
Reengineering of Configurations Based on
Mathematical Concept Analysis

GREGOR SNELTING

Technische Universitat Braunschweig

We apply mathematical concept analysis to the problem of reengineering configurations.
Concept analysis will reconstruct a taxonomy of concepts from a relation between objects and
attributes. We use concept analysis to infer configuration structures from existing source code.
Our tool NORA/RECS will accept source code, where configuration-specific code pieces are
controlled by the preprocessor. The algorithm will compute a so-called concept lattice,
which —when visually displayed — offers remarkable insight into the structure and properties
of possible configurations. The lattice not only displays tine-grained dependencies between
configurations, but also visualizes the overall quality of configuration structures according to
software engineering principles. In a second step, interferences between configurations can be
analyzed in order to restructure or simplify configurations. Interferences showing up in the
lattice indicate high coupling and low cohesion between configuration concepts. Source files
can then be simplified according to the lattice structure. Finally, we show how governing
expressions can be simplified by utilizing an isomorphism theorem of mathematical concept
analysis.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Interactive Program-
ming Environments; D.2.7 [Software Engineering]: Distribution and Maintenance —restruc-
turing; uersion control; D.2.9 [Software Engineering: Software Configuration Management

General Terms: Design, Management, Theory

Additional Key Words and Phrases: Concept analysis, concept lattices

1. INTRODUCTION

In his invited talk at the 16th International Conference on Software
Engineering, David Parnas said “When a large and important family of
products gets out of control, a major effort to restructure it is appropriate.
The first step must be to reduce the size of the program family. One must
examine the various versions to determine why and how they differ”

A preliminary version of parts of this article appeared in the Proceedings of the 16th
International Conference on Software Engineering, May 1994.
Author’s address: Abteilung Softwaretechnologie, Technische Universitat Braunschweig,
Gau13strasse17, D-38106 Braunschweig, Germany; email: snelting@ips.cs.tu-bs. de.
Permission to make digitallhard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
andIor a fee.
@ 1996 ACM 1049-331W96/0400-0146 $03.50

ACM Transactionson SoftwareEngineeringandMethodology,Vol.5, No.2, April 1996,Pages146-189

Reengineering of Configurations Based on Mathematical Concept Analysis . 147

IParnas 19941. However no method for reengineering program families was
as yet available, let alone tool support for restructuring.

At the same conference, we presented a first step toward a theory and
tools for configuration restructuring [Krone and Snelting 1994]. Based on
mathematical concept analysis [Wine 1982], we have shown how configura-
tion structures can be inferred from existing source code and how interfer-
ences between configurations can be detected.

In this article, we describe in detail how to extract configuration struc-
tures from existing source code and how to interpret the obtained struc-
tures. Source files must adhere to the paradigm “version selection by
#ifdef,” The structure of the configuration space is given in the form of a
concept lattice, which is computed from the relation between code pieces
and their governing expressions. When visually displayed, the lattice offers
remarkable insight into properties of configurations and into relationships
between configurations.

We then present an algorithm for detecting interferences between config-
urations. An interference means that two configurations have common code
where they should not. Based on the lattice structure and interference
analysis, source file simplification can be done by “amputating” parts of the
configuration space. Finally we show how an isomorphism theorem from
concept analysis makes it possible to simplify governing expressions with
respect to inferred properties of the configuration space.

Before we begin to explain our reengineering tool NORA/RECS in detail,
we would like to give an overview; this might also serve as an extended
abstract for hurried readers. The overview will contain several informal
definitions, for which the exact formal definitions are provided later in the
text.

1.1 Configuration Reengineering

Software configuration management is the discipline of organizing and
controlling the evolution of software systems [Tichy 19881. A configuration
of a software system is a collection of elements (software components, code
pieces, modules, ..) which fulfill a particular purpose. Typically, a config-
uration meets the needs of a particular client or platform. Therefore,
configuration management must—among other tasks— be able to identify
software components or code pieces which have certain features and to
build a complete system from selected components. Several sophisticated
configuration management systems have been developed recently—for ex-
ample, Adele [Estublier and Casallas 1994], Shape [Mahler 19941, and
Clearcase [Leblang 1994].

This article, however, is concerned with reengineering of configuration
structures from existing source code. Therefore we do not make assump-
tions about the underlying configuration management model, We just
assume that we are given a set of software objects, as well as a set of
features or attributes, where each configuration is characterized by a set of
attributes. We do not care whether objects are syntactically code pieces,

ACM Transactions on Software Engineering and Methodology. Vol 5, No 2, April 1996.

148 ● Gregor Snelting

components, or modules; whether versions of objects are revisions or
variants; and what architecture the system in question might have. We do
not make any assumptions about the structure of the underlying set of
attributes either; on the contrary, discovering such a structure (if it exists)
is part of the reengineering process.

The only basic assumption we make is that any configuration consists of
objects and is selected by a set of attributes. For the time being, we
consider only simple attributes with a dual defined/undefined semantics;
later we will see how more complicated attributes can be subsumed by the
basic model. Therefore, the process of version selection can abstractly be
described by a configuration function as follows:

Definition 1.1.1. Let O be a set of software objects. Let A be a set of
attributes. A configuration function is a mapping K : 2A -+ 2°. The set of
all possible configurations K(2A) c 220 is called the configuration space,
and for any attribute set V c A, the specific object set P = M V) is called a
configuration selected by V.

This definition does not say how K is determined, and indeed for the
configuration management systems mentioned above, K will take a very
specific form. Generally, the approach described in this article works
whenever version selection can abstractly be described by a configuration
function.

Definition 1.1.2. Let X, Y G A. We say X implies Y if K(X) G K(Y). X
and Y are called interfering, if K(X) n K(Y) # 0.

The notions of configuration implication and interference will be more fully
explained later. We can now specify the task of configuration reengineering
as tackled in this article: given a configuration function, determine all
configurations (that is, all K(X) for X c A) and all implications or
interferences between them. Furthermore, visualize the overall structure of
the configuration space. 1

1.2 Configuration Management by Preprocessing

In this article, we restrict ourselves to a simple and widely used version
selection system —namely, the C preprocessor (CPP). This restriction is
introduced for pragmatic reasons. A lot of code sticking to “configuration
management by preprocessing” is around. For example, both the X-Window
system and the GNU software (gee, g++, flex, bison, rcs, etc.) use CPP for
configuration building; thus there is enough raw material for reengineer-
ing. Adapting our approach to more modern configuration management
systems is possible whenever they can be modeled by configuration func-
tions –this would require development of a new front end.

Configuration management by preprocessing is very simple. Con@ura-

lThe latter task is usually called reverse engineering —we do not distinguish between
reengineering and reverse engineering of configurations.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis . 149

tion-dependent source code pieces are enclosed in #if . . . #endif brackets:

#if E

#endif

E is a so-called go~erning expression, that is, a boolean expression which
may in particular contain atomic formulas like defined(X) or defined(Y) for
preprocessor symbols X, Y, The often-used #ifdef X . . . #endif is a short cut
for #if defined(X) . . #endif.2 CPP also offers #else, #elif E, and #ifndef X
constructs. Governing expressions may contain negations, conjunctions,
and disjunctions, and #ifdef may be nested.

When starting the compiler, CPP symbols maybe defined (e.g., cc -Dultrix

prog.c). CPP will evaluate all governing expressions and will include a code
piece only if its governing expression evaluates to true. Code pieces gov-
erned by a nested #if are selected only if the surrounding code is selected as
well, Thus by defining CPP symbols a configuration is determined, and the
appropriate code pieces are selected and compiled.

There are two basic methods for using preprocessor symbols. The first
method introduces a CPP symbol for every target configuration (e.g., AIX,
SUN4, ULTRIX); this symbol must be defined if compiling for a specific
target. Code common to several target configurations is enclosed in a
disjunction of CPP symbols:

#if defined(SUN) II defined(ULTRIX) II defined(AIX)

#endif

The second method uses one CPP symbol for each feature of the target

configuration (e. g., HAS_NFS, BSD, HAS_ BCOPYI; code requiring certain
features is enclosed in a conjunction of CPP symbols:

#if defined(HAS_BCC)PY) && defined(HAS_NFS)

,..

#endif

If the #ifdef/#endif enclosing a code piece o contains a CPP symbol a, we say
either o depends on a, or o is governed by a. In the first example, the code
piece is governed by SUN, ULTRIX, AIX, whereas in the second example the
code piece is governed by HAS_ BCOPY and HAS_NFS.

CPP “#ifdef” statements may contain complicated boolean expressions;
thus existing programs do not stick to the two basic CPP schemes. As an
example, consider some code pieces from the X-Window tool “xload”; this
tool displays various machine load factors (Figure 1). The 724-line program
is quite platform dependent: 43 preprocessor symbols are used to control a
variety of configurations (e. g., SYSV, macll, ultrix, sun, CRAY, sony). Code
pieces not only depend on simple preprocessor symbols, but on arbitrary
boolean combinations of such symbols. Furthermore, “#ifdef” and “#define”

‘The current (’PP standard treats X as equivalent to defined (X) & & X != O

ACM Transactions an Software Engineering and Methodology, Vol 5, NO 2. April 1996

150 ● Gregor Snelting

#if (!defined(SVR4) I I ldefined(_STDC_)) && !defined(sgi) && lde -
fined (MOTOROLA)

extern void nlisto;
#endif
#i fdef A1XV3

knlist(namelist, 1, sizeof(struct nlist));
#else

nlist(KERNEL_FILE, namelist) ;
#endif
#ifdef hcx

if (namelist[LOADAV] .n_type ‘- O &&
#else

if (namelist[LOADAV] .n_type == O I I
#endif /* hcx ●/

namelist[LOADAV] .n_value ‘= O) [
xl Oad_error(Wcannot get name list from”, KERNEL_FILE);
exit(-l);
1

loadavg_seek - namelist[LDADAV] .n_value;
#if defined(umips) && defined(SYSTYPE_SYSV)

loadavg_seek &= 0x7fffffff;
#endif /* umips && SYSTYPE_SYSV +/
#if (de fined (CRAY) && de fined (SYSINFO))

loadavg_seek +- ((char ●) (((struct sysinfo ●)NULL)->aVenKUn)) - ((char
●) NULL);
#endif /* CRAY && SYSINFO */

kmem = open(KMEf._FILE, O_RDONLY);
if (kmem < O) xload_error (” cannot open” , KMEM_FILE);

#endif

Fig. 1, X-Window tool’’xload.c, ”

statements are nested, resultingin a rather incomprehensible source text.
Even experienced pro~ammers-will have difflculti& to obtain some insight
into the configuration structure, and when a new configuration variant is
to be covered, the introductionof errors is very likely.

Nevertheless, CPP adheres to the general configuratio nscheme described
above: the objects are code pieces in a source file; the attributes are the
CPPsymbols; and the configuration function isjust CPPitself. Given aset
of defined CPP symbols, CPP will select the corresponding code pieces
and—since there is atotal order, namely, the textual order defined for code
piecesin CPPfiles-automatically builds the corresponding configuration.
As we will see later, even negated CPP symbols, disjunctions, etc. can be
interpreted as attributes; thus the notion of a configuration function is
powerful enough to describe the full CPP semantics.

Throughout the rest of this article, we stick to the equations object = code
piece (in a CPP source file) and attribute = (simple or derived) CPP symbol.
Code pieces are usually identified by line number intervals, but in several
examples we will use reman numerals as placeholders for code pieces.

1.3 Configuration Tables

The CPP configuration function K = KCPP can be represented by a
two-dimensional boolean array, the so-called configuration table. The table

ACMTransactions on Softwsre Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis . 151

I.
#i fdef DOS

E

DOS 0S2 x_wkl

II.
#endlf

!tifdef 0s2
II x

.111 Ill x

Uendlf

#lf de flned(DOS) $.L de fined (X_win)
Iv x x

Iv v x
#end> !

#~fdef X_wlr, VI

v

*end] !

VI

Fig. 2. A small code fragment and its configuration table

T = T~,,,,i, is indexed with objects and attributes, and T[o, a] = true
indicates that the object o depends on attribute a: any V c A selecting o
must contain a.

Definition 1.3.1. Let K be a configuration function. The configuration
table T~ : 0 XA ~Bisdefined by T~[o, a] = true ~b’V~A : 0 ~
K(V) >a E V.

Figure 2 presents a very small source text and its configuration table.
Section 3 will describe how configuration tables are constructed from
arbitrary CPP source files.

Conversely, any configuration table T determines a configuration func-
tion: for o c O, let a(o) = {a E AI TIo, al = true}. Then K7(V) = {o E
O IU(o) c ~. This means that an object is selected by V if all governing
attributes are in V. For K = Kct,P, it is easy to show that K~A(V) = K(V)
(note that this identity captures the CPP semantics).

