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Abstract

Separate compilation is an important tool for coping with design complexity in large

software projects. When done right it can also be used to create software libraries, thus

promoting code reuse. But separate compilation comes in various flavors and has many

facets: namespace management, linking, optimization, dependencies.

Many programming languages identify modular units with units of compilation, while

only a few extend this to permit hierarchies of language-level modules within individual

compilation units. When the number of compilation units is large, then it becomes increas-

ingly important that the mechanism of separate compilation itself can be used to control

namespaces.

The group model implemented in SML/NJ’s compilation manager CM provides the

necessary facilities to avoid unwanted interferences between unrelated parts of large pro-

grams. Compilation units are arranged into groups, and explicit export interfaces can be

used to control namespaces. When there are many groups, they can be organized into super-

groups, and so on, thus forming a hierarchical modular structure. CM provides automatic

dependency analysis, but automatic dependency analysis is NP-hard for general SML code.

We show two simple restrictions that avoid intractability.

To remove the penalties for efficiency usually incurred by modularization and separate

compilation, I designed an algorithm for automatic inline expansion across compilation

unit boundaries that works in the presence of higher-order functions and free variables; it

rearranges bindings and scopes as necessary to move non-expansive code from one module

to another. I describe—and implement—the algorithm as transformations on λ-calculus.

The inliner is efficient, robust, and practical enough for everyday use in the SML/NJ com-

piler. It preserves separate compilation and has been integrated with CM.

I briefly investigate macro systems as an alternative approach—driven by programmer

iii



directives—to achieve cross-module inlining and discuss a variety of problems that arise.

I show a solution to the problem of integrating macro systems with ML-style modules that

use long identifiers and show an implementation technique for reliable name resolution

during linking. But I also discover that other problems continue to impede large-scale

programming.
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Chapter 1

Introduction

The need to split programs into smaller pieces and to compile the resulting fragments sep-

arately arose from very practical considerations: machines were too small and compilers

were not efficient enough to handle large bodies of code at once. But the so-established

physical boundaries—when placed cleverly—can have a profoundly positive impact on

overall program structure. Separate compilation was soon adopted as a key element of

modern software engineering [Car97].

Divide-and-conquer. Abstraction and modularization are the “divide-and-conquer” of

software engineering. The ability to verify partial designs in isolation from each other en-

ables programmers to operate in teams. When hundreds, or even thousands, of people work

on the same body of code, it is important that individual pieces be well separated. Other-

wise, the need for communication between programmers with the purpose of coordinating

their individual tasks quickly gets out of hand.

To illustrate this point, let us assume that one person can handle programming tasks

with some limited number of subcomponents and their interdependencies. Now consider a

big software system that is several orders of magnitude larger in size. Ideally, we would hire
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just enough programmers so their individual task sizes add up to that of the big software

project. But if a component can potentially depend on any one of the other components in

the entire program, then each programmer still faces a problem comparable in size to that

of the whole project. This is much more than he or she could possibly handle. The worst

aspect of this situation is that it cannot be improved significantly—not even by hiring more

programmers.

One could argue that in reality a typical component only depends on a small number

of others. However, it is not enough to know that there are a few other modules that we

need to be aware of—we must know which of the many existing components those are.

Otherwise it is of no help that the dependency graph is sparse—we still must consider the

dense graph of potential dependencies.

Modularization is of great help, even in single-person projects, because it provides a

way of serializing the work. The programmer can focus efforts on one part without having

to worry about too many possible implications for others.

Type checking and interfaces. Type systems are compile-time decidable formal systems

that can track inter-module dependencies. With type-safe linking, the programmer will be

notified of any existing incompatibilities at the time the pieces that have been compiled

separately are patched together to form an executable program. But that is often much too

late; during development it is important to detect problems early, because then there will

be less work that needs to be revised or redone.

Explicit interfaces are a way of writing down where and how modules can depend on

each other. Thus, they can cut the graph of potential dependencies from dense to sparse.

Adherence to the constraints laid out in interface definitions can be verified at compile time,

which saves precious development time.
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The need for separate compilation. However, abstraction, modularization, and separate

design do not necessarily imply a need for separate code generation. Computers have be-

come much faster and much bigger in terms of storage capacity. Many tasks that were

previously infeasible even on large mainframes can now easily be accomplished by per-

sonal computers or desktop workstations. Of course, programs themselves have also grown

proportionally with the increased power of the computers on which they run. Thus, sepa-

rate compilation, including separate code generation, is still important for simple practical

reasons.

But these considerations are not the only motivations. Another advantage of separate

code generation is the ability to reuse executable code. Over time many useful algorithms

and data structures have been packaged and put into libraries, so they can be used un-

changed as part of different projects. As an alternative, libraries could store source code,

but then the effort of compiling individual components would have to be duplicated every

time such components are used. However, potential gains in efficiency of the resulting code

rarely justify significantly increased time and space requirements incurred by repeated re-

compilation. Also, in many cases, software vendors are reluctant to ship source instead of

compiled versions of their products.

Code sharing can be seen as an extreme case of code reuse. In multitasking environ-

ments it is possible for two or more programs to physically share the code of common

components—even at runtime. But unless all these programs are compiled together, it

will then be necessary for the code in shared components to be generated separately. It

is also possible to generate code for certain parts of a program that is already running.

Runtime code generation sometimes improves efficiency because information that only be-

comes available at runtime can be used for optimizations. Specialized versions of a critical

portion often help to boost overall performance [Kep91, LL96].
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1.1 Hierarchical modularity

We have seen how important it is for parts of large programs to be well separated. But since

the pieces of the program must be able to address each other, a form of naming is required.

Unfortunately, the common practice of using one global namespace for this purpose un-

dermines the original goal of separation. The names inhabiting the global namespace can

clash, and the potential of name clashes creates new non-modular dependencies between

software components.

Names are needed when one program component wants to refer to something defined by

another. I call such components related. Certainly, the programmer of the first component

must have been aware of the existence of the second, otherwise he or she would not have

wished to refer to a definition therein. Therefore, it is relatively easy to coordinate the

development of related components because name clashes will be detected early in the

development cycle. Furthermore, the occasional conflict can be resolved where it occurs.

It does not require modifications to unrelated components.

On the other hand, the potential of clashes between unrelated modules is much more

serious. Sometimes one simply cannot use the libraries sold by two different vendors, even

though they are not conceptually connected and are used for different purposes in unrelated

parts of the program.

Many library designers try to minimize the danger of name clashes by prefixing all

names exported by their libraries. But since we do not have a central authority that governs

the choice of such prefixes, there is no guarantee that the prefixes themselves will not clash.

If two C libraries export two different definitions under the same name, then there will be a

link-time error. In general, the conflict must be resolved by modifying one of the libraries.

Thus, an unfortunate choice of names by the library vendor will be detected by its customer

only much later, at a time when it is often too late to fix the problem. Even when the entire
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source code for all libraries is available, it can be a challenging problem to resolve all

naming conflicts [FBB+97, section 4.7.2].

The C programming language [Ans90] gives us a distinction between “external” and

“static” (meaning “non-external”) names. Block-structure extends this to permit many lev-

els of “non-external” names. But there should also be many levels for being “external”

because groups of separately compiled components often need to share among themselves

without also sharing with the rest of the world.

1.2 The compilation manager CM

In order to address and solve these problems, I introduce groups as a way of structuring

large software systems. Groups were implemented in CM, the compilation manager for

Standard ML of New Jersey [AM91]. Chapter 2 provides an overview of CM; chapter 3

rationalizes the idea of groups and gives a formal development.

The purpose of CM is comparable to that of other compilation and configuration man-

agers. Examples are make [Fel79], Odin [Cle94], the System Modelling language of Mesa

and Cedar [MMS79, LS83b, LS83a, SZH85]1, and Vesta [LM93, HL93, CL93].

Group descriptions play the same role for CM that system models play for Vesta and

makefiles play for make.

The most important new aspect of CM and its configuration languages is the way it sup-

plements the underlying programming language. This language—Standard ML [MTH90,

MTHM97]—has very powerful means of controlling scope within compilation units. CM

extends this to control the scope of names that are used for the communication between

compilation units. As I will explain in chapter 3, the result of this combination, the CM

1It is a coincidence that this language was also called SML; Cedar’s SML and the programming language
known as SML are unrelated.
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group model, has very desirable properties for the construction of large software systems

because it eliminates the single global namespace and its associated potential for non-

modular name conflicts.

CM should be viewed as a modest extension of SML. SML and CM are tightly cou-

pled, and this tight coupling makes it possible to keep the configuration language very

simple. CM is convenient to use because automatic dependency analysis avoids the need

for extensive hand-crafted specifications.

Of course, all this comes at a cost. CM inherently depends on SML, although it would

be possible to adapt the same ideas to other languages as well. Therefore, the benefits of hi-

erarchical modularity and automatic dependency analysis do not directly carry over to other

languages. CM’s extensible toolbox can accomodate a variety of other language proces-

sors, but those are mere add-ons that are not integrated with the sophisticated management

of SML code.

CM is predated by the “Incremental Recompilation Manager” [HLPR94b], which later

became known as SC [HLPR94a]. IRM and SC were first to take advantage of SML/NJ’s

visible compiler interface with its support for cutoff recompilation. But the group model

implemented by SC lacked explicit export filters and provided only rudimentary support for

libraries and hierarchical modularity. A solution to the problem with global namespaces,

based on link-time renaming of identifiers, has been reported for Vulcan, an experimental

Modula-2+ programming environmant that was developed as part of Vesta [BE93].

The CM software constitutes an important practical contribution of my work. Ever

since it was first introduced, its users have often praised the advantages for program devel-

opment and maintenance. Meanwhile, CM has become an integral part of SML/NJ [Blu95].

Cutoff recompilation. The main service offered by CM (or any other compilation man-

ager) is a mechanism to establish consistency between sources and derived objects. CM’s
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most important derived object is the binfile. Binfiles are the result of compiling SML com-

pilation units. Such compilation units almost always depend on several other compilation

units. A binfile consists of two parts: executable code and a static environment. The static

environment plays the role of a symbol table that records type information for definitions

exported by the compilation unit.

If b.sml depends on a.sml, then the compiler must take into account the static envi-

ronment recorded in a.sml.bin to be able to produce the binfile b.sml.bin. There-

fore, whenever the static environment in a.sml.bin changes, b.sml must also be re-

compiled.

Make safely approximates this by recompiling b.sml every time a.sml gets recom-

piled. However, such an approach can be overly pessimistic. Deep dependency graphs,

as occur frequently in SML programs, lead to many unnecessary recompilations. As long

as the static environment in a.sml.bin stays unaltered, recompiling a.sml does not

require subsequent recompilation of b.sml. Cutoff recompilation [ATW94], which is the

strategy used by CM, takes advantage of this observation. For efficiency, instead of com-

paring entire static environments, CM only compares relatively small fingerprints. (The

fingerprints are based on CRC polynomials [Bro93].) Gunter explains how to deal with the

extremely unlikely case of error due to imperfections of this technique [Gun96].

1.3 Automatic dependency analysis

The order of compilation matters for ML programs. CM provides automatic dependency

analysis, thereby maintaining the illusion of unordered source collections. This signifi-

cantly simplifies the task of writing group descriptions. Automatic dependency analysis

makes CM easier to use and therefore more attractive as a tool.

Most other compilation and configuration management tools do not provide automatic
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dependency analysis but require the programmer to specify dependencies explicitly. Since

dependency information is usually coded in some specification language, one can imagine

adding dependency analysis using an auxiliary program that calculates and generates spec-

ifications. Examples of this are the imake and makedepend tools that generate input for

make from C source code [DuB96].

In the case of make, this idea works most of the time, but only because programmers

usually disregard the fact that the entire recompilation process depends on the specification

of dependencies. Had this been spelled out, then every derived object would technically

depend on the makefile, which in turn depends on all sources. Any modification at all

would then require the entire system to be rebuilt from scratch.

At the heart of the problem is the bundling of information; the makefile serves as a sin-

gular bottleneck in the dependency graph. A similar effect occurs when certain operations

only use part of the information available to them. We have already seen an example of this

when cutoff recompilation was discussed.

The same problem has been identified in the context of Vesta [LM93]. Vesta is based

on immutable objects; every modification to a source produces a new source. This model

works well with the Vesta configuration language [HL93], which describes dependencies

in declarative style. A sophisticated caching system avoids recompilation where possible.

The cache persistently remembers results of function calls. If the same function is later

called with the same arguments, they can be found and re-used. However, not every change

to an argument of an operation causes a corresponding change in the result. This can lead

to false dependencies and spurious recompilations. Abadi, Lampson and Lévy developed

a mechanism for finding those parts of an expression that contribute to its value [ALL96].

Such a mechanism can be used to alleviate the problem.
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Dependency analysis for ML. In ML, each top-level definition implicitly starts a new

nested scope. Thus, an existing definition does not preclude subsequent redefinitions of

the same name. And yet, it is guaranteed that later definitions cannot affect earlier uses.

Consider the following code:

val a = 1
val x = a
val f = fn () => a

Later, in a different section of the program one can “recycle” the name a by giving it a new

definition for a new purpose:

val a = "hello, world"

Normally, we expect x not to be affected by this; x still evaluates to 1 as before. Function

f was also defined in terms of a, and certainly it should still refer to the old definition, as

is the case in SML. Other languages, notably Scheme [Ce91], behave differently.

If the body of f would refer to the new definition of a, then the variable f would also

represent a new value, in this case even with a different type. Previous uses of f might be

incompatible with (or at least affected by) such a change.

SML’s behavior avoids these complications. But it means that rearranging the order

of source files amounts to rearranging name visibility and scopes. The following code

ultimately binds x to 1:

(* 1 *) val a = 1
(* 2 *) val x = a
(* 3 *) val a = 2

But if one rearranges the definitions by exchanging lines 2 and 3, then x, like a, will be

bound to 2. In ML it does not matter whether bindings appear on consecutive lines or in

separate sources files.

Dependency analysis must find an ordering that is feasible and unique. By definition, a

feasible ordering allows the program to be compiled successfully. The uniqueness require-
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ment means that no other ordering should be feasible. Otherwise there would be a danger

of several different meanings for the same program.

Moreover, dependency analysis should also identify sources that do not depend on each

other. This can help minimizing the work that is necessary when source code was modified;

only files affected by a change will have to be recompiled.

In chapter 4 I show that some features of SML make dependency analysis hard. More

than one source file can define the same symbol, and a named structure can be “opened,”

thus introducing bindings for all its members into the current scope, even though none of

the newly bound names are lexically apparent. Dependency analysis is tractable if multiple

top-level definitions for the same symbol are ruled out. But if one were to enforce this rule

globally, then a definition in one part of the program would prevent definitions for the same

name in other, unrelated parts.

It is important to CM’s group model that such restrictions be only applied locally, be-

cause otherwise they would inhibit modularity (→ Chapter 3). Therefore, redefinitions are

tolerated if the original definition was imported from a subgroup or a library. But such

leniency causes new problems when naı̈vely combined with SML’s open construct, which

makes all definitions of a named module directly available in the current scope. In sec-

tion 4.2, I show that certain uses of open can make dependency analysis NP-hard.

Other languages, for example C [KR88] and Ada [Ada80], do not exhibit such problems

because they use a different model for separate compilation and require globally unique

names.

A C object file (.o) depends on its source file (.c) and on other files that are included

via preprocessor directives (#include). Therefore, one must calculate the transitive clo-

sure of the “#include” relation to find dependencies for each object. In this case it is not

even relevant that C, unlike ML, does not permit multiple top-level definitions for the same

name.
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An Ada compilation unit depends on other compilation units only if they are named

explicitly. Furthermore, names for compilation units are globally unique. Consequently,

there is no potential for ambiguities.

In the case of ML, problems arise because one can freely refer to identifiers declared in

other compilation units without having to say explicitly where the name is imported from.

When combined with open, it can become difficult to determine the definition correspond-

ing to a given use of an identifier. Consider:

(* 1 *) val x = 1
(* 2 *) structure A = struct
(* 3 *) val x = 2
(* 4 *) end
(* 5 *) open B
(* 6 *) open A
(* 7 *) val y = x

Depending on the contents of structure B, variable x that is mentioned on line 7 could refer

to line 1, to line 3, a member of structure B, or even a member of some structure B.A.

