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A b s t r a c t  

This paper  studies an abstract  model  of dependencies be- 
tween software configuration i tems based on a theory of con- 
current computa t ion  over a class of Petr i  nets. The  pr imary 
goal is to i l lustrate the descriptive power of the model  and 
lay theoret ical  groundwork for using it to design software 
configuration maintenance  tools or model  software configu- 
rations. As a s tar t  in this direction~ the paper  analyzes and 
addresses certain l imitat ions in make description files using 
a form of abstract interpretation. ,\ 

1 I n t r o d u c t i o n  

A variety of formalisms have been created to aid phases 
of the software engineering life cycle. For instance, logical 
languages such as Z can be used to describe functional spec- 
ifications, while s t ructures  like flow charts and Petr i  nets are 
useful in detailed design. A u t o m a t e d  formal verification has 
been shown feasible in certain cases where system behavior 
can be described using a finite s ta te  machine. However, less 
a t tent ion  has been directed at the application of abstract  
models to the maintenance aspects of software. The  aim 
of this work is to s tudy one aspect  of software maintenance 
from this perspective.  The  approach advocated  here is based 
on ideas and s t ructures  from the formal semantics of con- 
currency but  adapts  them to the part icular  goals arising in 
software configuration maintenance.  

Even a modest  software project  entails the creation of a 
collection of what  are sometimes called software configura- 
tion items. Such i tems may be held in files, one i tem per  
file, or they may be more abstract ly  described and stored. 
A characterist ic example  is the collection of source, object,  
executable binary, and archive files that  arise in a program- 
ming project .  Some of the files are directly modified by 
a p rogrammer  or the ' envi ronment '  in some general sense, 
while others are produced by the  use of tools, such as a com- 
piler or other  processing tool. Certain of these produced 
i tems are ones the project  ul t imately ships as the 'p roduc t '  
of the effort. It is essential therefore that  the implications 
of any changes in the source i tems be properly reflected in 
the i tems directly or indirectly produced from them. This 
can become an overwhelming task if the project  environment  
does not  provide au toma ted  support  for it. A recognition 
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of the ubiquity of this problem, and the insight that  a tool 
could address it in a wide range of cases, led Stuar t  Feld- 
man to develop the Unix tool, make [4]. In this l imited ap- 
plication domain, the special-purpose make description files 
were easier to write and maintain  than  general purpose pro- 
grams, so the tool quickly gained widespread use. An  ex- 
ample of a make description file for a small configuration of 
C-programming files appears in Figure 1. The  lines with 

table : a.out indata 

a.out 

a . o u t  : m a i n . o  da tana l .o  l o . o  / u s r / c g 2 0 8 / l i b / g e n . a  
cc main.o datanal.o io.o /usr/cg208/lib/gen.a 

main.o : main.c 

cc -c main.c 

datanal ,  o : da tanal ,  c 
c c  -c da tana l . c  

io.o : lo.s 

as -o io.o lo.s 

Figure 1: Sample Makefile 

the colons express the dependencies between the software 
configuration i tems of interest.  1 The  lines indented by tabs 
indicate how the target, the  file to the left of the colon, is 
to be produced from its pre-requisites, the  files to the right 
of the colon. The  make description file thus records the de- 
pendencies between software configuration i tems and the ac- 
tions required to establish consistency of the system based 
on these dependencies. 

In the t ime since make was introduced,  it has been ex- 
tended many times and has seen substant ial  compet i t ion 
from its chief rival approach, the Integrated Development 
Environment (IDE) (see [5] for an analysis of the chief chal- 
lenges to make). IDE's  are often capable of maintaining 
dependencies automat ical ly  through an ~understanding' of 
the semantics of the systems they integrate.  For example, 
Microsoft 's Visual C-t-+ IDE maintains its own make-like 
description file, which is not  directly modified by the pro- 
grammer.  The  advantage of such a system is tha t  the pro- 
grammer  is relieved of the tedius and error-prone manual  
maintenance of the description file. However, a disadvan- 
tage is that  an IDE may not integrate  all of the component  

li t  is convenient not to identify software configuration items as 
a general concept with operating system files. However, make es- 
sentially does make this identification, with various advantages and 
dis advant ages. 
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p r o d u c t i o n  tools a p ro jec t  requires:  the  ' openness '  of a tool 
like make enables  the  i n t e rope ra t i on  of a wide spec t rum of 
tools possibly combined  in original  and  unexpec ted  ways, 
bu t  this  may  no t  be  possible for an  IDE. It is therefore  res- 
onable  to look for a basic  theory  of dependencies  be tween  
sof tware  conf igura t ion  i tems.  This  may lead to good ap- 
proaches  to c o m m u n i c a t i o n  be tween  sof tware  env i ronmen t s  
combin ing  the  advan tages  of open sys tems like make wi th  
those  of IDE ' s  t h a t  address  make's  l imita t ions .  

This  p a p e r  examines  the  idea of us ing an  a d a p t a t i o n  of 
a model l ing t echn ique  f rom concur ren t  and  d i s t r ibu ted  sys- 
t ems  called a Petri net to model  dependencies  be tween  soft- 
ware conf igura t ion  i tems.  T h e  focused goal is to show how 
one can  model  and  ex t end  various approaches  to opt imiz ing 
builds of conf igurat ions .  A concur rency  formal ism has  been  
chosen because  the  typical  s t a t e  of a bui ld conf igura t ion  con- 
ta ins  a grea t  deal of po t en t i a l  course-gra ined paral lel ism, so 
it is n a t u r a l  to model  the  bui ld direct ly as a concur ren t  
compu ta t i on .  T h e  goal here  is no t  to provide a semant ics  of 
make, a l t h o u g h  make inspires  a n u m b e r  of the  problems  con- 
sidered, no r  is i t  feasible in this  shor t  p a p e r  to deal wi th  all 
of the  issues t h a t  chal lenge a sof tware  conf igura t ion main-  
t enance  tool (for example,  vers ion control  is no t  discussed).  
Ins tead,  the  a im is to t r e a t  r igorously the  correc tness  cr i ter ia  
for bui ld  op t imiza t ions  and  the  m odu l a r  descr ip t ion of these  
opt imiza t ions ,  as, for ins tance ,  a collection of i n t e rope ra t ing  
IDE ' s  migh t  r e p o r t  t h e m  in a su i tab le  d a t a  s t ruc tu re .  

T h e  s t r u c t u r e  of the  p a p e r  is as follows. Af te r  th is  in- 
t roduc t ion ,  the  second sect ion descr ibes  a s t r u c t u r e  called a 
production net (p-net) which is used to describe dependen-  
cies. T h e  t h i r d  sect ion uses this  formal ism to discuss a va- 
r iety of p r a g m a n t i c  bu i ld -op t imiza t ion  ideas t h a t  have  been  
considered over the  years  as the  resul t  of conf igura t ion main-  
t enance  experience.  T h e  fou r th  sect ion in t roduces  a concept  
of model  for p -ne t s  t h a t  enables  the  bu i ld -op t imiza t ions  to 
be  su i tab ly  model led  a n d  the i r  cor rec tness  cr i ter ia  formal-  
ized and  proved.  T h e  final sect ion reflects on w h a t  has  been  
accompl ished  a n d  w h a t  more  would be  required to carry  
the  fo rmal i sms  f u r t h e r  toward  direct  appl icat ion.  Since this  
is an  abs t r ac t ,  t he  r eade r  is referred to the  full p a p e r  for 
proofs,  f u r t h e r  examples ,  a n d  a fuller discussion of various 
c o m p u t a t i o n a l  a n d  i m p l e m e n t a t i o n - r e l a t e d  issues. 

2 P r o d u c t i o n  N e t s  

In this  sect ion t he  g raph  s t r u c t u r e s  used to represent  re- 
l a t ionsh ips  be tween  sof tware  conf igura t ion  i t ems  are intro-  
duced.  T h e y  are a k ind  of Pe t r i  net ,  so the  te rminology and  
n o t a t i o n  draws  on t h a t  used for Pe t r i  nets .  We s t a r t  w i th  
the  following concept :  

D e f i n i t i o n :  (Nets . )  A net is a four- tuple  

N = ( B , E , S , T )  

where  

* B is a f inite set  of conditions, 

* E is a f inite set  of events, 

* S C_ B x E is the  pre-condition relat ion,  and  

o T C_ E x B is the  post-condition re la t ion.  

Figure  2: Example  of a Net .  