Thus for every configuration function K a configuration table T~ can be
defined, and every configuration table T induces a configuration function
K~. But K = K~~ does not always hold. Therefore, not every configuration
function can correctly be represented by a configuration table. Indeed,
there are only 2 ‘) 1A’ = 210 I4 configuration tables, but there are
(210 i)(21A’) configuration functions (many of them pathological). Configura-
tion functions defined by configuration tables enjoy special properties, e.g.,
monotony: X c Y > K(X) c K(Y).

For Adele, Shape, and Clearcase, it is possible to describe their version
selection mechanism by configuration tables. Adele, for example, is based
on software components which have several attributes of the form name =
value; version selection is done with a boolean expression over such
attributes, and a component is selected if the selection expression evaluates
to true for the component’s attribute values. Many-valued attributes can be
described by so-called scaled configuration tables (which have one column
for every value of an attribute), and complex selection expressions can be
treated with the same techniques as complex governing expressions (see
Section 3).

For strange configuration functions K, the notion of a configuration table
capturing dependencies of code pieces on attributes might not be adequate.

ACMTransactIonson SoftwareEngineeringand Methodology, V(I1 5, NO 2. April 1996.

152 ● Gregor Snelting

Nevertheless, a relation between objects and attributes can always be
established: TKIo, a] ~ 3V G A : a E V A o E K(V). This can be read as
“a influences o” and explains why our approach can be used for quite
different configuration management models. Using scaled configuration
tables, it is even possible to handle structured object or attribute spaces.
But note that “influence” is weaker than “dependency”; thus for pathologi-
cal configuration functions which cannot be coded as configuration tables,
the information extracted from the “influences” relation is not as precise as
for CPP source files. For the rest of this article, we ignore pathological
configuration tables.

1.4 Concept Lattices

We have seen that it is difllcult to understand source files like “xload.c.”
Fortunately, there is a method, called formal concept analysis, which allows
for the reconstruction of semantic structures from raw data as given in our
case. Formal concept analysis can be used whenever a relation between
certain objects and attributes is given. The basic idea goes back to G.
Birkhoff, who observed in 1940 that a complete lattice can be associated
with every binary relation, which offers remarkable insight into the struc-
ture of the relation [Birkhoff 1983]. The lattice and its underlying relation
can be reconstructed from each other; hence the method is similar in spirit
to Fourier analysis.

Later, the universal algebra group at the Technical University of Darm-
stadt elaborated Birkhoff’s basic result. Today, there is not only a sophis-
ticated mathematical theory, but also several extensions of concept analy-
sis which can be applied to more complicated problem domains. Concept
analysis has been applied to problems such as classification of finite
lattices, analysis of Rembrandt’s paintings, or behavior of drug addicts. It
can also be used as a knowledge acquisition mechanism, and the structure
theory of concept lattices provides for even more powerful analysis meth-
ods.3

In this introduction we will only explain some basic notions. A concept is
a pair, consisting of a set of objects and a set of attributes, such that all
objects have all attributes, and all attributes fit to all objects. Such
concepts represent semantic properties of the underlying problem domain.
The concepts form a complete lattice; hence the lattice structure imposes a

partial order on concepts (more specific versus more general), and for two
concepts, supremum and infimum exist.

In our case, objects are code pieces; attributes are CPP symbols; and the
object-attribute relation is given by the configuration table. Concepts then
correspond to (partial) configurations and are computed by our tool NOM
RECS. In particular,

‘The characterization of (mental and mathematical) concepts has also been studied by other
authors (e.g., see van Mechelen et al. [1993]), but without the lattice-theoretic underpinnings
which give formal concept analysis its power.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 153

. ----- Elrma

Fi10 AxOn Opums w
Iatimg graphplace done

Imm --”

IFlle Editmla’mSuffenSam31CmlM
cl: 1-1,14-14

l=
C2: XJm / 12-12 C4: m / 3-3

Eximlt

“/
C43-3

9-9s
Fig. 3. Concept lattice for Figure 2.

–for each configuration, its extent (the code pieces which make up the
configuration) and intent (the attributes which govern the configuration)
are computed;

—all implications between configurations are computed, where an implica-
tion is of the form “Any code piece valid for the sun configuration is valid
for the ultrix and sony configuration as well”;

–by computing a lattice of configuration concepts, a taxonomy of configu-

rations is determined;

—interferences between configurations are displayed, where an interference
between configurations means that they have common code where they
should not;

–the overall qua~ity of the configuration structure can be judged according
to software engineering principles.

The concept lattice for the code in Figure 2 is presented in Figure 3. This

simple lattice already demonstrates basic principles. The lattice elements

are named (Cl, C2, , C6) and are labeled with code pieces or CPP
symbols (or both). Code pieces are given in form of line number intervals in
the source code: the source file is displayed in the emacs window. If a

concept labeled with code piece o is below or equal a concept labeled with
CPP symbol a, then o depends on a. For example, line 9 is governed by

DOS, as C5 (which is labeled with source line interval 9-9) is below C4

(which is labeled DOS). Line 3 is also governed by DOS, as C4 is also
labeled with interval 3–3. As C5 s C2, line 9 is also governed by X_win.

In fact, a source code piece occurring as label of a concept c is governed
by all CPP symbols appearing in concepts abol’e c. These are called the
intent of c. By clicking on c, its intent can be displayed. Indeed, the intent
box of C5 shows that line 9 is governed by DOS and X_win (and no other

ACMTransactionson SoftwareEngineeringand Methodology,V(,I 5. No 2, April 1996.

154 ● Gregor Snelting

CPP symbol). Complementarily, a CPP symbol occurring as a label of c
governs all code pieces appearing in concepts below c. These are called the
extent of c. The extent box for C4 shows that DOS governs lines 3 and 9
(and no other).

The code piece labels of the top element present the code which is not
governed by any CPP symbol (in the example, lines 1 and 14), while the
symbol labels of the bottom element present those CPP symbols which do
not govern anything (none in the example). The extent of the top element
consists of all code pieces, while the intent of the bottom element consists of
all CPP symbols in the source code. Code governed by more than one CPP
symbol shows up as an infimum in the lattice, while CPP symbols govern-
ing more than one code piece show up as a supremum.

CPP symbols which are concerned with different configuration aspects

(e.g., window system variants versus operating system variants) are called
orthogonal, and code which is governed by orthogonal symbols indicates an
interference. In the example, line 9 is governed by both DOS and X_win,
indicating that window system and operating system aspects are not
clearly separated. Adopting traditional terminology, we call this phenome-
non strong coupling between orthogonal configuration aspects. Note that
only a human can decide whether code shared by various configurations
reveals a harmful interference or a beneficial reuse. Section 4 will discuss
interferences and coupling in depth.

1.5 Source Code Simplification

For very chaotic configuration spaces, restructuring is appropriate, and
later we will see how concept analysis can help in restructuring. The first
step is perhaps to reduce the size of the program family (called “amputa-
tion” by Parnas [1994]). In a second step a restructuring of the source code
in order to obtain more cohesive modules is appropriate. The concept lattice
provides very good insight into the possibility and effect of an amputation.
We will see later that amputation can be implemented through partial
evaluation of CPP files. Under the assumption that certain CPP symbols
are (or are not) defined, while for others this information is missing,
governing expressions can be simplified, and perhaps some code pieces
disappear completely.

Amputation, or source file simplification, can be used if certain configu-
rations are no longer needed. Furthermore, special “problematic” versions
can be generated from interferences; this allows for a more detailed
inspection of configuration problems on the source code level.

Lattice theory also offers a clever way for simplification of governing
expressions. The lattice is generated by the so-called irreducible elements
alone. These irreducible elements can be used to generate new governing
CPP symbols, which lead to simpler governing expressions. The method is
much more powerful than just boolean simplification, as it takes lattice-
specific information into account.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996

Reengineering of Configurations Based on Mathematical Concept Analysis . 155

2. BASIC NOTIONS OF CONCEPT ANALYSIS

2.1 The Concept Lattice

Formal concept analysis starts with a triple c = (0, A, P), called a
(formal) context, where O is a finite set (the so-called objects); A is a finite

set (the so-called attributes); and P is a relation between O and A; hence

P c O x A, If (~~,cr) G P, we say object o has attribute a. In our case, the

objects are source code pieces; the attributes are governing preprocessor

symbols; and the relation is called a configuration table.
For a set of objects X ~ O, we define the set of common attributes

(T(X) : – {a ~ A Vo E X : (o, a) E P}. Similarly, for a set of attributes Y
c A the common objects are defined by T(Y) := {o G O IVu E Y : (o, a)
E P}. The mappings (r : 2°- 2A and ~ : 2A -2° form a Galois connection

and can be characterized by the following conditions: for X, Xl, X2 ~ O; Y,
Yl, Yzg A

Xl Q Xz + (J(XY) Q CT(X1) and YI c Yz > 7(Y2) c dYl);

that is. both mappings are antimonotone;

X c T(w(X)) and u(X) = o(T(cJ(X)))

as well as

that is, both mappings are extensilje. In particular the common objects of
the common attributes of an object set are a superset of this object set, and
their common attributes are equal; this means that both u o T and r D u are
closure operators. For an index set 1 and Xi G O, Y, L A

A (formal) concept is a pair (X, Y), where X c O, Y c A, Y = I~(X), and
X = T(Y). Hence, a concept is characterized by a set of objects (called its
extent I and a set of attributes (called its intent) such that ~1) all objects
have all attributes and (2) all attributes fit to all objects. The set of all
concepts is denoted by B(O, A, P). Intuitively, a concept is a maximal filled
rectangle in a table like Figure 4, where permutations of lines or columns
do not matter.

A concept (Xl, Y,) is a subconcept of another concept (Xz, Y2) if Xl c Xz
(or, equivalently, Y, ~ Yz I. It is easy to see that this definition imposes a
partial order on B(O, A, P); thus we write (Xl, Y1) s (X2, Y2). Moreover,
B(O, A, P} = (B(O, A, P), S) is a complete lattice.

ACN1Transactions on Software Engineering and Methodology, Vol. 5. No. 2, April 1996

156 . Gregor Snelting

SYSV SYSVW mad i3S4 unfix sun AIX CRAY apollo wmy sequent Sllient

1-1o x x x x x x x
11-20 x x x x x x x x
21-28 x x x x
29-40 x x x x x x
41-100 x x x
101-106 x x x x x x
107-115 x x x
116-125 x x x
126-200 x x x x x
201-207] X x x x I x x

1 I

386

06

Fig. 4. A configuration table and its concept lattice.

BASIC THEOREM FOR CONCEPT LATTICES. Let C = (O, A, P) be a context.
Then B(O, A, P) is a complete lattice, called the concept lattice of C, for
which in fimum and supremum are given by

and

This theorem says that in order to compute the infimum (greatest common
subconcept) of two concepts, their extents must be intersected and their

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996,

Reengineering of Configurations Based on Mathematical Concept Analysis . 157

intents joined; the latter set of attributes must then be enlarged in order to
fit to the object set of the infimum. Analogously, the supremum (smallest
common superconcept) of two concepts is computed by intersecting the
attributes and joining the objects.

The lattice structure allows for a labeling of the concepts: a concept is
labeled with an object, if it is the smallest concept in the lattice subsuming
that object; a concept is labeled with an attribute, if it is the largest concept
subsuming that attribute. The concept labeled with object o, respectively,
the concept labeled with attribute a, is

Y(O) = (T(a({o})), u({o})) and v(a) = (T({a}), d7({a}))).

The attribute labels of a concept c are written a(c), and the object labels of
c are written W(C). Utilizing this labeling, the extent of c can be obtained by
collecting all objects which appear as labels on concepts below c, and the
intent of c is obtained by collecting all attributes which appear above c:

ext(c) = U co(c’) and int(c) = IJ cr(cf).
c:< c ~c

For any two attribute sets A and B we say “A implies B“ (written A > B) if

T(A) c T(B) (or equivalently, if B c U(7(A))). This can be read as “any
object having alI attributes in A also has all attributes in B.” IfA and 23 are
intents of concepts C = (7(A), A) and D = (7(B), B), and C s D, then
A > B obviously holds. For the set of all implications, a minimal and
complete basis can be constructed, which means that any implication can
be deduced from the basis, but that this property is lost if any basis
implication is removed [Duquenne 1987].

The concept lattice can be considered as a graph, that is, a relation. What
happens if we again apply concept analysis to this derived relation? It turns
out that the concept lattice reproduces itself [Wine 1982]. Thus concepts do not
“breed” new concepts; there is no proliferation of virtual information.