C lacks a language construct like open, and Ada’s use is unable to override earlier

definitions. Under these rules, regardless of B’s contents, line 7 would always refer to the

definition of x on line 1.

ML’s approach to separate compilation is more flexible, hence harder to analyze. How-

ever, I proposed and implemented two simple restrictions that solve problems with the

complexity of dependency analysis. These restrictions fit well into CM’s group model and

have been found to be entirely reasonable in practice.

1.4 Cross-module optimization

Parnas [Par72] describes the importance of good modularization. He was the first to recog-

nize that programs should be divided along lines of abstraction and not at phase boundaries.
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The timeline of a program’s execution does not serve well as a guide for determining how

it should be structured.

But if we do not divide at phase boundaries, then at runtime there will be many more

cross-module function calls. Therefore, when paired with abstraction, separate compila-

tion often incurs large performance penalties. Information hiding helps in the process of

software design, but at the same time it can inhibit useful optimization because certain

optimizations only work when coordinated across compilation-unit boundaries.

Cross-module optimization is the attempt to circumvent barriers erected for the purpose

of modular design, in order to produce more efficient code. Abstract interfaces are “bot-

tlenecks,” which reduce the amount of reasoning needed to understand the meaning of a

program and to convince ourselves of its correctness. But eventually we want the compiler

to “widen” such bottlenecks in order to be able to generate faster executables.

As an extreme measure, one could verify each of the individual components of a pro-

gram separately, but later remove abstraction boundaries and compile everything as one

single large piece. The result is separate type checking, but no separate code generation.

In many cases that would not be a viable option. Slightly less aggressive approaches defer

important parts of optimization and code-generation until link-time [Fer95b, Fer95a]. In

effect, this is a very similar approach, but at least it performs some of the compilation steps

early: parsing, type-checking, and intramodular optimizations.

I developed λ-splitting as a technique for automatic cross-module optimizations that is

able to treat free variables, nested scopes, higher-order functions, and link-time side effects

from module-level initialization code. The automatic cross-module inlining schemes used

to date [DH88, CHT91, CMCH92] were unable to do so, or they failed to preserve efficient

separate compilation [Sch77, CHT91].
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Example: Abstract data types. The symbol type of a compiler is a good showcase

example for abstract data types. Appel [App97] uses a definition close to the following:

signature SYMBOL =
sig
type symbol
val name : symbol -> name
val eq : symbol * symbol -> bool
val symbol : string -> symbol
...

end

The idea is that symbols act as representatives of their corresponding name string. How-

ever, implementations of type symbol may decide to provide additional features, such as

very fast comparison for the purpose of speeding up frequent lookup operations in symbol

tables.

Therefore, a realization of type symbol could be:

structure Symbol :> SYMBOL =
struct
type symbol = string * int
fun name (s, n) = s
fun eq ((s1, n1), (s2, n2)) = (n1 = n2)
fun symbol n = . . .
...

end

Under this implementation the function called name is equivalent to a simple field selection

operator. If we expect that name will be invoked frequently, then inline-expanding such

function calls can save a lot by removing the associated overhead.

Function eq is another example where inline-expanding function invocations can sig-

nificantly improve running time. In general, we want to remove the overhead of frequent

calls to small functions. On average it is less important to do the same for large functions

because the relative overhead will be smaller and it is likely that they are called less often.

(See Appel’s discussion of leaf procedures [App97, page 121].)
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But abstraction, modularization, and separate compilation usually means that all func-

tions must be called via a generic function call protocol. Furthermore, the abstract interface

does not reveal which functions are large and which ones are small. The solution to these

problems is cross-module inlining, which is able to automatically bypass abstraction and

modularization during code generation without sacrificing their benefits for software engi-

neering.

Example: Datatype representation. The following problem prompted my work on cross-

module optimization [App93]:

In SML one can define algebraic types in signatures without being fully specific about

their components. For example, one can say:

signature S = sig
type t
datatype l = NIL | CONS of t

end

Such an interface specification must then match corresponding structures with arbitrary

choices of type t. In particular, it should be compatible with structure A defined as:

structure A = struct
datatype l = NIL | CONS of int * l
type t = int * l
. . .

end

Note that this type l is very similar to SML’s predefined list type. Figure 1.1 shows

how one would like to represent such lists in memory. The compiler has significantly

less knowledge about type l when it compiles the signature. But it must make decisions

about how to represent values of type l. These decisions can be based only on information

available in every part of the program that is sensitive to l’s representation.

One implementation strategy for representing values whose type is unknown is to fully

“box” them—to make them fit into one single machine word. Cartesian products, for ex-
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1

2
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Figure 1.1: Efficient representation of lists. One would like to represent each element of an
integer list as a box containing the integer and a pointer to the next box. Some immediate value
distinguishable from all pointers serves as empty list NIL. This figure shows the pointer diagram
for CONS(1,CONS(2,CONS(3,NIL))).

t

Figure 1.2: Representing values of abstract type. If the type of the value carried by a datatype
constructor is left abstract, then it becomes necessary to make conservative assumptions about its
runtime representation. One commonly used strategy is to “fully box” values of abstract types. They
must fit into one single machine word. This figure shows a pointer diagram for CONS(x), where
the type of x is left abstract.

1

2

3

Figure 1.3: Inefficient list representation. Actual representations must be compatible
with every conservative assumption that the compiler might make about them. Therefore,
in order to match the representation shown in figure 1.2, one would have to implement
CONS(1,CONS(2,CONS(3,NIL))) using double indirections.
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ample, would have to be heap-allocated, so a pointer to the heap-record can serve as their

boxed representation. If S is part of the interface of a generic module (a “functor”), then

the code in such a module would expect values of type t to be boxed, because one needs

to know the representation of constructor X.CONS, but type t in signature S is unknown

(→ Figure 1.2):

functor F (X: S) = struct
fun f (X.NIL) = NONE
| f (X.CONS x) = SOME x

. . .
end

Since the functor could potentially be applied to structure A, the representation of A.CONS

must match that of X.CONS. This means that there will have to be an extra indirection

in its representation. It cannot be implemented as a flat record containing just an integer

and a pointer to the next element, because int * l must fit in a single machine word

(→ Figure 1.3).

But this argument also applies to one of the most pervasive types in ML programs: ’a

list. The formal functor parameter in:

functor L (type ’a t
datatype ’a list = nil

| :: of ’a t) =
struct

. . .
end

must match the built-in list type, as available from structure List:

structure X = L (open List type ’a t = ’a * ’a list);

Even if no one ever writes the functor, the mere potential for such a functor to be written

implies that all lists must use an extra indirection. But this is not tolerable, because it incurs

at least 50% space overhead and doubles the number of memory accesses when traversing

a list.
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Therefore, all implementors of ML have used the efficient representation for lists any-

way, thus compromising the completeness of their implementation, as they were not able

to compile code that contained and applied a functor like L. It has only very rarely been the

case that users of the compiler were negatively affected by this choice, but these cases did

occur.

However, there are many more tricks of how to cleverly optimize the representation of

datatypes. The more such tricks are employed, the more likely it becomes for real programs

to run into problems with representations that do not match.

These difficulties can be solved using even more abstraction, but that solution can only

be practical if efficient cross-module optimizations can eliminate the associated run-time

overhead.

More abstraction: Abstractions, such as type t in the examples above, make code gen-

eration difficult. Surprisingly, the situation can be improved by being even more abstract.

Type l is represented using three functions: two for construction and one for a combina-

tion of pattern matching and deconstruction [HS97]. Signature S will then be treated as if

it looked like this:

signature S = sig
type l
type t
val NIL: unit -> l
val CONS: t -> l
val NIL’CONS’match:

l * (unit -> ’r) * (t -> ’r) -> ’r
end

Furthermore, functor F will be compiled as:
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functor F (X: S) = struct
fun f z =
X.NIL’CONS’match (z,
fn () => NONE,
fn x => SOME x)

. . .
end

The representation of values of type l is now completely encapsulated in NIL, CONS, and

NIL’CONS’match; no other part of the program needs to know. Therefore, it can be

chosen arbitrarily at the time the datatype is defined.

But the resulting code seems to be even less efficient. Every constructor and every

pattern match has been replaced by a function call. Therefore, such a solution must rely on

techniques to eliminate function calls wherever possible. Inlining is such a technique. And

since it is common for datatypes to be defined in separate modules it is necessary to have

efficient cross-module inlining.

Of course, abstract datatypes and type representation are not the only examples that

justify the need for cross-module optimizations. A technique that is capable of inline-

expanding small functions defined in one module when they are used in another can re-

move many inefficiencies incurred by abstract design and modularization. The advantages

abstraction can have for software engineering are clear; one must eliminate the disadvan-

tages.

λ-splitting. Chapter 5 of this dissertation presents λ-splitting as a technique for automatic

cross-module inlining. The approach does not rely on some new kind of optimizer that

is capable of reaching beyond module boundaries. Instead, it leverages the power of an

existing intramodular optimizer.

The λ-splitting transformation transparently moves the boundaries between compila-

tion units—hoping they will then no longer play the role of the narrow “bottleneck” that,
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for the purpose of improving separate design and testing, they were designed to be.

The intermediate representation underlying λ-splitting is a λ-calculus with records. λ-

calculus [Chu41] serves as a powerful language for expressing program transformations. It

is a well-studied formal system with known properties. That was of great help when we

developed our technique.

The SML/NJ compiler translates the code of each compilation unit into a closed λ-

expression [AM94]. Being able to work with closed expressions allows for a highly mod-

ular design of λ-splitting itself. There is no need to consult external symbol tables. Subse-

quent compiler passes are easily interfaced by passing well-formed, closed λ-expressions

to them. Thus, extensive modifications to other phases of the existing compiler were un-

necessary.

1.5 Macro systems

A macro system can be used as a programmer-controlled tool for forced inline-expansion.

As such, it represents an alternative approach to optimization. But macros can also be

used as a meta-programming tool. The application of macros in meta-programming has

been most popular in languages of the Lisp-family and renewed its appeal when Scheme’s

“hygienic” macro systems were developed [Ce91, Koh86, BR88, Han91, CR91, Dyb92].

Traditional macros create problems by violating the rules of the language they are ex-

tending. This can happen at many different levels, ranging from failure to respect the

integrity of tokens or expressions up to name clashes due to inadvertent name captures.

Hygienic macro systems systematically rename identifiers throughout the entire pro-

gram. They maintain information about the syntactic role (free, bound, or binding occur-

rence) of each name introduced by a macro expansion. This enables them to correctly relate

variables to their respective bindings and to avoid name clashes.
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But existing solutions did not address the problem of separate compilation and linking.

Moreover, they were not developed for statically typed languages or for languages that have

nested modules whose components are accessed using long identifiers. Long identifiers are

sequences of ordinary identifiers corresponding to names of nested modules. In many

programming languages they are written using a dot-notation. (For example, A.B.xmight

refer to the definition of x in module B, where module B itself is defined in module A.)

The most serious deficiency of macro systems, however, is that they can be used to

create obscure binding constructs or to alter the behavior of existing ones. The impact

on scoping rules is confusing both to automated analyses and to the human reader who is

trying to make sense of some piece of code.

Chapter 6 starts with an overview of problems associated with macro systems and re-

views existing solutions to some of them. It then presents a refinement of an algorithm for

hygienic macro expansion that lets macros and modules coexist. The same algorithm can

be adapted to facilitate correct name resolution during separate compilation and linking.

Nevertheless, I conclude that macro systems as powerful as the ones in existence should

not be recommended for use in large-scale programming because they continue to have

serious problems in essential areas:

• Macro systems are untyped. Type errors will not be detected until macros are instan-

tiated. But then it can be too late to fix the problem.

• Hygienic macro systems facilitate recursive macros that do not guarantee termination

of the expansion process. But macros must be expanded by compilers and analysis

tools where potential non-termination is not acceptable.

• Dependency analysis in the style of CM is complicated for languages with macros.

Even if all macros could be expanded in constant time, dependency analysis would

still be NP-complete.
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1.6 Contributions

The contributions of this dissertation are the following:

• Design and implementation of CM, the compilation manager of SML/NJ, as a prac-

tical tool for managing large software projects (→ Chapter 2).

• An investigation of problems with modularity caused by the use of global name-

spaces. I develop the group model—a model that does not rely on a global name-

space while providing the facilities for controlling name visibility in a hierarchical

fashion. The implementation of the group model in CM results in a system where

non-modular restrictions on definability of names or availability of definitions can be

eliminated effectively. Such restrictions used to be typical for other separate compi-

lation and linking mechanisms (→ Chapter 3).

• A discussion of automatic dependency analyses for SML and their asymptotic com-

plexities. I prove the general problem NP-complete and give two simple language

restrictions that avoid the problem with intractability. Automatic dependency analy-

sis has been implemented as part of CM (→ Chapter 4).

• λ-splitting as a technique for automatic cross-module inline expansion and optimiza-

tion. The technique was designed and implemented as manipulations of programs

expressed in λ-calculus. It is capable of correctly dealing with free variables, nested

scopes, higher-order functions, and link-time side effects (→ Chapter 5).

• A discussion of hygienic macros and their relationship with module systems and sep-

arate compilation. I show that hygienic macro systems are not capable of expressing

ML-style modules and long identifiers. But a modification to an existing algorithm

allows macros and modules to coexist. Unlike its predecessors, my algorithm also
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supports separate compilation. The presentation is concluded by pointing out areas

where problems for macro systems continue to persist: types, dependency analysis,

and termination (→ Chapter 6).
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Chapter 2

The design of CM

CM is the compilation manager for Standard ML of New Jersey [MTH90, AM91]. It is

loosely based on its precursor SC [HLPR94b, HLPR94a] and provides functionality similar

to the well-known UNIX program make [Fel79].

CM simplifies the maintenance of large software systems by subdividing them into

a hierarchy of groups. Groups can play the role of software libraries. They consist of

individual SML source files and can refer to other groups or other libraries.

CM is tailored to the language SML. It provides automatic dependency analysis and

cutoff recompilation. This contrasts with general-purpose compilation management tools

such as make and Odin [Cle94], which target a broader variety of languages and systems,

and which, therefore, can only offer services that are equally applicable to all of them.

By using the hooks provided by SML/NJ’s “visible compiler” [AM94] CM translates

SML sources to produce binary object files called binfiles. But SML source files themselves

can be the result of executing other programs. This is accounted for by CM’s “tools”

mechanism. The version control system RCS, the parser-generator ML-Yacc, or the literate

programming tool noweb are examples of such tools [Tic85, TA90, Ram94].

Figure 2.1 shows the dependency graph for CML’s sources. CML is John Reppy’s
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build.sml

trace-cml.sml

cio.sml run-cml.sml

cml.sml

cml-sig.sml

run-cml-sig.smlcio-sig.sml

trace-cml-sig.sml

cml-base-sig.sml

cml-compat.sml

cml-base.sml

cml-version.sml

Figure 2.1: A dependency graph. Separate compilation can be used to break large programs
into smaller pieces and to compile these smaller compilation units one at a time. But in most
cases one cannot compile a compilation unit in complete isolation. The result depends on both the
source file itself and the result of compiling other sources. Here trace-cml.sml depends on
cml-sig.sml, which is indicated by the presence of directed paths from the former to the latter.
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Concurrent ML system [Rep91]. It is implemented as an ordinary ML program on top

of SML/NJ. Here I use it as an example for a medium-scale programming project that is

managed using CM.

Without the help from a compilation manager one would have to invoke a number

of use commands, one per source file, in order to load CML into SML/NJ. Of course,

the order in which the commands are issued is important, since identifiers can only be

used after they have been defined. Therefore, the loading of source code has to proceed in

topological order with respect to the dependency graph. Unfortunately, the task of manually

maintaining sources in topological order is tedious and error-prone.

But not every source depends on every other source. I hope that in a well-structured

project there are relatively few dependencies between source files. Therefore, when some

(but not all) source files have been changed, it is usually possible to compile only a small

subset of all compilation units.

The UNIX program make recompiles all ancestors of a source that has been altered.

