is based
on ideas and s t ructures from the formal semantics of con-
currency but adapts them to the part icular goals arising in
software configuration maintenance.

Even a modest software project entails the creation of a
collection of what are sometimes called software configura-
tion items. Such i tems may be held in files, one i tem per
file, or they may be more abstract ly described and stored.
A characterist ic example is the collection of source, object,
executable binary, and archive files that arise in a program-
ming project . Some of the files are directly modified by
a p rogrammer or the ' envi ronment ' in some general sense,
while others are produced by the use of tools, such as a com-
piler or other processing tool. Certain of these produced
i tems are ones the project ul t imately ships as the 'p roduc t '
of the effort. It is essential therefore that the implications
of any changes in the source i tems be properly reflected in
the i tems directly or indirectly produced from them. This
can become an overwhelming task if the project environment
does not provide au toma ted support for it. A recognition

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGSOFT'96 CA, USA
© 1996 ACM 0-89791-'797-9/96/0010...$3.50

of the ubiquity of this problem, and the insight that a tool
could address it in a wide range of cases, led Stuar t Feld-
man to develop the Unix tool, make [4]. In this l imited ap-
plication domain, the special-purpose make description files
were easier to write and maintain than general purpose pro-
grams, so the tool quickly gained widespread use. An ex-
ample of a make description file for a small configuration of
C-programming files appears in Figure 1. The lines with

table : a.out indata

a.out

a . o u t : m a i n . o da tana l .o l o . o / u s r / c g 2 0 8 / l i b / g e n . a
cc main.o datanal.o io.o /usr/cg208/lib/gen.a

main.o : main.c

cc -c main.c

datanal , o : da tanal , c
c c -c da tana l . c

io.o : lo.s

as -o io.o lo.s

Figure 1: Sample Makefile

the colons express the dependencies between the software
configuration i tems of interest. 1 The lines indented by tabs
indicate how the target, the file to the left of the colon, is
to be produced from its pre-requisites, the files to the right
of the colon. The make description file thus records the de-
pendencies between software configuration i tems and the ac-
tions required to establish consistency of the system based
on these dependencies.

In the t ime since make was introduced, it has been ex-
tended many times and has seen substant ial compet i t ion
from its chief rival approach, the Integrated Development
Environment (IDE) (see [5] for an analysis of the chief chal-
lenges to make). IDE's are often capable of maintaining
dependencies automat ical ly through an ~understanding' of
the semantics of the systems they integrate. For example,
Microsoft 's Visual C-t-+ IDE maintains its own make-like
description file, which is not directly modified by the pro-
grammer. The advantage of such a system is tha t the pro-
grammer is relieved of the tedius and error-prone manual
maintenance of the description file. However, a disadvan-
tage is that an IDE may not integrate all of the component

li t is convenient not to identify software configuration items as
a general concept with operating system files. However, make es-
sentially does make this identification, with various advantages and
dis advant ages.

167

p r o d u c t i o n tools a p ro jec t requires: the ' openness ' of a tool
like make enables the i n t e rope ra t i on of a wide spec t rum of
tools possibly combined in original and unexpec ted ways,
bu t this may no t be possible for an IDE. It is therefore res-
onable to look for a basic theory of dependencies be tween
sof tware conf igura t ion i tems. This may lead to good ap-
proaches to c o m m u n i c a t i o n be tween sof tware env i ronmen t s
combin ing the advan tages of open sys tems like make wi th
those of IDE ' s t h a t address make's l imita t ions .

This p a p e r examines the idea of us ing an a d a p t a t i o n of
a model l ing t echn ique f rom concur ren t and d i s t r ibu ted sys-
t ems called a Petri net to model dependencies be tween soft-
ware conf igura t ion i tems. T h e focused goal is to show how
one can model and ex t end various approaches to opt imiz ing
builds of conf igurat ions . A concur rency formal ism has been
chosen because the typical s t a t e of a bui ld conf igura t ion con-
ta ins a grea t deal of po t en t i a l course-gra ined paral lel ism, so
it is n a t u r a l to model the bui ld direct ly as a concur ren t
compu ta t i on . T h e goal here is no t to provide a semant ics of
make, a l t h o u g h make inspires a n u m b e r of the problems con-
sidered, no r is i t feasible in this shor t p a p e r to deal wi th all
of the issues t h a t chal lenge a sof tware conf igura t ion main-
t enance tool (for example, vers ion control is no t discussed).
Ins tead, the a im is to t r e a t r igorously the correc tness cr i ter ia
for bui ld op t imiza t ions and the m odu l a r descr ip t ion of these
opt imiza t ions , as, for ins tance , a collection of i n t e rope ra t ing
IDE ' s migh t r e p o r t t h e m in a su i tab le d a t a s t ruc tu re .

T h e s t r u c t u r e of the p a p e r is as follows. Af te r th is in-
t roduc t ion , the second sect ion descr ibes a s t r u c t u r e called a
production net (p-net) which is used to describe dependen-
cies. T h e t h i r d sect ion uses this formal ism to discuss a va-
r iety of p r a g m a n t i c bu i ld -op t imiza t ion ideas t h a t have been
considered over the years as the resul t of conf igura t ion main-
t enance experience. T h e fou r th sect ion in t roduces a concept
of model for p -ne t s t h a t enables the bu i ld -op t imiza t ions to
be su i tab ly model led a n d the i r cor rec tness cr i ter ia formal-
ized and proved. T h e final sect ion reflects on w h a t has been
accompl ished a n d w h a t more would be required to carry
the fo rmal i sms f u r t h e r toward direct appl icat ion. Since this
is an abs t r ac t , t he r eade r is referred to the full p a p e r for
proofs, f u r t h e r examples , a n d a fuller discussion of various
c o m p u t a t i o n a l a n d i m p l e m e n t a t i o n - r e l a t e d issues.

2 P r o d u c t i o n N e t s

In this sect ion t he g raph s t r u c t u r e s used to represent re-
l a t ionsh ips be tween sof tware conf igura t ion i t ems are intro-
duced. T h e y are a k ind of Pe t r i net , so the te rminology and
n o t a t i o n draws on t h a t used for Pe t r i nets . We s t a r t w i th
the following concept :

D e f i n i t i o n : (Nets .) A net is a four- tuple

N = (B , E , S , T)

where

* B is a f inite set of conditions,

* E is a f inite set of events,

* S C_ B x E is the pre-condition relat ion, and

o T C_ E x B is the post-condition re la t ion.

Figure 2: Example of a Net .

.©

[3

T h e le t te rs x, y, z and the like are used to deno te b o t h con-
di t ions in B and events in E, whereas l e t t e r s e, f , g are typ-
ically used for events in E. For a ne t N = (B, E, S, T), i t is
convenient to wri te x S e for (x , e) E S and to wr i te e T x
for (e, x) E T. W h e n working w i th more t h a n one net , sub-
scr ipts a n d / o r supersc r ip t s can be used to d i s t inguish p a r t s
of the respect ive nets ; for example N' = (B ' , E ' , S',T~).
However, w h e n it is clear which ne t is m e a n t for the various
sets and relat ions, the following n o t a t i o n is more succinct .
Given a ne t N = (B, E, S, T), a n d a n event e E E, we define
°e = {x] x S e } and e ° = {x [e T x } . T h e s e are respec-
tively called the pre-conditions a n d post-conditions of event
e. F igure 2 shows an example of a ne t us ing the Pe t r i ne t
figure convent ions: circles are used for condi t ions , rec tangles
are used for events, re la t ions in S are a r rows po in t ing into a
rectangle , and re la t ions in T are a r rows po in t ing in to a circle.
In the Figure 2 example, "e = {x, u} while e ' = {y, z}. It is
also convenient to have a n o t a t i o n for the un ion of the pre-
and pos t -condi t ions of an event , so we define °e ° = °e U e °.