The basic theorem was already discovered by Birkhoff [1940]. Later,
Wine and Ganter [1993] expanded Birkhoff’s result. Wine gave character-
izations of all concept lattices, developed their structure theory, and
invented scaled contexts, a method for handling nonflat attribute spaces.
Ganter, besides other contributions, developed efficient algorithms (see
Section 2.3). The interested reader should consult Daveys and Priestley
[1990], which contains a chapter on elementary concept analysis. Those
who are interested in more advanced theory might wish to consult Wine’s
lecture notes [Wine and Ganter 19931 or Ganter’s advanced introduction
[Ganter 19951.

2.2 Interpretation of Concept Lattices

Figure 4 presents a (fictitious) example of a configuration table, where
source code pieces are given in form of line number intervals. A cross in the
table for code piece o and preprocessor symbol a means that o will only be

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2. April 1996

158 . Gregor Snelting

included in a configuration if a is defined. For the time being, we assume
that only simple governing expressions of the form “if defined(x) &&
defined(Y) && . . .“ are used. This simplification will be dropped in Section
3.

In the corresponding concept lattice, a configuration concept is a subcon-
cept of another concept, if it has a smaller extent (i.e., the configuration has
fewer code pieces), or equivalently, a larger intent (i.e., more governing
symbols). Hence, going down in the lattice, we obtain more precise informa-
tion about smaller object sets. The lattice elements are labeled with code
pieces or CPP symbols (or both). If an element labeled with code piece o is
below or equal to an element labeled with CPP symbol a (that is, Y(O) s
p(a)), then o depends on a.

As an example, consider the concept labeled CRAY, which is in fact the
concept K(CRAY) = ({11-20, 21–28, 29–40, 201-207}, {CRAY, apollo, macll,
SYSV}). Indeed, Figure 4 reveals that this concept is a rectangle in the
configuration table. It reveals a simple fact about the configuration space—
namely, that lines 11–20, 2 1–28, 29– 40, 20 1–207 are exactly those which
are governed by CRAY, apollo, macll, SYSV— and vice versa. The concept
labeled apollo stands for ~(apollo) = ({11-20, 21-28, 29-40, 126-200,
201 -207}, {apollo, macl 1, SYSV}), which again is a rectangle in the configu-
ration table, higher but leaner than the first one: p(CRAY) s p(apollo).
Thus, the CRAY configuration comprises lines 11–20, 21-28, 29-40, 201-
207 (and no other), but these lines appear in the apollo configuration as
well.

This example already demonstrates one possible interpretation of a
concept lattice: it can be seen as a hierarchical conceptual clustering of
objects. Objects are grouped into sets, and the lattice structure imposes a
taxonomy on these object sets. The original table can always be recon-
structed from the lattice (e.g., the column for i386 has entries for all objects
below concept p(i386)–namely, 1-10, 101-1 06– whereas the row labeled
41-100 has entries for all attributes above–namely, sun, SYSV, and ultrix).
Hence, a context table (i.e., relation) and its concept lattice are analogous
to a function and its Fourier transform (which also can be reconstructed
from each other): concept analysis is similar in spirit to spectral analysis of
continuous signals.

The infimum of two concepts (C, V) and (D, W) says which preprocessor
symbols govern the intersection of the extents: (C, V) A (D, W) = (C fl D,
u(~(V U W))). Since X c u(7(X)), this symbol set can be larger than just
the ‘intuitive” V U W. In Figure 4, p(sony) A p(ultrix) = ({1-1 O, 11-20,
29-40, 116-125, 101-106}, {sun, sony}) A ({1-10, 11-20, 41-100, 101-106,
126–200, 201-207}, {sun, ultrix]) = ({l–1 O, 11-20, 101–1 06}, {sun, sony, ultrix,
AlX}) = /.L(AIX).

The supremum says which code pieces are governed by the intersection of
the intents: (C, V) v (D, W) = (?(a(C! U D)), V n W); this can be more
code than just C U D.

If we want to know what an apollo and an ultrix configuration have in
common, we look at the infimum in the lattice, which is labeled 126-200;

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengmeering of Configurations Based on Mathematical Concept Analysis . 159

going down we see that lines 126–200, 201–207, and 11–20 appear in both
configurations. On the other hand, if we want to see which preprocessor
symbols govern both lines 126–200 and 101–106, we look at the supremum
of the corresponding concepts, which is ultrix; going up, we see that the sun
and the ultrix configurations (and no other) will include both code pieces.

Upward arcs in the lattice diagram can be interpreted as implications: ‘If
a code piece appears in the sony or ultrix configuration, it will appear in the
sun con figuration as well,” or equivalently “If sun is undefined, defining
sony or ultrix has no effect. ” Such knowledge is not easily extracted by hand
from a source file like “xload.c”! This example demonstrates the second
main possible interpretation of a concept lattice: it represents all implica-
tions (or dependencies) between sets of attributes.

How can we use the lattice to determine which code pieces will actually
be included in a configuration, if a certain set S of preprocessor symbols is
defined? A code piece o is included if all governing symbols are defined. The
governing symbols of o are u({o}) = int(y(o)) = Uczy, c,, a(c); these are
just all attribute labels above y(o). Hence the code pieces included are
given by the configuration function K : 2A * 2°, where K(S) = {o E O I
u({o}) c S}. All code pieces in K(S) must be above A,,eL~ p(s), as any code
piece further down in the lattice must depend on preprocessor symbols not
inS.

One can imagine K(S) as a set of downward paths or “strings” starting from
the top element; the end of a string is labeled with a selected code piece, and
all “nodes” along the string are labeled with CPP symbols in S. The con@-ura-
tion function can more easily be computed from the original configuration
table; the lattice representation is intended for other purposes.

2.3 Construction of the Concept Lattice

In order to give the reader an idea of how a concept lattice is constructed
from a formal context, we describe a simple construction algorithm. The

concept lattice can be constructed either top-down or bottom-up; we de-

scribe the bottom-up version. The algorithm utilizes the fact that, for a
concept (X, Y),

[]
y= u(x) = o u {O} = f) d{O}).

OEX OEX

The smallest element is (T(u(LI)), u(fl)). Hence one can start by first
computing all the U({o}), which constitute the atoms of the lattice. For any
o = O, this can be done by a simple loop over A with time complexity
0(IA I). The other elements are then obtained as suprema of already
computed ones. Due to the basic theorem this can be done by intersecting
the attribute sets of any two elements already constructed, which can again
be done in time 0(IA I). The extent of a lattice element is obtained by
applying T, which needs two nested loops and has time complexity
0(1 Ol”jAl).

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996

160 . Gregor Snelting

A hash table is used to store the lattice elements and check whether a

newly constructed element is already in the lattice. Furthermore, one has
to keep track of all pairs of elements to be considered for supremum
computation. This is clone with a FIFO queue: initially, the queue contains
all pairs of atomic elements; the next supremum to be determined is given
by the first element of the queue, and pairs of concepts [c ~, c ~1, where at
least one is newly generated and not c ~ s C2 or C2 s c1, are appended to

the end of the queue.
The overall complexity depends on the number of lattice elements. The

largest lattices for contexts of size n X n have 2“ elements; these lattices

are isomorphic to finite boolean algebras freely generated by n elements.
Thus the worst-case running time of the construction algorithm is exponen-
tial in n. In practice, however, the concept lattice has typically 0(n 2, or
even O(rz) elements rather than 0(2“), resulting in a typical running time
of 0(n 3,; this makes the method feasible for reasonably large contexts.

Ganter [19871 has found a more efficient algorithm which avoids tracking
the elements and suprema, but is more difficult to understand. This
algorithm is used in the Darmstadt implementation of concept analysis. It

has recently been reimplemented for NORA. Lindig [1995] presents some

empirical data on this implementation (Figure 5), which have been ob-
tained from random contexts. The first graph shows the time for lattice
construction as a function of the number of objects; for 1000 objects (code
pieces) the analysis needs 100 seconds on a SUN ELC. The second picture
shows the number of concepts as a function of object and attribute cardinal-
ity; it shows that this number can indeed grow exponentially. Fortunately,
for UNIX source files, we found the number of configuration concepts to be

much lower.

3. FROM SOURCE CODE TO CONFIGURATION LAl_HCES

The tool NORA/RECS for restructuring of configurations accepts source
code as input and produces a graphical display of the concept lattice as
intermediate representation. Reengineering is then done by analyzing
interferences and sublattices. Source code simplification corresponds to

selection of a specific sublattice; upon the restructurer’s request, the source
file is transformed accordingly. The source language is arbitrary, but the
input file must adhere to the conventions of the C preprocessor. NORA/
RECS consists of the following phases:

(1) front end: the front end separates code pieces and preprocessor state-
ments, syntactically analyzes the latter, and constructs a configuration
table according to the rules described below;

(2) kernel: the kernel reads a configuration table and computes the corre-
sponding concept lattice;

(3) visualization: this accepts a description of the concept lattice and
produces a graphical display;

(4) interaction: the lattice can be analyzed, and sublattices can be selected;

ACM ‘1’ransactiona on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis . 161

I03MI-
10atlrtxitae—
4oanraxJlaa----

160aWtsila4 . .
4eomaa-

1Ow
920attrlbut~----.. --.:..

.
..-. ----:::-. --- .-..::.-..:

. .------------

.. --”
103

g

2.s
10 -

1

0.1
0 200 400 600 Soo 1(K)O 1200 14&l 16G0 1Mo 20M

oblsctswith5 attributeseech

concepts

8000-
7000 -

6000 -
5000 -
4000
3000 -
2000 -
1000 -

0 -

6
1500

,““”

objectswith 5 attributeseach 500
500

attributes

Fig-. 5. Time complexity and lattice size for random contexts

(5) back end (optional): the source code is simplified according to certain
lattice properties.

As usual, NORMRECS is invoked as a UNIX command with the source file

name as a parameter; additional options which control some display
parameters may be added. This section describes the first two phases.

ACM TransactIons on Sofiware Engineenng and Methodology, Vol. 5. Nm 2, April 1996.

162 ● Gregor Snelting

3.1 Construction of the Configuration Table

A configuration table describes how code pieces depend on preprocessor

symbols. Configuration tables are used as input to formal concept analysis.
According to the basic model of a configuration function, configurations
only depend on positive attributes. Therefore, complex governing expressions
must be transformed into sets of simple attributes. The reader should be
aware that the often-used notion of a ‘feature” of a configuration is not
identical to the term “attribute” in our setting. A feature may be a complex
property, while an attribute describes a simple, positive fact. For example, a

configuration can have the feature that it is governed by CPP symbol X,

whether by including or excluding code pieces of the original source file. As we

will see, this is described by two attributes: one has the meaning “it is true
that X is defined,” while the other means “it is true that X is not defined.”

We will now describe how to construct configuration tables from source
files like “xload.c”; due to complex CPP expressions and nested “#ifdef”
statements, this process is not trivial. After construction, every complex
governing expression has been “compiled” to a set of simple, positive

attributes. In the following semiformal construction rules, A, B, C denote
preprocessor symbols, and p-p, n-n, q-q denote code pieces.

Basic Rule. As already mentioned, an entry in the configuration table

for a code piece o and a preprocessor symbol a means that o depends on (or
is governed by) a; this means that o will only be included in a configuration
if a is defined. Hence the basic rule for code pieces governed by single
preprocessor symbols is:

. .. p-p... . A . . .
#ifdef A

. . . n-n . . . + P-P ,.,

#endif

. .. q-q... n-n . . . x . . .

q-q,.

Conjunctions of Preprocessor Symbols. If a code piece is governed

conjunction of preprocessor symbols, it depends on all of the symbols:

by a

. .. p-p...

#if defined(A) &&

defined(B) &&
. . . && defined (C)

. . . n-n . . .

#endif
. .. q-q...

,.. A B ,.. c .

p-p,.

n-n .,. x x . . . x . . .

H

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 163

Negated Preprocessor Symbols. If a symbol occurs in negated form, this
negated symbol needs a column of its own, since a basic formal context can
express only positive statements. The rule thus is:

#if defined(A)

. .. p-p...

#endif *

,..

#if !defined(A)

., n-n . . .

#endif

L---1--LA
!-

l-&l-p-p x T1
!A

n-n x

A similar rule applies to #ifdef . . . #else . . #endif. In the theory of concept
lattices, the resulting table is called the “dichotomized context.” Prolog

programmers have known the same trick (explicit rules for negated predi-

cates) for a long time.