But this strategy, while correct, can be too pessimistic because changes to one file might

not have an actual influence on subsequent compilations of depending units. In contrast,

CM first recompiles the source that was modified and then compares the outcome with the

result of previous compilations. Recompilation propagates to ancestors in the dependency

graph until the original change ceases to have an impact.

Suppose I modify cml-version.sml without changing its interface. CM will re-

compile this file—but no more than that; further work is unnecessary. Presented with the

same problem, make would also process three other files: cml-base.sml, cml.sml,

and build.sml.

It is often the case that modifications propagate for some time without eventually

reaching the root of the hierarchy. For example, if I alter one of the declarations in

cml-compat.sml (→ Figure 2.1), then CM must also recompile its direct predeces-
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sors, run-cml.sml and cml-base.sml. At this point, if the original modification to

cml-compat.sml is not reflected in definitions exported from either of the two, then

it will not be necessary to recompile anything else. Otherwise, for example if one of the

exports of cml-base.sml changes, then CM will also have to recompile cml.sml and

consider possible changes to its exports.

2.1 Simple groups

The easiest way of getting started with CM is to treat the entire program as one single

group. A group in its most basic form is just a collection of SML source files; the names of

these files must be listed in a group description file.

The simplest description files start with two keywords, Group and is, which are fol-

lowed by the list of source file names. For example, if the group is to consist of main.sml,

table.sig, and table.sml, then one must create a file sources.cm containing:

Group is
main.sml (* the application code *)
table.sig (* interface to ‘table’ abstraction *)
table.sml (* implementation of ‘table’ abstraction *)

As shown in this example, it is possible to use SML-style comments within description

files.

Once sources.cm has been set up, one can start CM. This is usually done by running

the command sml-cm. That begins an interactive SML/NJ session with CM pre-loaded.

CM is controlled by simple ML function calls. For example,

CM.make ();

will analyze the dependencies among components of the system, determine a feasible or-

dering of (re-)compilation steps, and carry them out as necessary.
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2.2 Restrictions

Unfortunately, if one does not enforce certain restrictions, then dependency analysis is in-

tractable (→ Chapter 4). Therefore, CM requires that all SML code adhere to the following

additional rules concerning top-level definitions:

• No symbol can be defined in more than one source of the same group.

• The use of open is not permitted.

It must also be noted that only structures, signatures, functors, and functor signatures

are tracked by CM’s dependency analysis. Good programming style demands keeping all

other definitions inside structures and signatures. This style guarantees that there will be

no problem.

The analyzer makes no attempt to take into account the side-effects of running the code

that initializes a compilation unit. For example, file a.sml might define:

(* file a.sml *)
structure A = struct

val r = ref 0
end

Later, the execution of b.sml will modify A’s reference cell:

(* file b.sml *)
structure B = struct

val = A.r := 1
end

Suppose c.sml also refers to A.r. Which value should it see? Both 0 and 1 are legal

answers because the relative order of b.sml and c.sml is not constrained. Therefore,

either result would be “correct” in some sense. Without additional information neither one

can be preferred over the other:
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(* file c.sml *)
structure C = struct

val x = !A.r
end

Care must be taken with top-level side effects because CM does not try to address this

problem. It is up to the programmer to make sure that the ordering of side-effects is either

unambiguous or unimportant.

2.3 Hierarchies

Large programs can be broken into more than one group. These groups can then be ar-

ranged into a group hierarchy. This makes it easier to manage large systems because re-

lated sources are grouped together. Software reuse is promoted by consolidating generally

useful components into libraries. Multiple definitions for the same name are not allowed

within the same group, but no such restriction exists for definitions in different groups.

Cycles. Definitions in SML cannot form cycles across module boundaries. In particular,

structure A from a.sml cannot refer to structure B in b.sml, if at the same time structure

B refers to structure A. This rule is checked and enforced by CM.

A definition of the form structure A = A is not considered a cycle. CM will treat

the use of A as a reference to a definition imported from a subgroup.

Groups and subgroups. A group A that is mentioned in the description of some other

group B is called a subgroup of B. We say B itself is a client of A because it imports A.

Sources of the client can refer freely to any of the symbols defined within and exported

by the subgroup. However, the client can also provide new definitions for any of the sub-

group’s symbols, thereby masking the original one.
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Imported symbols are available for re-export by the client. The exact rules governing

re-export will be described when libraries and export filters have been introduced. So far

I have only introduced ordinary groups and subgroups that do not have export filters. In

this simple scenario all imported definitions, with the exception of those that have been

masked, will always be re-exported.

Hierarchical group descriptions. The members of a group consist of its constituent

sources and of its imported subgroups. Usually, CM will automatically identify description

files in its member list by their names. Those that end in .cm are treated as names of CM-

style group description files. Relative filenames are resolved with respect to the directory

that contains the description file.

Suppose a.sml and b.sml are sources of a group that needs to refer to a subgroup

containing util/c.sml and util/d.sml. In this case one could create a description

file util/sources.cm containing:

Group is
c.sml
d.sml

and another one, called sources.cm, specifying:

Group is
a.sml
b.sml
util/sources.cm

Tools and member classes. Some members are neither SML sources nor group descrip-

tions. They require special processing before CM’s analyzer can understand them. This is

done by built-in “tools.” For example, an ML-Yacc source file parser.grmwill be fed to

ml-yacc, which produces two SML files: parser.grm.sig and parser.grm.sml.

CM applies tools in cascades where necessary. For example, in place of the grammar
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file parser.grm, one can use the corresponding RCS archive parser.grm,v. CM’s

RCS tool will first run the co command to check out a copy of parser.grm, then the

ML-Yacc tool will take over to produce parser.grm.sig and parser.grm.sml,

which are finally processed by CM directly.

Ordinarily, tools are picked according to the name of the source file. However, the

decision can also be guided by explicit annotations in the description file. Each member

name can be followed by a colon and the name of a member class. The default classes

that CM knows about are: Sml, CMFile, MLLex, MLYacc, MLBurg, RCS, and Noweb.

Class names are case-insensitive.

Some of the predefined classes do not refer to tools but to CM’s basic functionality. In

particular, the classes Sml and CMFile identify SML source code and group descriptions,

respectively. Those are subject to automatic dependency analysis.

Since CM tries to guess the member class based upon the member’s name, it will rarely

be necessary to specify class names explicitly. The appendix shows the list of recognized

file name suffixes and their corresponding class names (→ Table A.4).

The built-in tool box of CM is extensible. It allows for seamless addition of new tools

by writing a few lines of Standard ML (→ Appendix A.10). A small number of tools is

already predefined (→ Appendix A.5).

Export filters. Groups can have export filters. A filter, which is simply a list of symbols,

restricts the set of definitions that are exported. Groups with export filters will export

definitions for precisely the symbols listed, regardless of whether they are defined in the

group itself or in one of the subgroups.

Export filters are useful for adding an interface to an entire set of source files. The

interface governs what outside clients can see; the members of the group themselves can

still freely refer to each other’s exports. Chapter 3 discusses how such summary interfaces
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can improve separation between software components and how large-scale software devel-

opment can benefit from that. Libraries are a special kind of group where export filters are

mandatory.

Export filters are specified as lists of symbols. They appear between the keyword

Group (or Library) and the keyword is. Since in SML we distinguish between symbols

of different name spaces, we must write:

• structure struct-sym for a structure symbol,

• signature sig-sym for a signature symbol,

• functor fct-sym for a functor symbol, and

• funsig fsig-sym for a functor signature symbol.

Therefore, a group description with export filter could look like this:

Group
structure Table
signature TABLE
structure Main
functor A
funsig A

is
main.sml
a/fct.sml
a/fsig.sml
table/sources.cm
RCS/parser.grm,v

Libraries. Groups are either ordinary groups or libraries. In many ways libraries are very

similar to groups. They have a list of members, they contain SML sources and members

that must be processed by tools, and they can be clients to subgroups. The major difference

between ordinary groups and libraries becomes apparent when we look at the rules for

name visibility.
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If a group imports a symbol from an ordinary group, then the corresponding definition

(besides being allowed to be masked) has the same status as any definition that appears

directly in one of the sources of the client. In particular, it will be exported to clients of the

client unless hidden by the client’s export filter.

Symbols imported from libraries can be referred to from within sources of the client

and they can be masked, but they will not automatically be re-exported to clients of the

client.

But symbols from libraries are also subject to re-export provided they have been men-

tioned in the client’s export filter explicitly.

Here is the precise rule which governs symbol export (→ Chapter 3, Equation 3.7).

A group with export filter exports all symbols listed by its filter regardless of their origin.

A group without export filter exports all symbols defined by sources of the group and all

non-masked symbols exported by ordinary subgroups of the group.

If a symbol’s definition is not used by any of the clients of a library, then it cannot be

accessed at all. CM will ignore the members of libraries whose exported definitions are not

accessed; they will not be loaded and they will not be linked with the rest of the system.

Therefore, they behave in a way similar to members of libraries for other languages.

Syntax. A library description looks almost exactly like a group description. The only

difference is that the initial keyword Group must be replaced with Library.

Aliases. Description files can also act like a symbolic link and “point to” another descrip-

tion. A file containing

Alias name
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behaves exactly like the description file identified by name. To locate the aliased descrip-

tion, CM applies the same rules that are also used to find subgroups of groups. If name is

a relative pathname, then CM will first try to find it in the directory that contains the alias.

Upon failure it then consults an internal search path (→ Section A.8).

Syntax. The full syntax of description files in BNF is:

description-file → group-description | library-description | alias
group-description → Group [ export-filter ] is member-list
library-description → Library export-filter is member-list
export-filter → export-symbol { export-symbol }
export-symbol → name-space Identifier
name-space → structure | signature | functor | funsig
member-list → { member }
member → Pathname [ : Class ]
alias → Alias Pathname

Identifier, Pathname, and Class are lexical classes consisting of non-empty

strings without white space, colons, parentheses, or semicolons. Comments in the style of

Standard ML (text between balanced pairs of (* and *)) or in the style of Scheme (text

extending from a semicolon to the end of the line) are permitted. They count as delimiters

like white space.

Preprocessor. At the time it reads a description file, CM applies a simple, C-like prepro-

cessor that allows for conditional compilation. However, the syntax does not provide for

“definitions.” If necessary, symbols must be defined using CM commands. These com-

mands modify an internal preprocessor environment that is maintained by CM.

CM’s preprocessor syntax is very similar to that used by the C-preprocessor: Lines

starting with # are treated specially:
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line → nonpreprocline
→ preproc

nonpreprocline → line not starting with #
preproc → if { line } elif-opt else-opt endif

→ error
if → beginning-of-line # if expression end-of-line
elif-opt → { elif { line } }
elif → beginning-of-line # elif expression end-of-line
else-opt → [ else { line } ]
else → beginning-of-line # else end-of-line
error → beginning-of-line # error text end-of-line

Example:

Group is
a.sml
b.sml
# if (SMLNJ VERSION >= 109 || defined(structure SMLofNJ))
util.sml
# elif (SMLNJ VERSION < 108)
# error The version of SML/NJ is too old.
# else
util-workaround.sml
# endif

Expressions denote integer quantities; 0 is used for for false and non-zero values for true.

There are four forms of atomic expressions:

1. Integer literals evaluate to the corresponding integer.

2. A symbol evaluates to the value bound to that symbol or to 0 if the symbol is not

defined.

3. The expression defined (symbol) evaluates to 1 if symbol is defined, or to 0 if it is

not defined.

4. The forms:

• defined (signature sigid),
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• defined (structure strid),

• defined (functor fctid),

• and defined (funsig fsigid)

test to see if the given ML module is defined in the base environment.

Depending on architecture, operating system, and configuration some symbols are prede-

fined (→ Appendix A, Section A.9).

Expressions are formed using a variety of binary operators, all of which are left-asso-

ciative. Operators are listed with increasing precedence. Those that appear on the same

line have equal binding strength:

||
&&
== !=
< <= > >=
+ -
/ *

Logical disjunction || and conjunction && are short-circuiting operations. The unary op-

erators for logical and numerical negation are ! and -, respectively. Parentheses can be

used for grouping.

2.4 Caches, missing sources, and stable groups

CM uses a variety of caches to speed up its analysis and recompilation steps. In-core caches

provide fast access to information as long as the CM session is kept running. The ambient

file system provides a second level of caches. It is used to remember the results of expensive

operations from one session to the next. All cache files are stored in subdirectories of a

directory called CM, which itself appears in the directory where the corresponding source

files are located.
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Binfiles. The most important kind of cache is the binfile. It plays the role of the binary

object file and enables CM to avoid compiling sources over and over. Aside from storing

them in binfiles, compilation results are also kept in main memory. This often reduces file

system traffic in ongoing sessions because data is readily available in main memory and

does not need to be re-loaded from auxiliary storage.

Binfiles are located in a subdirectory whose name depends on target machine architec-

ture and operating system. For example, the binfile for u/a.sml on a Sparc running some

form of UNIX is u/CM/sparc-unix/a.sml.bin.

Dependency files. Dependency analysis is much less expensive than compilation, but it

still has its cost because the dependency analyzer must parse all SML source files. However,

only very little of the information from each source file is actually necessary to drive the

analysis process (→ Section 4.4). Therefore, CM extracts the important small part and

caches it (both in main memory and in the file system). Files used for this purpose are

called dependency files. They are stored in a subdirectory CM/DEPEND. For example, the

dependency file for u/a.sml is u/CM/DEPEND/a.sml. Write errors on dependency

files are ignored. If CM encounters an error while writing such a cache file, then it only

keeps the corresponding in-core information.

When a source is missing. Even if some source files are not available, caches often make

it possible to proceed with analysis, compilation, and linking. If both the dependency file

and the binfile are present, then CM might not need to consult the corresponding source

file.

However, there are situations where the source must be consulted regardless of whether

the binfile exists or not because the binfile also depends on the environment that was in

effect when the source was compiled. This environment is the result of compiling the
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source’s successors in the dependency graph. Modifications to any of them may require the

source to be recompiled as well.

Stable groups. If one does not expect a group to change in the near future, one may

decide to stabilize it. Examples for stable groups are central libraries, which are installed

and maintained by the system administrator.

After a group has been stabilized, one can be sure that binfiles will always be valid.

The process of stabilization creates a special version of a dependency file. It is called the

stablefile. Stablefiles contain summaries of what would have been stored in per-source

dependency files.

The presence of the stablefile indicates that a group is indeed stable. Sources in stable

groups do not need to be present. Furthermore, individual dependency files are also no

longer necessary, because all dependency information has been summarized in the stable-

file.

Much less file system activity is required when dealing with stable groups because

fewer files must be opened and read. On computers with comparatively slow access to the

file system, this can improve performance considerably. On many systems it will make no

difference.

The name of the stablefile is derived from the name of the description file. For example,

on a Sparc-based UNIX system the stablefile for a group described by u/sources.cm

will be u/CM/sparc-unix/sources.cm.stable.
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Chapter 3

Hierarchical Modularity

We have seen that abstraction and modular design are important for large-scale program

development. The previous chapter gave a description of CM, the compilation manager

for Standard ML of New Jersey, from the programmer’s point of view. The following

discussion will explain the problems that led to its design and show a formal development

of the group model.

3.1 Division into groups

The reason for dividing large sets of compilation units into groups is the same reason that

prompted us to divide large programs into individual compilation units. By subdividing the

problem we hope to control its complexity.

Big programs should be structured into groups, subgroups, and libraries, the way oper-

ating systems structure their file system into directories with subdirectories. But one can

do more. As I will show, groups and libraries can be powerful tools for increasing separa-

tion of unrelated parts of the program and for controlling interfaces between parts that are

related. This will provide solutions to the problems shown in figures 3.1, 3.2, 3.5, and 3.6.
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printf

_doprnt

fprintf
sprintf

  world");

A B

stdio.c

printf
 ("hello 

Figure 3.1: Sharing one source file. Only a few programming languages let the programmer
control the interface of one source file to guarantee that it can be shared between several clients.
In C one would declare doprnt as static, because local functions should not be exposed. But
the C programmer has no way to prohibit stdio.c from referring to symbols in system A; these
references might prevent it from being used in system B.

  world");

printf
 ("hello 

printf

_doprnt

sprintf

fprintf

BA
stdio.a

Figure 3.2: Sharing groups of source files. Often we want a group of sources to act like one
module. An explicit interface placed on stdio.a as a whole (as opposed to its constituent com-
ponents) guarantees the absence of undesired dependencies on either A or B and does not expose
local objects like doprnt. The C language has no mechanisms for expressing either of these
requirements.
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I define compilation management in such a system to comprise:

• calculating the dependency DAG between individual source files;

• determining which subset of sources need to be compiled or recompiled;

• determining the order of compilation;

• defining the relationship between source files and program libraries;

• controlling the visibility of globally defined names.