.© 

[3 

T h e  le t te rs  x, y, z and  the  like are used to deno te  b o t h  con- 
di t ions in B and  events  in E,  whereas  l e t t e r s  e, f ,  g are typ- 
ically used for events  in E.  For a ne t  N = (B,  E,  S, T),  i t  is 
convenient  to wri te  x S e for (x , e )  E S and  to wr i te  e T x 
for (e, x) E T. W h e n  working w i th  more  t h a n  one net ,  sub- 
scr ipts  a n d / o r  supersc r ip t s  can  be  used to d i s t inguish  p a r t s  
of the  respect ive  nets ;  for example  N'  = (B ' ,  E ' ,  S',T~). 
However, w h e n  it  is clear which  ne t  is m e a n t  for the  various 
sets  and  relat ions,  the  following n o t a t i o n  is more  succinct .  
Given a ne t  N = (B,  E,  S, T),  a n d  a n  event  e E E,  we define 
°e = {x ] x S e }  and  e ° = {x [ e T x } .  T h e s e  are respec- 
tively called the  pre-conditions a n d  post-conditions of event  
e. F igure  2 shows an  example  of a ne t  us ing  the  Pe t r i  ne t  
figure convent ions:  circles are used for condi t ions ,  rec tangles  
are used for events,  re la t ions  in S are a r rows po in t ing  into a 
rectangle ,  and  re la t ions  in T are a r rows po in t ing  in to  a circle. 
In the  Figure  2 example,  "e = {x, u} while e '  = {y, z}. It  is 
also convenient  to have  a n o t a t i o n  for the  un ion  of the  pre- 
and  pos t -condi t ions  of an  event ,  so we define °e ° = °e U e °. 

Intui t ively a sof tware  conf igura t ion  is model led  as a ne t  
by t r ea t ing  sof tware  items--like m a i n .  o a n d  m a i n . c  in the  
descr ip t ion  file in F igure  1 - - a s  ne t  conditions. On the  o the r  
hand ,  operations--like t he  app l ica t ion  of the  compiler  cc  
wi th  the  swi tch  - c  to the  i npu t  m a i n . c - - a r e  t r e a t e d  as 
events. A fairly readab le  in formal  n o t a t i o n  t h a t  works well 
w i th  ASCII  charac te r s  is to  wr i te  the  n a m e s  of i t ems  (con- 
di t ions)  wi th in  paren theses ,  which  are remin i scen t  of circles, 
and  the  n a m e s  of opera t ions  (events)  wi th in  brackets ,  which 
are reminiscent  of rectangles .  T h e  make descr ip t ion  file of 
Figure  1 is depic ted  by the  ne t  in F igure  3. A formal  t rea t -  
men t  of the  re la t ionship  be tween  p r o d u c t i o n  ne t s  a n d  com- 
p u t a t i o n s  like those  engendered  by make descr ip t ion  files are 
provided by p-ne t  models ,  which  are the  topic  of Sect ion 4 
below. 

To provide a t r ac t ab le  theory  for our  purposes  here,  ne t s  
mus t  sat isfy cer ta in  axioms.  We need  some te rminology  to 
express the  desired proper t ies .  Let  N be  a net .  T h e  directed 
graph defined by N is the  d i rec ted  g r a p h  which  has  B U E as 
i ts nodes  and  S O T as i ts edges. A cycle in a d i rec ted  g raph  
is a sequence of nodes  x0, • • •, x,~ such t h a t  t he re  is an  edge 
f rom x,~ to x0 and,  for each i < n, the re  is an  edge f rom xi 
to  xi+a. A di rec ted  g raph  is said to be  acyclic if i t  has  no 
cycles. A ne t  is said to be  acyclic if t he  d i rec ted  g raph  it 
defines is acyclic. 

D e f i n i t i o n :  (P-Nets . )  A ne t  N = (B,  E,  S, T)  is a produc- 
tion net (p-net) if i t  has  the  following proper t i es :  

1. It is acyclic. 

2. (Unique  Producer . )  If e T x and  e '  T x, t h e n  e = e' .  

3. For each e E E,  b o t h  "e and  e ° are  non-empty .  
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( m a i n . c )  - [CC -C]  - ( m a i n . o )  

(datanal.c) -[cc -c] [(datanal.o) % ~ [ c c ] ~ ( a . o u t ) ~ [ r u n ]  

( l ° ' s )  " [ a s - °  l ° ' ° ]  ( l ° ' ° ) ~  i ( n d a t a )  / 

( / u s r / c g 2 0 8 / l i b / g e n . a )  

(table) 

Figure 3: Net Corresponding to Makefile in Figure 1 

4. For each x E B, there is some e such that  x 6 ' e  or 
x E e ' .  [3 

The nets in Figures 2, and 3 are bo th  product ion nets. Fig- 
ure 4 gives several examples of the ways in which a net  can 
fail to be a p-net.  Net (a) contains a cycle; net  (b) fails to 
satisfy the unique-producer  condition 2; nets (c), (d), and 
(e) have an event  with pre-condit ions or post-condit ions that  
are unacceptable  for condit ion 3; and net  (f) has an isolated 
condition, in violation of condit ion 4. 

The  unique-producer  condit ion 2 is equivalent to saying 
tha t  the set T °p = {(x, e) I e T x} is a part ial  function. The  
set of elements on which this part ial  f lmction is defined are 
those conditions x such tha t  there is a (unique) event e such 
that  e T x; in this case we say that  x is a produced i tem 
or condit ion and tha t  e is the event that produced x. The  
set of elements on which T °p is not defined are of par t icular  
impor tance  because, intuitively, they are the ones that  are 
modified by the environment  (viz. programmers) .  Given a 
condit ion x, if there is no event e such that  e T x, then 
x is said to be a source i tem (or condition). In Figure 2, 
x and u are source items, while y, z, and v are produced 
items. I tems y and z are produced by event e, while i tem v 
is produced by event f .  

Since the graph determined by a product ion net  N = 
(B, E,  S, T) is acyclic, the transi t ive and reflexive closure 
of its edge relation defines a poset _CN relation on B U E.  
The  restrictions of E N to conditions and events are respec- 
tively denoted C_B and _C~. For example, in Figure 2, we 
have x U_N e ~ Y  y [~N g whereas conditions y ,z  are incom- 
parable (with respect  to U_N and E_B) and events e, f are 
incomparable  (with respect  to __N and C E). It is variously 
convenient to think of a software configuration in terms of 
these three orderings on its product ion net. The  make de- 
scription file essentially uses the colon notat ion to define 
the relation _UB on i tems (files). However, the evaluation 
of a make file is based on events (actions) s t ructured by the 
dependencies in C_E. 

For any poset,  (P, C), a subset L C_ P is left-closed (rela- 
tive to _E) if x 6 L and y _C x implies y E L. The  notion of 
s tate for computa t ion  on a product ion net  N will be mod- 
elled by left-closed subsets of C N. Given a subset X C_ P, 
the left-closure of X is the set 

S X =  {ye  P[ 3xe X. yCx}.  

Computa t iona l  s ta te  will be represented using certain spe- 
cial subsets of p-nets. 

D e f i n i t i o n :  (Markings.) Let N = (B, E,  S , T )  be a pro- 
duct ion net. A subset M C_ B U E is condition-closed if, for 
every event e 6 E,  e" v I M  ~ @ implies e" C_ M.  A marking 

M for N is a subset of B U E tha t  is bo th  left-closed (with 
respect to CN) and condition-closed. 

An event is viewed as having one of three s tates  relat ive to 
a marking. 

D e f i n i t i o n :  (Event States.)  Let M be a marking on a p- 
net  N -  ( B , E , S , T )  and let e b e  an event. W e s a y  that  e 
is enabled by M and write M / e  if ' e  C_ M and e ~ M.  We 
say that  e is initiated in M and write e / M  if e E M and 
e ' C l M  = @. We say that  e is terminated in M and write 
e ' N M  i f e °  C_ M.  [3 

Note that  e is te rminated  in M if, and only if, M N e" 
0. The  intuit ion is that  M / e  is a s ta te  in which the pre- 
conditions of e are satisfied, but  where the event e has not  
yet begun. The  s ta te  e / M  is one in which e has begun, 
but  has not  yet finished. The  s ta te  e "N M is one in which 
e has finished and now its post-condit ions are within M.  
A pictorial representat ion of the different s tates appears in 
Figure 5. Under  suitable assumptions, the movement  from 
one s ta te  to another  with respect to e retains the proper ty  
of being a marking. 

L e m m a  1 Suppose M is a marking of a p-net N = 
(t3, E, S, T). The following three implications hold: 

1. If M/e ,  then M '  = m U {e} is a marking with e /M' .  

2. Ire~M, then M I = M Oe ° is a marking with e "N M'.  

3. I/ M/e ,  then M '  = M U { e } U e "  is a marking with 
e "N M ' .  [7 

3 Computat ion  Over Product ion  Nets  

The  aim of this section is to provide mot ivat ion  for the way 
in which computa t ion  over p-nets  will be represented. The  
idea is similar to providing a set of operat ional  rules for 
computa t ion  over a Petri  net. However, the not ion of mark- 
ing used for product ion nets is somewhat  different from that  
used for Petri  nets. This difference is owing to the partic- 
ular application for which p-nets  are intended,  which uses 
markings to model  system build states.  Consider the net  in 
Figure 2 for example: note the way u is shared by e and 
f and the way v is shared by g and h. As a build com- 
putes a result, the pre-condit ion remains intact  through the 
remainder  of the build; sharing in the sense of these exam- 
ples does not  introduce conflict in the computat ion.  So, the 
usual Petr i  net  semantics of placing markings on conditions 
and having them consumed by events to which they are pre- 
conditions is not  a convenient way of thinking of system 
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0-1-1 
(a) 

D D n 0 
\ /  

0 0 n 

D 0 

(b) (c) (d) (e) (0 

Figure 4: Nets that are not Production Nets 

D--...O 
enabled initiated terminated 

Figure 5: Three Relationships between Marking M and Event e 

state for builds. Instead, one wants to view a build as hav- 
ing achieved consistency between sources and targets in a 
subset of the p-net that is left-closed relative to EB. 