Disjunctions of Preprocessor Symbols. Disjunctions of symbols are
slightly more complicated. The basic idea is as follows: in order to handle
#if defined(A) II defined(B), we introduce a separate column for A v B. As
both A and B imply A v B, we must therefore place a cross in the A v B
column whenever we place a cross in the column for A or B. The basic rule
for disjunctions hence is:

#if defined(A)

,. p-p. . .
#endif +’

#if defined(A) II defined(B)

n-n, . .

#endif

#if defined(B)

... q-q..,

A B ,.. AIIB
+

p-p ,.. x x

n-n .,. x

q-q .,. x ,. x .

#endif

In order to see that this rule is correct, imagine we introduce a new CPP
symbol AorB which is always defined whenever A or B is defined. A IIB is
replaced by AorB, and any code piece dependent on A or B is in addition
made dependent on AorB. This transformation of the source file keeps all

configurations intact. The transformed source code would —according to the
conjunction rule —produce exactly the configuration table which is given in
the disjunction rule.

ACM Transactions on Software Engineering and Methodology Vol. 5, No 2, April 1996

164 Q Gregor Snelting

Complex Governing Expressions. In case there are complex conditions
arbitrarily built up from conjunctions, disjunctions, and negations, these
are first transformed into conjunctive normal form by applying the distrib-
utive and de Morgan laws.4 Afterward, all expressions are of the form
(A IV A2V. VA Z) A(BIV B2V. VBj)A. ..(C1VC2 v“v Ch), where all
A ~, B., CP are either simple symbols or negated symbols. Expressions in
conjunctive normal form can then be treated by the above rules: for
each negated symbol, as well as for each simple disjunction of the form
AI VAZ V... Ai, an additional column is introduced. Additional crosses
are then placed according to the disjunction rule (whenever a row contains
an entry for A., it must contain an entry for Al v AZ v . . . v Ai).

Arithmetic Expressions. In rare cases, one can find CPP expressions like
“#if version >50” – that is, arithmetic CPP expressions which are used for
configuration management. Our approach however assumes a binary “de-
finedhndetined” semantics for CPP expressions. Therefore, arithmetic and
relational expressions are treated as follows: for every arithmetic or rela-
tional expression, a new column in the configuration table is introduced.
This column is labeled with the complete arithmetic expression, and an
entry in the configuration table is made. Thus arithmetic expressions will
show up as concept labels.

NORMRECS does not provide a fine-grained analysis of arithmetic and
relational expressions. But at least it distinguishes between #if A = = 42
and #if defined(A), for example. According to the CPP semantics, A must be
defined if its value is 42. Therefore, an implication is added in this (and
similar) cases: whenever a cross is placed in the column labeled A = = 42,
another one is placed in the column for A as well.

Nested #ifde~ #define, and #’undefine Statements. The treatment of
nested ‘#i fdef” is obvious: for any line preceding an “#ifdef” the governing
symbols have already been determined. These are extended by an entry for
the symbol(s) in the new “#ifdef.” Example:

#ifdef A

P- P..
A B ,.,

#ifdef B

*
P-P ,., x

n-n . . .
. . .

. . .

#endif
n-n x x

#endif
.,.

q- q.. q-q . . . ,..

‘Note that normalizing boolean expressions can have exponential time complexity. But, in
practice, even for source files like “x.load.c” the governing expressions are small enough to be
tractable.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996

Reengineering of Configurations Based on Mathematical Concept Analysis . 165

line 180 ff
#lf h?. s_NFS I hac3_. nllnk

,nt

!._l ink, s)

char .(). s! .s

,, .

- Rem.,,, S , ever< lf ,t >s unwritable

:wmr. .nl ink< fN. ENT ?.$111re5. NFS q.”crate.boq”a O“, s

,1 bad_,]nl ink

,nt e

L! l’..lk[k).) ‘- c1
ret”rr, o

. - .,,.0,

,) f has_NFS

If (e ‘- ENOENT)

return 0,

end, f

if (c!mod(s. S–IWSR) ‘- 0) [

,,, ,,(> - e

,,? ,Jrn .1

end. f

if has_NFS

else

, .ndif

“end’f

, t r ha_rellame

,f has_NFS

define

$.1,.

stat,,

,, +(,:,, ,s”1 ink[s)--0 ! errno--ENOENT

r.turr “I’,l, .k (s)

‘lull nk[s <t) llIIk(s, t)

.,, ,

0 1,

I I ba.unlmk I tMs_WS yj’-:”” I hns_NFS has_r.wame I has_rename
hm_NFS

181 -1s3 x

190-193 x x

195-196 x x x

198-201 x x

204-204 x x

206-206 x

212-212 x x

214-214 x x x

Fig. 6. Source code and configuration table fragments of the RCS stream editor “rcsedit.c.”

Nested “#define” and “#undefine” statements can also be treated (for
details, see Krone [1993]). Experience has taught us that a “#define” is
seldom used for configuration management, but for definition of constants
or inline functions instead. Hence the current implementation of NORA/
RECS ignores “#define” and “#undefine” statements.

As an example for the construction process, consider the stream editor of
the RCS system [Tichy 1985]. This program is 1656 lines long and uses 21
CPP symbols for configuration management. Figure 6 presents a piece of
source code, starting at line 180. The resulting configuration table is also
presented in Figure 6; the configuration structure will be analyzed in
Section 5. Note the typical treatment of disjunctions, negations, and
“#else.”

ACM Transactions on Software Engineering and Methodology. Vol. 5, No. 2, April 1996

166 ● Gregor Srrelting

#ifdef A

. ..1...

#endif

#i fdef B * *

o

DC
. ..11... I II m
#endif

#ifdef C

,, .111..

#endif

#i fdef A

I.,,A
#ifdef B I

,. .11... a

1
‘B

#ifdef C n,Iv
,.. III . . .

#endif
b;

...IV. . .

#endif

#endif

Fig, 7. An antichain and a chain.

3.2 Basic Patterns in Configuration Lattices

We will now explain some characteristic patterns in concept lattices and
provide some basic examples. The purpose of this section is to demonstrate
how certain source code patterns show up in the lattice. The configuration
table is only an intermediate representation and invisible to the user of
NORA/RECS.

Chains and Antichains. An antichain in a lattice is a set of incompa-
rable elements. In our case, an antichain in the concept lattice comes from
code pieces which are governed by different, independent preprocessor
symbols. A lattice which consists of only one antichain plus a top and
bottom element is called flat (left-hand side of Figure 7).

A chain in a lattice is a set of elements c ~ < Cz < C3 < , . . which are
mutually comparable. In our case, chains result from nested “#ifdef”
statements. Note that, in concept lattices, a chain can be interpreted as a
sequence of implications. For example, in the right-hand side of Figure 7
any code piece which depends on C (i.e., code piece III) also depends on B,
and any code which depends on B (i.e., code pieces II, IV) also depends on
A. According to Section 2.1, this is written as C ~ B ~ A.

Suprema and Infima. A supremum which is not the top element indi-
cates that two code pieces are governed by the same “superordinate” CPP
symbol (left-hand side of Figure 8). Simple disjunctions also show up as
suprema in the concept lattice (right-hand side of Figure 8). Note that any
supremum consists of two chains and an antichain, and the above explana-
tions for chains and antichains still hold.

An infimum which is not the bottom element indicates that a code piece
is governed by two different CPP symbols (left-hand side of Figure 9).
Infima may indicate interference (see below), An infimum may also result
from disjunctions (right-hand side of Figure 9).

Cascades. Nested ‘#i fdef. . . #elif” structures produce so-called cas-
cades in the concept lattice. A cascade resembles the flow diagram of a
nested if-then-else statement (Figure 10).

ACMTransactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

(+eengineering of Configurations Based on Mathematical Concept Analysis . 167

#i fdef A

.1 ...

#i fdef B .A
.11 =$’ 1,’W

#endif B .C
11 III

#i fdef C

111, . .

#endif

IV,. .

#endlf

#if defined(A)

. 1 . . .

#endif
#if defined(A) I I defined(B) AIIB

11 .,. + / E
A 5

#endif I III
#if defined(B)

111,

#endif

Fig, 8. Twosuprema

#i fdef A AllB AIIC
.1 . . .

#ifdef A
11 III

#endif A
1 . . .

#if defined(A) && defined(B) ““’
* 1

.11... a A
#endif #if defined(A) I I defined(B)

B

#endif I //’m “II’”
#endif

#ifdef B

.111... “11 #if defined(A) I [defined(C)

111...
#end~f

#endif

Fig, 9. Twoinfima.

#i fdef A A B c 1A !B !C

I.. . =+ I x +

#elif defined(B)
II x x A, !A
Ill

11..,
x x x I >

!B, C
#elif defined(C)

B /’”

.111,.. H ,C ’111

#endif

Fig. 10. A cascade.

4. QUALITY OF THE CONFIGURATION SPACE

The concept lattice not only displays fine-grained dependencies between
configurations. It also provides good insight into the overall quality of the
configuration space, as will be explained in this chapter.

Two important software engineering principles are separation ofconcerns
and anticipation ofchange. For example, operating system issues shouldbe
separated from user interface issues, and it should be easy to incorporate
another window system into a future version. In traditional software
engineering, lou’ coupling and high cohesion are considered important
criteria for good design, which help to achieve separation of concerns and
anticipation of change. Coupling measures the interdependence between

ACh~Tr.nsa.tlon. on SoftwareEngineerln~and Methodolo~,Vol 5,N0 2, April 1996.

168 ● Gregor Snelting

modules, while cohesion means that the elements of a module are related
strongly. If there is low coupling between modules and high cohesion
within modules, modification of (the implementation of) one module does
not influence the behavior of others. We use the notions of coupling and
cohesion also for configurations. Coupling between configurations means
that they have common code and hence influence each other; the lattice will
provide an exact measure for the “strongness” of “configuration coupling.”
Cohesion within a set of configurations means that all configurations in the
set deal with the same configuration aspect.

4.1 Interferences

Coupling arises whenever configurations have common code. As already
explained, such code is determined by the infimum operation. This obser-
vation gives rise to the following:

Definition 4.1.1. Two preprocessor symbols a and b interfere if they
have common code, i.e., the intersection of the extent of their configuration
concepts is not empty: ext(p(a) A p(b)) # 0. Otherwise, a and b are called
mutually exclusive. Two sets of CPP symbols A and B interfere, if there
exist interfering a E A, b E B; otherwise A and B are called mutually
exclusive.

Interference is a syntactic phenomenon. Interferences show up whenever
CPP symbols have an infimum in the lattice which is not the bottom
element, and they can easily be detected automatically.5 But it is a much
more difficult question to decide whether an interference indicates coupling
(and therefore should be considered harmful) or whether it just shows that
certain combinations of features of the target configuration have specific
code.

Definition 4.1.2. Two CPP symbols a and b are called disjoint if they
cannot be defined at the same time. They are called orthogonal if they deal
with different and independent aspects of the configuration space, e.g., user
interface variants versus operating system variants. Two symbol sets A
and B are called disjoint, respectively, orthogonal, if this holds for all pairs
a~A,b~B.

Disjoint or orthogonal CPP symbols are a semantic phenomenon. There-
fore, the definitions of disjoint, respectively, orthogonal, CPP symbols are
not completely formal, and such symbols cannot be detected automatically.
From the source code alone, it is in general undecidable whether CPP
symbols are disjoint or orthogonal. Only the restructurer (if anybody)
knows whether CPP symbols can be defined at the same time and whether
they deal with independent configuration aspects.

‘In rare cases, the bottom element may have a nonempty extent and hence induce an
interference.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis . 169

1
#i fdef 13SD

.1 ...
#endif

#i fdef SVR4

#i fdef X_ Win

.11. .

#endif
i #l frfef BSD

1 ‘“

111 . . .
#endif

Iv
, #endlf

#i fdef BSD

,.. v.. .
#endif

I

$ifdef UNIX
I...

,, F’- F“”m’
mllx

#endif .,, “MIX,,~*
#ifdef DOS

.
●,

.
0S0 SVR4 .11.,.
,,* * Iv #endif

~% ‘ J UNIX
11 ,, I.lv

.“
#if defined(DOS)l I

● X.wl”
[11‘ defined(X_win)11

. 111...

#endif

#ifdef UNIX
Iv...

#endif
#if defined(UNIX)ll

(defined(DOS) &&defined(X–win))
..
v,.

#endif

I

I

Fig. 11. Two interferences

Definition 4.1.3. An interference is considered harmful, if it is an
interference between disjoint or orthogonal CPP symbols (or symbol sets).