The last two items—involving the management of the namespace—are the important new

topics addressed by this work; but name visibility also affects dependency calculation, as I

shall show in chapter 4.

Figure 3.1 depicts a situation where one module (stdio) is shared by two different

projects (A and B). One would like to administer its interface so that the compiler can

guarantee the absence of unwanted dependencies on either A or B. Even that is not fully

supported by most programming languages. But for large-scale programming one needs to

take this further. It is important that stdio itself can be a group of source files, and that

there can be a summary interface that controls such a group’s interface to its various clients

(→ Figure 3.2).

The global namespace, which is inhabited by “external” symbols, and which is com-

monly used by the program linker, poses a problem for modularity. Since there is only one

such namespace, any given identifier can only have one definition at a time. Thus, there is

a potential for conflicting definitions, which is especially troublesome when the interfering

parts of the program are unaware of each other’s existence. This is often the case with

libraries.

Definitions are said to interfere if they cause restrictions on parts of the program that

are neither directly nor indirectly related (→ Figure 3.3 and 3.4). A restriction is called

modular if it only affects related parts of the program.
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2

1X

X

Figure 3.3: Direct relation. Two program fragmentsX1 andX2 are directly related ifX2 explicitly
refers to a definition that is exported from X1.

1 2X X

Figure 3.4: Indirect relation. Two program fragments X1 and X2 are indirectly related if there is
a third fragment that explicitly imports from both.

This work’s primary concern is to present a framework that avoids all non-modular

restrictions on definability of identifiers and availability of definitions. I will also show

how the restrictions that are modular can be resolved by simple local modifications to only

the part of the program where they occur.

Definability: A program in a language like C [KR88] cannot use certain identifiers be-

cause they are potentially taken by libraries or other parts of the program, even

if those are conceptually unrelated. Thus, these identifiers are no longer definable

(→ Figure 3.5).

Availability: Programs in other languages, for example SML [MTHM97], can have arbi-

trarily many definitions for the same name. Although this eliminates restrictions on

definability, it creates new restrictions on availability. Parts of a larger program may

not be able to see an early definition for variable x because there is a different, inter-

vening definition for x inhibiting access to the one that was intended (→ Figure 3.6).

Because of the global namespace’s lack of structure, definitions that are conceptually

41



GL Win32 API

glfoo

XLib

X Toolkit Intrinsics (Xt)

Motif

Graphics Application

C Standard Library (libc)

"portable" Graphics API ("PGL")

Xm

Xt

X

foo

foo

foo

foo

Win32 API
identifiers

... ???

Figure 3.5: Restrictions on definability inhibit modularity. The programmer of this graphics
application in C, who ideally would like to use the “portable” PGL library abstractly, as a black
box, must be careful not to interfere with any of the various libraries upon which PGL might be
implemented. Entire classes of identifiers must be avoided: Xmxxx, Xtxxx, and so forth because
of X Windows, glxxx to avoid conflicts with GL, scores of symbols to account for Win32, but also
many names that the creators of new library designs might choose for their purpose in the future.

local to a small group of sources are often promoted to be globally visible. For exam-

ple, many implementations of the C standard library export a function doprnt, but the

only purpose of this function is to be called by other functions (printf, sprintf, . . .)

that are exported from the same library. The application program is not supposed to refer to

doprnt directly, which is indicated by the presence of the leading underscore in its name.

But “magic” names like this are nothing more than a poor man’s solution to the more gen-

eral problem. It cannot give guarantees of non-abuse, but such guarantees are sometimes

necessary when the programming environment is trying to promote safety and security. Of

course, one could make doprnt static, but this would require printf, sprintf, and

so forth, all be implemented in the same compilation unit. Neither this approach nor the

use of magic names scale well.

Modularity suffers if the programmer who uses a “portable” API of graphics routines,

like the fictitious PGL in figure 3.5, has to worry about how it is implemented. With only

one single global namespace the programmer must be careful not to use any of the symbols

taken by, for example, the X Windows libraries [SGN88], if the program later has to be
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val s = (g * t * t) / 2.0

fun g x = f (f x))

val g = 9.81

Figure 3.6: Restrictions on availability inhibit modularity. In this SML program a value for s
was meant to be calculated in terms of the gravitational constant g that was defined earlier. But
a third, conceptually unrelated compilation unit redefines g, so the original definition becomes
unavailable. In this case the resulting program does not even type-check, and the problem can be
detected at compile time. In other cases the program might produce an unintended result.

linked with those. That alone excludes hundreds of identifiers, but the argument extends

to all other basis libraries that may also serve as an implementation platform for PGL. To

write completely portable code, one would even have to foresee any future development

that leads to alternative implementations. This, of course, is impossible.

3.2 The compilation manager CM

CM provides hierarchical modularity through its group model. The description of a group

consists of three elements: a set of source files, a set of imported groups, and a list of

exported symbols. The minimal design of CM’s configuration language (→ example in

figure 3.7) makes it easy to use, especially because built-in automatic dependency analysis

eliminates the need for being explicit about order of compilation within each group.

Sources of a group should conceptually belong together. They may correspond to a

subcomponent of a larger program or they may act as a program library. If group A needs

to refer to definitions exported from another group B, then B must be mentioned in A’s

description. Names exported by the modules of a group are visible in other modules of the

same group, but only those that appear in the list of exported symbols can also be seen from
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Librarysmlnj-lib.cm

array2-sig.sml
...

...

array2.sml

    signature ARRAY

    structure Array2
...

is
    array2-sig.sml

    array2.sml
...

/usr/sml/lib/

sources.cm

main.sml

local-stuff.sml

GraphApp/ Group
    structure GraphApp

is
    main.sml
    local-stuff.sml

    /usr/sml/lib/smlnj-lib.cm

pgl/

draw.sml

sources.cm

shapes.sml

...

util-exports.sml

Library
    structure Draw

is
    draw.sml
    shapes.sml
    ...
    util-exports.sml

    structure PGLUtil

    structure PGLUtil

    structure Shapes

    ...

    signature GRAPHAPP

    pgl

Figure 3.7: CM group description files. This figure shows a sketch of a program, its group de-
scriptions, and a sample directory hierarchy to hold the associated files. Directory GraphApp
contains source files (main.sml, local-stuff.sml) and the description (sources.cm).
The application exports symbols structure GraphApp, signature GRAPHAPP, and
structure PGLUtil. PGLUtil itself is imported from the graphics library “PGL” described
by pgl/sources.cm. Furthermore, there are imports from the SML/NJ library, which was in-
stalled in a central location by the system administrator. (Relative pathnames in description files
refer to files in the directory that contains the description.)
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compile linklib.h
mod.c

mod.o exported
symbols

imported
symbols

Details Abstraction

ML

C
source exports

imports

def

compilemod.sml

context
environment

exported
–environment

Figure 3.8: Compiling, linking, context. A C source file is first compiled and subsequently
linked with respect to a table of imported definitions. In the case of SML compiling and linking are
combined into one step, but, again, there is a context environment representing definitions that are
imported from other compilation units. I abstract from language-specific differences and uniformly
use the def operator as a model for compiling (and linking) a source with respect to some context.

the outside.

Without CM’s groups, the client of PGL in figure 3.5 could not use certain identifiers

because they are potentially taken by the libraries that implement PGL. To cope with this,

one would implement PGL as a group whose export filter only lists those identifiers that are

supposed to be accessible by its clients. Consequently, the application programmer cannot

even tell how PGL is implemented; the application code will be truly independent of the

libraries underlying PGL’s concrete realization.

A group implementing the equivalent of the C standard library would not list doprnt

in its export list. No client of that library could then accidentally or voluntarily access

the corresponding routine. This matches one’s intention of doprnt being local to the

library’s implementation.

CM’s group model is able to eliminate modularity-inhibiting restrictions on definability

and availability in a general way. The following section will discuss this more formally.
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3.3 Environments and linking

Cardelli [Car97] presents an excellent discussion of the problems that arise with modules

and separate compilation. His notion of a linkset is used as a framework for describing

and reasoning about consistent, type-safe linking. Type-safe linking, for example provided

by SML/NJ’s “visible compiler” [AM94], is a prerequisite of my work, but not the fo-

cus. In place of Cardelli’s linksets my notation uses functions to express operations on

environments and equations for describing their properties. This also reflects the actual

implementation of CM more closely.

Environments. During separate compilation, individual sources are always compiled

with respect to some environment that represents the definitions exported from other com-

pilation units.

Formally, an environment ρ ∈ U is a partial mapping from long identifiers Ide+ to de-

notations D. Long identifiers are non-empty sequences of simple identifiers. They are used

to express access to members of a structure by means of a “dot notation” that is found in

many programming languages. The notation Y.z stands for a long identifier 〈id1, . . . , idk, z〉

where the last component z ∈ Ide is a simple identifier and where Y = 〈id1, . . . , idk〉.

Hd(I) is the head component of a long identifier:

Hd ∈ Ide+ → Ide

Hd(〈id1, . . .〉) = id1

D depends on the programming language. In SML it would correspond to the compilation

unit’s static and dynamic semantics. In C, on the other hand, external identifiers stand for

machine addresses. In this case D would be a domain of locations. To abstract from such

language-dependent issues, I instead use a domain of labels l ∈ Lab. These labels uniquely
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identify each definition of a given program. Thus, I can always distinguish between differ-

ent bindings for the same identifier without having to consider the meaning of an identifier

according to the semantics of the language.

D = Lab

The domain dom(ρ) ⊂ Ide+ of an environment ρ is the set of identifiers that are bound

there. I call {Hd(x) | x ∈ dom(ρ)} the head domain domH(ρ) ⊂ Ide of ρ. ∅U is the

environment with an empty domain.

All prefixes of long identifiers that are bound by an environment must also be bound by

the same environment:

Y.z ∈ dom(ρ) ⇒ Y ∈ dom(ρ)

Environments can be combined using the + operator:

+ ∈ U × U → U

ρ1 + ρ2 = λx.





ρ1(x); Hd(x) ∈ domH(ρ1)

ρ2(x); otherwise
(3.1)

The operator + is associative, but is not commutative if dom(ρ1) ∩ dom(ρ2) 6= ∅.

Compiling and linking. I use the def operator (→ Figure 3.8) as an abstraction of com-

piler and linker. It calculates an incremental delta environment containing just the bindings

corresponding to definitions that are explicit in the compilation unit:

def ∈ Source × U → U

Programming languages differ in how they calculate the input environment for def . Con-
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S1

S2

def

+

def

def

+
Sn

0

+

+

Figure 3.9: Compilation environments for SML. In SML the context environment that is used
for compiling a source is built incrementally by layering the exports of sources that were compiled
earlier on top of the initial basis environment ρ0.

sider a program consisting of sources S1, . . . , Sn written in SML. The export environment

ρi of source Si is

ρi = def (Si, ρi−1 + · · · + ρ1 + ρ0)

where ρ0 is the initial basis environment. This situation is depicted in figure 3.9.

In C, on the other hand, every source file is linked in the context of the same global en-

vironment. The global environment is constructed by combining the exports of all sources

(→ Figure 3.10):

ρi = def (Si, ρ); ∀i ∈ {1, . . . , n}

ρ = ρn + · · · ρ1 + ρ0

The process of linking corresponds to solving the system of simultaneous equations. In C

none of the identifiers can be bound by more than one environment ρi:

i 6= j ⇒ dom(ρi) ∩ dom(ρj) = ∅
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Sn
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def

def

def

+
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Figure 3.10: Compilation environments for C. Conceptually, every source of a C program is
compiled with respect to the same global environment, which itself is constructed by layering the
exports from all sources on top of some initial basis environment ρ0. Implementations resolve the
circularity at link-time; the compiler takes information from header files and uses it as an approxi-
mation of the global environment.

Because of the resulting commutativity of +, linking is order-independent and becomes

straightforward. However, with each source the programmer must provide header files

containing the information necessary to construct an incomplete version of ρ that is suitable

for compiling the source, because the full ρ only becomes available after all sources have

been compiled. This is sometimes rather cumbersome, but unlike SML it allows for mutual

recursion across compilation units.

Linking subsets of sources. I define:

multideflang ∈ 2Source × U → U

to be the language-dependent extension of def to sets of sources.

C: The multidefC operator passes its context argument to individual calls to def for

each of the constituent sources. The resulting delta environments are combined using +,

thus yielding a delta environment for the entire subset (→ Figure 3.11):
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multidefC({S1, . . . , Sn}, ρ) = def (S1, ρ) + · · · + def (Sn, ρ)

SML: multidefSML must first use a dependency analyzer A (→ Chapter 4) to turn the

set of sources into a sequence:

A ∈ 2Source × U → Source∗

The step function then incrementally builds the resulting export environment ρ ′. Interme-

diate values for ρ′ are layered on top of the initial context ρ to serve as the context needed

for compiling individual sources of the set:

step(〈〉, ρ, ρ′) = ρ′

step(〈Si, Si+1, . . .〉, ρ, ρ′) = step(〈Si+1, . . .〉, ρ, def (Si, ρ′ + ρ) + ρ′)

multidefSML(s, ρ) = step(A(s, ρ), ρ, ∅U) (3.2)

Exports from each source are combined to eventually form the exports of the entire se-

quence; a second layering operation per source is necessary to form the corresponding

compilation context (→ Figure 3.12). This explains why there are two occurrences of + in

the definition for step.

3.4 Definability and availability

To show how external definitions in different sources of a program interfere with each other,

I investigate the notions of definability of identifiers and availability of definitions.
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Figure 3.11: Linking subsets of C sources. The multidefC operator is the C-specific extension
of def . It calculates the export environment for a given subset of sources. multidefC returns an
incremental delta environment that only binds symbols which are explicitly defined in that subset
of sources. This is consistent with the way def works for single sources.

def

def

def

S

S2

1

n

multidef
S

SML

+

+

+

+

+

+

(context)

incremental
exports

Figure 3.12: Compiling (ordered) sets of SML sources. The multidefSML operator extends def
to sets of SML sources. Individual exports are incrementally layered on top of an initially empty
environment. The result is a delta environment only containing bindings for identifiers defined in
{S1, . . . , Sn}, which is analogous to the behavior of def .
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An identifier x is said to be definable in source S if it is legal for S to export a binding for

x. Furthermore, as a result of how I have chosen the domain of denotations D it becomes

straightforward to define availability. The definition that binds identifier x at label l is

available in environment ρ if ρ(x) = l.

Restrictions on definability or availability are not modular. The purpose of CM’s group

model is to curb undesired long-range effects of global definitions in order to eliminate

such modularity-inhibiting restrictions.

Example: C. All external definitions of a C program are available everywhere, but an

identifier x is definable in Si only if it is not defined anywhere else:

x definable in Si iff

∀j : j 6= i ⇒ x 6∈ dom(ρj)

Thus, in C a definition in one source file affects definability and availability in the entire

program. This creates an unfortunate implicit coupling between compilation units that is

not modular because it means that the programmer has to be aware of every identifier in

every part of the entire program, including all of the program libraries that it could be linked

with.

Example: SML. The treatment of SML code requires a well-defined ordering among the

sources; S1 will be compiled before S2, and so on. Unlike in C, every identifier is definable

everywhere,1 but a definition in source Si that binds x is available in Sj only if i < j and

there is no other definition for x in one of the sources “between” Si and Sj:

1This is a slight oversimplification, because the declaration val y = x does not provide a new defini-
tion for y if y is currently a constructor tag for some datatype.
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definition for x from Si available in Sj iff

∀k : (i < k) ∧ (k < j) ⇒ Hd(x) 6∈ domH(ρk)

Other than in C, in SML definitions do not interfere with the definability of names. They

still have a non-local impact on availability because a definition for x makes previous def-

initions for x unavailable. The programmer has to be aware of all the definitions exported

from earlier sources. Again, the resulting implicit coupling inhibits modularity.