The pair of operational rafles in Figure 6 provide a basic 
representation of the observable events of the concurrent 
computation. An event e engenders two forms of observable 

Initiation 

Termination 

M/e 
M -!-~ M u {e} 

e / M  

M - - %  M U e "  

Figure 6: Basic Operational Rules 

behavior: ~ is the initiation of e and ~ is its termination. 
For example, the net in Figure 2 has the following possible 
evaluation sequences starting from the marking consisting 
of its minimal three conditions to the marking consisting of 
the whole net: 

Concurrency of events is represented by the overlapping of 
their interval of execution, that is, the interval between 
and ~ for any event e. A sequential computation over this 
net--such as most raako evaluators provide--would have the 
form of either the first or last of these possibilities, in which 
no event begins before all the events that began before it 
have terminated. 

Let us write M -----~* M '  for the transitive, reflexive clo- 
sure of the labeled relation. That  is, M ---+* M '  pro- 
vided M is M' or there is a marking M "  and a label l 

such that M ----+* M "  z> M' .  The number of steps 
in the relation M -----~* M '  is the minimum number of 
markings M0, . . . ,M,~  such that M0 = M and M ,  = M '  
and there are labels 11,... ,l,~-1 such that  the relations 

M0 - ~  .- .  - ~  M,~ all hold. Although we will quickly re- 
place the simple semantics provided by the rules in Figure 6 
by something more realistic (and interesting), it is worth 
noting briefly the following basic property: 

P r o p o s i t i o n  2 If M is a marking of a net N and M -----+* 
M',  then M'  is also a marking. [7 

The proposition is proved by an induction on the number 
of steps in the relation --+*. Each case follows immediately 
from Lemma 1. 

A build over a p-net N = (B, E, S, T) may now be viewed 
as follows. First, a selection X C B of targets is made. Then 
an initial marking M is chosen to consist of the minimal el- 
ements in $ X. From this initial marking, the events in $ X 
are executed to produce a marking M '  which contains X. 
The events may evaluate as concurrently as their depen- 
dencies allow until all events in S X  are terminated in M' .  
However, this is potentially a very inefficient way to ensure 
that targets properly reflect changes. For example, it may 
be that no condition among the minimal elements of $ X has 
been modified since the last time the targets in X were built, 
so no computation is required: the targets remain accept- 
able. The program make optimizes by examining the dates 
assigned to files by the operating system. Let us a t tempt  to 
formalize this idea. 

The dates associated with files by the operating system 
can be viewed as a function on conditions. An augmented 
form of production net includes the needed additional struc- 
ture. 
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Def in i t i on :  (DP-Nets.) A dated production net (dp-net) 
is a 5-tuple N = (B, E, S, T, 5) where (B, E, S, T) is a p-net 
and 5 is a function from B into w called the date. D 

Given a dp-net N -= (B, E, S, T, 5), it is convenient to define 
a pair of functions that provide greatest and least dates on 
pre- and post-conditions of events. The pre-date function 
'5 : E --4 w is defined so that '$(e) is the g rea tes t  value in 
the set {5(b) [ b 6 'e}. The post-date function 5" : E --+ w 
is defined so that '5(e) is the least  value in the set {5(5) [ 
b 6 "e}. With this, the concept of an 'up-to-date' target is 
given as follows: 

De f in i t i on :  (Up-to-Date Markings.) A marking on the dp- 
net N is a marking on the underlying p-net (B, E, S, T). 
Such a marking M is said to be up-to-date if every event e 
whose post-conditions are contained in M satisfies *5(e) < 
5'(e). D 

A semi-formal explanation of the make 'date optimization' 
can now be given in terms of dated production nets. First 
of all, if M/e and the post-conditions of e are not up-to-date 
then the post-conditions of e must be built (initiation): 

M, 5----~-+ MU{e},5 

If, on the other hand, e/M holds, then the date function 51 
is altered to a new date function 52 (termination): 

M, 51 ~ M Ue*,52 

where 52 assigns dates to the postconditions of e that are 
later than the dates 51 (b) for any b, and otherwise assigns 
the same dates as 51. Finally, if M/e but e is up-to-date, 
then no build is needed: 

M, 5 __fi+ M U {e} Ue*,~ 

This rule, which captures the optimization of recognizing 
that an up-to-date event does not need to be run, is what 
we will call an omission rule. That  this is correct is based 
on assumptions that are essential to the correctness of make- 
controlled builds: if a target exists, its pre-requisites ex- 
ist, and the target is up-to-date with respect to its targets, 
then the target was created from the pre-requisites, and it 
does not need to be rebuilt from its pre-requisites if its pre- 
requisites are themselves based on up-to-date productions. 
We will retm'n to the issue of build invariants and correct- 
ness later. 

There are several ways in which the make optimization 
based on dates provides less than one would want in certain 
cases. Over the years, make extensions have attempted to 
address some of these problems, others are addressed only 
in IDE's. Let us consider three of these, each of which is 
based on common experience with system maintenance. The 
first concerns parsing tools, the second concerns SML pro- 
gramming language compilations, and the third concerns C 
header files. 

Figure 7 illustrates a production net which arises in in- 
stances where one is using the parser-generator yacc. The 
yaee tool takes an input file in a special format and produces 
from a C source file, y . t a b . e  and a C header file y . t a b . h .  
The header file describes the information about keywords 
declared in foo.  y, which is all of the information generated 
from this file that is needed to create the lexer, l ax .  o. The 
input file foo. y also describes a possibly intricate collection 

(lex.c)~ 

/(y.tab.h) ~[cc] 

(foo.y)--~[yacc]~_ ~[cc] 
~(y.tab.c) 

,(lex. o) 

(y. tab. o) 

Figure 7: Identity of Old and New Inputs 

of actions used to determine the parsing in y . t a b ,  o. This 
collection of actions often requires debugging or optimiza- 
tion, so the actions in foo .y  may be modified much more 
frequently than the keyword declarations there. However, if 
only the actions in foo .y  have been modified, then the gen- 
erated header file y. t ab .  h will not change. Nevertheless, its 
date will change with the new generation, thus making the 
lexer object file out-of-date and thereby inducing a recompi- 
lation of l ax .  c when the lexer object file is again required. 
The effort is wasted though, because the file y . t a b . h  did 
not really change, only its date did. 

Another example, this one involving the SML program- 
ming language, appears Figure 8. Unlike typical C pro- 

f oo. S ig. sml foo. sml bar. sig. sml bar. sml 

0 0 0 0 

Figure 8: Hash Keys to Avoid Cascading Recompilation 

grams, SML programs generally have deeply nested depen- 
dencies, often dozens of files long. In the figure, the SML 
signature F00 in the file foo.  s i g .  sml, together with some 
basic environment, is compiled into a target environment. 
The implementing structure Foo of this signature is then 
compiled and incorporated into this environment. After 
this, a signature BAR, which is stored in a file ba r .  s i g .  sml 
and uses names from F00 and Foo, is compiled and incor- 
porated. Finally, its implementing structure Bar, which is 
in a file ba r . sml  and uses names from F00, Foo, and BAR, 
is compiled and incorporated. Now, if even a comment is 
changed in f o o . s i g . s m l ,  then all of the steps used to gen- 
erate this final target will need to be rerun if one uses only 
the standard make date optimization. When dealing with 
such deeply nested dependencies, it becomes worthwhile to 
retain information sufficient to recognize when it is prob- 
able that the cascading sequence of recompilations can be 
cut off. In the Compilation Manager (CM) IDE of Matthias 
Blume [1], which is part of SML/NJ system, targets of com- 
pilations are assigned 'fingerprints'. A fingerprint is a bit 
string computed from a file in such a way that files with 
the same fingerprint are very unlikely to be different. 2 This 
provides a pragmatic aid when development is under way; 
even the low probability of error due to the imperfection 
of the fingerprint assignment can be eliminated by deleting 
the target files to induce complete regeneration before final 
testing. Time saved avoiding recompilations quickly repays 
the overhead of calculating the fingerprints in typical SML 
programming projects. 