Intui t ively a sof tware conf igura t ion is model led as a ne t
by t r ea t ing sof tware items--like m a i n . o a n d m a i n . c in the
descr ip t ion file in F igure 1 - - a s ne t conditions. On the o the r
hand , operations--like t he app l ica t ion of the compiler cc
wi th the swi tch - c to the i npu t m a i n . c - - a r e t r e a t e d as
events. A fairly readab le in formal n o t a t i o n t h a t works well
w i th ASCII charac te r s is to wr i te the n a m e s of i t ems (con-
di t ions) wi th in paren theses , which are remin i scen t of circles,
and the n a m e s of opera t ions (events) wi th in brackets , which
are reminiscent of rectangles . T h e make descr ip t ion file of
Figure 1 is depic ted by the ne t in F igure 3. A formal t rea t -
men t of the re la t ionship be tween p r o d u c t i o n ne t s a n d com-
p u t a t i o n s like those engendered by make descr ip t ion files are
provided by p-ne t models , which are the topic of Sect ion 4
below.

To provide a t r ac t ab le theory for our purposes here, ne t s
mus t sat isfy cer ta in axioms. We need some te rminology to
express the desired proper t ies . Let N be a net . T h e directed
graph defined by N is the d i rec ted g r a p h which has B U E as
i ts nodes and S O T as i ts edges. A cycle in a d i rec ted g raph
is a sequence of nodes x0, • • •, x,~ such t h a t t he re is an edge
f rom x,~ to x0 and, for each i < n, the re is an edge f rom xi
to xi+a. A di rec ted g raph is said to be acyclic if i t has no
cycles. A ne t is said to be acyclic if t he d i rec ted g raph it
defines is acyclic.

D e f i n i t i o n : (P-Nets .) A ne t N = (B, E, S, T) is a produc-
tion net (p-net) if i t has the following proper t i es :

1. It is acyclic.

2. (Unique Producer .) If e T x and e ' T x, t h e n e = e' .

3. For each e E E, b o t h "e and e ° are non-empty .

168

(m a i n . c) - [CC -C] - (m a i n . o)

(datanal.c) -[cc -c] [(datanal.o) % ~ [c c] ~ (a . o u t) ~ [r u n]

(l ° ' s) " [a s - ° l ° ' °] (l ° ' °) ~ i (n d a t a) /

(/ u s r / c g 2 0 8 / l i b / g e n . a)

(table)

Figure 3: Net Corresponding to Makefile in Figure 1

4. For each x E B, there is some e such that x 6 ' e or
x E e ' . [3

The nets in Figures 2, and 3 are bo th product ion nets. Fig-
ure 4 gives several examples of the ways in which a net can
fail to be a p-net. Net (a) contains a cycle; net (b) fails to
satisfy the unique-producer condition 2; nets (c), (d), and
(e) have an event with pre-condit ions or post-condit ions that
are unacceptable for condit ion 3; and net (f) has an isolated
condition, in violation of condit ion 4.

The unique-producer condit ion 2 is equivalent to saying
tha t the set T °p = {(x, e) I e T x} is a part ial function. The
set of elements on which this part ial f lmction is defined are
those conditions x such tha t there is a (unique) event e such
that e T x; in this case we say that x is a produced i tem
or condit ion and tha t e is the event that produced x. The
set of elements on which T °p is not defined are of par t icular
impor tance because, intuitively, they are the ones that are
modified by the environment (viz. programmers) . Given a
condit ion x, if there is no event e such that e T x, then
x is said to be a source i tem (or condition). In Figure 2,
x and u are source items, while y, z, and v are produced
items. I tems y and z are produced by event e, while i tem v
is produced by event f .

Since the graph determined by a product ion net N =
(B, E, S, T) is acyclic, the transi t ive and reflexive closure
of its edge relation defines a poset _CN relation on B U E.
The restrictions of E N to conditions and events are respec-
tively denoted C_B and _C~. For example, in Figure 2, we
have x U_N e ~ Y y [~N g whereas conditions y ,z are incom-
parable (with respect to U_N and E_B) and events e, f are
incomparable (with respect to __N and C E). It is variously
convenient to think of a software configuration in terms of
these three orderings on its product ion net. The make de-
scription file essentially uses the colon notat ion to define
the relation _UB on i tems (files). However, the evaluation
of a make file is based on events (actions) s t ructured by the
dependencies in C_E.

For any poset, (P, C), a subset L C_ P is left-closed (rela-
tive to _E) if x 6 L and y _C x implies y E L. The notion of
s tate for computa t ion on a product ion net N will be mod-
elled by left-closed subsets of C N. Given a subset X C_ P,
the left-closure of X is the set

S X = {ye P[3xe X. yCx}.

Computa t iona l s ta te will be represented using certain spe-
cial subsets of p-nets.

D e f i n i t i o n : (Markings.) Let N = (B, E, S , T) be a pro-
duct ion net. A subset M C_ B U E is condition-closed if, for
every event e 6 E, e" v I M ~ @ implies e" C_ M. A marking

M for N is a subset of B U E tha t is bo th left-closed (with
respect to CN) and condition-closed.

An event is viewed as having one of three s tates relat ive to
a marking.

D e f i n i t i o n : (Event States.) Let M be a marking on a p-
net N - (B , E , S , T) and let e b e an event. W e s a y that e
is enabled by M and write M / e if ' e C_ M and e ~ M. We
say that e is initiated in M and write e / M if e E M and
e ' C l M = @. We say that e is terminated in M and write
e ' N M i f e ° C_ M. [3

Note that e is te rminated in M if, and only if, M N e"
0. The intuit ion is that M / e is a s ta te in which the pre-
conditions of e are satisfied, but where the event e has not
yet begun. The s ta te e / M is one in which e has begun,
but has not yet finished. The s ta te e "N M is one in which
e has finished and now its post-condit ions are within M.
A pictorial representat ion of the different s tates appears in
Figure 5. Under suitable assumptions, the movement from
one s ta te to another with respect to e retains the proper ty
of being a marking.

L e m m a 1 Suppose M is a marking of a p-net N =
(t3, E, S, T). The following three implications hold:

1. If M/e , then M ' = m U {e} is a marking with e /M' .

2. Ire~M, then M I = M Oe ° is a marking with e "N M'.

3. I/ M/e , then M ' = M U { e } U e " is a marking with
e "N M ' . [7

3 Computat ion Over Product ion Nets

The aim of this section is to provide mot ivat ion for the way
in which computa t ion over p-nets will be represented. The
idea is similar to providing a set of operat ional rules for
computa t ion over a Petri net. However, the not ion of mark-
ing used for product ion nets is somewhat different from that
used for Petri nets. This difference is owing to the partic-
ular application for which p-nets are intended, which uses
markings to model system build states. Consider the net in
Figure 2 for example: note the way u is shared by e and
f and the way v is shared by g and h. As a build com-
putes a result, the pre-condit ion remains intact through the
remainder of the build; sharing in the sense of these exam-
ples does not introduce conflict in the computat ion. So, the
usual Petr i net semantics of placing markings on conditions
and having them consumed by events to which they are pre-
conditions is not a convenient way of thinking of system

169

D - O
t

0-1-1
(a)

D D n 0
\ /

0 0 n

D 0

(b) (c) (d) (e) (0

Figure 4: Nets that are not Production Nets

D--...O
enabled initiated terminated

Figure 5: Three Relationships between Marking M and Event e

state for builds. Instead, one wants to view a build as hav-
ing achieved consistency between sources and targets in a
subset of the p-net that is left-closed relative to EB.

The pair of operational rafles in Figure 6 provide a basic
representation of the observable events of the concurrent
computation. An event e engenders two forms of observable

Initiation

Termination

M/e
M -!-~ M u {e}

e / M

M - - % M U e "

Figure 6: Basic Operational Rules

behavior: ~ is the initiation of e and ~ is its termination.
For example, the net in Figure 2 has the following possible
evaluation sequences starting from the marking consisting
of its minimal three conditions to the marking consisting of
the whole net:

Concurrency of events is represented by the overlapping of
their interval of execution, that is, the interval between
and ~ for any event e. A sequential computation over this
net--such as most raako evaluators provide--would have the
form of either the first or last of these possibilities, in which
no event begins before all the events that began before it
have terminated.

Let us write M -----~* M ' for the transitive, reflexive clo-
sure of the labeled relation. That is, M ---+* M ' pro-
vided M is M' or there is a marking M " and a label l

such that M ----+* M " z> M' . The number of steps
in the relation M -----~* M ' is the minimum number of
markings M0, . . . ,M,~ such that M0 = M and M , = M '
and there are labels 11,... ,l,~-1 such that the relations

M0 - ~ .- . - ~ M,~ all hold. Although we will quickly re-
place the simple semantics provided by the rules in Figure 6
by something more realistic (and interesting), it is worth
noting briefly the following basic property:

P r o p o s i t i o n 2 If M is a marking of a net N and M -----+*
M', then M' is also a marking. [7

The proposition is proved by an induction on the number
of steps in the relation --+*. Each case follows immediately
from Lemma 1.