Availability is sensitive to the order of compilation, which is especially troublesome

when the order is chosen automatically and not by the programmer. But problems only arise

because a module can redefine symbols that are already defined. That not only makes the

code difficult to read for a human—it also makes dependency analysis NP-hard (→ Chap-

ter 4).

3.5 Groups

Naturally, the part of a program that sees variable x bound to l1 cannot simultaneously

see another definition that binds x to l2. But at the time when the code mentioning x was

written, the programmer certainly had a specific idea about which binding x is supposed

to refer. To make sure the right thing happens, it is necessary to state one’s intentions

explicitly. Compilation management can enforce them.

Problems arise when different, unrelated definitions for x in different portions of the

program interfere with each other. As discussed earlier, this is caused by the fact that a

single global environment represents a universal container that is inhabited by all top-level

definitions. The SML compiler builds this container incrementally, but that does not really

help because no matter what the order of two definitions binding the same identifier may
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be, one of them will make the other unavailable.

Groups localize the effects of definitions. If a source in group G2 refers to a definition

exported from another group G1, then the description of G2 must name G1 explicitly as one

of its imports. The resulting explicit export-import relation between groups can be used

to establish rules for removing unwanted interference between definitions in “unrelated”

groups.

Two groups are directly related if one explicitly imports from the other. They are indi-

rectly related if a third group imports definitions from both. In any other case I call them

“unrelated” (→ Figure 3.3 and 3.4).

Formally, a group G ∈ Grp is a triplet (s, i, e). Here, s is the set of sources, i is the set

of imported groups, and e is a set of identifiers that is used for thinning the group’s export

interface.

Grp ⊂ 2Source × 2Grp × 2Ide

Given a set of groups g ⊂ Grp let I(g) be the import set of g.

I(g) = {G | ∃(s, i, e) ∈ g : G ∈ i}

The cumulative import set I∗(g) is the transitive closure of the import set. The graph of

direct dependencies must be acyclic. Therefore, no group can be in its own cumulative

import set.

Thinning can be understood as a filter operation F applied to an environment. The filter

retains bindings to only those long names that start with a simple identifier in e; the filtered

environment F(ρ, e) is ρ with its head domain restricted to e.

F ∈ U × 2Ide → U
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domH(F(ρ, e)) = domH(ρ) ∩ e

Hd(x) ∈ e ⇒ F(ρ, e)(x) = ρ(x)

For example, the C standard library would list printf, sprintf, and so forth in its

export list, but doprnt would be omitted.

Let ρ0 be the initial basis. C(i) is the context environment that is used when compiling

the set of sources s of a group (s, i, e). It is defined in terms of the group’s imports i.

C ∈ 2Grp → U

C(i) = (
∑

I∈i
E(I)) + ρ0 (3.3)

E(G) is the export environment of group G:

E ∈ Grp → U

E(s, i, e) = F(multidefSML(s, C(i)) + C(i), e)

A group (s, i, e) can re-export part of its own context C(i). For this, the definition to be

re-exported must be named in e and cannot be redefined by any of the sources S ∈ s.

I have chosen to consider unordered sets of imported groups. But the summation in

equation 3.3 is order-independent only if the domains of the imported environments are

disjoint. Therefore, I require that indirectly related groups do not export definitions for the

same identifier.
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∀(s, i, e) ∈ Grp : ({I1, I2} ⊂ i ⇒

dom(E(I1)) ∩ dom(E(I2)) = ∅ (3.4)

3.6 How interferences can be resolved

An implementation of the group model immediately removes the vast majority of unwanted

interferences between definitions in large programs because definitions can only interfere

when their respective environments are joined using +. With groups, most environments

never meet each other that way.

A very important property of the group model is that any remaining interferences can

always be resolved locally by modifying only the group where they cause a problem. Three

situations can arise:

1. The export environments for two sources in the same group contain definitions for

the same identifier. These environments are joined using + according to equation 3.2,

which defines multidefSML.

2. A source provides a definition for an identifier that is also defined by one of the

imported groups.

3. In violation of equation 3.4 two imported groups independently provide definitions

for the same identifier.

Interferences of the first kind can always be removed by locally changing one of the

offending sources.

The second kind, a clash between a definition obtained from one of the imported groups

and a definition in one of the sources, is legal and has a well-defined meaning. Definition
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from the group’s sources override imported definitions (→ Equation 3.3). Sometimes,

when this is not what was intended and the situation still cannot be resolved by a simple

change to one of the group’s sources, it becomes necessary to rename at the point of import

the identifier that is used to access a particular binding from an imported group. This

technique does not require changes to the exporting group, and it can also be used to resolve

clashes of the third kind.

Renaming can be expressed as yet another operation on environments. First, I show

how to rename a long identifier:

R ∈ Ide+ × Ide × Ide → Ide+

R(Y.z, x, y) = R(Y, x, y).z

R(〈x〉, x, y) = 〈y〉

R(〈z〉, x, y) = 〈z〉; x 6= z

Renaming in environments can then be defined in terms of identifier renaming.

R ∈ U × Ide × Ide → U

R(ρ, x, y)(z) = ρ(R(z, y, x))

In general, to formally describe renaming one must extend the notion of groups. Imported

groups (→ domain equation 3.5) are described by regular groups and an arbitrary number

of identifier pairs. The pairs specify renaming operations (→ Equation 3.6).
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Imp = Grp + Imp × Ide × Ide (3.5)

Grp = 2Source × 2Imp × 2Ide

C(i) = (
∑

I∈i
E ′(I)) + ρ0

E(s, i, e) = F(multidefSML(s, C(i)) + C(i), e)

E ′(G) = E(G)

E ′(I, x, y) = R(E ′(I), x, y) (3.6)

However, CM currently only implements the original model without renaming because

in the case of SML one can get the same effect by using “administrative” groups where

necessary. The administrative group imports a binding under one name and exports it

under a different one. This is possible because in SML renaming can be expressed in

source language (→ Figure 3.13). A definition of the form val y = x or structure

B = A establishes y to be an alias of x and B to mean the same as A. (Unfortunately, this

is not properly reflected in my formalism because of my choice of labels as placeholders

for denotations.)

Other languages, for example C and Scheme, do not provide a general way of defining

one name to be an alias for another. A variable definition in these languages creates a new,

unique meaning. In these cases a compilation manager like CM would have to implement

renaming directly. It should also be noted that even in SML one cannot always create

aliases that are truly indistinguishable from their original. For example, variable y in val

y = x will not have the status of a constructor even if x was a constructor. However, at

the moment this is not an issue because CM does not deal with type or value definitions at

top level. Only structures, signatures, and functors are tracked.
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l2X
l1: structure X = ...

l2: structure X = ...

l1: structure X = ...

l2: structure X = ...

l3: structure Y = X

l1

l1
l2 (or l3)

X

X

l2X

Y

Figure 3.13: Administrative groups. In SML one can achieve the effect of renaming upon import
by administrative groups because the source language provides facilities of defining one identifier to
be a proper alias of another. Many other languages, including C and Scheme, lack such a language
feature. For those languages it is necessary to build renaming into the group model.

3.7 Groups vs. modules, namespaces, and packages

Some programming languages offer facilities to help fight the pollution of the global name-

space. SML has structures and functors, Modula-3 [CDG+89] has modules, C++ [ES90]

has namespaces, and Java [AG96] offers packages.

The main difference in comparison to CM’s groups is that these facilities are expressed

in source language; modules, structures, namespaces, and packages have names them-

selves! Consequently, although less likely, there is always the potential for these names

to cause the same problems they were supposed to solve by removing other names from

the global namespace.

SML structure names can clash, C++ namespace names can interfere with one another,

and Modula-3 modules may be in conflict due to an unfortunate choice of module names.

Java package identifiers are designed to be globally unique, but since clients of a package

must name it in their sources, it now becomes impossible to re-link such a client with a

different version of the same conceptual package (perhaps for the purpose of debugging or

profiling) without first modifying and recompiling the client’s source.
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Of course, CM groups must also be named. The current implementation uses the name

of the description file for this purpose. The crucial distinction is that the group name never

appears in source code. It only appears in other group description files where it can be

adjusted without causing recompilation. This way naming remains flexible. Groups can be

moved, renamed, or replaced freely without having to touch the program’s source code.

3.8 Realization in CM

CM implements the group model without built-in renaming. Therefore, conflicts involving

definitions imported from subgroups must be resolved using administrative groups. Since

such cases are relatively rare, this has not been a burden so far.

The specification for a group must be written by the programmer. Group description

files consist of two main parts: the list of exported identifiers and the list of members. Each

member is either a source filename or the name of another description file, in which case

the corresponding group will become an imported group.

There are two types of groups: “ordinary” groups and libraries. Ordinary groups do not

require an explicit export list. If it is omitted, then CM will provide a default. The group

then exports everything defined by its own sources and everything that is imported from

sub-groups (but not from libraries). Formally, let (s, i, ·) be a group and iG ⊆ i be the set

of imported groups that are ordinary groups themselves. The export list ê provided by CM

is calculated as:

ê = dom(multidefSML(s, C(i)) +
∑

I∈iG
E(I)) (3.7)

As described earlier, CM always compares the context environment (→ Equation 3.3) to

the one used when the same source was previously compiled. If the source itself has not
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fprintf

printf

sprintf

_doprnt

printf
 ("hello
   world");

stdio

A
B

Figure 3.14: Controlling sharing using groups. With a compilation manager like CM one can
structure the project shown in figure 3.2 into a collection of groups. The export interface on group
stdio will make sure that implementation details, such as the local function doprnt, are not
exposed to its clients, A and B. At the same time, since stdio is specific in not listing either A or
B in its imports, it cannot depend on either one of them.

been modified, then recompilation can be avoided in the case that the compilation context

is unchanged. This is an important optimization.

Figure 3.14 illustrates how CM’s groups can be used to solve modularity problems

of the type discussed at the beginning of this chapter. Recall that the stdio compo-

nent (shown in figure 3.2) was supposed to get a summary interface. Furthermore, there

was concern about potential dependencies of this component on implementiation details in

client projects A and B. With CM one can implement stdio as a group. To be able to use

its services, clients like A and B must explicitly list that group as an import. No client can

depend on implementation details that are not explicitly advertised by the group’s export

filter.

Moreover, the subgroup relationship is unidirectional. The stdio group does not (and

cannot) mention either A or B as part of its imports. Of course, the design of a group can

cater to specific needs of selected clients. Less preferred customers must put up with this.

But no subsequent modification to any one client can cause incompatibilities with others if

they were compatible before.
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Chapter 4

Automatic dependency analysis

The minimal design of CM’s configuration language (→ example in Figure 3.7) makes it

easy to use, especially because built-in automatic dependency analysis eliminates the need

for being explicit about order of compilation within each group.

The problem of dependency analysis for SML is the following: For a given set of

sources s = {S1, . . . , Sn} and a context ρ0 ∈ U we are looking for a sequential arrange-

ment ~s = Sp1 , . . . , Spn of the same sources, such that all variables are defined before they

are used:

x ∈ dom(ρk−1 + · · · + ρ0) (4.1)

where ρi = def (Spi, ρi−1 + · · · + ρ0)

The sequence ~s implies a total order ≺ on s. We call this order feasible.

Thus, in a context ρ the dependency analyzer A takes a set of sources s and forms a
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sequence ~s of these sources:

A ∈ 2Source × U → Source∗

Equation 3.2 shows how dependency analysis is incorporated into our group model.

By equation 4.1 the definition for x that is referred to in Spk can be provided by ei-

ther the context ρ0 or by one of the other sources: x ∈ dom(ρ0) ∨ ∃j : (j < k ∧ x ∈

dom(def (Spj , ρj−1 + · · · + ρ0))). However, this is not sufficient: Let x be a long identifier

of the form Y.z, referring to a definition in structure Y . Another source S ′ could define

structure Y without defining Y.z. But according to equation 3.1, definitions for Y that do

not define Y.z make previous definitions for Y.z unavailable.

Without structure definitions it is relatively straightforward to implement dependency

analysis. Unfortunately, this is of no help if one wants to deal with languages that have

module systems similar to SML.

If structures are permitted, then there are two aspects of SML that complicate depen-

dency analysis: symbols can be defined at top level in more than one source and structures

can be “opened” at top level. We will see that either feature independently makes the

problem intractable. Therefore, I will address them separately.

4.1 Multiple definitions

Multiple definitions of the same symbol at top level in separate sources can introduce am-

biguities into the association between uses of a variable and the corresponding definition.

For example, consider three sources S1, S2, and S3:

S1 S2 S3

val x = 1 val x = 2 val y = x
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In this simple example it is not hard to spot the problem. If we prove that ambiguities can

always be detected easily when they exist, then the detection algorithm can be built into the

dependency analyzer, and ambiguous specifications could be rejected gracefully. However,

the situation is more complicated:

Claim 1 With multiple top-level definitions for the same identifier the problem of finding a

feasible ordering is NP-complete.

Proof. The problem is in NP because one can simply pick some ordering and check its

feasibility. This can obviously be done in polynomial time.

To prove the problem NP-hard, I use a reduction from the satisfiability problem (SAT),

more specifically 3-SAT: For any formula in conjunctive normal form with n variables

v1, . . . , vn and m clauses c1, . . . , cm, where each clause contains exactly three literals, there

is a set of 2n + 2 sources, for which a feasible ordering corresponds to a satisfying truth

assignment. These sources are named: S̃, S1, S
′
1, . . . , Sn, S

′
n, Ŝ.

Let me first illustrate the main idea of the construction. Suppose {v1, v2} is a clause with

two variables. Each variable will be represented by two structures in two corresponding

sources. For v1 there are sources S1 and S ′1 with:

S1 S ′1

structure A =
struct
val x = 1

end

structure A =
struct
(* empty *)

end

S2 and S ′2 are constructed according to similar principles, but instead of declaring an empty

structure B, S ′2 now contains a reference to structure A.
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S2 S ′2

structure B =
struct
val x = 1

end

structure B = A

Now consider the variable B.x. It can be defined either because S2 was compiled after

S ′2 or because S ′2 was compiled after S2 and, at the same time, S1 was compiled after S ′1.

Thus, the relative orders of Si and S ′i plays the role of boolean switches. They model the

behavior of the boolean variables vi. The availability of B.x corresponds to the truth value

of the entire clause.

This construction can be extended easily to handle negative literals. Suppose the clause

was {v1, v̄2}. In this case the contents of S2 and S ′2 must be exchanged. Three or more

literals can be accounted for by adding more sources and structures. For a three-literal

clause {v1, v2, v3} one would add S3 and S ′3:

S3 S ′3

structure C =
struct
val x = 1

end

structure C = B

The complete construction uses multiple versions of structures A, B, and C to handle

more than one clause. Additional definitions, a “header” source S̃, and a sentinel Ŝ con-

strain the system so that only the relative order of Si and S ′i (for each i) remains unrestricted.

Construction: S̃ contains:

val z0 = 0
val z’0 = 0
structure X1 = struct end
...
structure Xn = struct end
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Note that subscripted names like z0 are used as a meta-notation to specify the SML symbols

that need to be generated and inserted. Ŝ is given as:

val z = zn + z’n
val c1 = C1.x
...
val cm = Cm.x
val y = Y1.x + · · · + Yn.x

No clause may contain both v and v̄ for any variable v, but that is not a restriction

because such clauses are always satisfied and may therefore be ignored.