A somewhat more subtle issue of dependence is illustrated 
in Figure 9. Header files allow separate compilation of C 

2The method for calculating fingerprints used in CM is based on 
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(my.c) //.~[cc - o ] - - - ~  (my.o))~, 

Figure  9: Changes  in Headers  

programs.  Given  a collection of C files C1, .  • •, C~ and  a col- 
lect ion of co r re spond ing  h e a d e r  fries H 1 , . . . ,  H~, one seeks 
to organize  th ings  so t h a t  any  given file Ci can  be  compiled 
wi th  a su i t ab le  subse t  of the  h e a d e r  files. In par t icu lar ,  no 
o the r  C files are  required.  Th i s  has  the  advan t age  t h a t  one 
may  compile Ci even if t he  C i m p l e m e n t a t i o n s  of heade r  
files needed  for the  compi la t ion  are no t  available, pe rhaps  
because  they  are u n d e r  deve lopment .  In Figure  9 compila-  
t ion  of ray. c a n d  y o u r .  c can  be  done using f o o .  h. If f o o .  c is 
modif ied t h e n  t he  files my. o a n d  y o u r .  o do no t  become  out-  
of-date  as a result ,  a l t h o u g h  the  l inking of the  th ree  objec t  
files does b e c o m e  out -of -da te .  Th i s  provides  a valuable  form 
of s u p p o r t  for s epa ra t e  compila t ion,  allowing significant in- 
dependence  b e t w e e n  p r o g r a m m e r s  as well as an  oppo r tun i t y  
for the  use of paral le l ism in builds.  Suppose,  however,  t h a t  
the  p r o g r a m m e r  in charge  of y o u r .  c asks t h a t  an  addi t iona l  
func t ion  f be  inc luded  in f o o .  c and  i ts  p ro to - type  placed in 
f o o . h .  This  resul t s  in a change  in f o o . h ,  caus ing the  compi- 
la t ion  of ray. c to b e c o m e  out -of-date .  However,  the  p rog ram 
ray. c may  no t  make  any use of f or depend  on it in any way. 
A n  in tu i t ive  a n d  inexpens ive  app roach  to recognizing th is  
s t a t e  of affairs au toma t i ca l ly  was i n t roduced  by Tichy [15] 
u n d e r  the  sobr ique t  ' s m a r t '  recompi la t ion .  T ichy ' s  bench-  
marks  suggest  t h a t  the  analysis  is well wor th  the  t ime  spen t  
on it, as one migh t  in tu i t ive ly  predict .  His i m p l e m e n t a t i o n  
was ac tua l ly  for Pasca l  wi th  modules  r a t h e r  t h a n  C pro- 
grams,  so the  example  of Figure  9 should  be  t aken  wi th  an  
app rop r i a t e  gra in  of salt,  b u t  the  basic  idea is fairly lan- 
guage i ndependen t .  T h e  idea has  inspired several  subse- 
quen t  s tudies ,  inc luding one on ' smar ter '  recompi la t ion  [13] 
for C p rog rams  a n d  ' smar tes t '  recompi la t ion  for SML [14]. 

4 P - N e t  M o d e l s  a n d  A b s t r a c t i o n s  

To really r ep resen t  the  kinds  of issues descr ibed in the  pre- 
vious section,  it is essential  to provide  a model for a pro- 
duc t ion  ne t  t h a t  descr ibes  the  k inds  of ent i t ies  involved in 
a bui ld  over t he  ne t  and  the  re la t ions  they are expec ted  to 
satisfy. By way of i l lus t ra t ion ,  consider  the  following very 
basic  p-net :  

.© 

This  ne t  has  m a n y  models .  For example,  it might  be  the  
case t h a t  x is i n t e r p r e t e d  as a C source file, y as a heade r  
file, and  z as an  ob jec t  file. T h e  event  e is i n t e rp re t ed  as 
the  re la t ion  be tween  the  i npu t  files and  o u t p u t  files which 

R.abin ' s  C R C  p o l y n o m i a l s ;  see  [2] for  a n  expos i t i on .  

holds when  the  i n t e rp r e t a t i on  of the  o u t p u t  could be  the  
ou tcome of a correct  C-compi la t ion  of the  i n t e rp re t a t i ons  of 
i ts  inputs .  In a n o t h e r  model,  x is i n t e rp r e t ed  as an  objec t  
file, y as a file conta in ing  da ta ,  and  z as a n o t h e r  d a t a  file. 
The  desired re la t ion  is t h a t  z ( t h a t  is, t he  i n t e r p r e t a t i o n  of 
z) should  be  the  resul t  of us ing x to process  the  d a t a  in 
y. Th i s  view allows one to u n d e r s t a n d  more  precisely the  
role t h a t  the  labels were m e a n t  to play in some th ing  like 
Figure  3: they suggest  the  i n t ended  model  of the  under ly-  
ing p-net .  Similarly, t he  concept  of a d a t e d  p -ne t  is one in 
which  the  in tended  model  is expec ted  to associa te  da tes  wi th  
condit ions.  One  can  get a long w i th  leaving the  model  as an  
informal  concept  up  to a ce r t a in  point ,  b u t  a more  precise 
i n t e rp r e t a t i on  requires  more  s t ruc tu re .  In par t icu la r ,  t he  
goal of this  sect ion is to explore ' a b s t r a c t  i n t e r p r e t a t i o n s '  of 
dependencies  be tween  sof tware  conf igura t ion  i tems.  As in 
o the r  cases, such as the  wel l -known app l ica t ion  of s t r ic tness  
analysis  [3], an  a b s t r a c t  i n t e r p r e t a t i o n  is ba sed  on the  use 
of a ' n o n - s t a n d a r d '  model  which,  to b e  useful, is s impler  in 
ce r ta in  regards  t h a n  the  ' s t a n d a r d '  model  bu t  r e t a ins  key re- 
la t ionships  to the  s t a n d a r d  model .  Regard ing  the  example  
above,  the  value of x may  be  a C file, b u t  i ts  a b s t r a c t  inter-  
p r e t a t i o n  may  be  its modification date. Thi s  is the  a b s t r a c t  
i n t e rp r e t a t i on  exploi ted by make. 

To provide the  key definitions,  some m a t h e m a t i c a l  ma-  
chinery is reqired.  A n  indexed fami ly  of sets is a n  indexing 
collection I t oge the r  w i th  a func t ion  assoc ia t ing  wi th  each 
e lement  i E I a set  Si. Such an  indexed  family will be  wri t -  
t en  S = (S~ I i E I )  a n d  we say t h a t  S is ' i ndexed  over I ' .  A 
section s = (s~ I i C I) of such an  indexed  family of sets  S 
is a func t ion  associa t ing  w i th  each i 6 I a n  e lement  si E S~. 
T h e  product H(S~ I i C I )  is the  set  of all sect ions  of S. A 
partial sect ion of a n  indexed  family of sets  (S~ I i E I )  is a 
sect ion s = (s, I i C I ' )  of (S~ I i e I ' )  where  I '  C I.  In 
this  case I '  is called the  domain of existence of s a n d  we say 
t h a t  s, exists if i E I'. T h e  partial product [I(S~ ] i E I) 
is the  set of all pa r t i a l  sect ions of S. We will general ly be  
concerned  w i th  par t ia l  sections.  In examples ,  i t  will be  con- 
venient  to wri te  down some par t i a l  sect ions:  if i , j , k  are 
e lements  of I and  a,b, c lie in S i , S j ,  Sk respectively,  t hen  
s = (i, j ,  k ~-+ a, b, e) is the  par t i a l  sec t ion  w i th  {i, j ,  k} as i ts 
doma in  of exis tence and  w i th  si, sj ,  sk respect ive ly  equal  to 
a 1 b~ c.  

A model  of a p -ne t  is a family of sets  indexed  over a 
subse t  of the  condi t ions  of the  ne t  and  a n  family of re la t ions  
indexed over a subse t  of the  events  of the  net .  

D e f i n i t i o n :  (Models .)  A model .4 = (B' ,  E' ,  V, R) of a p- 
ne t  N = (B,  E , S , T )  is 

• a family of sets  V = (V, ] x • B ' )  indexed  by condi- 
t ions B '  C B,  and  

• a family of re la t ions  R = (R ,  ] e • E ' )  indexed  by 
events  E ~ C E 

such t h a t ,  for each e • E ~, we have  "e ° G B ~ a n d  

R~ c_ fl(G Ix • %) × fl(y. Ix • e') 

.4 is a total model  of N if B = B'  and  E = E' .  [] 

W h e n  dealing wi th  mul t ip le  models ,  c o m p o n e n t s  can  be  dis- 
t inguished  by superscr ip ts :  .4 ---- ( B A, E ~, V x ,  RA) .  

To clarify ideas, let  us consider  an  example  of a model.  
Consider  the  p r o d u c t i o n  ne t  in F igure  10, which  cor responds  
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Figure 10: P-ne t  for Example  of a Model 

to the one in Figure 7. The  ' s tandard '  model  for the con- 
ditions u, v, x, y, z associates sets as follows: V~ is the set 
of yacc  input  files, V, is the set of C header  files, V~, Vz 
are both  the set of C files, and Vy is the set of object  fries. 
The  events e, f are in terpre ted  as follows: Re is the relation 
between yacc  input  files and output  files, RS is the rela- 
t ion between C input  files and the object  files produeted  by 
compiling them. 3 

Given a model,  the association of conditions and events to 
elements of the model  provides the concept of system state: 

D e f i n i t i o n :  (States and Consistent  Events.)  Suppose 

"4 = ( B' ,  E' ,  V, I~) 

is a model  of the p-net  N = ( B , E , S , T ) .  A state o f ' 4  is 
a part ial  section of (V~ [ x E B') .  Given a s ta te  s of "A we 
write  `4, s ~ e jus t  in case 

(s~ l i E "e) Ro (~, I i ~ e').  