In order to decide whether interferences are harmful, the restructurer
should contribute some knowledge (or educated guesses) about the in-
tended meaning of CPP symbols. Often, the names of the CPP symbols
indicate their meaning. Ifabsolutely nothingis known about the configura-
tion space, and even the names of the CPP symbols do not indicate
anything, CPP symbols must not be considered disjoint or orthogonal; thus
every interference must be considered potentially harmful,

Interfering disjoint CPP symbols indicate dead code, which can be
eliminated. Interfering orthogonal CPP symbols are also very suspicious:
from a software engineering viewpoint, such an interference indicates
coupling between orthogonal configuration aspects.

Let us consider two examples, which both contain an interference (Figure
11). In the first example, code piece III is governed by both BSD and SVR4,
but Berkeley UNIX and System 5 UNIX are to the restructurer’s best
knowledge incompatible and hence disjoint. Hence code piece III can be
deleted. Note that the syntactic knowledge provided by the lattice as well
as the semantic knowledge contributed by the restructurer are necessary
for this decision. In this example, the names of CPP symbols indicate their
meaning. Note that poorly chosen CPP symbol names can easily misguide
the restructurer.

The second example in Figure 11 uses “virtual” concept labels D(X II
X_win and UNIX ~1DOS which have been generated by normalizing disjunc-
tions. Therefore, the dependencies of code piece II on these two “CPP
symbols” is in fact nonexistent: code piece II is governed by DOS, DOS II
X_win, and UNIX II DOS; but according to the absorption law, DOS A (DOS v
X_u’in) A (tJNIX v DOS) = DOS. Dependencies on system-generated basic

ACM Transaction. on Software Engineering and Methodology. Vol. 5, No 2, April 1996.

170 ● Gregor Snelting

disjunctions usually do not show up in the source code directly; they only
show that certain combinations of defined CPP symbols select code which
might conceal a harmful interference. In the example, the interference
merely states that operating system as well as user interface issues show
up in both main configurations and that —worse —there is a cross depen-
dency between them.

4.2 Configuration Coupling

We will now discuss how the “configuration-coupling factor” can be ex-
tracted from the lattice. If the concept lattice is flat, there are several
configurations, but they do not have common code. This means there are no
dependencies whatsoever between the possible configurations. Selecting
any “feature” of a configuration does not interfere with the selection of any
other “feature.” Hence there is zero coupling between configurations (left
example in Figure 7).

More generally, low coupling is achieved if the lattice is horizontally
decomposable. A horizontal decomposition is the inverse operation to a
horizontal sum, which will be defined first.

Definition 4.2.1. Let Ll, Lz, . . . , L. be lattices. The horizontal sum of
these lattices is

~ L,={T, 1} U~ L1\{Tij 1,}

i=l j=l

Definition 4.2.2. A lattice L is called horizontally decomposable if it is

the horizontal sum of smaller lattices: L = X;. ~ Li,

A horizontal sum is obtained by removing the top and bottom of the
summands and adding new “global” top and bottom elements. Conversely, a
horizontal decomposition can be obtained by removing the top and bottom
elements of the lattice, determining the strongly connected components of
the lattice graph (these are called the summands), and adding a new top
and bottom element to each summand.

In case a lattice is not horizontally decomposable, it might be that it is
decomposable after a small number of interferences have been removed.
This gives rise to the following definition.

Definition 4.2.3. A lattice L is called k-decomposable if

(1) after removal of T and 1, the lattice graph is k-connected in the
standard graph-theoretic sense;6

6A graph has connectivity k if the deletion of any k – 1 vertices fails to disconnect the graph

[Aho et al. 19831.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 171

(2)

(3)

Fig. 12. Horizontal lattice decomposition and a simple interference,

the k vertices x,, .xz, , x~ which disconnect the graph are in fima:
x, = a, A bi;

after removal of x,, Xz, . . , xk, the remaining disconnected subgraphs
L,, L2, ..., L,, are – after reattachment of T and L to each L, –
sublattices of L.

If there is a simple interference between two horizontal summands, the

lattice is l-decomposable (Figure 12). If there are k simple interferences
between summands, the lattice is k-decomposable. But there can be even
worse interferences between two sublattices.

Definition 4.2.4, An interference of connectivity k in lattice L consists of

h simple interferences, where ~ is k-connected, and removal of the interfer-

ences splits the lattice into only two sublattices.

Such k-interferences are more difficult to detect and to treat than simple

interferences (see Section 6).
Ideally, the lattice is horizontally decomposable (i.e., O-decomposable),

where the CPP symbols in each sublattice deal with the same configuration
aspect, e.g., operating system variants, while the CPP symbols in different
summands are orthogonal or disjoint. This guarantees high cohesion within
one sublattice and low coupling between orthogonal configuration concepts.
Paths which are glued together in their top or bottom sections are accept-
able, but cross arcs between orthogonal sublattices always indicate harmful
interference between configurations.

The notion of k-connectivity can be used to give an exact definition of
configuration coupling. This definition requires the notion of orthogonal
configuration aspects, which—as discussed above— may require human
judgment. Therefore the coupling factor cannot be computed automatically,
but this does not imply that the notion of ‘configuration coupling factor” is
useless or imprecise,

Definition 4.2.5. Two orthogonal configuration aspects have coupling
factor k, if

(1) the configuration lattice L is k-connected with horizontal summands
L1, L2,L~.

(2) for each L,, the CPP symbols in L, deal with the same configuration
aspect;

(3) the CPP symbols in two different summands L,, L, are orthogonal.

ACM Transactions on Software Engineering and Methodolo~, Vol. 5, No 2, April 1996

172 . Gregor Snelting

Flat lattices and horizontal sums are O-decomposable and hence interfer-
ence free; they are the optimal structures for configuration management
with respect to the configuration-coupling factor. Thus concept analysis not
only provides a detailed account of all dependencies, but can serve as a
quality assurance tool in order to check for good design of the configuration
structure, or to limit entropy increase as a software system evolves. Indeed,
we will see later that analysis of interferences in the RCS system reveals a
subtle UNIX bug.

5. THREE CASE STUDIES

We applied NORMRECS to several UNIX programs. NORA/RECS uses the
well-known Sugiyama algorithm [Sugiyama 1981] for graph layout. There
are special layout algorithms for concept lattices which are much more
clever (e.g., WiHe [1989a; 1989bl and Skorsky [19921); we plan to integrate
these in a future version.

As the layout results are not always satisfactory, the user may finally
change the graph layout manually (but the system will maintain integrity
of the concept lattice). Indeed, layouts in Figures 13, 14, and 16 are
manually improved.

5.1 Example 1: The RCS Stream Editor

Our first example is the stream editor from the RCS system “rcsedit.c.”
This 1656-line program uses 21 preprocessor symbols for configuration
management. Part of the source code and the configuration table of
“rcsedit.c” have been presented in Figure 6. Construction of the concept
lattice took 0.1 seconds on a Sparcstation 2.

The main window in Figure 13 displays the concept lattice, which has 33
concepts.7 There are some additional pop-up windows displaying the extent
of C27, the intent of C26, and the labels of C3. A piece of source code,
namely, lines 142 1–1430, is displayed in a separate window. All concept
labels are displayed below the picture.

First of all, the labels of top element C 1 consist of all code pieces not
governed by anything; in “rcsedit” these are quite numerous. There are no
unused CPP symbols, as the bottom element C33 has no labels (this, by the
way, is the reason why the bottom element has no name). In the left part of
the lattice, there are a lot of simple variants, which correspond to specific
UNIX features like “has_set_uid” or “has_readlink.” For example, C17
shows that “has_readlink” governs lines 1051–1094, 1123, and 1144–1148
(and no other) and that these lines are not governed by any other CPP
symbol. Hence for most of the source code, there is no coupling between

7The corresponding figure in Krone and Snelting [1994] was produced with the old version of
NORA/RECS which did not ignore “#define” statements. As explained in Section 3.1, the new
version ignores “#define” and “#undefine” statements. Hence, the old lattice in Krone and
Snelting [1994] had some additional “virtual” concepts and interferences. The central interfer-
ence is however still present, and the new lattice is a suborder of the old one. The same
remark applies to Figure 13.

ACM Transactions on Softwsre Engineering snd Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 173

Ic.+.+.“

.,, m-r
R

hlmt
if IhU_ron#m

m do-l fnk(frm. to) 1- 0 ~ –1 : un-link(frcm)

D

01se
C26 (baO_unllnkOR has_NFS) C3 has_renmO rma-m(frm, to) !- 0

has.NFS 1424-1424 # tf has_UFS

1428-1428 “ M errrm !- ENCENT

1432- 1432 end{f
? -?

mm ~m- *

if bad_&wmm
: mde t-mda.tif1n.rmmt ng P dmd(to. .

,,.-

C1.

C2

C3

cd

r5

1 164

169 179
210 210

236 252
41? 42?

48% 488
.7) 59B

654 65Q

bfib b6,

6,4 684
692 69,
6’35 70:
708 713
725 723
-31 731
,~. 749
753 154
’58 104’2
1096 1121
1128 1142
1150 1228
1234 1316

1322 1328
1?4- 13?0
13”J 1385

1396 1396

1401 1402
1406 1608
1419 - 1420
1434 1>43

1549 1656
has_setu:d

1547 1547
has_rename
1424 1424
1420 1428

1432 1432
bad_. _rename

1;94 1394

has_pr OtOtypes
12-5 1375

Fig. 13.

C6 ha s_mktemp
C19

1320 - 1320

1336 1345
C20

C7 Open_ can_creat
1232 1232

ro has_readlink

1125 1126
C9 has_setu, d

1545 1545

C21,

C22

C23
c24

Clo (has_rename OR bad_ b_renaMe)

1J1O 1417
C1l has_f chmod

c25
c26

1398 - 1399
1404 1404

C12 bad_a_rename
C27
C28

1387 1392
C13

C29
1430 - 1430

C14 has_prototypes
1372 1373

C15 h.as_mktemp

1318 1318

1330 - 1334

C30
C31

c16 open_ can_creat

1230 - 1230
C17 has_readlink

1051 1094
1123 1123
1144 1148

C18 large_memOry

254 - 254
277 400
490 490
608 652
661 661
693 693

c32

-15 715

729 72~
C33

751 751

Configuration structure of the RCS stream

has.memmove
258 275
has.memmove

256 256

has_NFS

!has_rename
1422 1422

213 213

(bad_ .”llnk OR has_NFSl
1s1 18s
208 208
206 206
bas_NFS
204 204
1426 1426
215 235
bad_unl, nk
190 193
198 201
195 196

large_ memOry
166 167

402 405
410 411

429 404

492 530

600 606
663 - 664
669 672
686 688
704 706
717 723

733 745

756 756
bad_ fopen_wplus

40~ 40B

editor

configurations. The concepts below C24/C 10/C21 (concerning networking)
form a grid-like cluster. For example, C26 and C29 display the lines solely
governed by “has_NFS,” respectively, “bad_unlink,” and C30 says that lines

ACMTransactions on Software Engineering and Methodology, Vol. 5, No 2, April 1996.

174 ● Gregor Snelting

195–196 are governed by both (the reader should compare these statements
to Figure 6).

But there is an interference manifest in C27, which is the infimum of C3
and C26. C3 is labeled “has_rename” (as can be seen in the “labels” box);
C26 is labeled “has_NFS”; and C27 is labeled 1426-1426. Thus, line 1426 is
governed by both “has_NFS” and “has_rename’’–this agrees with the
source code in the text window. “has_rename” has to do with the file
system, while ‘has_NFS” controls networking. As these should be orthogo-
nal, the interference is considered harmful. C30 presents a similar interfer-
ence. It seems that C13 is an interference as well, but as C 12 is labeled
“bad_a_rename,” both C12 and C3 have to do with the file system.

Thus, although the overall structure is quite good, we suspect that
networking issues and file access variants are not clearly separated in
“rcsedit.c.)’ And indeed, a comment in the source code explains that, due to
an NFS bug, %enarne()“ can in rare cases destroy the RCS file! This
problem has been rediscovered by concept analysis, just by analyzing the
configuration structure. The example demonstrates that NORNRECS can
track down bugs, even bugs which the programmers would like to keep
covered: the comment reads “An even rarer NFS bug can occur when clients
retry requests. . . . This not only wrongly deletes B’s lock; it removes the RCS
file! . . . Since this problem afflicts scads of UNIX programs, but is so rare
that nobody seems to be worried about it, we won’t worry either. ”

5.2 Example 2: The TC Shell

Our next example is a popular shell, the “tcsh” developed at Berkeley. We
have analyzed one of its modules, namely, “sh.exec.c.” This program is 959
lines long and uses 24 different preprocessor symbols for configuration
management. Construction of the concept lattice took 0.05 seconds on a
Sparcstation 2; the lattice has 21 elements. In the concept lattice (Figure
14), singleton attribute or object labels are displayed in the diagram; the
others can be looked up by clicking at a concept.