Let {ck1, . . . , ckj} with k1 < · · · < kj be the set of clauses where the variable vi occurs

(either directly or in negated form v̄i). The corresponding sources Si and S ′i will then have

the following general form:

Si S′i

val zi =
zi−1 + z’i−1

structure Yi = Xi
structure Xi =
struct
val x = 1

end
Xk1
...
Xkj

val z’i =
zi−1 + z’i−1

structure Yi = Xi
structure Xi =
struct
val x = 1

end
X ′k1
...
X ′kj

The Xk are chunks associated with the clauses in which vi appears. In particular, a clause

ck = {xl1 , xl2 , xl3} with xl ∈ {vl, v̄l} and l1 < l2 < l3 is represented by a combination

of chunks of SML constructs in sources Sl1 , S ′l1 , Sl2 , S ′l2 , Sl3 , and S ′l3 . Suppose all three

literals in ck are positive. The following table gives the chunks of SML code for each of

the respective files. However, if literal xl is negative, then the corresponding chunks for Sl

and S ′l must be exchanged:
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Source Chunk

Sl1
structure Ak = struct
val x = 1

end

S′l1
structure Ak = struct
end

Sl2
structure Bk = struct
val x = 1

end

S′l2 structure Bk = Ak

Sl3
structure Ck = struct
val x = 1

end

S′l3 structure Ck = Bk

The constraints imposed by definitions for z0,. . .,zn,z’0,. . .,z’n, and z restrict any

feasible ordering to one where Si and S ′i precede Sj and S ′j whenever i < j, so Sk and S ′k

are adjacent for all k. S̃ is the least and Ŝ is the largest element:

S̃ ≺





S1

S ′1





≺ · · · ≺





Sn

S ′n





≺ Ŝ

The definitions for the structures X1, . . ., Xn, Y1, . . ., Yn and the variable y guar-

antee that for each i ∈ {1, . . . , n} either Si ≺ S ′i or S ′i ≺ Si. In other words, every feasible

ordering must be total.

A total ordering under which S ′i precedes Si corresponds to an assignment where vi

is true. On the other hand, if Si ≺ S ′i, then vi is false under the corresponding truth

assignment. A definition for Ck.x exists if and only if clause ck is satisfied under this

interpretation. Therefore, a feasible ordering defines a satisfying assignment and vice versa.

This concludes the reduction of 3-SAT to the ordering problem.
�

The correspondence between feasible orderings and satisfying assignments gives rise
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to the following corollary:

Corollary 2 Proving a feasible ordering unique is co-NP-complete.

Unfortunately, in general it does not help to rely on SML types to solve situations

that otherwise look ambiguous. The programs constructed for the NP-completeness proof

would not benefit from such additional information. Also, note that SML type inference

itself is a hard problem; it has been shown to be DEXPTIME-complete [Mai90, KTU94].

I felt that it is reasonable to require having at most one definition for each top-level

symbol per group. Although there are circumstances when one would want to override a

given definition with a new one, CM addresses this issue adequately by introducing the

notions of libraries and sub-groups. In this discussion of dependency analysis, imported

groups of a group are represented abstractly as part of the context environment. Top-level

definitions for symbols that were already defined by the context are permitted in this model.

Restriction 1 In each group there can be at most one source that provides a top-level

definition for any given symbol. A source can define a name that was already defined by

the context, but uses of that name in any of the sources will then refer to the new definition.

I implemented this restriction in CM. To my knowledge there has never been an instance

where it caused difficulties to users. It provides a well-defined association of defined sym-

bols with the sources in which they are defined. Therefore, dependency analysis can be

performed by a depth-first search on the resulting use-definition graph, which can be done

in time linear in the number of edges. Those edges correspond to the free occurrences of

symbols in SML sources.
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Partial orders

Intuitively, S1 ≺ S2 means that S2 “depends” on S1. If we want to avoid unnecessary

recompilation, then we must capture the idea that two sources do not depend on each other.

Total orders contain “too many” relations, so we will consider partial orders instead. For

the sake of semantic predictability we desire a feasible partial order ≺min that contains the

fewest relations and is unique.1

One can represent ≺min as a DAG of sources given the “predecessor” function P ∈

Source → 2Source that is calculated by dependency analysis:

A ∈ 2Source × U → Source → 2Source

Now multidefSML (→ Equation 3.2) must be revised accordingly; the compilation en-

vironment ρ̃(S, ρ, P) for source S is given by the exports of the predecessors S ′ ∈ P(S):

ρ̃(S, ρ, P) = (
∑

S′∈P(S)

def (S ′, ρ̃(S ′, ρ, P)) + ρ

multidefSML(s, ρ) =
∑

S∈s
ρ̃(S, ρ, A(s, ρ))

In general, the summations in these equations still require a total order imposed on the set of

sources. But + is commutative under restriction 1, summations become order-independent,

and multidefSML is well-defined.

1CM ignores the issue of link-time side effects during module initialization.
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Uniqueness and use-def mappings

Partial orders can be extended to become total, but in general there will be more than one

way of doing so. However, in some sense one would like to think of all total orders that

are compatible with a given partial order as being equivalent. Therefore, it is necessary to

clarify the uniqueness requirement.

During compilation every use of an identifier will be resolved by the compiler by look-

ing it up in the current compile-time environment. Thus, it will associate each use with

a corresponding definition. For the individual uses of identifiers to be distinguishable we

will label them in a fashion similar to how definitions were labeled:

Use = Lab

The ordering, partial or total, of sources induces a particular use-def mapping M :

M ∈ Use → D

Note that restriction 1 guarantees that the use-def mapping induced by a feasible partial

order is well-defined. Moreover, a feasible use-def mapping reveals the underlying partial

order on sources if one collapses the uses of all free variables of each source.

Dependency analysis must reveal a unique use-def mapping.

4.2 Opening structures

SML programs that do not make use of the open syntax have a convenient property because

both the set of free variables of a source and the set of exported top-level definitions can be

determined by scanning only the source itself. It is not necessary to know the definitions
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for any of the free variables.

The ability to open a structure, thereby making its constituent definitions directly avail-

able without need to use long identifiers, comes at the cost of losing this property. The

problem is that open introduces a number of definitions, but the names so defined are not

lexically apparent. In the scope of such a set of “indirect” definitions it may be that what

looks like a free variable is actually bound, and what looks bound under superficial inspec-

tion may in certain cases actually be a free occurrence. Here is an example of the latter:

structure S = struct
val x = 1

end
open X
open S
val y = x + 1

Opening structure S seems to bind variable x, but if structure X, about which nothing is

known, contains a sub-structure S without a variable x, then x is actually free in this code.

Language constructs that, like Pascal’s with [JW78], bind identifiers implicitly have

been criticized before [Ten81, section 6.2.3.]. A feature that confuses dependency analysis

tools will not be easy to understand by the human reader.

Similar constructs, for example import in Java or using in C++, can behave like open

in SML—with all the same implications for dependency analysis.

Ada’s use [Ada80] is not capable of masking existing bindings. However, a subtle

problem still remains there as well:

use A;
use B;
. . . use of x . . .

If x is supposed to be taken from package B, then a bug is introduced into this program if a

modification to package A causes A to define x as well, because in this case it is impossible

for the second use-clause to override the existing definition.
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Modula-2 [Wir82] and Modula-3, on the other hand, do not have these problems. In

Modula-2 one must write:

FROM M IMPORT a, b, c;

in order for a, b, and c—and only those—to become directly accessible without having

to prefix them by M. Therefore, the identifiers defined are lexically apparent even with-

out knowing the definition of module M. The design of Oberon takes this much further.

Oberon discards both with and from-import, leaving the language without any facility for

circumventing the qualification of identifiers [Wir88a, Wir88b].

In the context of dependency analysis it is especially troublesome that open at top level

takes away the analyzer’s ability to determine the set of exported names by simply scanning

the source code. Instead, it will have to process open as it goes, which is complicated by

the fact that in general yet-to-be-determined knowledge about the dependencies would be

required for this. Even after banning multiple definitions for the same name, dependency

analysis is NP-complete if the use of open is not restricted.

Claim 3 Dependency analysis is NP-complete for programs with open where multiple def-

initions for top-level names are prohibited, but where a top-level definition can override a

binding in the context.

Proof. By the same argument used in the proof for claim 1 the problem is in NP. To prove

it NP-hard, I will reduce SAT to the dependency analysis problem.

Consider a formula in conjunctive normal form with n variables vi and m clauses ck.

Here is the heart of the construction. Suppose there are structures A and A’ defined by the

context as follows:
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structure A = struct
structure A’ = struct end
val c1 = 1

end

structure A’ = struct
structure A = struct end
val c2 = 1
val c3 = 1

end

Depending on whether A or A’ is opened first, there will be a definition for either c1 or

both c2 and c3. We can think of these variables as “satisfied clauses”; the order of opening

A and A’ corresponds to the truth assignment for a variable.

However, this construction is slightly flawed because a clause can be satisfied by more

than one variable, but due to restriction 1 one cannot define the corresponding identifier

more than once in different sources. To fix this technical problem, one can delay the defi-

nition(s) of variables ck until the last source Ŝ by wrapping them into structures Cki . There

is one such structure per vi and clause ck. Cki contains a definition for ck if clause ck is

satisfied by the value of vi. The sentinel source Ŝ eventually opens all structures Cki in a

local scope, thus adhering to restriction 1. This always works because the context provides

a dummy definition for each.

Suppose v7 appears in clause c1 and v̄7 in c2 as well as c3. The revised version of a

“gadget” for v7 would then be:

structure A7 = struct
structure A’7 = struct end
structure C1’7 = struct
val c1 = 1

end
end
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structure A’7 = struct
structure A7 = struct end
structure C2’7 = struct
val c2 = 1

end
structure C3’7 = struct
val c3 = 1

end
end

Construction: A variable vi is encoded as a pair of sources Si and S ′i:

Si S′i

val zi =
zi−1 + z’i−1

open Ai

val z’i =
zi−1 + z’i−1

open A’i

Let {ck+
1
, . . . , ck+

a
} be the set of clauses that contain the literal vi. Then A’i is be defined

by the context as follows:

structure A’i = struct
structure Ai = struct
val yi = 1

end

structure C
k+

1
i = struct

val ck+
1
= 1

end
...

structure Ck
+
a
i = struct

val ck+
a
= 1

end
end

Likewise, let {ck−1 , . . . , ck−b
} be the set of clauses containing v̄i. Ai becomes:
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structure Ai = struct
structure A’i = struct
val yi = 1

end

structure C
k−1
i = struct

val ck−1 = 1

end
...

structure C
k−b
i = struct

val ck−b
= 1

end
end

Furthermore, the context also defines val z0 = 0, val z’0 = 0, and empty structures

Cki for i = 1, . . . , n; k = 1, . . . , m. An additional source Ŝ has the form:

val z = zn + z’n
val y = y1 + · · · + yn
local
open C1

1
...
open Cmn

in
val c = c0 + · · · + cm

end

The definitions for z0, . . ., zn, z’0, . . ., z’n, and z restrict any feasible ordering

to one where only the relative order of Sk and S ′k for any k is not yet determined. Similarly,

y0, . . ., yn, and y guarantee that any feasible ordering will be total, because either Si ≺

S ′i or S ′i ≺ Si must be true.

Si ≺ S ′i corresponds to vi being false, because structure Ai will be opened first, pro-

viding definitions for the “clauses” that contain v̄i, thereby satisfying the corresponding

requirements imposed by the code in Ŝ. It also overrides the existing definition for A′i, so

the subsequent opening of that structure will not be able to introduce definitions for any ck.

75



In a completely symmetrical fashion, one can argue that S ′i ≺ Si corresponds to an

assignment under which vi is true. A definition for ck is available if at least one of the

structures containing such a definition is opened. By construction, that will be the case

precisely when the corresponding literal becomes true.

Therefore, I have created a set of sources for which a feasible ordering exists if and

only if there is a satisfying assignment for the given satisfiability problem. This reduces

SAT to the dependency analysis problem and, thus, renders the latter NP-complete.
�

To make dependency analysis tractable, one must impose a restriction that, at least, pre-

vents the construction of the program that was used by the proof. The heart of the problem

is the ability to open certain structures at top level. If open is banned from the top level,

then the definitions exported by a source can be determined by looking at just that source.

Formally, there is a computable function EH ∈ Source → 2Ide that calculates the head

domain of the source’s exports independently from the compilation environment. Thus, for

every ρ that is a suitable environment for compiling S, we have EH(S) = domH(def (S, ρ)).

Whenever the dependency analyzer has to process an internal open it will already know

where to find the definition of the structure that is being opened. The problem is tractable

again.

Restriction 2a The open syntax cannot be used at top level.

Claim 4 Under restrictions 1 and 2a any feasible use-def mapping is unique if it exists.

Proof. I refer to the proof for the stronger claim 5.
�

The current implementation of CM enforces restriction 2a. I believe in a programming

style that uses SML’s module language extensively, so there is no need for open at top level.

However, in some instances such a complete ban was prohibitive. These cases have been

rare, but occasionally it is important to support them. For example, someone who is using
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Concurrent ML [Rep91] extensively, as a programming language in its own right, might

want to open the CML structure to have more convenient access to its components.

There are several ways of restricting the use of top-level open in a more relaxed way.

The drawback is that it becomes increasingly difficult to specify the rules precisely and to

explain them to the user. The latter has an impact on, for example, the quality of error

messages and therefore on overall acceptance of the dependency analyzer as a tool.

Here is an alternative to restriction 2a, which also leads to a tractable dependency anal-

ysis problem:

Restriction 2b Instances of the open syntax at top level are not permitted to introduce

definitions for names that are already defined by the context.

This restriction can be weakened some more by limiting its scope to structure definitions

only. In fact, it can be relaxed even further by only considering definitions for those struc-

tures that are also used (as opposed to just being re-exported):

Restriction 2c Instances of the open syntax at top level are not permitted to introduce

definitions for structure names that are used somewhere within the group if the context

already provides a definition for them.

Restriction 2a is strictly stronger than restriction 2b, and restriction 2c is a further re-

laxation of the latter.

Claim 5 Under restrictions 1 and 2c any feasible use-def mapping is unique if it exists.

Proof. Suppose there are two feasible use-def mappings M and M ′. To be different, there

must be at least one use of an identifier where they disagree. I shall show that this is not

possible.
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Consider the partial order ≺M on sources that is induced by M . I use the notation x ∈ S

for uses x of identifiers that occur in S and M(x) ∈ S ′ for the corresponding definitions

M(x) that occur in S ′. Some definitions are given by the context environment ρ0. In this

case I write M(x) ∈ ρ0.

Let there be at least one use where M and M ′ disagree. Then there must be a source Ŝ

and a use x̂ ∈ Ŝ such that:

1. M(x̂) 6= M ′(x̂)

2. no predecessor of Ŝ reveals discrepancies between M and M ′:

∀S, x : S ≺M Ŝ ∧ x ∈ S ⇒ M(x) = M ′(x)

3. x̂ is the (textually) earliest use of a name in Ŝ for which M and M ′ disagree

Let us find the location of M(x̂). There are three possible cases:

1. M(x̂) ∈ Ŝ

2. ∃S : M(x̂) ∈ S ∧ S ≺M Ŝ

3. M(x̂) ∈ ρ0

But none of these cases can actually occur:

1. If M(x̂) ∈ Ŝ, then M ′ must induce a different scope for x̂ in Ŝ. The only language

construct that is capable of inducing different scoping for different use-def mappings

is open, and such an open must textually precede the use x. But we picked x to be

the textually earliest use of a name where M and M ′ disagree.

2. If ∃S : M(x̂) ∈ S ∧ S ≺M Ŝ, then S exports different definitions under M than it

does under M ′. This can only happen if S opens a structure Y , and M(Y ) 6= M ′(Y ).
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But Ŝ was picked to be minimal; no predecessor of Ŝ can contain a use of such a Y

for which M and M ′ disagree.

3. If M(x̂) ∈ ρ0, then M ′(x̂) 6∈ ρ0. Therefore, there must be a source S ′ exporting

M ′(x̂) under M ′: ∃S ′ : M ′(x̂) ∈ S ′. Because of restriction 2c, no top-level open can

provide the definition M ′(x̂). Therefore, there must be an explicit definition for (the

head-component of) x̂ in S ′. There is no language construct capable of wiping out

such an explicit definition, even under different use-def mappings. This implies that

S ′ exports M ′(x̂) under any mapping, including M . But this is impossible because

restriction 1 would then demand x̂ to refer to M ′(x̂), which I assumed it does not.

Thus, if both M and M ′ are feasible use-def mappings, then they must coincide.
�

4.3 The analysis algorithm

The previous discussion has established that if a use-def mapping exists, then it must be

unique under restrictions 1 and 2c. Suppose the mapping is already known. One could

then verify it by processing individual sources in topological order. From this idea one can

derive a quadratic-time algorithm for discovering the correct partial order.