An event e is said to be consistent in s ta te  s if "4, s ~ e. 
A left-closed subset L of B U E is consistent with respect 
to s if, for each non-minimal  condit ion x in L, the event 
tha t  produced x is consistent.  A marking on N is said to be 
consistent if its left-closure relative to CN is consistent. [3 

To give some help on the nota t ion here, we can think of 
.4 as a being a mult i -sorted model  of first-order logic that  
interprets  relat ion symbols R~. corresponding to events e E 
E I. Variables corresponding to conditions are interpreted in 
"4 by the s ta te  s. For example,  for the net  in Figure 2, `4, s 
e is shor thand for something like ,4, s ~ Re(x,  y, z). Note, 
however, tha t  the s ta te  s can be part ial  on the variables, 
and the variables have different types (sorts); the relation 
may still hold even if s is undefined on one of the variables 
x, u, y, z. Unlike first order models, the relations in the p- 
net  model  do not  provide any order for the variables in the 
way they appear  in a relat ion expression like R¢(x, u, y, z). 

An impor tan t  proper ty  of the relation "A, s ~ e is that  
it is dependent  only on the values on °e °. It is helpful to 
introduce some notat ion.  Given a part ial  function f : X 
Y and a subset U of the domain of f ,  we will denote by 
f I U the restr ict ion Of f to U. It usually does not  ma t t e r  
whether  f [ U is to be viewed as a part ial  function with U 

aA technical  quibble here  is t h a t  each of the sets Vi in this example  
is really the set of files. In par t i cu la r ,  any sort of file could be input  
to yacc by a p r o g r a m m e r  hav ing  a bad  day, so the view tha t  there  
is a special  set of yacc inputs  is slightly misleading.  Th e  case is less 
mis leading for p roduced  files, which mus t  be in the specific class of 
files t ha t  could be p roduced  by p r o g r a m s  like the C compiler.  

as its domain or whether  the domain of f I U is X and f is 
undefined outside of U, but  for the purposes of this paper  it 
is taken to be the latter.  The  proof  of the following can be 
obtained by simply unrolling the definition: 

L e m m a  3 L e t ' 4  be a p-net  model N and let e be an event 
i n N .  For any pair of states s, s ', i f  "4, s ' ~ e and ( s I ' e ' ) =  
( s ' [  ' e ' ) ,  then ,4, s ~ e. 0 

Our theory of system builds will involve two kinds of 
mathemat ica l  entities. First,  there are the relations or in- 
variants which embody the correctness proper ty  of the build 
and its optimizations.  Second, there are the servers which 
drive the computat ion.  We begin with the definition of the 
kinds of invariants required. The  goal is to describe a rela- 
tion between a pair of models "4 and 13 for a given net  N,  
wherein 13 can be viewed as an abstraction of `4. The  moti-  
vating example is the make date  abstract ion:  the model  .A is 
the ' s tandard '  model  in which conditions are interpreted as 
things like C source files and object  files, while the model  13 
instead interprets  these conditions as dates. The  relations 
on "4 are things like ' input  source file x compiles to output  
object  file y',  while the relations on 13 are things like ' the 
date  of x is earlier than the date  of y'.  More precisely, what  
we need is a relation between states s of .4 and states t of 
13 such that  the relation holds when t is to be viewed as a 
correct abstract ion of s. Here is the precise formulation: 

Definit ion: Suppose "A and 13 are models of the p-net  N = 
(B, E,  S, T). An abstraction 62 : ,4 -+ 13 is a relat ion between 
"A-states and 13-states tha t  satisfies the following rules for 
each "4-state s, 13-state t, and subset U C B: 

[Produetion] 62(s, t) 13, t D e 
.A,s ~ e  

62(s, t) 
[Deletion] 62(s I U, t l U) 

The first of these two rules is soundness with respect to pro- 
duction and the second is soundness with respect to dele- 
tion. D 

To unders tand the names and origins of the two rules, we 
must appreciate  the invariants expected of a system for 
which an abstract ion will be used. First  of all, the  aim of 
an abstract ion is to signal when a product ion does not need 
to be performed. To be solmd, it must  be the case that  if 
/3 says that  a product ion step is not  needed, then the cor- 
responding "4 values have the desired relationship. Hence 
soundness ~with respect to product ion '  is the basic correct- 
ness criterion. To unders tand the second rule, consider the 
invariants tha t  make is expected to satisfy. Source files may 
be modified (or possibly even deleted) while produced files 
may be deleted but not modified. Modifying a produced file 
would generally be an unusual thing to do and might very 
well result in an incorrect build. Refering to the description 
file in Figure 1, suppose, for example, tha t  af ter  modifying 
main.  c, one ' touched '  the file main.  o, thus giving it a more 
recent date  than main.  c. A build using the da te  optimiza- 
tion would then fail to upda te  the produced object  file to 
consistency with the source file on which it depends: an in- 
correct build would result. On the other  hand, deleting the 
object  file would not  cause a problem, because the deleted 
file would be properly rebuilt  from the up- to-da te  source file. 
It is common to delete produced files, for example,  to save 
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space. Source files may  also be  deleted,  since i t  will some- 
t imes  be  the  case t h a t  an  event  does not  require  one or more  
of i ts  inpu t s  to  be  defined: pe r haps  i t  is reasonable  jus t  to 
t h i n k  of dele t ion as an  ex t r eme  form of modification! Thus  
soundness  'w i th  respec t  to dele t ion '  is a n a t u r a l  r equ i rement  
to impose  on abs t rac t ions .  

To carry  out  a sys tem build it is essential  to have a col- 
lect ion of servers t h a t  can  p roduce  the  desired ou t pu t s  f rom 
the  avai lable inputs .  For ins tance ,  the  descr ip t ion file in 
F igure  1 requires  a C compiler  to process  C source files and  
an  assembler  to process  assembly  code. W h e n  one is deal ing 
w i th  abs t r ac t ions ,  a n o t h e r  server  is needed  to calculate  the  
desired abs t r ac t ions .  In t he  case of the  make da te  opt imiza-  
t ion, th is  t a sk  consis ts  only of no t ing  the  date .  However, 
some of the  o the r  examples  discussed in the  previous  sec- 
t ion  require  a more  soph is t i ca ted  collection of opera t ions .  
For example,  s m a r t  r ecompi la t ion  [15] requires  a ' h i s to ry '  
a t t r i b u t e  which  is used to cache in fo rma t ion  requi red  for as- 
sessing the  effect of a change.  In each of the  ways a value 
in a s t a t e  may  change,  a server  is requi red  to reca lcula te  
an  a b s t r a c t i o n  t h a t  takes the  change  into account .  Changes  
come in th ree  forms:  a source i t em is modif ied by the  envi- 
r o n m e n t ,  a n  i t em  is p roduced  in the  course of a build,  or an  
i t em is deleted.  In the  las t  case the  cor responding  abs t rac -  
t ion  values are  de le ted  (made  lmdefined)  and  correc tness  is 
ensured  by t he  n i l e  for soundness  w i th  respect  to deletion,  
so no  special  server  is required.  T h e  fo rmer  pai r  of cases 
apply to a set U of source  i tems,  or to  a set e* of p roduced  
i tems.  We need  a n a m e  for th is  pa i r  of cases: 

D e f i n i t i o n :  Let  N = (B,  E,  S, T)  be  a p-net .  A generation 
of condi t ions  is a subse t  U C_ B such t h a t  

1. each e lement  of U is a source, or  

2. t he re  is a n  event  e such t h a t  U ---- e*. 0 

We may  now define the  key server  concepts .  Firs t ,  some 
no ta t ion .  It  will be  useful  for us  to consider  the  res t r i c t ion  
of f to  the  complement  of the  set U. Th i s  will be  deno ted  
f c g .  

D e f i n i t i o n :  Suppose  "4 a n d  13 are models  of the  p -ne t  N =- 
(B,  E,  S, T )  and • : "4 --+ 13 is an  abs t rac t ion .  

A build server for  .4 is a func t ion  ~ which takes as i ts 
a r g u m e n t s  a n  event  e a n d  "4-s ta te  s a n d  r e t u r n s  as i ts value 
an  "4-s ta te  s '  such  t h a t  s { e* = s '  { e" and  "4, s '  ~ e. 