The almost flat lattice shows that there are several features of possible
configurations, which however can be selected independently. It seems that
there is an interference between concepts C14 and C 15. But a look at the
source code reveals that both VFORK and FASTHASH have to do with the
hash function used; hence there are no dependencies between orthogonal
configuration concepts. Therefore the configuration structure is perfect
according to the criteria described in Section 4.

5.3 Example 3: “xload.c”

Let us now come back to our introductory example, “xload.c” (see Figure 1).
This program is 724 lines long and uses 43 preprocessor symbols for
configuration management. Construction of the concept lattice took 0.3
seconds on a Sparcstation 2. The resulting lattice has 148 concepts and is
shown in Figure 15. It looks pretty chaotic —the program obviously suffers
from configuration hacking.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996

Reengineering of Configurations Based on Mathematical Concept Analysis . 175

❑ IIoSA-RECS ❑aw

w hxlml Opuma *

L@filcOselected

~

I w-iv’
Fig. 14. Configuration structure of tcshel[module “’sh. exec. c,”

Fig. 15. Configuration structure of “xload.c “

NORA/’RECS offers a parameter which controls the maximal nesting
depth of #ifdef statements taken into account. For a small value of this
parameter, many concepts and dependencies will disappear, but the overall

taxonomy of the configuration space is usually still visible.” For “xload,” the
lattice displaying only the top four “#ifdef” nesting levels is given in Figure
16. Even on the top level there are interferences– namely, C28 and
C32–and the central role of C30 does not inspire confidence (C28 is the

“In fact, the resulting lattice is a sublattice of the original one. The technique is reasonable, as
many programs use top-level “#ifde~ statements for important configuration alternatives.
whereas lower-level “#ifdef’ statements are used to control minor configuration details,

ACM Transactions on Software Engineering and Methorlrrlogy, V(II 5, No 2, April 1996

176 ● Gregor Snelting

! sVR4
! uTEK
! alliant
1 hcx
I sequent
1 sgi
! sun

c15 sequent
72 - 74
95 97

cl:

C2

C3:

C4 :

C5 ,

c6:

C7:

c8:
C9 ,

0-35
37 - 39
45 47 c16 AIXV3 OR CRAY

63 70
Cl? mips OR umivs

49 - 51
57 59
61 63
70 72
74 76
B5 - 87
89 91
93 95
97 - 99
101 103
109 111

570 - 709
564 - 510
! KERNELJ2AD_VAR1ARLE
401 - 449
455 - 466
! KERNEL .FILE

c18 mips
104 106

C19 .ltrix OR umips
59 - 61

C32:
C33,

C20 sun
51 - 53
56 - 57

C34:

C35

c36:

338 - 39i
! XXSN_FILE
334 - 336
X_AVENRUN
fxted
468 477
490 - 511
558 - 560

c21: ,386
53 - 56

C22 SYSV115 - 117
119 - 125
?23 - 724

C23 MOTOROLA
47 49

C24 , ! aPol10
184 - 185
714 - 723

SVR4 OR UTEK OR alliant
OR hcx OR sequent OR sgi OR sun
apollo
125 104

C37: ! macll
39 - 40
44 - 45C25 : ! SYSV

! SYSV386
271 - 272

X_NOT_POS 1X
117 119
(OSMAJORVERS 10t4- 4)
sonv

c38,

C39,
C40 :

40 - 41
43 44
41 - 43
477 - 483

713 - 714
c26 : ! KvN_ROUTINES

316 - 317
712 - 713

c27 : KW4_R0UT1NES
272 - 316

C28 , SYSV386
1S5 - 271

c29: ! LOADSTOB
C30: 332 - 334

103”- 104
10s - 109

511 - 547
560 - 562

C41,

C42,
317 - 332
att
35 - 37

Sgi
99 - 101
SVR4 OR UTEK OR alliant
SVR4

word
! ward
: n-type
n_type
FSCALE

KERNEL_FILE
624EM_F1LE
Vm_NANE
PROC_NANE
BUFJ4ANE

111 - 112
114 115

C1O FSCALE

336 - 33S
398 - 401
449 455
466 - 46S
483 - 490
547 558
562 - 564
709 - 712

112 - 114
Cll: MOTOROLA OR UTEK OR alliant
C12: 91 - 93
c13: hcx

87 - B9
C14 : macll

76 - 85
DECh3’

Fig. 16. Top-level configuration structure of “xload,c.”

infimum of C22 and C24, whereas C32 is the infimum of (72 and C30. C22 is
SYSV, and C24 is !apollo. C2 is SVR4 II UTEK II alliant II hex II sequent II sgi II
sun. C30 is a set of nine code pieces governed by the sundries SYSV386,
!LOADST(JB, and !KVM_ROUTINES). overall, the lattice consists of several

“standalone” configurations (C3, C4, C42, C26, C5, C6, C17, C18, C19), a
“SVR4 IIUTEK IIalliant IIhex IIsequent IIsgi IIsun” sublattice (concepts s
C2), and a “not macII, not apollo” sublattice (concepts s C24/C37). The top
element C 1 shows that several code pieces are configuration independent

ACMTransactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis . 177

(not governed by any CPP symbol), while the bottom element C43 shows
that several CPP symbols are defined, but not used for “#ifdef”-namely
those which are used for definition of constants or inline functions.

6. IJ4TTICE ANALYSIS AND INTERFERENCE DETECTION

Once the lattice has been constructed and laid out, the restructurer may
inspect it in an interactive manner. NORA/RECS offers the following
functions:

–for every concept c, its labels a(c) and W(C) can be displayed by a simple
mouse click;

–the source code pieces given in o(c) can be displayed;

–lattices can be horizontally decomposed (if possible);

—interferences of minimal connectivity can be computed and displayed (see
below);

—sublattices can be selected by clicking on their top or bottom elements;

—the intersection of sublattices can be displayed, which contains interfer-
ences (see below);

–lattice decompositions and corresponding source file simplifications can
be triggered (see below).

After analysis, the restructurer can execute the restructuring algorithms
described below. He or she may also manually restructure the source code
and repeat the analysis. Hence, NORA/TtECS supports an interactive and
incremental way of analyzing configuration structures.

6,1 Automatic Interference Detection

As explained above, interferences indicate coupling between configurations.
It is therefore of practical importance to detect interferences automatically.
In small lattices, interferences are easy to spot manually, but for big
lattices (e.g., Figure 15), tool support for lattice analysis is essential.

The interference analysis algorithm incorporated in NORWRECS tries to
horizontally decompose the lattice in such a way that connectivity is
minimal. Lattice decomposition is done in a top-down fashion: top-level
interferences between big sublattices are detected first, whereas minor
interferences will be detected very late. This helps for restructuring, as
interferences between big sublattices are more likely to indicate errors or
bad configuration structure. The sublattices can later be analyzed recur-
sively.

The algorithm for detecting interferences of minimal connectivity imple-
ments the definitions from Section 4.2. It proceeds as follows:

(1) Try a horizontal decomposition of the lattice. This is done by removing
the top and bottom elements and their outgoing edges; and then
determine the connected components of the (undirected) concept graph
by a standard algorithm [Aho et al. 19831. If successful, there are no

top-level interferences (connectivity k = O). Reattach top and bottom

ACM Transactions on Software Engineering and Methodology. Vol 5. No 2, April 1996.

178 ● Gregor Snelting

element to each sublattice, and apply the remaining steps recursively to
the sublattices.

(2) If a sublattice cannot be decomposed horizontally, it may contain
interferences. First, simple interferences of connectivity k = 1 are
investigated. These are detected by removing the top and bottom
elements, and then computing the bicormected components [Aho et al.
1983] of the remaining graph. A bridge between two biconnected
components which leads to a A-reducible concept node (that is, of the
form c = a A b) points to an interference. The node is highlighted.

(3) Often, there is more than one interference between sublattices. Thus
we compute the k-connected components of the lattice graph (without
top and bottom), where k is minimal. A simple method to determine
k-connected sublattices is to consider all sets of k A-reducible concept
nodes and test whether their removal will break the graph into uncon-
nected subgraphs.

As discussed above, only the restructurer can decide whether the inter-
ference must be resolved or whether it should be ignored. This decision
must be based on the semantics of the involved CPP symbols. If the
semantics is not documented, the lattice structure provides insight into the
extent and intent of configurations.

6.2 Determining Sublattice Intersections

NORA/RECS offers another approach to lattice analysis, namely, explicit
selection of sublattices through their maximal elements.

The restructurer may click at a number of concept nodes {cl, c.}, and
thereby select the downward suborder J {cl, c~} = {x I 3Z : x s Ci}
(the dual operation of selecting upward suborders is also supported).g The
downward suborder is then highlighted (or colored) on the screen. It
provides interesting information, as the code piece labels in J {c ~, ., . , c.}
are those which depend on the intent of one of the Ci. For example, selecting
the downward suborder ~ {apollo, AIX} in Figure 4 displays all code pieces
in the “apollo” or “AIX configurations.

Several downward sublattices may be selected this way, with each
highlighted in a different color.l” The intersection of such sublattices also
contains interferences; in fact, the maximal elements in the intersection of
two sublattices are interferences. These are, however, not necessarily of
minimal connectivity. But they are choosen by the restructurer, which may
be more appropriate,

6.3 Example: Analyzing “rcsedit.c”

The configuration lattice of the RCS stream editor was given in Figure 13.
After initial horizontal decomposition of the lattice, NORA/RECS immedi-

91fn=l, J{cl, ..., Cn} is a sublattice, but otherwise not all subsets of elements have a
.mpremum.
10Unfortunately, the current NORA version only supports black and white.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 179

Fig, 17. Automatic interference detection in a sublattice

ately detects two interferences with connectivity 1, namely, C27 and C 13
(Figure 17). Interestingly, C30 (which was criticized as a harmful interfer-
ence in Section 5.1) is not a top-level interference, as it is part of a grid-like
suborder (in fact, it is an interference of connectivity y 1 in the sublattice
C24/C26/C29/C30; according to the above algorithm, it will only be detected
after the k = 2-interference C25/C28 has been removed). On the other
hand, in Section 5.1 it was argued that C13 is not a harmful interference.
This example shows again that each proposed interference must be in-
spected manually and that interferences can be hidden in sublattices and
will only be detected after recursive application of the algorithm.

Should we schedule “rcsedit.c” for restructuring? Lattice analysis shows
that restructuring does not make much sense here, because the original
program already had a reasonable configuration structure. As the NFS bug
which causes the problem obviously cannot be fixed, there is little hope that
the interferences can be removed.

7. CODE SIMPLIFICATION

According to Parnas [1994], the first step in restructuring must be to
reduce the size of the program family. If the restructurer has some
knowledge about the old configuration structure and the meaning of the old
preprocessor symbols, he or she might conclude that certain configurations

ACM Transactions on Software Engineering and Methodology, k’ol 5, N{] 2, April 1996.

180 ● Gregor Snelting

1 1
sif bad-unlink

int
.n_link(s)

char const ●B;

P
. Remove S, even if ~t .s .nwritable.

● Ignore .nlznk() ENOENT failures, NM

‘/
{
,f bad_unl, nk

lnt e,

,f [..li.k(s) ‘- 0)
.eturn O;

e - errno,
if (chmod(s, S_lWUSR)
errno - e;
return -1,

endif
return unlink(s) ;

1
#endif

#if !has_rename
define do_llnk(s, t) lxnk(s, tl

generates bogus ones

-0)[

I

Fig. 18. Partial evaluation of “rcsedit.c” under context expression !defined(has_NFS).

(i.e., certain preprocessor settings) need no longer be supported. Hence the
corresponding code is irrelevant and should be discarded (this is called
“amputation” by Parnas). In particular, if certain preprocessor symbols are
no longer needed, code depending on them will never be included in any
restructured configuration and can be deleted. Such a simplification of the

source code is appropriate before more complicated restructuring takes
place.

In this section, we describe how amputation can be implemented via
partial evaluation of CPP files. The process is driven by the lattice, which
provides excellent insight into the possibilities and effects of an amputa-
tion.