A build over a p-net N = (B, E, S, T) may now be viewed
as follows. First, a selection X C B of targets is made. Then
an initial marking M is chosen to consist of the minimal el-
ements in $ X. From this initial marking, the events in $ X
are executed to produce a marking M ' which contains X.
The events may evaluate as concurrently as their depen-
dencies allow until all events in S X are terminated in M' .
However, this is potentially a very inefficient way to ensure
that targets properly reflect changes. For example, it may
be that no condition among the minimal elements of $ X has
been modified since the last time the targets in X were built,
so no computation is required: the targets remain accept-
able. The program make optimizes by examining the dates
assigned to files by the operating system. Let us a t tempt to
formalize this idea.

The dates associated with files by the operating system
can be viewed as a function on conditions. An augmented
form of production net includes the needed additional struc-
ture.

170

Def in i t i on : (DP-Nets.) A dated production net (dp-net)
is a 5-tuple N = (B, E, S, T, 5) where (B, E, S, T) is a p-net
and 5 is a function from B into w called the date. D

Given a dp-net N -= (B, E, S, T, 5), it is convenient to define
a pair of functions that provide greatest and least dates on
pre- and post-conditions of events. The pre-date function
'5 : E --4 w is defined so that '$(e) is the g rea tes t value in
the set {5(b) [b 6 'e}. The post-date function 5" : E --+ w
is defined so that '5(e) is the least value in the set {5(5) [
b 6 "e}. With this, the concept of an 'up-to-date' target is
given as follows:

De f in i t i on : (Up-to-Date Markings.) A marking on the dp-
net N is a marking on the underlying p-net (B, E, S, T).
Such a marking M is said to be up-to-date if every event e
whose post-conditions are contained in M satisfies *5(e) <
5'(e). D

A semi-formal explanation of the make 'date optimization'
can now be given in terms of dated production nets. First
of all, if M/e and the post-conditions of e are not up-to-date
then the post-conditions of e must be built (initiation):

M, 5----~-+ MU{e},5

If, on the other hand, e/M holds, then the date function 51
is altered to a new date function 52 (termination):

M, 51 ~ M Ue*,52

where 52 assigns dates to the postconditions of e that are
later than the dates 51 (b) for any b, and otherwise assigns
the same dates as 51. Finally, if M/e but e is up-to-date,
then no build is needed:

M, 5 __fi+ M U {e} Ue*,~

This rule, which captures the optimization of recognizing
that an up-to-date event does not need to be run, is what
we will call an omission rule. That this is correct is based
on assumptions that are essential to the correctness of make-
controlled builds: if a target exists, its pre-requisites ex-
ist, and the target is up-to-date with respect to its targets,
then the target was created from the pre-requisites, and it
does not need to be rebuilt from its pre-requisites if its pre-
requisites are themselves based on up-to-date productions.
We will retm'n to the issue of build invariants and correct-
ness later.

There are several ways in which the make optimization
based on dates provides less than one would want in certain
cases. Over the years, make extensions have attempted to
address some of these problems, others are addressed only
in IDE's. Let us consider three of these, each of which is
based on common experience with system maintenance. The
first concerns parsing tools, the second concerns SML pro-
gramming language compilations, and the third concerns C
header files.

Figure 7 illustrates a production net which arises in in-
stances where one is using the parser-generator yacc. The
yaee tool takes an input file in a special format and produces
from a C source file, y . t a b . e and a C header file y . t a b . h .
The header file describes the information about keywords
declared in foo. y, which is all of the information generated
from this file that is needed to create the lexer, l ax . o. The
input file foo. y also describes a possibly intricate collection

(lex.c)~

/(y.tab.h) ~[cc]

(foo.y)--~[yacc]~_ ~[cc]
~(y.tab.c)

,(lex. o)

(y. tab. o)

Figure 7: Identity of Old and New Inputs

of actions used to determine the parsing in y . t a b , o. This
collection of actions often requires debugging or optimiza-
tion, so the actions in foo .y may be modified much more
frequently than the keyword declarations there. However, if
only the actions in foo .y have been modified, then the gen-
erated header file y. t ab . h will not change. Nevertheless, its
date will change with the new generation, thus making the
lexer object file out-of-date and thereby inducing a recompi-
lation of l ax . c when the lexer object file is again required.
The effort is wasted though, because the file y . t a b . h did
not really change, only its date did.

Another example, this one involving the SML program-
ming language, appears Figure 8. Unlike typical C pro-

f oo. S ig. sml foo. sml bar. sig. sml bar. sml

0 0 0 0

Figure 8: Hash Keys to Avoid Cascading Recompilation

grams, SML programs generally have deeply nested depen-
dencies, often dozens of files long. In the figure, the SML
signature F00 in the file foo. s i g . sml, together with some
basic environment, is compiled into a target environment.
The implementing structure Foo of this signature is then
compiled and incorporated into this environment. After
this, a signature BAR, which is stored in a file ba r . s i g . sml
and uses names from F00 and Foo, is compiled and incor-
porated. Finally, its implementing structure Bar, which is
in a file ba r . sml and uses names from F00, Foo, and BAR,
is compiled and incorporated. Now, if even a comment is
changed in f o o . s i g . s m l , then all of the steps used to gen-
erate this final target will need to be rerun if one uses only
the standard make date optimization. When dealing with
such deeply nested dependencies, it becomes worthwhile to
retain information sufficient to recognize when it is prob-
able that the cascading sequence of recompilations can be
cut off. In the Compilation Manager (CM) IDE of Matthias
Blume [1], which is part of SML/NJ system, targets of com-
pilations are assigned 'fingerprints'. A fingerprint is a bit
string computed from a file in such a way that files with
the same fingerprint are very unlikely to be different. 2 This
provides a pragmatic aid when development is under way;
even the low probability of error due to the imperfection
of the fingerprint assignment can be eliminated by deleting
the target files to induce complete regeneration before final
testing. Time saved avoiding recompilations quickly repays
the overhead of calculating the fingerprints in typical SML
programming projects.

A somewhat more subtle issue of dependence is illustrated
in Figure 9. Header files allow separate compilation of C

2The method for calculating fingerprints used in CM is based on

171

(my.c) //.~[cc - o] - - - ~ (my.o))~,

Figure 9: Changes in Headers

programs. Given a collection of C files C1, . • •, C~ and a col-
lect ion of co r re spond ing h e a d e r fries H 1 , . . . , H~, one seeks
to organize th ings so t h a t any given file Ci can be compiled
wi th a su i t ab le subse t of the h e a d e r files. In par t icu lar , no
o the r C files are required. Th i s has the advan t age t h a t one
may compile Ci even if t he C i m p l e m e n t a t i o n s of heade r
files needed for the compi la t ion are no t available, pe rhaps
because they are u n d e r deve lopment . In Figure 9 compila-
t ion of ray. c a n d y o u r . c can be done using f o o . h. If f o o . c is
modif ied t h e n t he files my. o a n d y o u r . o do no t become out-
of-date as a result , a l t h o u g h the l inking of the th ree objec t
files does b e c o m e out -of -da te . Th i s provides a valuable form
of s u p p o r t for s epa ra t e compila t ion, allowing significant in-
dependence b e t w e e n p r o g r a m m e r s as well as an oppo r tun i t y
for the use of paral le l ism in builds. Suppose, however, t h a t
the p r o g r a m m e r in charge of y o u r . c asks t h a t an addi t iona l
func t ion f be inc luded in f o o . c and i ts p ro to - type placed in
f o o . h . This resul t s in a change in f o o . h , caus ing the compi-
la t ion of ray. c to b e c o m e out -of-date . However, the p rog ram
ray. c may no t make any use of f or depend on it in any way.
A n in tu i t ive a n d inexpens ive app roach to recognizing th is
s t a t e of affairs au toma t i ca l ly was i n t roduced by Tichy [15]
u n d e r the sobr ique t ' s m a r t ' recompi la t ion . T ichy ' s bench-
marks suggest t h a t the analysis is well wor th the t ime spen t
on it, as one migh t in tu i t ive ly predict . His i m p l e m e n t a t i o n
was ac tua l ly for Pasca l wi th modules r a t h e r t h a n C pro-
grams, so the example of Figure 9 should be t aken wi th an
app rop r i a t e gra in of salt, b u t the basic idea is fairly lan-
guage i ndependen t . T h e idea has inspired several subse-
quen t s tudies , inc luding one on ' smar ter ' recompi la t ion [13]
for C p rog rams a n d ' smar tes t ' recompi la t ion for SML [14].