A n  abstraction server for  if2 is a func t ion  ¢ which takes 
as i ts a r g u m e n t s  a genera t ion  of condit ions,  an  ,4-s ta te ,  and  
a 13-state; i t  r e t u r n s  as i ts  value a 13-state. A bs t r ac t i ons  
mus t  sat isfy the  following rule for any pai r  of "4-s ta tes  s, s ~, 
genera t ion  U _ B,  and  13-state t: 

s { U = s ' { U  
$ U is cons is tent  in s ~ 

¢(s, t) 
[Abs t rac t ion]  ~(s ' ,  ¢(U, s', t)) 

0 

W i t h  these  defini t ions i t  is possible to descr ibe the  rules for 
c o m p u t a t i o n  in F igure  11. These  rules can  be  viewed as 
the  genera l iza t ion  of the  ' da t e  op t imiza t ion '  rules descr ibed 
earlier to  a class of s imilar  op t imiza t ions  d e t e r m i n e d  by the  
choice of the  a b s t r a c t i o n  • : `4 --+ 13. Init iation occurs when  
a bui ld  mus t  be  car r ied  ou t  because  the  a b s t r a c t i o n  13 does 

In i t ia t ion  

Te rmina t i on  

Omission 

M / e  13, t ~ e 

M , s , t - - - +  M U { e } , s , t  

e l M  s' -= o~(e, s) 

M , s , t  e> M U e ' , s ' , ¢ ( e ' , s ' , t )  

M / e  I3, t ~ e 

M , s , t - - ~  M U  { e } W e ' , s , t  

Figure  11: C o m p u t a t i o n  Rela t ive  to Servers  a a n d  ¢ 

no t  ind ica te  i t  is unnecessary.  W h e n  terminat ion occurs,  
the  bui ld  resul t  and  the  a b s t r a c t i o n  are  u p d a t e d  by a and  
¢ respect ively  in the  new s ta te .  Omission occurs  w h e n  the  
a b s t r a c t i o n  13 indica tes  t h a t  a rebui ld  is unnecessary .  

T h e  pr inciple  soundness  resul t  for the  rules in F igure  11 
is the  following: 

T h e o r e m  4 Let (p : .4 -+ 13 be an abstraction between mod- 
els of a p-net  N = ( B , E , S , T ) .  S u p p o s e s  is a state o f , 4  
and t is a state o]13 such that O(s , t ) .  Let  M be a consistent  
marking of `4, s. I f  M,  s, t ---+* M ' ,  s ~, t I with respect to a 
build server a for  "4 and an abstraction server ¢ ]or d2 , then 

1. M I is a consistent marking o f ' 4 ,  s I and 

~. ~(s', t'). O 

T h e  t heo rem is proved by induc t ing  on the  l eng th  of the  
evaluat ion  from M,  s, t to M ~, s ~, t '. 

5 A p p l i c a t i o n s  of  A b s t r a c t i o n s  

A n  appl ica t ion  of the  concept  of an  a b s t r a c t i o n  requires  the  
the  d e m o n s t r a t i o n  of a model ,  a n  a b s t r a c t i o n  relat ion,  and  
an  a b s t r a c t i o n  server.  Suppose  we are given a model  .A for 
a p -ne t  N = (B,  E,  S, T).  To define an  a b s t r a c t i o n  for "4 we 
need: 

A b s t r a c t i o n  M o d e l  We mus t  define a model  13 for N 
which is to serve as the  space of abs t r ac t ions .  Th i s  
entai ls  select ing the  condi t ions  B B t h a t  are  to  be  ab- 
s t rac ted ,  and  the  events  E ~ for which  the  abs t r ac t i ons  
are to be  tes ted.  For each e lement  x E B ~, a space 
V f  of a b s t r a c t  values is required,  a n d  for each e C E t~, 
a re la t ion  Rff be tween  13-states of t he  pre-  and  post -  
condi t ions  of e is required.  It  is fair  game  to use V. A 
to define V ff, a l t h o u g h  it  will be  unusua l  to use R ~  
to define R ~. T h e  re la t ionsh ip  be tween  R ~. and  R ~ is 
mos t  likely to be  expressed in the  a b s t r a c t i o n  relat ion.  

A b s t r a c t i o n  R e l a t i o n  We mus t  define the  re la t ion  • be- 
tween ,4-s ta tes  a n d  13-states. Th i s  r e l a t ion  needs  to sat-  
isfy the  two rules for a b s t r a c t i o n  re la t ions ,  bu t  it may  
also involve o the r  p roper t i e s  t h a t  are to be  a s sumed  as 
invar ian t s  p reserved  by the  a b s t r a c t i o n  server.  

A b s t r a c t i o n  S e r v e r  It  is necessary  to define a server  func- 
t ion  ¢ for the  a b s t r a c t i o n  ~.  If t he  a b s t r a c t i o n  (I) is 
chosen unwisely, i t  may be  difficult or imposs ib le  to 
find a feasibly c o m p u t a b l e  server  for it. 
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Having selected these  t h r ee  th ings ,  i t  still r emains  a quest ion 
of the  app l i ca t ion  i tself  w h e t h e r  the  abs t r ac t i on  will be  use- 
ful. T h e  axioms for a b s t r a c t i o n  re la t ions  and  servers ensure  
only t h a t  the  a b s t r a c t i o n  op t imiza t ion  is sound. 

D a t e  A b s t r a c t i o n  

Let "4 be  a t o t a l  model  for a p -ne t  N = (B,  E ,  S, T).  

M o d e l  T h e  model  B takes B B = B and  E B = E.  For each 
x • B,  we define V~ = w. For each event  e • E,  define 
(t  ] °e) R~ B (t  I e °) to  hold iff t is defined on *e ° and  

max{ tx  I x  • *e} < min{ty  I Y • e*} (1) 

R e l a t i o n  T h e  a b s t r a c t i o n  re la t ion  is defined by s t ipu la t ing  
t h a t  ¢ ( s ,  t) holds iff, for every event  e such t h a t  t is 
defined on *e ° a n d  Inequal i ty  1 holds, t he  "4-s ta te  s is 
also defined on °e ° a n d  .4, s ~ e. 

S e r v e r  Suppose  U is a genera t ion  of condi t ions  and  s ~ is 
an  `4-s ta te  and  t is a B-s ta te .  T he  s t a t e  t' = ¢(U, s ~, t) 
has  the  same  values as t outs ide  of U. For each x • U, 
if s$ is defined, t h e n  

t :  = 1 + max{t.~ I • • *{~) u t{~}}.  (2) 

T h a t  is, t he  da te  on x is ' l a t e r '  t h a n  a n y t h i n g  re la ted  
to i t  by _EB. If s~ is undef ined,  t h e n  t~ is also t aken  to 
be  undef ined.  

Our  p roof  b u r d e n s  are  to show t h a t  q) is an  abs t r ac t i on  
re la t ion  a n d  t h a t  ¢ is a n  a b s t r a c t i o n  server  for ~.  In effect, 
th is  means  proving  t h a t  t he  rules [Product ion] ,  [Deletion], 
and  [Abst rac t ion]  are satisfied by B, ¢ ,  and  ¢. Let  us do 
this  fully for th is  example.  We s t a r t  w i th  soundness  wi th  
respect  to p roduc t ion :  

• ( s , t )  B , t ~ e  

"4, s ~ e  

This  rule has  essential ly been  defined to hold  for this  exam- 
p l e J  I f B ,  t ~ e t h e n  t is defined on °cO and  Equa t ion  1 
holds.  By the  def ini t ion of ¢ ( s ,  t) these  condi t ions  imply 
.4, s ~ e. To see t h a t  it is sound  wi th  respect  to deletion,  
suppose  U C B;  we m u s t  show t h a t  the  following rule is 
satisfied: 

• (s, t) 
• (s I u, t I U) 

Suppose  the  hypo thes i s  of the  male holds, let s '  = s ] U and  
t '  = t t U, and  suppose  e • E.  I f t ' i s  defined on *e ° then  
it mus t  be  the  case t h a t  *e* C U so t is also defined on °e °, 
where  it has  the  same values as t ' .  If s '  is undef ined  on any 
of the  e lements  of °e °, t h e n  so is s, hence  also t (because 
~ ( s , t ) ) ,  and  consequent ly  t '  too, con t ra ry  to assumpt ion .  
Moreover,  t he  values of s ~ mus t  be  the  same as those  of 
s on °e °. If max{ t~  I x • *e} < m i n { t  v I Y • e ' }  t hen  

4To some readers this may seem like a cheat. To appreciate the 
idea better, think of proving a property by induction. Sometimes it 
suffices to carry out the induction with nothing more than the desired 
property, but sometimes it is necessary to prove more than the desired 
property in order to carry out all of the inductive steps. Specifying 
the abstraction invariant requires a similar balance where the relation 
may need to satisfy more than its basic requirement in order for all 
of the parts to fit. In this case, it suffices to assert only that the 
production rule is satisfied. 

Inequal i ty  1 holds too, so `4, s '  ~ e follows f rom fig(s, t) and  
the  fact  t h a t  s ~ has  the  same values as s on  *e °. 

To prove t h a t  ¢ is an  a b s t r a c t i o n  server  for ~ ,  we mus t  
show t h a t  the  following rule is satisfied: 

~5(s, t) s { U = s '  ~ U $ U is cons i s ten t  in s '  

¢(s,, t,) 

where  t I = ¢ ( U , s ' , t )  and  U is a genera t ion .  Let  e be  an  
event  and  suppose t h a t  t ~ is defined on °e ° and  

m a x { t ;  I x • °e} < min{t$  l Y • e°} • (3) 

We mus t  show t h a t  s' is defined on " e '  and  `4, s' ~ e. If 
"e*MU = 0, t hen  the  values in ques t ion  are the  same  as those  
for s, t, so the  desired conclusion follows f rom the  fact  t h a t  
O(s,  t) holds. Suppose therefore  t h a t  "e*MU 7 £ O. Because U 
is a genera t ion  it  c anno t  con ta in  e lements  of b o t h  "e and  e °. 
Suppose first t h a t  U Cl "e # 0. T h e n  the re  is a con t rad ic t ion  
wi th  Inequal i ty  3 because  the  values of t ~ to the  r ight  of x 
mus t  be  the  same as those  of t bu t  the  defini t ion of ¢ says 
t h a t  t~ is larger  t h a n  any of these.  Suppose  second t h a t  
U C l e  ° # 0. T h e n  there  is no p rob lem because  S U  was 
as sumed  to be cons is tent  in s ~ and  e • $ U. 