7.1 Partial Evaluation of CPP Files Using NORA/lCE

Simplification of configurations relies on partial evaluation of CPP files, a
technique which will be sketched in this section. It is implemented in
NORA/ICE, a tool for incremental configuration management based on
feature logic [Zeller 1995; Zeller and Snelting 1995]. NORA/ICE offers –
among other features —partial evaluation of preprocessor files. It allows
one to simplify preprocessor files with respect to the information that
certain (combinations of) governing symbols will (or will not) be defined.
NORA/ICE will simplify governing expressions and delete code pieces or
preprocessor statements with respect to a given “context” expression, which
is assumed to be true. The ordinary preprocessor behavior is included as
the “limit case,” namely, that all preprocessor symbols have a known value.
NORNICE allows for arbitrary complex context expressions, including
those which introduce new symbols. Simplification is not just constant
folding, but is based on feature unification [Smolka 19921.

Partial evaluation will considerably reduce the size of the source file, if
several preprocessor symbols are known to be always defined or undefined.
Figure 18 gives an example of partial evaluation: the source code of

ACMTransactions on Software Engineering and Methodology, Vol. 5, No. Z, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 181

“rcsedit.c” (line 180~, see Figure 6) is simplified under the assumption that
“has_NFS” is always undefined. The code piece shrinks from 35 lines to 24
lines (the inner #if becomes redundant; thus it could shrink to 22 lines, but
NORA/ICE does not detect this).

7.2 The Art of Amputation

Generation of Source Code from Sublattices. Once a sublattice has been
determined – either by horizontal decomposition or by explicit selection – a
simplified source file corresponding to this sublattice can be created. This
works with every sublattice, but the restructurer should try to achieve high
cohesion and low coupling. Also, preprocessor symbols in the sublattice
should be orthogonal or disjoint from the rest of the lattice.

Source file simplification is done by partial evaluation of CPP files. Let
c={cl, c~, ..., Ck} be the concepts not in the sublattice and X = { x ~,
. . . . x,, } = U ~= 1 u~c,~ all their attribute labels. Then the source text is fed
to NORA/ICE, together with the context expression [~definedlx,), . . ,
~defined(x.)]. This removes all code pieces not in the configuration sub-
space and simplifies the governing expressions for the remaining code
pieces. 11 The resulting source code contains only preprocessor symbols
which appear in the sublattice.

Generation of Problematic Variants from Interferences. Once an inter-

ference has been determined, a special “problematic” variant can be gener-

ated. Let C = {cl, c~} be the concept nodes which constitute an

interference of connectivity k. C need not necessarily be an antichain; C
can be a suborder or even a sublattice. Let X = U:. ~ a(c’) be all attribute
symbols of C, and let W be the attribute symbols in ~ C. Then the source
text is fed to NORA/ICE, together with the context expression
[defined(a) I a ● W \ X] H I=defined(y) I y c A \ (W U X)]. This
creates a source text which contains exactly the configurations containing
the problematic code pieces. Such a specialized source file is useful for an
analysis of interferences on the source code level.

7.3 Example: Simplifying “xload.c”

Let us now apply amputation to “xload.c.” Figure 16 shows that there are
several configurations for rather uncommon machines. We decide to discard
the following configurations: apollo, X_ NON_ POSIX, sony, CRAY, mips,

umips, att, LOADSTUB, alliant, sequent, UTEK, hex, and sgi.12 Feeding the
source code with context expression “[!defined(apollo) && !defined(X_NOT
_Poslx) && . . && !defined(sgi)]” to NORA/ICE, a reduced source file with
540 source lines results. The corresponding concept lattice has 75 concepts,
which is still a lot, We therefore decide that we consider only configurations
where KVM.ROUTINES are not available (whatever they may do). This
results in a further reduction of the source file; it is now 490 lines long, and

! IActual]y it would be enough to undefine only the maximal elements of C
L~Thls is ‘n’ot to be understood as a recommendation to the authors Of “x.lmcl.cl”

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996

182 ● Gregor Snelting

❑ 140RA-REC9 !llm@l

brtmt Ia c“’-’%-’”””~ ‘2’’ss”0’’s’s’38”b
c16 : ! KERNEL_FILE

185 - 187
191 - 191
195 198
210 213

C41 : SYSV386
93 177

C42 : MOTOROLA
C43 :
C44
C45

c1 1-35
39 39
43 - 43
.47 48
57 - 58
69 70
74 77
83 - 83
87 - 91
482 490

C2 ! SYSV OR ! SYSV386
179 179
103 183

cl?
c18 SYSV

220 - 220
169 - 189
! KME3.F1 LE
181 - 181
X_NOT_POS 1X

c46 72 - 72
C47
c48 249 - 249
c49 , 207 207

C19 :
C20 :

C50 41 - 41
C51C21 :

85 - 85
SVR4

c52 :
c53 : mB8k
c54 : 246 - 246
C55 m68k
c56 243 - 243

C22
224 225 C23

C24
C25
c26

254 - 258
271 271
280 293
341 - 350
356 - 356

265 265
215 - 215
! FSCALE
80 BO

C57
C58 : 204 204
C59 : 201 - 201
c60 : WCI1

37 - 37
c61 : 202 - 286

c27

479 480 C28 :

C29

mac II

60 67
273 - 280

C3 SVR4 OR sun
C4 358 362
C5 STDC_ OR ! SVR4 295 314

352 - 352
365 368
193 - 193
A1XV3
50 55

319 - 319
325 - 339
354 354

c62 ! A1XV3
323 323

C6 MOTOROLA OR S3’SV
C7 : SVR4
C8

C30
C31
C32c9 ; sun

C1O KERNEL_ LOAD_VARIABLE
227 228
234 236
240 240

c63
c6AC33

C34 :
C35

238 - 238
sun
45 - 45
SYSV

C65 :
C66 :
c67 : 474 - 474
c6E , ! UOTfJROLA

317 - 317

252 252
C1l : ! LEG C36

C37
C38
C39
C40

C12 267 267
c13 : USG

261 - 262 c69 : 321 321
C70 : 371 - 400
c71 , 403 - 472

C14 hDUX 218 - 218
c15 hp90008800

231 231 C72

Fig. 19. Simplified xload.c with an interferene of connectivity 1.

the corresponding lattice has 72 concepts. The symmetric case that we
assume “defined(KVM_ROUTINES)” leads to a small source file with 16
configuration concepts and is not further investigated.

The 72-concept lattice is then subject to horizontal decomposition and
interference analysis (Figure 19). The lattice is horizontally decomposable
(see the C21 chain), which shows that X_NOT_POSIX (label of C21) does

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 183

not interfere with other configurations. There are three top-level interfer-
ences of connectivity k = 1, namely, C29, C33, and C61. Removal of each of

these would isolate C28, C32, respectively, C60 (macll, AIXV3, ! macll), but
leave the rest of the lattice unchanged and is therefore not further

investigated. Similarly, k = 2, respectively, k = 3, interferences do not
produce a “clean” lattice decomposition either.

We therefore decide to base further amputation on sublattice selection.
Obviously, many concepts are below C2, which is labeled !SYSV II
!SYSV386. We therefore produce a simplified source file which handles all
configurations except “System V“; this is based on the sublattice j {C2}.
According to Section 7.3, NORA/RECS collects the concept labels of the
maximal elements outside $ {C2}; these are C3, C28, C32, C60, and C21
with labels SVR4 IIsun, macll, AIXV3, !macll, and X_ NOT_ POSIX. NORA/
RECS then feeds the simplified source file to NORA/ICE, together with
context expression I~defined(SV R4), ~defined{sun ~, Tdefined(rnacII),
Tdefined(AIXV3), defined(macll), Tdefined[X_NOT_POSIX) 1. The result-
ing source File consists of 197 lines and can be installed on all non-System
V platforms {but not CRAY, etc., as these configurations have been ampu-
tated before).

8. SIMPLIFICATION BASED ON CONCEPT LAITICE ISOMORPHISMS

In this final section, we present an algorithm which simplifies governing

expressions by utilizing an isomorphism theorem from concept analysis. In
particular, disjunctions in governing expressions are eliminated. This is of
practical value, as disjunctions are very difficult to understand.

Definition 8.1. A lattice element c E L is called join-irreducible, if for
alla, b~L, a~c, and b < c it implies a v b < c. c is called
meet-irreducible, if for all a, b G L, a > c, and b > c itimplies a A b > c.

The join-irreducible elements of L are written J(L), and the meet-irreduc-
ible elements are written M(L).

The join-irreducible elements are those with only one outgoing downward
edge, and the meet-irreducible elements are those with only one outgoing
upward edge. It is not surprising that the lattice is generated by the
irreducible elements alone. The following isomorphism theorem resembles
a famous result by Birkhoff for distributive lattices.

THEOREM lWILLE 19821. Let L = (B(O, A, P), s) be a concept lattice.
Let X > J(L) and Y z M(L) be supersets of the join- (respectively,
meet-irreducible) elements of L. Then L ~ B(X, Y, s), In particular, L z
B(J(L), M(L), s) and L s B(L, L, s). ““

The latter isomorphism (which was already mentioned in Section 2.1)
means that a concept lattice reproduces itself. The first isomorphism means
that a concept lattice is generated by its join- (respectively, meet-irreduc-
ible) elements alone, if these are taken as objects (respectively, attributes].
(J(L). M(L), s) is called the reduced context; usually it is considerably
smaller than the original one. In general, any supersets of the irreducible

ACM Transactions on Software Engineering and MethodoloL~. Vol. 5. No. 2. April 1996

184 ● Gregor Snelting

elements generate the lattice, if used as objects (respectively, attributes);
the corresponding contexts are called partially reduced.

The isomorphism theorem can be used to generate a restructuring
proposal as follows. According to the theorem, the concept lattice corre-
sponding to the formal context C = (-Y(O), M(L), ~) is isomorphic to the
original lattice L –the meet-irreducible concepts are enough to “span” the
configuration space. Hence we can generate a new configuration table. This
restructured table has the same rows as the original one (the O in (Y(O),
i14(L), s). For each meet-irreducible concept, we choose one new preproces-
sor symbol (if a meet-irreducible concept already has an attribute label,
thie can be used instead of generating a new one); these are used as column
labels. The configuration table is then created according to the rule: for o ~
o, a E M(L)

{

true
7’[0, a] =

y(o) = p(a)

false otherwise.

This table generates a concept lattice which is isomorphic to the old one.
The new table is usually “leaner” than the original one, as it has fewer
columns.

From the new table, the new governing expressions are generated as
follows. Let a~(o) = {al, ..., a.} be the new CPP symbols governing o.
Then the new governing expression for o is #if defined(al) && . . . de-
fined. Hence the new governing expression contains only conjunctions,
which is a tremendous simplification.

Example 8.1. In order to visualize the above notions, consider the lattice
in Figure 4. The meet-irreducible elements are those labeled maxll, SYSV,
sun, sony, ultrix, i386, sequent, apollo, or CRAY. AIX however is the infimum
of sony and ultrix, hence not irreducible. This means that any code piece
governed by AIX is also governed by sony and ultrix, indicating that AIX is
redundant. Hence NORA/RECS proposes to remove all dependencies on AIX
and replace them by defined(sony) && defined(ultrix). All configurations are
kept intact: as sony and ultrix are probably disjoint,13 they could not be
defined simultaneously; hence defined(sony) && defined(ultrix) can safely be
used to replace AIX.

Example 8.2. Consider the second example in Figure 11 (repeated in
Figure 20). The meet-irreducible elements are those labeled DOS IIX_win,
UNIX II DOS, UNIX II X_win, and UNIX; these labels have been generated by
normalizing complex governing expressions. This allows us to rename the
A-irreducible elements and reconstruct a simpler configuration table from
the isomorphic lattice. We introduce three new preprocessor symbols,
named DX, UD, and UX, which stand for DOS II X_win, UNIX II DOS, UNIX II
X_win, respectively. According to the above theorem, the configuration table
in Figure 20 produces an isomorphic concept lattice. From the table, we

ls~member that Fi~re 4 is a fictitious example.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996

Reenglneering of Configurations Based on Mathematical Concept Analysis . 185

9]idef UNTX

illt(ff?fDOS -. *

1:
Cas!x

*, F ;“’x”m
Dx dD
~. ,*

Send, f * UNIXIIX_wl” > =4

!iL? de fined (DOS\ll I’*V b :x

de fined (X_win) @ . UNIX * ● UNIX

111. [1 ~ 1Iv n I1’,,

$$lfde: UNIX

Iv

*er,d>?

*,: .ieflned(UNIX)

(de flned(DOS)&&defined (X_wln))

nendlt

&

m UD Ux UNIX
x x x

x x
x

xx x 3

xx

#if defined && defined && de fined (UNIX)

.1 .,

#endlf

#~f defined .5&de flned(rJD)

,.
t?endif

#~fdef DX

111

#endif

#if defined b& defined && de fined (3NIX)

Iv

#endif

Slf defined .&Gde fined [ux)

v.,

#end, f

Fig. 20. Elimination of disjunctions from source cxdr

obtain the restructured source code, which is much easier to understand, as

it no longer contains any disjunctions. A human restructurer would have a

hard time transforming the governing expressions in a similar manner!