To present the algorithm formally, let us consider a simplified language that only con-

tains structure declarations, sequences of declarations, and opening of structures. Each

source of the group to be analyzed is represented by a declaration (decl). The definition of

decl is shown in figure 4.1. Omitted from this language are signatures, signature constraints

on structures, functors, and functor applications. They do not complicate matters further

and would only add bulk to the exposition.

Structures can be defined to contain any number of other declarations (possibly zero),

or they can be equal to previously defined structures. Structure declarations assign a struc-
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lid = id × id ∗

decl → structure id strexp
| seq decl decl
| open strexp
| empty

strexp → name lid
| struct decl

Figure 4.1: Simple module language. This figure shows the abstract syntax of a module language
that has been simplified for expository purposes. However, the language still has nested structures
and the ability to open them. Therefore, it exhibits the same intrinsic problems with respect to
dependency analysis that are present in Standard ML.

Direct-Decl(structure (v, d)) = {v}
Direct-Decl(seq (d1, d2)) = Direct-Decl(d1) ∪ Direct-Decl(d2)
Direct-Decl(open (s)) = {}
Direct-Decl(empty) = {}

Lookup-Rest(ρ, 〈〉) = ρ
Lookup-Rest(ρ, 〈v1, v2, . . .〉) =

if v1 ∈ dom(ρ) then
Lookup-Rest(ρ(v1), 〈v2, . . .〉)

else abort "member not found in structure"

Figure 4.2: Auxiliary functions for dependency analysis. Direct-Decl calculates the set of names
bound by “direct” definitions. A direct definition is one that is not introduced via open. Given the
environment for the head component of a long identifier, we use Lookup-Rest to complete the lookup
operation for the entire name. Note that in correct programs this operation must always succeed.

80



ture expression (strexp) to a simple identifier (id). A structure expression is either a long

identifier (lid) that refers to some previously defined structure or a declaration (decl) that

provides definitions for the members of the structure.

Environments ρ ∈ U map simple identifiers to other environments: ρ(v) represents the

definitions for members of the structure that is named v in environment ρ. A name that is

mapped to an empty environment is different from a name that is not mapped at all. The

notation ρ[v 7→ ρ′] refers to the environment ρ augmented with a new binding that maps v

to ρ′—possibly overriding an existing binding for the same variable v. The already familiar

operator + denotes environment layering.

Figure 4.2 shows two auxiliary functions. Direct-Decl calculates the set of simple iden-

tifiers for which there is a definition that was provided directly and not by opening some

structure, while Lookup-Rest resolves the remaining components of a long identifier once

the environment representing its head component is known.

The input to the algorithm is a set {d1, . . . , dn} of sources (represented by decls) and

the context environment ρ0. The objective is to calculate the partial order Depend, where

Depend[i] gives the indices of those sources that di depends on. The set denoted by D

is used to remember all simple names for which there is a direct definition in one of the

sources. The variable Analyzed keeps track of sources that have already been analyzed

successfully. Each element (i, ρi) ∈ Analyzed contains the environment ρi representing

definitions exported from di.

Function Analyze-Source is implemented in terms of two mutually recursive functions

Analyze-Decl and Analyze-Strexp, which are used to process decls and strexps, respectively.

These functions are shown in figure 4.3. The result obtained from a call to Analyze-Decl

represents the definitions exported from a decl, while the value returned from Analyze-

Strexp corresponds to the members of a given structure. The environment argument imple-

ments scope rules by keeping track of local definitions.
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Analyze-Source(D, set of names that have an explicit definition
Analyzed, results from successful analyses
ρ0, context environment
d) = current source

P ← {} initialize dependencies for this source

Analyze-Decl(structure (v, s), ρ) = explicit definition
return ρ[v 7→ Analyze-Strexp(s, ρ)]

Analyze-Decl(seq (s1, s2), ρ) = sequential definitions
return Analyze-Decl(s2, Analyze-Decl(s1, ρ))

Analyze-Decl(open s, ρ) = opening a structure
return Analyze-Strexp(s, ρ) + ρ

Analyze-Decl(empty, ρ) = empty definition
return ρ

Analyze-Strexp(struct d, ρ) = new structure body
return Analyze-Decl(d, ρ) analyze body of the structure

Analyze-Strexp(name (v, v∗), ρ) = name of existing structure
if v ∈ dom(ρ) then is defined in same source

return Lookup-Rest(ρ(v), v∗)
else if v 6∈ D ∧ v ∈ dom(ρ0) then has no direct definition but is de-

fined in context
return Lookup-Rest(ρ0(v), v∗)

else if ∃(j, ρj) ∈ Analyzed : v ∈ dom(ρj) then defined in other source
(already analyzed)

P ← P ∪ {j} register dependency
return Lookup-Rest(ρj(v), v∗)

else so far, no definition is known
return "abandon" defer current analysis

ρ ← Analyze-Decl(d, ∅U) run analysis, gather dependencies
return (ρ, P ) return export environment and dependencies

Figure 4.3: Syntax-directed traversal as performed by the dependency analyzer.
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Analyze(〈d1, . . . , dn〉, representation of n sources
ρ0) = context environment

D ← ⋃n
i=1 Direct-Decl(di) calculate set of explicitly defined names

FindNext(Analyzed, {}) = all sources have been analyzed
return Depend return final dependency graph

FindNext(Analyzed, R) = more sources to be analyzed
return Try(Analyzed, R) find source where analysis succeeds

Try(Analyzed, {}) = search was unsuccessful
abort "undefined variable or cyclic reference"

Try(Analyzed, {(i, d)} ∪ R′) = pick arbitrary element
case Analyze-Source(D, Analyzed, ρ0, d) try analyzing this source
of (ρ, Dep) ⇒ analysis was successful

Depend[i] ← Dep remember dependencies
return FindNext(Analyzed ∪ {(i, ρ)}, R′) analyze rest

| "abandon" ⇒ analysis was not successful
return Try(Analyzed, R′) keep searching

return FindNext({}, {(1, d1), . . . , (n, dn)}) start analysis for all sources

Figure 4.4: Dependency analysis. Dependency analysis consists of two nested loops. Function
FindNext loops over the set of sources that are yet to be analyzed. The inner loop, represented
by function Try, repeatedly invokes Analyze-Source until it finds a source where it succeeds. The
algorithm calls Try O(n2) times in the worst case.
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The important aspect of the algorithm is the way it handles names that are not found in

the local environment. First it checks D and ρ0. Restriction 2c guarantees that a binding in

ρ0 is the correct one to be used if the variable is not in D. Otherwise the definition must be

exported from one of the other sources. Analyzed is checked to see if a previously analyzed

source has already revealed it. If this is not the case, then the current source was processed

prematurely; analysis must be repeated later.

The remainder of the algorithm, shown in figure 4.4, consists of two nested loops rep-

resented by FindNext and Try. R holds pairs (i, di) of indices and sources that still need

to be processed. The inner loop repeatedly calls Analyze-Source until it finds a source for

which this analysis succeeds.

The restrictions guarantee that names will be resolved correctly if they are resolved at

all. Therefore, the algorithm will indeed discover the desired partial order if it exists. In

the worst case it will take O(n2) calls to Analyze-Source to do so.

It is possible to reduce running time to O(n) by avoiding repeated invocations of the

analyzer for the same source. The trick is to run the analysis algorithm on all sources simul-

taneously. Instead of abandoning a computation and later duplicating work that already had

been accomplished, the algorithm will simply wait until definitions for previously unknown

names become available.

A version of such an algorithm had been implemented in SC, which was CM’s precur-

sor [HLPR94a]. But the authors of SC were not aware of the general problem’s complexity

class, so they only enforced restriction 1 and made no attempt to restrict the use of top-

level open. As a result, the analysis performed by SC was unsound in the sense that for

certain programs it would fail to find an existing feasible ordering. Furthermore, for some

programs with ambiguous dependencies, it would silently pick one of the choices without

warning the user about the existence of others that differ semantically.

To present the algorithm, I rely on a small number of primitives for non-preemtive
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global Analyzed results of successful analyses
global Depend dependency graph to be constructed

Analyze-Source′(d, current source
i, index of current source
D, set of names that have an explicit definition
ρ0) = context environment

Analyze-Decl(structure (v, s), ρ) = explicit definition
return ρ[v 7→ Analyze-Strexp(s, ρ)]

Analyze-Decl(seq (s1, s2), ρ) = sequential definitions
return Analyze-Decl(s2, Analyze-Decl(s1, ρ))

Analyze-Decl(open s, ρ) = opening a structure
return Analyze-Strexp(s, ρ) + ρ

Analyze-Decl(empty, ρ) = empty definition
return ρ

Analyze-Strexp(struct d, ρ) = new structure body
return Analyze-Decl(d, ρ) analyze body of the structure

Analyze-Strexp(name (v, v∗), ρ) = name of existing structure
if v ∈ dom(ρ) then is defined in same source

return Lookup-Rest(ρ(v), v∗)
else if v 6∈ D ∧ v ∈ dom(ρ0) then has no direct definition but is de-

fined in context
return Lookup-Rest(ρ0(v), v∗)

else
wait v block if no other thread has revealed a definition yet
∃!(j, ρj) ∈ Analyzed : v ∈ dom(ρj) definition provided by source dj
Depend[i] ← Depend[i] ∪ {j} register dependency
return Lookup-Rest(ρj(v), v∗)

ρ ← Analyze-Decl(d, ∅U) run analysis, gather dependencies
Analyzed ← Analyzed ∪ {(i, ρ)} register successful analysis

resume dom(ρ) restart waiting threads; no future wait on
these events will block

return terminate thread

Figure 4.5: Syntax-directed traversal modified for concurrent analysis.
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Analyze(〈d1, . . . , dn〉, representation of n sources
ρ0) = context environment

D ← ⋃n
i=1 Direct-Decl(di) calculate set of explicitly defined names

for i ← 1 to n do Depend[i] ← {} initialize dependency graph
Analyzed ← {} initialize analysis results
Threads ← {}
for i ← 1 to n do start all analysis threads

T ← fork Analyze-Source′(di, i, D, ρ0)
Threads ← Threads ∪ {T}

join Threads collect threads after termination
if deadlock then deadlock indicates error in sources

abort "undefined variable or cyclic reference"
return Depend return dependency graph

Figure 4.6: Concurrent dependency analysis. The concurrent version of dependency analysis
creates one thread per source. Therefore, it only incurs O(n) calls to Analyze-Source.

concurrency. Threads are created using fork and collected using join. A thread can wait

on an event using wait. The resume operation unblocks all threads that wait on one of the

events in the specified set. It also prevents from blocking any future wait operations on

these events.

Figure 4.5 shows a concurrent version of Analyze-Source. As before, Analyze-Strexp

goes through a case analysis for resolving structure names. However, in the absence of a

definition for a name it does not abandon the computation but waits for such a definition to

arrive. Identifiers play the role of events in this algorithm.

The new main loop simply spawns one thread for each source, waits for their comple-

tion, and returns the result. This is shown in figure 4.6.

4.4 Optimizations

It is relatively expensive to parse an entire source file every time the dependency analyzer

needs it. Therefore, CM calculates a condensed version of the source, which sheds all
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parts of the abstract syntax tree that are not necessary for dependency analysis. The much

smaller result is kept in a cache.

Without open this would be very easy. All the dependency analyzer needs to know is

the set of names that occur free in a source and the set of names defined and exported by

the source. In the absence of open (and the absence of datatype replication as introduced

by the revised definition of SML [MTH90, MTHM97]) it is straightforward to calculate

these sets for each given source.

With open this becomes more involved because, as we have seen before, without prior

knowledge of the structure being opened the analyzer will potentially lose track of what

is currently bound or free. Furthermore, the condensed version of the source must still

maintain knowledge about the constituent parts of a structure in order to be able to handle

cases where dependency analysis eventually reveals that it is being opened somewhere.

Even worse, the fact that open may be used locally (e.g. inside a let expression) means

that information about nested scopes in ordinary program code must also be retained. For

example, in the expression

let open X
val b = a + 1

in
b + c

end

it is not clear whether a or c are actually free until X becomes available.

Summary information about definitions and uses can still be obtained for the code be-

tween separate occurrences of open. For instance, in the previous example we know that

b is not free because there is no open separating its definition from its use. Fortunately,

the savings will normally be substantial because programmers tend not to use open locally

very often.

The current implementation of CM uses a different strategy of avoiding this problem. It
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simply ignores all names that are not structures, signatures, functors, or functor signatures.

Again, for this to be useful, one must rely on a programming style where everything is

defined in modules, but it avoids the need to keep track of anything but module definitions

and uses.

The size of typical dependency files is only 1–4% of the corresponding SML source

code size.

4.5 Implications for language design

The use of a compilation management tool like CM is considerably simplified by automatic

dependency analysis. Unfortunately, some features of the SML language pose as a problem

for tractability. I have shown two simple restrictions that fix such problems and that in my

experience are entirely reasonable in practice.

As we have seen, the language feature most troublesome for the dependency analyzer

is open. It is a pity that SML’97 [MTHM97] has made things worse with the introduction

of datatype replication, which also has the property of introducing bindings for identifiers

that are not lexically apparent. However, datatype replication is no more difficult to deal

with than open. The algorithms presented in section 4.3 would work just as well under a

suitable (but straightforward) extension of restriction 2c.
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Chapter 5

Cross-Module Optimizations

Abstraction and modular design of software promote clarity and provide clear lines along

which large projects can be subdivided. But one often pays a large performance penalty for

using abstraction. Cross-module inlining, by which I mean “inline-expansion across com-

pilation unit boundaries,” can bridge the gap between abstract design and high performance

by transparently moving the border between compilation units.

I need not explain in detail the disadvantages of making the programmer inline-expand

“by hand”: burdening the programmer, blurring modular design by exposing implementa-

tion details, and making it difficult to adjust the amount of inlining dynamically for devel-

opment (recompiling) or “shrink-wrapping” mode.

But the automatic cross-module inlining schemes used to date have not treated free vari-

ables, nested scopes, higher-order functions, or link-time side effects from module-level

initializers [DH88, CHT91, CMCH92]. They cannot move a function-body from compi-

lation unit A to compilation unit B if the function has a free variable that is not exported

from A and cannot be copied into B. This limits the generality of existing approaches,

especially when applied to higher-order functional languages.

One might think of inlining functions after closure-conversion. Closure-conversion is
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a phase found in many compilers for functional languages. Its purpose is to eliminate free

variables from all functions by turning those variables into additional parameters. But this

does not solve the problem because the free variables have become function arguments, and

the callers in other scopes have no access to the corresponding actual-parameter values.

λ-splitting is a new, fully automatic technique for cross-module inlining. It exposes

implementation details on an as-needed basis only to the compiler of client code; abstrac-

tion and modularity are never compromised at the source level. Furthermore, by tuning a

few compile-time parameters, one can adjust the aggressiveness of cross-module inlining

or turn it off completely.

In contrast to previous experiments [Sch77, CHT91] that did not explain how to pre-

serve efficient separate compilation while inlining, λ-splitting is fully integrated with the

separate compilation system of SML/NJ. It cleanly exports inlinable portions of one source

file through the binary object file into the importing compilation unit.

This approach should be applicable to a wide range of languages and compilers with in-

termediate languages based on λ-calculi [KKR+86, Pey87]. λ-calculus [Chu41, Bar81] has

the advantage over competing intermediate representations of being a well-studied logical

system. It also proves to be very convenient for expressing the necessary transformations

in my prototype. Although the emphasis on λ-calculus favors functional programming lan-

guages as a target for my technique, the ideas could be adapted to other languages and

implementations.

The compiler makes cross-module inlining decisions automatically. This frees the pro-

grammer from the burden of having to worry about many “micro-optimizations.” The rela-

tionship between source-level constructs and functions to be inlined is not always obvious

to the programmer, especially in implementations that pass type information at runtime,

and which therefore may encode polymorphism as abstraction and type specialization as

function application [Oho92, Tol94, HM95, Sha97a, Sha97c].
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Resource-conscious programmers often like to say explicitly that they believe certain

procedure calls should be inline-expanded. Performance hints from a profiling feedback

system [CMCH92] can play a similarly important role. The framework that I explain here

can easily be adapted to take account of external hints.