4 P - N e t M o d e l s a n d A b s t r a c t i o n s

To really r ep resen t the kinds of issues descr ibed in the pre-
vious section, it is essential to provide a model for a pro-
duc t ion ne t t h a t descr ibes the k inds of ent i t ies involved in
a bui ld over t he ne t and the re la t ions they are expec ted to
satisfy. By way of i l lus t ra t ion , consider the following very
basic p-net :

.©

This ne t has m a n y models . For example, it might be the
case t h a t x is i n t e r p r e t e d as a C source file, y as a heade r
file, and z as an ob jec t file. T h e event e is i n t e rp re t ed as
the re la t ion be tween the i npu t files and o u t p u t files which

R.abin ' s C R C p o l y n o m i a l s ; see [2] for a n expos i t i on .

holds when the i n t e rp r e t a t i on of the o u t p u t could be the
ou tcome of a correct C-compi la t ion of the i n t e rp re t a t i ons of
i ts inputs . In a n o t h e r model, x is i n t e rp r e t ed as an objec t
file, y as a file conta in ing da ta , and z as a n o t h e r d a t a file.
The desired re la t ion is t h a t z (t h a t is, t he i n t e r p r e t a t i o n of
z) should be the resul t of us ing x to process the d a t a in
y. Th i s view allows one to u n d e r s t a n d more precisely the
role t h a t the labels were m e a n t to play in some th ing like
Figure 3: they suggest the i n t ended model of the under ly-
ing p-net . Similarly, t he concept of a d a t e d p -ne t is one in
which the in tended model is expec ted to associa te da tes wi th
condit ions. One can get a long w i th leaving the model as an
informal concept up to a ce r t a in point , b u t a more precise
i n t e rp r e t a t i on requires more s t ruc tu re . In par t icu la r , t he
goal of this sect ion is to explore ' a b s t r a c t i n t e r p r e t a t i o n s ' of
dependencies be tween sof tware conf igura t ion i tems. As in
o the r cases, such as the wel l -known app l ica t ion of s t r ic tness
analysis [3], an a b s t r a c t i n t e r p r e t a t i o n is ba sed on the use
of a ' n o n - s t a n d a r d ' model which, to b e useful, is s impler in
ce r ta in regards t h a n the ' s t a n d a r d ' model bu t r e t a ins key re-
la t ionships to the s t a n d a r d model . Regard ing the example
above, the value of x may be a C file, b u t i ts a b s t r a c t inter-
p r e t a t i o n may be its modification date. Thi s is the a b s t r a c t
i n t e rp r e t a t i on exploi ted by make.

To provide the key definitions, some m a t h e m a t i c a l ma-
chinery is reqired. A n indexed fami ly of sets is a n indexing
collection I t oge the r w i th a func t ion assoc ia t ing wi th each
e lement i E I a set Si. Such an indexed family will be wri t -
t en S = (S~ I i E I) a n d we say t h a t S is ' i ndexed over I ' . A
section s = (s~ I i C I) of such an indexed family of sets S
is a func t ion associa t ing w i th each i 6 I a n e lement si E S~.
T h e product H(S~ I i C I) is the set of all sect ions of S. A
partial sect ion of a n indexed family of sets (S~ I i E I) is a
sect ion s = (s, I i C I ') of (S~ I i e I ') where I ' C I. In
this case I ' is called the domain of existence of s a n d we say
t h a t s, exists if i E I'. T h e partial product [I(S~] i E I)
is the set of all pa r t i a l sect ions of S. We will general ly be
concerned w i th par t ia l sections. In examples , i t will be con-
venient to wri te down some par t i a l sect ions: if i , j , k are
e lements of I and a,b, c lie in S i , S j , Sk respectively, t hen
s = (i, j , k ~-+ a, b, e) is the par t i a l sec t ion w i th {i, j , k} as i ts
doma in of exis tence and w i th si, sj , sk respect ive ly equal to
a 1 b~ c.

A model of a p -ne t is a family of sets indexed over a
subse t of the condi t ions of the ne t and a n family of re la t ions
indexed over a subse t of the events of the net .

D e f i n i t i o n : (Models .) A model .4 = (B' , E' , V, R) of a p-
ne t N = (B, E , S , T) is

• a family of sets V = (V,] x • B ') indexed by condi-
t ions B ' C B, and

• a family of re la t ions R = (R ,] e • E ') indexed by
events E ~ C E

such t h a t , for each e • E ~, we have "e ° G B ~ a n d

R~ c_ fl(G Ix • %) × fl(y. Ix • e')

.4 is a total model of N if B = B' and E = E' . []

W h e n dealing wi th mul t ip le models , c o m p o n e n t s can be dis-
t inguished by superscr ip ts : .4 ---- (B A, E ~, V x , RA) .

To clarify ideas, let us consider an example of a model.
Consider the p r o d u c t i o n ne t in F igure 10, which cor responds

172

G -0

Figure 10: P-ne t for Example of a Model

to the one in Figure 7. The ' s tandard ' model for the con-
ditions u, v, x, y, z associates sets as follows: V~ is the set
of yacc input files, V, is the set of C header files, V~, Vz
are both the set of C files, and Vy is the set of object fries.
The events e, f are in terpre ted as follows: Re is the relation
between yacc input files and output files, RS is the rela-
t ion between C input files and the object files produeted by
compiling them. 3

Given a model, the association of conditions and events to
elements of the model provides the concept of system state:

D e f i n i t i o n : (States and Consistent Events.) Suppose

"4 = (B' , E' , V, I~)

is a model of the p-net N = (B , E , S , T) . A state o f ' 4 is
a part ial section of (V~ [x E B') . Given a s ta te s of "A we
write `4, s ~ e jus t in case

(s~ l i E "e) Ro (~, I i ~ e').

An event e is said to be consistent in s ta te s if "4, s ~ e.
A left-closed subset L of B U E is consistent with respect
to s if, for each non-minimal condit ion x in L, the event
tha t produced x is consistent. A marking on N is said to be
consistent if its left-closure relative to CN is consistent. [3

To give some help on the nota t ion here, we can think of
.4 as a being a mult i -sorted model of first-order logic that
interprets relat ion symbols R~. corresponding to events e E
E I. Variables corresponding to conditions are interpreted in
"4 by the s ta te s. For example, for the net in Figure 2, `4, s
e is shor thand for something like ,4, s ~ Re(x, y, z). Note,
however, tha t the s ta te s can be part ial on the variables,
and the variables have different types (sorts); the relation
may still hold even if s is undefined on one of the variables
x, u, y, z. Unlike first order models, the relations in the p-
net model do not provide any order for the variables in the
way they appear in a relat ion expression like R¢(x, u, y, z).