Equa t ion  2 is, of course, different f rom the  da tes  t h a t  
would be  assigned to modif ied files by consul t ing  the  sys tem 
clock, so i t  is no t  exact ly  the  same as the  make a b s t r a c t i o n  
server. This  underscores  the  fact  t h a t  a given a b s t r a c t i o n  
may  have  many  servers t h a t  could imp lemen t  it. I t  is im- 
p o r t a n t  for any choice of server  to  prove t h a t  i t  does indeed 
satisfy the  expec ted  invar iant .  For  example,  the  server  above 
doesn ' t  leave one to wonder  a b o u t  the  cor rec tness  of bui lds 
made  af te r  a r eboo t  has  caused or cor rec ted  a n  error  in the  
t ime  on the  sys tem clock. 

A C u s t o m i z e d  A b s t r a c t i o n  

Let us consider the  op t imiza t ion  p roposed  for the  p-ne t  in 
Figure 7. In this  example,  i t  seems po ten t ia l ly  wor thwhi le  
to r e t a in  the  header  y.  t a b . h  for compar i son  to subsequen t  
versions wi th  la te r  da tes  to avoid recompi l ing  the  lexer if 
no changes have occurred.  To describe the  abs t rac t ions  we 
refer  to the  names  for p -ne t  e lements  appea r ing  in Figure  10. 
Let  .4 be  the  standard model  for th is  p r o d u c t i o n  ne t  as we 
descr ibed it earlier. T h e  a b s t r a c t i o n  is as follows: 

M o d e l  Only condi t ions  x , y , z  are of in teres t ,  so B ~ = 
{ x , y , z } ,  and  only the  event  e will be  t e s t ed  for the  
opt imizat ion,  so E s --= {e}. We take  V~ = V #  and  
V~ = V~ A x w and  V~ = w. T h e  re la t ion  B, t ~ e holds 
iff t is defined on °e ° and  ty is a pa i r  ( u , n )  such t h a t  
u = t ~  and  n >t~. 

A b s t r a c t i o n  The  re la t ion  ai,(s, t) holds iff two condi t ions  
hold: (1) if t is defined on x, t hen  so is s and  s ,  = t~; (2) 
if t is defined on y, z and  ty = (u, n) where  t~ > n, t hen  
s is defined on y, z and  (x, z ~ u, sz)  R ~  (y ~-+ sv).  

S e r v e r  Suppose  U is a genera t ion .  T h e  value of t ~ = 
¢(U, s t, t) is the  same as t h a t  6f t outs ide  of U. If x • U, 

' If • U ,  t h e n  ~ = ( t , , t z + l )  assuming  then  t~ = s~. y ty 
t is defined on x, z, o therwise  ty is undef ined.  If z • U 
and  ty = (u ,n) ,  t hen  t~ = n + 1, bu t ,  if ty does not  
exist, t hen  t~ = O. 
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We mus t  show t h a t  ~ is an  abs t rac t ion .  To prove sound-  
ness wi th  respec t  to p roduc t ion ,  suppose t h a t  ~ ( s , t )  and  
B, t ~ e. Th i s  means  t h a t  t is defined on °e* and  ty is a pair  
(u, n) where  u = t~ a n d  n > t~. This  means  t h a t  t satisfies 
the  hypo theses  of the  second condi t ion  for the  difference ab- 
s t rac t ion ,  so s is defined on °e ° and  (x, z ~-~ u, s~) R ~  (y ~-+ 
sy). B u t  t also satisfies the  first condi t ion  for the  abs t r ac t i on  
gg, so sx = t~ = u, which  means  A,  s ~ e as desired. Sound- 
ness wi th  respec t  to  dele t ion is s t ra ight - forward .  The  proof  
t h a t  ¢ is an  a b s t r a c t i o n  server  is omi t ted ;  it is a hybr id  of 
the  p roof  above  for the  da te  ab s t r ac t i on  and  the  a r g u m e n t  
below for difference abs t rac t ions .  

Is this  really an  ' a b s t r a c t i o n ' ?  Since old concrete  values 
were kept  for compar i son  w i th  new values, the  ' a b s t r a c t '  
model  is no t  more  a b s t r a c t  for such values t h a n  the  s t a n d a r d  
one. Th i s  te rminologica l  foible can  be  considered in light of 
the  r ema in ing  two examples  of abs t r ac t i ons  considered here.  

D i f f e r e n c e  A b s t r a c t i o n  

T h e  difference a b s t r a c t i o n  caches the  sources t h a t  were 
used to bui ld  a ta rge t .  Th i s  i n fo rma t ion  ca~ be  used to 
avoid subsequen t  rebui lds  w h e n  sources have not  changed.  
To descr ibe the  a b s t r a c t i o n  precisely, we need some more  
m a t h e m a t i c a l  no t a t i on .  Given a p r o d u c t  X × Y, let fst : 
X × Y --+ X be  p ro jec t ion  onto  the  first coordinate ,  and  
snd  : X × Y --+ Y be  p ro jec t ion  onto  the  second. W h e n  
working w i th  expressions t h a t  may  no t  exist, like si where  
s is a pa r t i a l  sect ion,  it is useful to wri te  equat ions  using 
Kleene equality: given expressions P and  Q, we wri te  P _~ Q 
to m e a n  t h a t  (1) P exists  if, and  only if, Q does and  (2) if 
P, Q exist  t h e n  P = Q. 

M o d e l  Define B z = B a n d  E u = E.  Define 

v :  = { v f  "e') ~ a source 
• V ~  x l~I(V~ ] y  • x p roduced  by e. 

t.~ if x is a source 
c( t ,x )  "~ fs t ( tx)  if x is produced .  

And,  for each B-s ta t e  t and  e • E,  define 

( t l  "e) R~ ( t l  e ' )  

if, and  only if, t he re  is a condi t ion  y • e ° such t h a t  

(c( t ,x )  I x • ° e ' )  = snd( ty) .  

A b s t r a c t i o n  For any  A - s t a t e  s and  B s t a t e  t, the  re la t ion  
q)(s, t) holds  iff 

• for every source x, t~ ~ s~, and  

• for every p roduced  x, t~ is defined iff s~ is defined, 
and,  if they  are defined, t hen  t ,  = (s.,, ( s '  [ ' e ' ) )  
for some M-s ta t e  s '  such t h a t  A,  s ~ ~ e. 

S e r v e r  For any  genera t ion  U _C B and  M-s ta te  s '  and  B- 
s t a t e  t define ¢(U,  s ' ,  t)z _~ s,~ if x is a source condi t ion  
in U, bu t  if x is a p roduced  condi t ion  in U, define 

! 
¢(U,  s', t)x -- ( s ; ,  (% I Y • %°) )  where  e is the  event  
t h a t  p roduced  x. If x is no t  in U, define ¢3(U, s', t)., ~_ 
t x .  

To show t h a t  if2 is sound  wi th  respec t  to  p roduc t ion ,  sup- 
pose • (s, t) and  B, t ~ e for some s, t, e. We mus t  show t h a t  
A, s ~ e also holds. T h e  fact  t h a t  B, t ~ e means  t h a t  the re  
is a pos t -condi t ion  y • e ° such t h a t  snd ( ty )  is the  par t i a l  
sect ion u = (c( t ,x)  I x  • °e°). Now, the  a s s u m p t i o n  t h a t  
• (s, t) holds tells us two things.  Firs t ,  e(t, x) ~_ s.~ for each 
x; this  means  t h a t  u is (s I ' e ° )  - Second, since ty is defined, 
i t  has  the  form ( s~ , ( s '  I ' e ° ) )  where  A , s '  ~ e. But ,  by 
L e m m a  3, these  facts  imply t h a t  A,  s ~ e, as desired. T h a t  
q) is also sound wi th  respec t  to dele t ion is s t ra igh t - forward ,  
no t ing  t h a t  the  domains  of exis tence of s , t  are the  same 
if q)(s, t) holds, so the  domains  of exis tence of (s I U) and  
(t  I U) will also he  the  same  for any set of condi t ions  U. 