But note that the configuration consisting of code pieces 1, III, IV, and V

can no longer be selected. In the old source file, it could have been selected

by defining both UNIX and DOS. As these are disjoint preprocessor symbols,
the configuration need not be preserved. A computation of the configuration
functions of both source files shows that all other configurations can still be
selected in the simplified source code.

Thus by removing nonirreducible symbols, configurations can be lost, By
computing the configuration functions NORA/RECS can track down all
configurations which can no longer be selected and thus present them to
the user. If the user insists on a particular configuration, he or she may
again add attribute labels (CPP symbols) from the original lattice; the
restructured table will be extended accordingly. The generated lattice still
remains the same, as the theorem allows for arbitrary supersets of the
meet-irreducible elements. In the example, adding DOS again as a “guard”
to II allows us to select I, III, IV, and V; the source code is still considerably
simpler.

In general, all governing expressions are transformed into minimal
conjunctive normal form; furthermore, the lattice suggests the introduction

Ac~ ‘r~~~s[l~tlon,onSoftware Engineering and ,Methodology, Vol 5, No 2, Apr!l 1996.

186 ● Gregor Snelting

of new CPP symbols. But note that the structure of the lattice remains the
same; hence interferences are not really resolved.

Example 8,3. Once more, we apply the method also to “xload.c.” In the
simplified lattice of Figure 19, the meet-irreducible concepts are C2, C3,
C5, C6, C7, C9, C1O, Cll, C13, C14, C16, C20, C21, C22, C27, C28, C32,
C35, C36, C41, C42, C53, C55, C60, C62, and C68. All of the other
(meet-reducible) concepts except C15, C18, and C32 do not have attribute
labels; hence the potential for saving CPP symbols is very low. Indeed,
most of the governing expressions cannot be simplified.

This example shows once more that “xload” is a hard “nut to crack”: its
lattice cannot be decomposed, and its governing expressions cannot be
simplified. Future work must show whether even more powerful methods
(such as subdirect decomposition of the lattice) can reveal some structure
or whether “xload” must be blamed for irreparable configuration hacking.

9. CONCLUSION

We applied mathematical concept analysis in order to explore the configu-
ration space of existing software, NORALRECS not only displays all depen-
dencies between configurations (respectively, their features), but also al-
lows for simplifying governing expressions. Our preliminary experience can
be summarized as follows:

(1) Keeping track of all possible variants of a software system is important
and hard.

(2) Analyzing relationships among such variants is important as a prelude
to restructuring the code to enhance maintainability.

(3) The set of possible variants of a software system can be characterized
by the features of each variant.

(4) Concept lattices provide a theory of such variant spaces.

(5) Tools based on this theory are potentially useful for analyzing and
minimizing variant spaces, because they can express interesting, rele-
vant characteristics of various subsets of the variants, especially inclu-
sion relationships among them.

(6) Applying these tools in several case studies has produced evidence that
the analysis is useful.

(7) Efforts to use the theory as the basis for code restructuring has only
begun.

Thus, NORA/RECS is a useful tool for analysis of configurations; as a tool
for restructuring, it is still in its infancy. Future research must show
whether modularization can be achieved automatically. We will investigate
whether the theory of concept analysis can be utilized for restructuring;
subdirect decomposition of concept lattices [Wine 1983] looks particularly
promising.

As certain relations between “objects” and “attributes” occur all the time
in software engineering, concept analysis is potentially useful in other

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 187

kinds of maintenance activities. Besides configuration restructuring, we

consider the following applications of concept analysis:

Analysis of So ftuare Architectures. A software architecture is defined by
relations between components and hence can be subject to concept analysis.
This might also help for automatic modularization of old code. Note that in
contrast to other reengineering approaches, concept analysis is determinis-
tic and always allows one to reconstruct the raw data from the lattice. For
example, the approach of Schwanke [1991] is based on a similarity function
which contains several free parameters and therefore requires tuning.
Concept analysis does not use any heuristics and is more transparent.

So ftuare Component Retrieval. Imagine a library where components are
indexed by keywords. The relation between components and keywords can
be subject to concept analysis. The resulting lattice allows for incremental
narrowing of the set of still possible components and gives users feedback
about the still applicable keywords.

NORA/RECS is part of the inference-based software development envi-
ronment NORA.l’~ NORA aims at utilizing inference technology in software
tools and– besides NORA/RECS– covers the following topics:

–NORA/ICE (incremental configuration engine) offers configuration man-
agement based on feature logic [Zeller 1995; Zeller and Snelting 19951;

–NORA/HAMMR (highly adaptive multimethod retrieval) offers software
component retrieval based on deductive and lattice-theoretic techniques
[Fischer et al. 1995a; 1995b; Lindig 19951;

–NORA/HOML (higher-order module language) is a calculus for designing
reference architectures, which is based on Au-calculus with dependent
types IGrosch 19951.

NORA/RECS can be obtained through the WWW page of the software
technology group in Brunswick: http:llwww.cs.tu-bs. delsoftechl.

ACKNOWLEDGMENTS

Several persons contributed to NORA/RECS. Maren Krone detected how to
treat disjunctions and implemented the front end. Anke Lewien imple-
mented interactive restructuring. Christian Lindig implemented the graph
layouter and the concept lattice algorithm, and he conducted several
experiments. Martin Skorsky from the Darmstadt algebra group provided
many helpful comments. Andreas Zeller implemented the NORA graph
editor and developed NORA/ICE. Franz-Josef Grosch, Victor Pollara, and
three anonymous reviewers provided valuable comments on a preliminary
version of this article.

‘ ‘NOILA is a drama hy the Norwegian writer H. Ibsen. Hence. NORA is no real acronym.

ACM Transaction. on Software Engineering and Methodology, Vol. 5. No 2, April 1996.

188 ● Gregor Snelting

REFERENCES

AEIO,A., HOPCROFT, J., AND ULLMAN, J. 1983, Data Structures and Algorithms, 2nd ed.
Addison-Wesley, Reading, Mass.

BIRKHOFF,G. 1940. Lattice Theory, lsted. American Mathematical Society, Providence, R.I.
DAVRY, B. A. AND PRIESTLEY, H. A. 1990. Introduction to Lattices and Order, 2nd ed.

Cambridge University Press, Cambridge, England.
DUQUENNE,V. 1987. Contextual implications between attributes and some representation

properties for finite lattices. In Beitruge zur Begriffsanalyse, B. Ganter, R. Willie, and K.
Wolff, Eds. B. I. Wissenschaftsverlag, Berlin, 213-240.

ESTUBLIER, J. AND CASALLAS, R. 1994. The Adele configuration manager. In Trends in
Software. Vol. 2, Configuration Management, W. F. Tichy, Ed. John Wiley and Sons,
Chichester, England, 99-133,

FISCHER, B., KIEVERNAGEL,M., AND SNELTING,G. 1995a. Deduction-based software compo-
nent retrieval. In Working Notes of the ZJCAI-95 Workshop on Formal Approaches to Reuse

of Proofs, Plans, and Programs (Montreal, Canada).
FISCHER, B., KIEVERMAGEL,M., AND STRUCKMANN,W, 1995b. VCR: A VDM-based software

component retrieval tool. In Proceedings of the ICSE-17 Workshop on Formal Approaches to
Software Engineering (Seattle, Wash.).

GANTER, B. 1987. Algorithmen zur formalen Begriffsanalyse. In Beitrdge zur Begriffsanal-
yse, B. Ganter, R. Willie, and K. Wolff, Eds. B.I. Wissenschaftsverlag, Berlin, 241-254.

GANTER,B. 1995. Formal concept analysis–A subjective introduction. Mathematik-Bericht,
Technische Universitaet Dresden, Germany.

GANTER, B., WILLE, R., ANDWOLFF, K., Eds. 1987. Beitruge zur Begriffsanalyse. B.I. Wissen-
schaftsverlag, Berlin.

GROSCH, F.-J. 1995. No type stamps and no structure stamps–A fully applicative higher-
order module language. Informatik-Bericht, TU Braunschweig, May, Submitted for publica-
tion.

KRONE, M. 1993. Reverse engineering von konfigurationsstrukturen. Master’s thesis, Tech-
nical Univ. of Braunschweig, Germany. Sept. In German.

KRONE, M. AND SNELTING,G. 1994. On the inference of configuration structures from source
code. In lCSE-16 Proceedings of the 16th International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos, Calif., 49-57.

LEBLANG,D. B. 1994. The CM challenge: Configuration management that works. In Trends
in Software. Vol. 2, Configuration Management, W. F, Tichy, Ed. John Wiley and Sons,
Chichester, England, 1-37,

LINDIG, C. 1995. Concept-based component retrieval. In Working Notes of the ZJCAI-95
Workshop: Formal Approaches to the Reuse of Plans, Proofs, and Programs, J. Kohler, F.
Giunchiglia, C. Green, and C, Walther, Eds. 21-25.

MAHLER, A. 1994. Variants: Keeping things together and telling them apart. In Trends in
Software. Vol. 2, Configuration Management, W. F, Tichy, Ed. John Wiley and Sons,
Chichester, England, 39-69.

PARNAS, D. 1994. Software aging. In ICSE-16 Proceedings of the 16th International Confer-
ence on Software Engineering. IEEE Computer Society Press, Los Alamitos, Calif., 279-290.

SCHWANKK,R. W. 1991. An intelligent tool for reengineering software modularity. In
Proceedings of the 13th International Conference on Software Engineering. IEEE Computer
Society Press, Los Alamitos, Calif., 83-92.

SKORSKY,M. 1992. Endliche Verbaude–Diagramme und Eigenschaften. Ph.D. thesis, Dept.
of Mathematics, Technical Univ. of Darmstadt, Germany.

SMOLKA, G. 1992. Feature-constrained logics for unification grammars. J. Logic Program.
12, 51-87.

SUGIYAMA, K,, SHOKJIRO, T., mm TODA, M. 1981. Methods for visual understanding of
hierarchical system structures, IEEE Trans. Syst, Man Cybernet. 11, 2, 109-125.

TICHY, W. 1985, RCS–A system for version control. Softw. Pratt. Exper. 15, 7 (July),
637-654.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, April 1996.

Reengineering of Configurations Based on Mathematical Concept Analysis ● 189

TIcH\, W. 1988. Tools for software configuration management. In Proceedings of the 1st
International Workshop on Software Configuration Management, J. Winkler. Ed. Teubner
Verlag. Grassau, 1-20.

TICHY, W, F., Ed. 1994, Trends in Software. Vol. 2, Configuration Management. ,John Wiley
and Sons, Chichester, England.

VAN MKXHEi.EN, 1,, HAMPTON,J., MICHALSKI, R. S., AND THELTNS, P,, Eds. 1993. Categories
and Concepts, Academic Press, London.

W1],LK, R. 1982. Restructuring lattice theory: An approach based on hierarchies of concepts.
In ordere(i Sets, I. Rival, Ed. Reidel, 445-47o,

WILI~, R. 1983. Subdirect decomposition of concept lattices. Algebra Uniuersalis 17, 275-
28?

WILLE, R. 1989a. Geometric representation of concept lattices. In Conceptual and Numeri-
cal Analy.si,s ufData, O. Opitz, Ed, Springer-Verlag, Berlin, 239–255,

WI I.LE, R. 1989b. Lattices in data analysis: How to draw them with a computer. In
{’la.ss(ficat(orl Qd Related Methods of Data Analysis, H. H. Bock, Ed. North-Holland.
Amsterdam, 33-58.

WILLE, R. AND GANTER, B. 1993, Mathematische theorie der formalen begriffsanalyse.
Lecture notes, Dept. of Mathematics, Technical Univ. of Darmstadt, Germany.

ZELLW+,A. 1995, A unified version model for configuration management. In Proceedings of
the SIGSOFT .i’rd Symposium on the Foundations of So ftu,are Engineering. ACM, New York,
151-160.

ZELLR~, ,4. ~xn SNEL’I’lX(;, ~. 1995. Handling version sets through feature logic. In Proceed-
rng,s of’ thr .’lth European Software Engineering Conference, W. Schafer, Ed. Lecture Notes in
Computer Science, vol. 989. Springer-Verlag, Berlin, 191-204.

Received January 1995: revised August 1995; accepted February 1996

A(’M Transactlans on Saftware Engineering and Methodology, Vol 5, No 2. April 1996