An impor tan t proper ty of the relation "A, s ~ e is that
it is dependent only on the values on °e °. It is helpful to
introduce some notat ion. Given a part ial function f : X
Y and a subset U of the domain of f , we will denote by
f I U the restr ict ion Of f to U. It usually does not ma t t e r
whether f [U is to be viewed as a part ial function with U

aA technical quibble here is t h a t each of the sets Vi in this example
is really the set of files. In par t i cu la r , any sort of file could be input
to yacc by a p r o g r a m m e r hav ing a bad day, so the view tha t there
is a special set of yacc inputs is slightly misleading. Th e case is less
mis leading for p roduced files, which mus t be in the specific class of
files t ha t could be p roduced by p r o g r a m s like the C compiler.

as its domain or whether the domain of f I U is X and f is
undefined outside of U, but for the purposes of this paper it
is taken to be the latter. The proof of the following can be
obtained by simply unrolling the definition:

L e m m a 3 L e t ' 4 be a p-net model N and let e be an event
i n N . For any pair of states s, s ', i f "4, s ' ~ e and (s I ' e ') =
(s ' [' e ') , then ,4, s ~ e. 0

Our theory of system builds will involve two kinds of
mathemat ica l entities. First, there are the relations or in-
variants which embody the correctness proper ty of the build
and its optimizations. Second, there are the servers which
drive the computat ion. We begin with the definition of the
kinds of invariants required. The goal is to describe a rela-
tion between a pair of models "4 and 13 for a given net N,
wherein 13 can be viewed as an abstraction of `4. The moti-
vating example is the make date abstract ion: the model .A is
the ' s tandard ' model in which conditions are interpreted as
things like C source files and object files, while the model 13
instead interprets these conditions as dates. The relations
on "4 are things like ' input source file x compiles to output
object file y', while the relations on 13 are things like ' the
date of x is earlier than the date of y'. More precisely, what
we need is a relation between states s of .4 and states t of
13 such that the relation holds when t is to be viewed as a
correct abstract ion of s. Here is the precise formulation:

Definit ion: Suppose "A and 13 are models of the p-net N =
(B, E, S, T). An abstraction 62 : ,4 -+ 13 is a relat ion between
"A-states and 13-states tha t satisfies the following rules for
each "4-state s, 13-state t, and subset U C B:

[Produetion] 62(s, t) 13, t D e
.A,s ~ e

62(s, t)
[Deletion] 62(s I U, t l U)

The first of these two rules is soundness with respect to pro-
duction and the second is soundness with respect to dele-
tion. D

To unders tand the names and origins of the two rules, we
must appreciate the invariants expected of a system for
which an abstract ion will be used. First of all, the aim of
an abstract ion is to signal when a product ion does not need
to be performed. To be solmd, it must be the case that if
/3 says that a product ion step is not needed, then the cor-
responding "4 values have the desired relationship. Hence
soundness ~with respect to product ion ' is the basic correct-
ness criterion. To unders tand the second rule, consider the
invariants tha t make is expected to satisfy. Source files may
be modified (or possibly even deleted) while produced files
may be deleted but not modified. Modifying a produced file
would generally be an unusual thing to do and might very
well result in an incorrect build. Refering to the description
file in Figure 1, suppose, for example, tha t af ter modifying
main. c, one ' touched ' the file main. o, thus giving it a more
recent date than main. c. A build using the da te optimiza-
tion would then fail to upda te the produced object file to
consistency with the source file on which it depends: an in-
correct build would result. On the other hand, deleting the
object file would not cause a problem, because the deleted
file would be properly rebuilt from the up- to-da te source file.
It is common to delete produced files, for example, to save

173

space. Source files may also be deleted, since i t will some-
t imes be the case t h a t an event does not require one or more
of i ts inpu t s to be defined: pe r haps i t is reasonable jus t to
t h i n k of dele t ion as an ex t r eme form of modification! Thus
soundness 'w i th respec t to dele t ion ' is a n a t u r a l r equ i rement
to impose on abs t rac t ions .

To carry out a sys tem build it is essential to have a col-
lect ion of servers t h a t can p roduce the desired ou t pu t s f rom
the avai lable inputs . For ins tance , the descr ip t ion file in
F igure 1 requires a C compiler to process C source files and
an assembler to process assembly code. W h e n one is deal ing
w i th abs t r ac t ions , a n o t h e r server is needed to calculate the
desired abs t r ac t ions . In t he case of the make da te opt imiza-
t ion, th is t a sk consis ts only of no t ing the date . However,
some of the o the r examples discussed in the previous sec-
t ion require a more soph is t i ca ted collection of opera t ions .
For example, s m a r t r ecompi la t ion [15] requires a ' h i s to ry '
a t t r i b u t e which is used to cache in fo rma t ion requi red for as-
sessing the effect of a change. In each of the ways a value
in a s t a t e may change, a server is requi red to reca lcula te
an a b s t r a c t i o n t h a t takes the change into account . Changes
come in th ree forms: a source i t em is modif ied by the envi-
r o n m e n t , a n i t em is p roduced in the course of a build, or an
i t em is deleted. In the las t case the cor responding abs t rac -
t ion values are de le ted (made lmdefined) and correc tness is
ensured by t he n i l e for soundness w i th respect to deletion,
so no special server is required. T h e fo rmer pai r of cases
apply to a set U of source i tems, or to a set e* of p roduced
i tems. We need a n a m e for th is pa i r of cases:

D e f i n i t i o n : Let N = (B, E, S, T) be a p-net . A generation
of condi t ions is a subse t U C_ B such t h a t

1. each e lement of U is a source, or

2. t he re is a n event e such t h a t U ---- e*. 0

We may now define the key server concepts . Firs t , some
no ta t ion . It will be useful for us to consider the res t r i c t ion
of f to the complement of the set U. Th i s will be deno ted
f c g .

D e f i n i t i o n : Suppose "4 a n d 13 are models of the p -ne t N =-
(B, E, S, T) and • : "4 --+ 13 is an abs t rac t ion .

A build server for .4 is a func t ion ~ which takes as i ts
a r g u m e n t s a n event e a n d "4-s ta te s a n d r e t u r n s as i ts value
an "4-s ta te s ' such t h a t s { e* = s ' { e" and "4, s ' ~ e.

A n abstraction server for if2 is a func t ion ¢ which takes
as i ts a r g u m e n t s a genera t ion of condit ions, an ,4-s ta te , and
a 13-state; i t r e t u r n s as i ts value a 13-state. A bs t r ac t i ons
mus t sat isfy the following rule for any pai r of "4-s ta tes s, s ~,
genera t ion U _ B, and 13-state t:

s { U = s ' { U
$ U is cons is tent in s ~

¢(s, t)
[Abs t rac t ion] ~(s ' , ¢(U, s', t))

0

W i t h these defini t ions i t is possible to descr ibe the rules for
c o m p u t a t i o n in F igure 11. These rules can be viewed as
the genera l iza t ion of the ' da t e op t imiza t ion ' rules descr ibed
earlier to a class of s imilar op t imiza t ions d e t e r m i n e d by the
choice of the a b s t r a c t i o n • : `4 --+ 13. Init iation occurs when
a bui ld mus t be car r ied ou t because the a b s t r a c t i o n 13 does

In i t ia t ion

Te rmina t i on

Omission

M / e 13, t ~ e

M , s , t - - - + M U { e } , s , t

e l M s' -= o~(e, s)

M , s , t e> M U e ' , s ' , ¢ (e ' , s ' , t)

M / e I3, t ~ e

M , s , t - - ~ M U { e } W e ' , s , t

Figure 11: C o m p u t a t i o n Rela t ive to Servers a a n d ¢

no t ind ica te i t is unnecessary. W h e n terminat ion occurs,
the bui ld resul t and the a b s t r a c t i o n are u p d a t e d by a and
¢ respect ively in the new s ta te . Omission occurs w h e n the
a b s t r a c t i o n 13 indica tes t h a t a rebui ld is unnecessary .

T h e pr inciple soundness resul t for the rules in F igure 11
is the following:

T h e o r e m 4 Let (p : .4 -+ 13 be an abstraction between mod-
els of a p-net N = (B , E , S , T) . S u p p o s e s is a state o f , 4
and t is a state o]13 such that O(s , t) . Let M be a consistent
marking of `4, s. I f M, s, t ---+* M ' , s ~, t I with respect to a
build server a for "4 and an abstraction server ¢]or d2 , then

1. M I is a consistent marking o f ' 4 , s I and

~. ~(s', t'). O

T h e t heo rem is proved by induc t ing on the l eng th of the
evaluat ion from M, s, t to M ~, s ~, t '.

5 A p p l i c a t i o n s of A b s t r a c t i o n s

A n appl ica t ion of the concept of an a b s t r a c t i o n requires the
the d e m o n s t r a t i o n of a model , a n a b s t r a c t i o n relat ion, and
an a b s t r a c t i o n server. Suppose we are given a model .A for
a p -ne t N = (B, E, S, T). To define an a b s t r a c t i o n for "4 we
need:

A b s t r a c t i o n M o d e l We mus t define a model 13 for N
which is to serve as the space of abs t r ac t ions . Th i s
entai ls select ing the condi t ions B B t h a t are to be ab-
s t rac ted , and the events E ~ for which the abs t r ac t i ons
are to be tes ted. For each e lement x E B ~, a space
V f of a b s t r a c t values is required, a n d for each e C E t~,
a re la t ion Rff be tween 13-states of t he pre- and post -
condi t ions of e is required. It is fair game to use V. A
to define V ff, a l t h o u g h it will be unusua l to use R ~
to define R ~. T h e re la t ionsh ip be tween R ~. and R ~ is
mos t likely to be expressed in the a b s t r a c t i o n relat ion.