To see t h a t  ¢ is a server  for q~, let  U be  a genera t ion  of 
condit ions,  let s he  a A- s t a t e ,  and  let t be  a B-s ta te .  Suppose  
t h a t  ~ ( s ,  t) and  s '  is a A - s t a t e  such t h a t  s ~ U = s '  ~ U and  
$ U is cons is tent  in s ' .  We mus t  prove t h a t  t' = ¢(U,  s ' ,  t) 

' t~ satisfies O(s ' ,  t ' ) .  Firs t ,  if x is no t  in U, t h e n  s~, are the  
same as s.,, t~; the  desired p roper t i e s  hold  because  O(s,  t) 

• I ! does. Suppose  x • U. I f x  is a source, t h e n  t~ ~ s~ by 
definit ion and  the  condi t ion  on ~ for sources  is therefore  
satisfied. If, on the  o the r  hand ,  x is p roduced  by e, t hen  
t" ~_ ( s ~ , ( s ' [ ' e ° ) ) .  B u t  e • S V  a n d  S U  is cons i s ten t  in s ' ,  
thus,  in par t icu lar ,  A,  s '  ~ e. 

F i n g e r p r i n t i n g  A b s t r a c t i o n  

T h e  difference a b s t r a c t i o n  is inefficient in some ways: the  
a b s t r a c t i o n  keeps the  ent i r i ty  of the  old values used to pro- 
duce the  new ones, and  the  a b s t r a c t i o n  cond i t ion  mus t  check 
w h e t h e r  this  value is e q u a l  to new values, possibly m a n y  
times. To save space and  t ime,  it migh t  be  wor thwhi le  to 
save a compressed version of the  old value a n d  compare  th is  
to compressed  versions of the  new values. We could choose 
to do the  compress ion  in such a way t h a t  the  compress ions  
of two values are the  same if, and  only if, t he  values t hem-  
selves are the  same.  T h a t  is, we could choose an  inject ive 
compress ion map.  However,  we are no t  general ly  in t e res t ed  
in uncompressing t he  values in this  case, only in keeping 
enough of a record  of the  values t h a t  an  equal i ty  tes t  can 
be  carr ied out  efficiently. This  leads us n a t u r a l l y  to the  idea 
t h a t  if the  ' compress ion '  is almost injective,  t h e n  this  will be  
good enough,  because  the  p robab i l i ty  of the  ' compress ions '  
of two different values be ing  the  same  is accep tab ly  low. 
This  is the  idea b e h i n d  f ingerpr int ing,  as discussed earl ier  in 
the  contex t  of the  S M L / N J  Compi l a t ion  M a n a g e r  and  ap- 
plied in n u m e r o u s  o the r  contexts .  To fit f ingerpr in t ing  into 
the  theore t ica l  f r amework  of this  p a p e r  d e m a n d s  t h a t  we 
reconcile the  f ingerpr in t ing  concept  of be ing  correc t  almost 
always wi th  the  correc tness  cr i ter ia  for abs t r ac t ions ,  which 
s t ipula tes  correc tness  in all cases. 

Perhaps  the  s imples t  way to achieve th is  r econc iha t ion  
be tween  correc tness  and  a lmos t -cor rec tness  is to focus the  
unce r t a in ty  a b o u t  correc tness  in the  re la t ion  be tween  the  
actual model  and  an  approximate model .  Let  A be  the  in- 
t ended  model  for a p r o d u c t i o n  ne t  N = (B,  E,  S , T )  and  
supose o~ is a bui ld server  for A. For each x • B,  let us 
assume we are given a space F.~ of ' f ingerpr in t s '  and  a fin- 
gerpr in t ing  func t ion  fx : V.~ --+ F~. We define a new model  
~i as follows. T h e  events  and  condi t ions  of .~I are  the  same 

.5 .4 A A as those  of A,  t h a t  is, B = B and  E = E . For each 
x • B,  we define V ~  = V ~  × F~, and  for any  event  e and  

A-state s, we define (s I "e) n ~  (s I ~') if, and only if, there 
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is an A-state s' such that 

(s'l 'e) R# (s' I e') 

s' snd(s~). That  is, a relation and, for each x E "e*, f.~(~) _~ 
Re holds in A iff the values of the pre- and post-conditions 
have fingerprints that could have been obtained from a re- 
lated set of values in A. In particular, if f~ is an injection, 

' fst(s~). If then f.~(s~) ~_ snd(s~) __. f.,(fst(s,)) so s~ = 
fx is an injection for each x E B, then A and .A are iso- 
morphic. Thus the fidelity of .A[ to A is measured by how 
closely the fingerprinting function approximates being an in- 
jection. A server for ~ is also needed. For any e, s, x, define 
~(e, s).~ = (a(e, s).~, A(a (e ,  s).~)). 

We are now prepared to describe fingerprinting as an ab- 
straction of the approximate model v~. 

Mode l  Define B ~ = B and E B = E. Define 

V ~ :  { F~ ' e ' )  if x is a source 
• F~ x l~I(Fy [ y E if x is produced• 

t~ if x is a source 
e( t , x )  ~_ fst(t ,)  if x is produced. 

And, for each B-state t and e E E, define 

( t l ' e ) R ~ ( t l e "  ) 

if, and only if, there is some y E e* such that 

(e(t, x) Ix e 'e') = snd(t~). 

A b s t r a c t i o n  For any A-state s and B state t, the relation 
if(s, t) holds if[ 

• for every source x, t~ ~_ f.~(s.~), and 

• for every produced x, t~ is defined iff s.~ is 
defined, and, if they are defined, then t.~ = 
(snd(s~), (fy(s'y) I Y E ' e ' ) )  for some A-state s' 
such that A, s '  ~ e. 

Server  For any generation U C B and A-state s' and B- 
state t define ¢(g, J ,  t).~ ~_ snd(s~) if x is a source in 
U. If x is a produced condition in U define 

¢(U, s', t).~ -~ (snd(s ' ) ,  ( snd(4)  I Y E "e')). 

If x is not in U, then ¢(U, s', t)., _~ t~ 

The proofs that 69 is an abstraction and ¢ is a server for 
it are very similar to the ones given for the difference ab- 
straction above (modulo the tedium of some projections and 
fingerprintings). 

6 C o n c l u s i o n s  

The accomplishments of this paper are the introduction of 
production nets and their models, the formulation of ab- 
stractions and their associated correctness conditions, and 
the application of these concepts in a collection of notewor- 
thy cases. Questions still remain about the integration of 
models, the way in which models should be described and 
implemented, and whether a sufficient range of problems 
that arise in real system configurations can be treated rea- 
sonably using the abstract framework described here. A 

more limited objective is applying the theory to more of the 
cases within its current realm; challenges include a rigorous 
treatment of abstractions like Tichy's smart recompilation 
and the treatment of systems with multi-pass builds (or ap- 
parent cycles) such as the type-setting program LaTeX. Let 
me close by commenting very briefly on the three larger 
questions. 

From a mathematical perspective, the full version of this 
paper provides a satisfactory account of how various mod- 
els and abstractions can be combined. To give a hint about 
the systems perspective of this mathematics, suppose we are 
given a pair of IDE's and a project that needs to manipu- 
late items produced by them. Each of the IDE's controls 
the dependencies, abstractions, and build operations for a 
portion of the collection of items included in the project. 
Figure 12 illustrates the general idea. The IDE's supply the 
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Figure 12: Integrating Models 

servers that are used in the overall build, which is controlled 
by computation over the underlying p-net according to the 
rules in Figure 11. Abstractions may be supplied by the 
IDE's (based on special 'knowledge' they have about the se- 
mantics of the items in their domains) or by other means 
(as, for instance, make supplies the date abstraction or CM 
supplies the fingerprinting abstraction). 

P-nets are, of course, a mathematical abstraction; a sys- 
tem that uses them must represent them in a data structure 
or allow the programmer (or a system) to describe them 
in a language. A tool like makedepend performs this latter 
function for C-programming items and make. Also rtmake [5] 
provides explicit support for dependency-reporting. A more 
sophisticated and abstract language than that of make de- 
scription files is provided by the Vesta programming lan- 
guage [7, 6] which is the description language for the Vesta 
configuration management system [8]. Vesta makes some 
decisions differently from the way p-nets are applied in this 
paper, but the approaches may be complementary in some 
ways. The full version of this paper describes implementa- 
tions of some of the build computations using the language 
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Pic t  [11, 10, 12], which is based on Milner 's zr-calculus and 
provides useful high-level constructs  for describing the con- 
current computa t ions  over p-nets. Comparison with other  
configuration management  languages and systems such as 
the various forms of concurrent  make would be helpful. In 
any case, a suitable da ta  s t ructure  or language for p-net  
models and abstract ions requires fur ther  exploration. 

As for whether  a sufficient range of problems that  arise 
in real system configurations can be t reated reasonably us- 
ing p-net  abstract ions and models, there are several issues 
tha t  must  be t rea ted  seriously before any a t t emp t  at vali- 
dat ion seems worthwhile.  Key issues include the t rea tment  
of vers ions/var iants  (a topic t rea ted  in other  models such as 
Inscape [9] and feature  logic [16]) and the incorporat ion of 
changes in dependencies ( that  is, where a change in a source 
i tem results in a change in the underlying p-net  of depen- 
dencies). D y n a m i c  determina t ion  of dependencies may also 
be worthy of consideration. Another  interest ing issue is the 
possibility of restr ict ing one's  view of a p-net  of i tems by 
moving a baseline to hide or expose i tems to change control. 
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