A b s t r a c t i o n R e l a t i o n We mus t define the re la t ion • be-
tween ,4-s ta tes a n d 13-states. Th i s r e l a t ion needs to sat-
isfy the two rules for a b s t r a c t i o n re la t ions , bu t it may
also involve o the r p roper t i e s t h a t are to be a s sumed as
invar ian t s p reserved by the a b s t r a c t i o n server.

A b s t r a c t i o n S e r v e r It is necessary to define a server func-
t ion ¢ for the a b s t r a c t i o n ~. If t he a b s t r a c t i o n (I) is
chosen unwisely, i t may be difficult or imposs ib le to
find a feasibly c o m p u t a b l e server for it.

174

Having selected these t h r ee th ings , i t still r emains a quest ion
of the app l i ca t ion i tself w h e t h e r the abs t r ac t i on will be use-
ful. T h e axioms for a b s t r a c t i o n re la t ions and servers ensure
only t h a t the a b s t r a c t i o n op t imiza t ion is sound.

D a t e A b s t r a c t i o n

Let "4 be a t o t a l model for a p -ne t N = (B, E , S, T).

M o d e l T h e model B takes B B = B and E B = E. For each
x • B, we define V~ = w. For each event e • E, define
(t] °e) R~ B (t I e °) to hold iff t is defined on *e ° and

max{ tx I x • *e} < min{ty I Y • e*} (1)

R e l a t i o n T h e a b s t r a c t i o n re la t ion is defined by s t ipu la t ing
t h a t ¢ (s , t) holds iff, for every event e such t h a t t is
defined on *e ° a n d Inequal i ty 1 holds, t he "4-s ta te s is
also defined on °e ° a n d .4, s ~ e.

S e r v e r Suppose U is a genera t ion of condi t ions and s ~ is
an `4-s ta te and t is a B-s ta te . T he s t a t e t' = ¢(U, s ~, t)
has the same values as t outs ide of U. For each x • U,
if s$ is defined, t h e n

t : = 1 + max{t.~ I • • *{~) u t{~}}. (2)

T h a t is, t he da te on x is ' l a t e r ' t h a n a n y t h i n g re la ted
to i t by _EB. If s~ is undef ined, t h e n t~ is also t aken to
be undef ined.

Our p roof b u r d e n s are to show t h a t q) is an abs t r ac t i on
re la t ion a n d t h a t ¢ is a n a b s t r a c t i o n server for ~. In effect,
th is means proving t h a t t he rules [Product ion] , [Deletion],
and [Abst rac t ion] are satisfied by B, ¢ , and ¢. Let us do
this fully for th is example. We s t a r t w i th soundness wi th
respect to p roduc t ion :

• (s , t) B , t ~ e

"4, s ~ e

This rule has essential ly been defined to hold for this exam-
p l e J I f B , t ~ e t h e n t is defined on °cO and Equa t ion 1
holds. By the def ini t ion of ¢ (s , t) these condi t ions imply
.4, s ~ e. To see t h a t it is sound wi th respect to deletion,
suppose U C B; we m u s t show t h a t the following rule is
satisfied:

• (s, t)
• (s I u, t I U)

Suppose the hypo thes i s of the male holds, let s ' = s] U and
t ' = t t U, and suppose e • E. I f t ' i s defined on *e ° then
it mus t be the case t h a t *e* C U so t is also defined on °e °,
where it has the same values as t ' . If s ' is undef ined on any
of the e lements of °e °, t h e n so is s, hence also t (because
~ (s , t)) , and consequent ly t ' too, con t ra ry to assumpt ion .
Moreover, t he values of s ~ mus t be the same as those of
s on °e °. If max{ t~ I x • *e} < m i n { t v I Y • e ' } t hen

4To some readers this may seem like a cheat. To appreciate the
idea better, think of proving a property by induction. Sometimes it
suffices to carry out the induction with nothing more than the desired
property, but sometimes it is necessary to prove more than the desired
property in order to carry out all of the inductive steps. Specifying
the abstraction invariant requires a similar balance where the relation
may need to satisfy more than its basic requirement in order for all
of the parts to fit. In this case, it suffices to assert only that the
production rule is satisfied.

Inequal i ty 1 holds too, so `4, s ' ~ e follows f rom fig(s, t) and
the fact t h a t s ~ has the same values as s on *e °.

To prove t h a t ¢ is an a b s t r a c t i o n server for ~ , we mus t
show t h a t the following rule is satisfied:

~5(s, t) s { U = s ' ~ U $ U is cons i s ten t in s '

¢(s,, t,)

where t I = ¢ (U , s ' , t) and U is a genera t ion . Let e be an
event and suppose t h a t t ~ is defined on °e ° and

m a x { t ; I x • °e} < min{t$ l Y • e°} • (3)

We mus t show t h a t s' is defined on " e ' and `4, s' ~ e. If
"e*MU = 0, t hen the values in ques t ion are the same as those
for s, t, so the desired conclusion follows f rom the fact t h a t
O(s, t) holds. Suppose therefore t h a t "e*MU 7 £ O. Because U
is a genera t ion it c anno t con ta in e lements of b o t h "e and e °.
Suppose first t h a t U Cl "e # 0. T h e n the re is a con t rad ic t ion
wi th Inequal i ty 3 because the values of t ~ to the r ight of x
mus t be the same as those of t bu t the defini t ion of ¢ says
t h a t t~ is larger t h a n any of these. Suppose second t h a t
U C l e ° # 0. T h e n there is no p rob lem because S U was
as sumed to be cons is tent in s ~ and e • $ U.

Equa t ion 2 is, of course, different f rom the da tes t h a t
would be assigned to modif ied files by consul t ing the sys tem
clock, so i t is no t exact ly the same as the make a b s t r a c t i o n
server. This underscores the fact t h a t a given a b s t r a c t i o n
may have many servers t h a t could imp lemen t it. I t is im-
p o r t a n t for any choice of server to prove t h a t i t does indeed
satisfy the expec ted invar iant . For example, the server above
doesn ' t leave one to wonder a b o u t the cor rec tness of bui lds
made af te r a r eboo t has caused or cor rec ted a n error in the
t ime on the sys tem clock.

A C u s t o m i z e d A b s t r a c t i o n

Let us consider the op t imiza t ion p roposed for the p-ne t in
Figure 7. In this example, i t seems po ten t ia l ly wor thwhi le
to r e t a in the header y. t a b . h for compar i son to subsequen t
versions wi th la te r da tes to avoid recompi l ing the lexer if
no changes have occurred. To describe the abs t rac t ions we
refer to the names for p -ne t e lements appea r ing in Figure 10.
Let .4 be the standard model for th is p r o d u c t i o n ne t as we
descr ibed it earlier. T h e a b s t r a c t i o n is as follows:

M o d e l Only condi t ions x , y , z are of in teres t , so B ~ =
{ x , y , z } , and only the event e will be t e s t ed for the
opt imizat ion, so E s --= {e}. We take V~ = V # and
V~ = V~ A x w and V~ = w. T h e re la t ion B, t ~ e holds
iff t is defined on °e ° and ty is a pa i r (u , n) such t h a t
u = t ~ and n >t~.

A b s t r a c t i o n The re la t ion ai,(s, t) holds iff two condi t ions
hold: (1) if t is defined on x, t hen so is s and s , = t~; (2)
if t is defined on y, z and ty = (u, n) where t~ > n, t hen
s is defined on y, z and (x, z ~ u, sz) R ~ (y ~-+ sv).

S e r v e r Suppose U is a genera t ion . T h e value of t ~ =
¢(U, s t, t) is the same as t h a t 6f t outs ide of U. If x • U,

' If • U , t h e n ~ = (t , , t z + l) assuming then t~ = s~. y ty
t is defined on x, z, o therwise ty is undef ined. If z • U
and ty = (u ,n) , t hen t~ = n + 1, bu t , if ty does not
exist, t hen t~ = O.

175

We mus t show t h a t ~ is an abs t rac t ion . To prove sound-
ness wi th respec t to p roduc t ion , suppose t h a t ~ (s , t) and
B, t ~ e. Th i s means t h a t t is defined on °e* and ty is a pair
(u, n) where u = t~ a n d n > t~. This means t h a t t satisfies
the hypo theses of the second condi t ion for the difference ab-
s t rac t ion , so s is defined on °e ° and (x, z ~-~ u, s~) R ~ (y ~-+
sy). B u t t also satisfies the first condi t ion for the abs t r ac t i on
gg, so sx = t~ = u, which means A, s ~ e as desired. Sound-
ness wi th respec t to dele t ion is s t ra ight - forward . The proof
t h a t ¢ is an a b s t r a c t i o n server is omi t ted ; it is a hybr id of
the p roof above for the da te ab s t r ac t i on and the a r g u m e n t
below for difference abs t rac t ions .

Is this really an ' a b s t r a c t i o n ' ? Since old concrete values
were kept for compar i son w i th new values, the ' a b s t r a c t '
model is no t more a b s t r a c t for such values t h a n the s t a n d a r d
one. Th i s te rminologica l foible can be considered in light of
the r ema in ing two examples of abs t r ac t i ons considered here.

D i f f e r e n c e A b s t r a c t i o n

T h e difference a b s t r a c t i o n caches the sources t h a t were
used to bui ld a ta rge t . Th i s i n fo rma t ion ca~ be used to
avoid subsequen t rebui lds w h e n sources have not changed.
To descr ibe the a b s t r a c t i o n precisely, we need some more
m a t h e m a t i c a l no t a t i on . Given a p r o d u c t X × Y, let fst :
X × Y --+ X be p ro jec t ion onto the first coordinate , and
snd : X × Y --+ Y be p ro jec t ion onto the second. W h e n
working w i th expressions t h a t may no t exist, like si where
s is a pa r t i a l sect ion, it is useful to wri te equat ions using
Kleene equality: given expressions P and Q, we wri te P _~ Q
to m e a n t h a t (1) P exists if, and only if, Q does and (2) if
P, Q exist t h e n P = Q.

M o d e l Define B z = B a n d E u = E. Define

v : = { v f "e') ~ a source
• V ~ x l~I(V~] y • x p roduced by e.

t.~ if x is a source
c(t ,x) "~ fs t (tx) if x is produced .

And, for each B-s ta t e t and e • E, define

(t l "e) R~ (t l e ')

if, and only if, t he re is a condi t ion y • e ° such t h a t

(c(t ,x) I x • ° e ') = snd(ty) .

A b s t r a c t i o n For any A - s t a t e s and B s t a t e t, the re la t ion
q)(s, t) holds iff

• for every source x, t~ ~ s~, and

• for every p roduced x, t~ is defined iff s~ is defined,
and, if they are defined, t hen t , = (s.,, (s ' [' e '))
for some M-s ta t e s ' such t h a t A, s ~ ~ e.

S e r v e r For any genera t ion U _C B and M-s ta te s ' and B-
s t a t e t define ¢(U, s ' , t)z _~ s,~ if x is a source condi t ion
in U, bu t if x is a p roduced condi t ion in U, define

!
¢(U, s', t)x -- (s ; , (% I Y • %°)) where e is the event
t h a t p roduced x. If x is no t in U, define ¢3(U, s', t)., ~_
t x .

To show t h a t if2 is sound wi th respec t to p roduc t ion , sup-
pose • (s, t) and B, t ~ e for some s, t, e. We mus t show t h a t
A, s ~ e also holds. T h e fact t h a t B, t ~ e means t h a t the re
is a pos t -condi t ion y • e ° such t h a t snd (ty) is the par t i a l
sect ion u = (c(t ,x) I x • °e°). Now, the a s s u m p t i o n t h a t
• (s, t) holds tells us two things. Firs t , e(t, x) ~_ s.~ for each
x; this means t h a t u is (s I ' e °) - Second, since ty is defined,
i t has the form (s~ , (s ' I ' e °)) where A , s ' ~ e. But , by
L e m m a 3, these facts imply t h a t A, s ~ e, as desired. T h a t
q) is also sound wi th respec t to dele t ion is s t ra igh t - forward ,
no t ing t h a t the domains of exis tence of s , t are the same
if q)(s, t) holds, so the domains of exis tence of (s I U) and
(t I U) will also he the same for any set of condi t ions U.

To see t h a t ¢ is a server for q~, let U be a genera t ion of
condit ions, let s he a A- s t a t e , and let t be a B-s ta te . Suppose
t h a t ~ (s , t) and s ' is a A - s t a t e such t h a t s ~ U = s ' ~ U and
$ U is cons is tent in s ' . We mus t prove t h a t t' = ¢(U, s ' , t)

' t~ satisfies O(s ' , t ') . Firs t , if x is no t in U, t h e n s~, are the
same as s.,, t~; the desired p roper t i e s hold because O(s, t)

• I ! does. Suppose x • U. I f x is a source, t h e n t~ ~ s~ by
definit ion and the condi t ion on ~ for sources is therefore
satisfied. If, on the o the r hand , x is p roduced by e, t hen
t" ~_ (s ~ , (s ' [' e °)) . B u t e • S V a n d S U is cons i s ten t in s ' ,
thus, in par t icu lar , A, s ' ~ e.

F i n g e r p r i n t i n g A b s t r a c t i o n

T h e difference a b s t r a c t i o n is inefficient in some ways: the
a b s t r a c t i o n keeps the ent i r i ty of the old values used to pro-
duce the new ones, and the a b s t r a c t i o n cond i t ion mus t check
w h e t h e r this value is e q u a l to new values, possibly m a n y
times. To save space and t ime, it migh t be wor thwhi le to
save a compressed version of the old value a n d compare th is
to compressed versions of the new values. We could choose
to do the compress ion in such a way t h a t the compress ions
of two values are the same if, and only if, t he values t hem-
selves are the same. T h a t is, we could choose an inject ive
compress ion map. However, we are no t general ly in t e res t ed
in uncompressing t he values in this case, only in keeping
enough of a record of the values t h a t an equal i ty tes t can
be carr ied out efficiently. This leads us n a t u r a l l y to the idea
t h a t if the ' compress ion ' is almost injective, t h e n this will be
good enough, because the p robab i l i ty of the ' compress ions '
of two different values be ing the same is accep tab ly low.
This is the idea b e h i n d f ingerpr int ing, as discussed earl ier in
the contex t of the S M L / N J Compi l a t ion M a n a g e r and ap-
plied in n u m e r o u s o the r contexts . To fit f ingerpr in t ing into
the theore t ica l f r amework of this p a p e r d e m a n d s t h a t we
reconcile the f ingerpr in t ing concept of be ing correc t almost
always wi th the correc tness cr i ter ia for abs t r ac t ions , which
s t ipula tes correc tness in all cases.

Perhaps the s imples t way to achieve th is r econc iha t ion
be tween correc tness and a lmos t -cor rec tness is to focus the
unce r t a in ty a b o u t correc tness in the re la t ion be tween the
actual model and an approximate model . Let A be the in-
t ended model for a p r o d u c t i o n ne t N = (B, E, S , T) and
supose o~ is a bui ld server for A. For each x • B, let us
assume we are given a space F.~ of ' f ingerpr in t s ' and a fin-
gerpr in t ing func t ion fx : V.~ --+ F~. We define a new model
~i as follows. T h e events and condi t ions of .~I are the same

.5 .4 A A as those of A, t h a t is, B = B and E = E . For each
x • B, we define V ~ = V ~ × F~, and for any event e and

A-state s, we define (s I "e) n ~ (s I ~') if, and only if, there

176

is an A-state s' such that

(s'l 'e) R# (s' I e')

s' snd(s~). That is, a relation and, for each x E "e*, f.~(~) _~
Re holds in A iff the values of the pre- and post-conditions
have fingerprints that could have been obtained from a re-
lated set of values in A. In particular, if f~ is an injection,

' fst(s~). If then f.~(s~) ~_ snd(s~) __. f.,(fst(s,)) so s~ =
fx is an injection for each x E B, then A and .A are iso-
morphic. Thus the fidelity of .A[to A is measured by how
closely the fingerprinting function approximates being an in-
jection. A server for ~ is also needed. For any e, s, x, define
~(e, s).~ = (a(e, s).~, A(a (e , s).~)).

We are now prepared to describe fingerprinting as an ab-
straction of the approximate model v~.

Mode l Define B ~ = B and E B = E. Define

V ~ : { F~ ' e ') if x is a source
• F~ x l~I(Fy [y E if x is produced•

t~ if x is a source
e(t , x) ~_ fst(t ,) if x is produced.

And, for each B-state t and e E E, define

(t l ' e) R ~ (t l e ")

if, and only if, there is some y E e* such that

(e(t, x) Ix e 'e') = snd(t~).

A b s t r a c t i o n For any A-state s and B state t, the relation
if(s, t) holds if[

• for every source x, t~ ~_ f.~(s.~), and

• for every produced x, t~ is defined iff s.~ is
defined, and, if they are defined, then t.~ =
(snd(s~), (fy(s'y) I Y E ' e ')) for some A-state s'
such that A, s ' ~ e.

Server For any generation U C B and A-state s' and B-
state t define ¢(g, J , t).~ ~_ snd(s~) if x is a source in
U. If x is a produced condition in U define

¢(U, s', t).~ -~ (snd(s ') , (snd(4) I Y E "e')).

If x is not in U, then ¢(U, s', t)., _~ t~

The proofs that 69 is an abstraction and ¢ is a server for
it are very similar to the ones given for the difference ab-
straction above (modulo the tedium of some projections and
fingerprintings).

6 C o n c l u s i o n s

The accomplishments of this paper are the introduction of
production nets and their models, the formulation of ab-
stractions and their associated correctness conditions, and
the application of these concepts in a collection of notewor-
thy cases. Questions still remain about the integration of
models, the way in which models should be described and
implemented, and whether a sufficient range of problems
that arise in real system configurations can be treated rea-
sonably using the abstract framework described here. A

more limited objective is applying the theory to more of the
cases within its current realm; challenges include a rigorous
treatment of abstractions like Tichy's smart recompilation
and the treatment of systems with multi-pass builds (or ap-
parent cycles) such as the type-setting program LaTeX. Let
me close by commenting very briefly on the three larger
questions.

From a mathematical perspective, the full version of this
paper provides a satisfactory account of how various mod-
els and abstractions can be combined. To give a hint about
the systems perspective of this mathematics, suppose we are
given a pair of IDE's and a project that needs to manipu-
late items produced by them. Each of the IDE's controls
the dependencies, abstractions, and build operations for a
portion of the collection of items included in the project.
Figure 12 illustrates the general idea. The IDE's supply the

O O
.o

od \ ° /
.0 / 0 - 0 \

©

[] FirstlDE [] GeneralOperation • SecondlDE

Figure 12: Integrating Models

servers that are used in the overall build, which is controlled
by computation over the underlying p-net according to the
rules in Figure 11. Abstractions may be supplied by the
IDE's (based on special 'knowledge' they have about the se-
mantics of the items in their domains) or by other means
(as, for instance, make supplies the date abstraction or CM
supplies the fingerprinting abstraction).

P-nets are, of course, a mathematical abstraction; a sys-
tem that uses them must represent them in a data structure
or allow the programmer (or a system) to describe them
in a language. A tool like makedepend performs this latter
function for C-programming items and make. Also rtmake [5]
provides explicit support for dependency-reporting. A more
sophisticated and abstract language than that of make de-
scription files is provided by the Vesta programming lan-
guage [7, 6] which is the description language for the Vesta
configuration management system [8]. Vesta makes some
decisions differently from the way p-nets are applied in this
paper, but the approaches may be complementary in some
ways. The full version of this paper describes implementa-
tions of some of the build computations using the language

177

Pic t [11, 10, 12], which is based on Milner 's zr-calculus and
provides useful high-level constructs for describing the con-
current computa t ions over p-nets. Comparison with other
configuration management languages and systems such as
the various forms of concurrent make would be helpful. In
any case, a suitable da ta s t ructure or language for p-net
models and abstract ions requires fur ther exploration.

As for whether a sufficient range of problems that arise
in real system configurations can be t reated reasonably us-
ing p-net abstract ions and models, there are several issues
tha t must be t rea ted seriously before any a t t emp t at vali-
dat ion seems worthwhile. Key issues include the t rea tment
of vers ions/var iants (a topic t rea ted in other models such as
Inscape [9] and feature logic [16]) and the incorporat ion of
changes in dependencies (that is, where a change in a source
i tem results in a change in the underlying p-net of depen-
dencies). D y n a m i c determina t ion of dependencies may also
be worthy of consideration. Another interest ing issue is the
possibility of restr ict ing one's view of a p-net of i tems by
moving a baseline to hide or expose i tems to change control.

Acknowledgements

I would like to express my appreciat ion to the following peo-
ple who influenced this work: Benli Pierce, Sandip Biswas,
Luca Cardelli, Tony Hoare, Michael Jackson, Trevor Jim,
Cliff Jones, Dave MacQueen, V. Mahesh, Andy Pitts, John
Reppy, Glyrm Winskel. The following agencies, company,
and inst i tute provided par t ia l suppor t for this project : A R O
(USA), E P S R C (UK), NIMS (UK), NSF (USA), Oki Elec-
tric Industry Co., Ltd. (Japan) , O N R (USA).

References
[1] Matthias Blume. CM: A Compilation Manager for

SML/NJ . User Manual.

[2] Andrei Broder. Some applications of Rabin's fingerprinting
method. In R. M. Capocelli et. al., editor, Sequences II:
Methods in Communication, Security, and Computer Sci-
ence. Sprinter-Verlag, 1991.

[3] G.L. Burn, C. Hankin, and S. Abramsky. Strictness analysis
for higher-order functions. Science of Computer Program-
ming, 7:249-278, 1986.

[4] Stuart I. Feldman. Make--a program for maintaining com-
puter programs. Software--Practice and Experience, 9:255-
265, 1979.

[5] Glenn Fowler. A case for make. Software--Practice and
Experience, 20(S1):S1/35-S1/46, 1990.

[6] Christine B. Hanna and Roy Levin. The Vesta language for
configuration management. Technical Report 107, Digital
Systems Research Center, 1993.

[7] Butler W. Lampson and Eric E. Schmidt. Practical use of
a polymorphic applicative language. In Proceedings of the
Tenth Annual A C M Symposium on Principles of Program-
ming Languages, 1983.

[8] Roy Levin and Paul R. McJones. The Vesta approach to
precise configuration of large software systems. Technical
Report 105, Digital Systems Research Center, 1993.

[9] Dewayne E. Perry. Version control in the Inscape environ-
ment. In Proceedings of the 9th International Conference on
Software Engineering, pages 142-149, Monterey, California,
March 1987.

[10] Benjamin C. Pierce. Programming in the pi-calculus: An
experiment in programming language design. Tutorial notes
on the Pict language. Available electronically, 1995.

[11] Benjamin C. Pierce and David N. Turner. Concurrent ob-
jects in a process calculus. In Takayasu Ito and Akinori
Yonezawa, editors, Theory and Practice of Parallel Program-
ming, number 907 in Lecture Notes in Computer Science,
pages 187-215. Springer-Verlag, 1995.

[12] Benjamin C. Pierce and David N. Turner. Pict: A program-"
ming language based on the pi-calculus. To appear, 1995.

[13] Robert W. Schwanke and Gail E. Kaiser. Smarter recompi-
lation. A CM Transactions on Programming Languages and
Systems, 10(4):627-632, 1988.

[14] Zhong Shao and Andrew W. Appel. Smartest recompila-
tion. In Susan L. Graham, editor, Conference Record of
the Twentieth Annual A C M S I G P L A N - S I G A C T Sympo-
sium on Principles of Programming Languages, pages 439-
450. ACM, 1993.

[15] Walter F. Tichy. Smart recompilation. A C M Transac-
tions on Programming Languages and Systems, 8(3):273-
291, 1986.

[16] Andreas Zeller. A unified version model for configuration
management. In Gail Kaiser, editor, Proceedings of the 3rd
A C M S I G S O F T Symposium on the Foundations of Software
Engineering, volume 20 (4) of A C M Software Engineering
Notes, pages 151-160. ACM Press, October 1995.

178