λ-splitting moves function bodies from one source to another, but ensuring that these

functions are then inlined within the importing compilation unit is up to the existing in-

tramodule inliner [App92], which does a good but not perfect job. Since the intermodule

inlining algorithm preserves separate compilation, it must make decisions without see-

ing the client modules. Therefore, it relies on simple syntactic cues instead of powerful

dataflow analyses [JW96] that could aid inlining decisions.

I have previously reported on results of this work during the 1997 ACM SIGPLAN

International Conference on Functional Programming [BA97].

5.1 Example

Consider a simple procedure, which maintains the maximum of the values it has been

presented with so far. The implementation is parameterized, so it can be instantiated with

different comparison predicates lt.

fun extremeFun (lt, x0) =
let val e = ref x0

fun get () = !e
fun check0 x =

if lt (!e, x) then e := x
else ()

fun check [] = ()
| check (h :: t) = (check0 h; check t)

in (get, check, lt) end

It is often desirable to inline-expand function calls, especially if the functions are small

and calls occur frequently. This is true regardless of whether the function in question is
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defined within the same or a different compilation unit. Let the example above be one

compilation unit, while another unit instantiates extremeFun in order to be able to use

the resulting procedures check and get.

val (get, check, lt) =
extremeFun (op < , 10000);

. . .

Calls to get are really just accesses to reference cell e; one would like to inline-expand

get, but e is not exported—presumably because it was not supposed to be mutable from

the outside other than via check. But after type-checking, the compiler should be allowed

to inline the function.

The transformation presented here achieves this effect even though e is originally

not exported and everything is parameterized and therefore hidden within the body of

extremeFun. λ-splitting takes one compilation unit and rewrites it as two parts. The

first part contains those sections of the code that cannot or should not be inlined, while the

other will be made available for being inline-expanded into client modules.

It is common for a compilation unit to have more than one client, which means that the

inlinable portion of that unit will be duplicated. For correctness it is necessary to avoid the

duplication of side effects. To prevent excessive growth in total code size, one must keep

the inlinable portion small. Section 5.5 shows the measure that I use to estimate code size.

Of course, at compile time the presence of side effects cannot be decided precisely.

Therefore, the algorithm relies on a safe approximation that can easily be characterized

syntactically. It is very similar to the notion of expansiveness. Accordingly, I call the first

part of a split the expansive portion (even though in general it will also contain a lot of

non-expansive code) and use the subscript e as a label; code examples are marked with the

letter E.

The second, inlinable part of a split—marked with subscript i or a letter I—contains no
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expansive code, only values (variables, constants, λ-abstractions) and other effect-free code

(records, immutable vectors, datatype constructors). It will be compiled together with its

client code. A formal definition of what the algorithm considers “permitted” to be inlined

is given in section 5.5. In effect, λ-splitting redraws the lines between compilation units

and lets an existing local optimizer look beyond the boundaries of the original compilation

units.

In the example, assuming the size of extremeFun to exceed the limit that is imposed

on inlinable code, the transformation will divide it into extremeE and extremeI:

fun extremeE (x0, check0Fun) =
let val e = ref x0

val check0 = check0Fun e
fun check [] = ()

| check (h :: t) = (check0 h; check t)
in (e, check) end

The expansive portion extremeE is compiled to machine code; the inlinable portion

extremeI is kept in symbolic form and will be copied verbatim into the client’s code:

local
fun extremeI (lt, x0) =
let fun check0Fun e =

let fun check0 x =
if lt (!e, x) then e := x
else ()

in check0 end
val (e, check) =

extremeE (x0, check0Fun)
fun get () = !e

in (get, check, lt) end
in
val (get, check, lt) =

extremeI (op < , 10000)
. . .

end

The intramodule inliner reduces this client into:
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...t...

...t...

...t...

...t...

...t...

FE(t...)
...t...

functor F (type t) = functor FE (type t ...) =

functor FI (type t) =

Figure 5.1: Functor splitting. Type t is propagated through the functor into the client by copying
FI into each client and β-reducing it. But F contains an expansive portion (ovals) that cannot be
copied; this is abstracted as FE. F, and FE, may be very large, but only the inlinable portion FI,
which the algorithm keeps small, gets copied into clients.

val (e, check) =
extremeE (10000,

fn e => fn (x: int) =>
if !e < x then e := x
else ())

fun get () = !e
val lt = (op <): int * int -> bool
. . .

Thus, λ-splitting achieves the following effects:

• extremeE exports reference cell e.

• The compiler can now rewrite invocations of get in the client as accesses to e.

• Information about the fact that lt is the same as op < has not been lost on its way

through the body of extremeFun.

• The function check0 is lifted out of extremeE and put into extremeI so the

actual comparison < can be inlined.

The example shows what can be gained by a higher-order inlining algorithm. Previous

approaches would not inline get, check, and lt because they do not appear at top level.

A function like extremeFun really plays the role of a parameterized module. In ML

terminology these are called functors, and there is special syntax (which I did not use here
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to avoid complicating the presentation) together with ramifications for the static semantics

of the language.

Standard ML provides only first-order functors, but this has been taken a step further

in SML/NJ by offering a higher-order module system [Mac90, MT94]. Functors can be

defined within functors, they can be passed as functor arguments, and they may be returned

as part of functor instantiations. Therefore, in the intermediate representation there is really

not much difference between ordinary functions and functors because they are represented

the same.

Functions are non-expansive themselves. One could, without sacrificing correctness,

place them into the inlinable portion as a whole, thereby effectively delaying the com-

pilation of parameterized modules until they are instantiated. This would maximize the

compiler’s chances of generating optimized code tailored to each individual instantiation.

It also duplicates all of the functor’s body every time it is used, potentially leading to intol-

erable increases in size. But large functors sometimes have a small ”core” that should be

delayed and inlined for efficiency, while the remainder can be compiled where it is declared.

λ-splitting is able to accomplish that (almost—see the discussion of 1-decomposition).

5.2 Separate compilation and linking

The meaning of any compilation unit can be understood as a function that maps meanings

for its imports to meanings for its exports. This allows us to view cross-module inlining as

a problem of manipulating such functions.

Imports correspond to the free identifiers in the source program; new definitions that

other compilation units can refer to are considered exports. One can assign meaning to

a system of several compilation units by solving the corresponding system of equations,

which describe the import-export relations. In languages that permit circular dependencies
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among source files this will in general involve calculating a fixed point; without circularities

it becomes much simpler.

Standard ML has no circular dependencies among compilation units. As discussed in

chapter 3, separate compilation and linking can be modeled using nonrecursive higher-

order functions. Type checking already imposes an ordering on compilation steps, guaran-

teeing that whenever a source B refers to something exported from source A, then A must

be compiled before B, thereby ensuring that inlining information from A will be available

at the time B is compiled.

Appel and MacQueen [AM94] describe how Standard ML of New Jersey implements

separate compilation. Since this is the basis for this work I will summarize it here:

A compilation unit consists of a number of definitions for types, values, signatures,

structures, and functors. Types and signatures are relevant only for dealing with static se-

mantics and can be ignored as far as linking, a dynamic concept, is concerned. The SML/NJ

intermediate representation (λ-language [App92]) represents structures as records, and

functors as functions. It does not distinguish between the core and module languages.

Each compilation unit is turned into a λ-expression, where references to identifiers from

other compilation units appear as free variables. By abstracting over those variables one

obtains a closed expression, which can now be compiled to machine code without further

need to refer to any context information.

Thus, a compilation unit becomes a function taking imported values to exported values.

Exported values are collected in a record that is the result of executing the unit. Another

unit, which imports those values, simply takes that record as a function argument.

For example, a unit consisting of definition:

val a = 1 and b = 2

would be represented as fun A () = (1, 2). The compiler remembers that a sits in the
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first position and b in the second. Similarly, a unit consisting of the definitions

val c = 3 and d = 4

becomes fun B () = (3, 4). Now, if one compiles a third unit containing

val e = a * b + c - d
and f = a + c

the compiler will construct a λ-expression of the form

fun C [A, B] =
let val (a, b) = A

val (c, d) = B
in (a * b + c - d, a + c) end

5.3 λ-splitting

For simplicity let us ignore the issue of importing from multiple sources, so we need not

deal with vectors of imports. The code for a unit U is a closed function mapping imports

to exports: U : I → E. The objective of λ-splitting is to choose a triplet (T, Ui : T →

E, Ue : I → T ), such that the composition Ui◦Ue yields U again. T denotes the domain of

possible values that are passed from Ue to Ui and corresponds to a type if the intermediate

language is typed. The triplet is said to be a B-decomposition1 or simply a split. For

example, a trivial split for any U : I → E is (E, idE, U), where idE : E → E is the

identity function on E.

Now consider two units, where the second imports the exports of the first: U 1 : I1 →

E1 and U2 : I2 → E2, E1 = I2. The meaning of the program comprised of U 1 and U2

can be understood in terms of their composition U 2 ◦ U1. For any split (T, U 1
i , U

1
e ) this

is the same as U 2 ◦ (U1
i ◦ U1

e ), and by associativity (U 2 ◦ U1
i ) ◦ U1

e . In other words, one

can compile U 1
e as one unit, U 2 ◦ U1

i as the other, and still obtain the correct result. Cross-

1B is the composition combinator λfλgλx.f(gx).
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module inlining can therefore be achieved by cleverly placing the things to be inlined by

U2 into U1
i .

In general, U 1 will be referred to by several other units. The code that goes into U 1
i

must be chosen carefully because it will be duplicated in each one. Therefore, the algo-

rithm never places expansive code and code that is deemed too big into the i-portion of a

split. The idea of splitting functions into pieces can also be used to facilitate intramodular

optimizations like “call forwarding” [BDGK94] or partial inlining [Gou94].

The basic algorithm

In SML/NJ a compilation unit translates into a sequence of nested variable bindings (let-

bindings), some of which can be recursive. The rightmost body of the rightmost let-

expression then builds a record of exported values. The entire construction is finally

wrapped into a λ-abstraction together with some code for selecting values for the source

code’s free variables from the argument.

The code corresponding to any compilation unit U will be of the following general

form, where the set {w1, . . . , wk} is a subset of {v1, . . . , vn}:

fn v0 =>
let val v1 = E in

let val v2 = E2 in
. . .

let val vn = En in
(w1, w2, . . ., wk)

end
. . .
end

end

The construction of the code for Ue and Ui starts with selecting all j such that the bind-

ings val vj = Ej are guaranteed to be effect-free. This will ensure that no side effects

will be duplicated by the algorithm. A formal definition of what it considers “guaranteed
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to be effect-free” is given in section 5.5. In most cases the set of bindings chosen in this

step will be rather large. A combination of several heuristics will further reduce it.

The remaining bindings are then used to build Ui’s body, and finally one needs to find

T and Ue to complete the split (T, Ui : T → E, Ue : I → T ). The elements of T must

communicate values for all free variables of Ui’s body. These free variables will always be

a subset of {v0, v1, . . . , vn}, so they are readily available at the time when the original code

for U would have constructed its export record. Furthermore, since only non-expansive

code has been placed into Ui, there will be no harm in duplicating some or even all of it

in Ue. Therefore, the task of constructing Ue becomes surprisingly simple. One can use

U almost unchanged; only the export record has to be replaced with a record holding said

free variables. Of course, some of the bindings in Ue may become unnecessary. But the

intramodular optimizer will delete dead bindings.

A-normal form

To break large expressions into inlinable pieces, I use a variant of A-normal form [FSDF93]

as the calculus for λ-splitting. The important property is that every intermediate result will

be explicitly bound to a variable. This increases the number of bindings while, on average,

reducing the size of the expressions being bound. Thus, splitting decisions can be made

with finer granularity. The structure of the intermediate language automatically enforces

this. Continuation-passing style [Ste78, App92] would do as well; but the SML/NJ com-

piler transforms to CPS at a late stage after type information is discarded. I would rather

preserve the ability to do monomorphic instantiation of polymorphic functions [SA95] after

cross-module inlining has been done.

As an example of how A-normal form helps inlining, consider that the expression bound

to x in:
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let val x = (1, ref 0)
val y = 2

in (x, y) end

is expansive because ref 0 is expansive. But in A-normal form this turns into:

let val tmp = ref 0
val x = (1, tmp)
val y = 2

in (x, y) end

In this program x is bound to a non-expansive expression, which can very well be moved

into the i-section of the split, thus exposing the 1 in the first field of the tuple. Thus, one

can move more code into Ui.

The intermediate language

The following calculus is used as the intermediate representation. It is reminiscent of A-

normal form. The only difference is that one does not need to distinguish between ordinary

function application and tail calls. Variable bindings are established by fn, fix, and let. Each

variable is bound at most once; variables occurring in closed functions are bound exactly

once. I distinguish between pure and impure built-in “primitive operations” (primops); the

former are guaranteed not to incur effects upon application. Even “read” effects, such as

accesses to reference variables, are considered impure here.
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var → v0 | v1 | . . .

const → int | real | . . .

primop → pure pure
→ impure impure

val → var var
→ const const
→ primop

exp → val val
→ fn (var, exp)
→ fix ((var, var, exp) . . ., exp)
→ let (var, exp, exp)
→ app (val, val)
→ record (val . . .)
→ select (int, val)
→ if (val, exp, exp)

Expressions that only consist of a variable access, a constant, or a primitive operator use

the val clause; fn introduces a λ-abstraction. Recursive function bindings are established

using fix; an expression of the form

fix ((f1,v1,E1),(f2,v2,E2),. . .,B)

corresponds to the SML expression

let fun f1 v1 = E1
fun f2 v2 = E2

in B end

A let-expression locally binds a variable; app denotes the application of one value to an-

other. Records are constructed using record and selected from using select. The if-clause

specifies a conditional expression.

Fv(. . .) and F(. . .) calculate the sets of free variables for exp and val, respectively:

Fv(var v) = {v}
Fv(const c) = ∅
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Fv(pure p) = ∅
Fv(impure p) = ∅

F(val x) = Fv(x)
F(fn (v, e)) = F(e) \ {v}
F(fix (l, b)) = (Ff(l) ∪ F(b)) \ Bf(l)

F(let (v, e, b)) = F(e) ∪ (F(b) \ {v})
F(app (x1, x2)) = Fv(x1) ∪ Fv(x2)

F(record (x1, . . .)) =
⋃

i=1,...
Fv(xi)

F(select (i, x)) = Fv(x)
F(if (x, t, e)) = Fv(x) ∪ F(t) ∪ F(e)

Ff((f1, v1, e1), . . .) =
⋃

i=1,...
{F(ei) \ {vi}}

Bf((f1, v1, e1), . . .) = {f1, . . .}

λ-contract

I found it useful to run a simple optimizer, called λ-contract, over the code before attempt-

ing to split it. By un-nesting let-bindings and performing other code rearrangements, it

brings the code into the general form expected by the splitting algorithm. It also performs

value propagation, β-contractions, and some dead code elimination. After the code has

been straightened out, one can rely on simple syntactic cues when looking for variable

bindings to be exported in symbolic form as part of the inlinable portion of the split.

For example, if the right-hand side of a variable binding is another binding form itself,

then the order of the two can be exchanged. This technique is known as let-floating [JPS96]:
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let val a =

let val b = B

in A end

in C end

a
B

C
A

b

⇒

let val b = B

in let val a = A

in C end

end

B

a

C

A

b

No α-conversion is necessary here because variable names are guaranteed to be distinct.

When abstraction and application are not adjacent, a β-reduction can make the let-

binding apparent:

let val f =

fn v => B

in f A end

A

f

f

v

B

⇒

let val v = A

in B end

B

Av

Such transformations move more bindings to “top level,” which improves the performance

of λ-splitting.

It seems unfortunate that λ-contract duplicates some optimizations that are also per-

formed by SML/NJ’s CPS optimizer. The λ-splitter runs early to be able to take advantage

of type information that is not present in later stages of the current SML/NJ compiler.

Perhaps, in compilers where the intermediate language is typed at all times [TMC+96], λ-

splitting can be moved to such a later stage, and the need for λ-contract and its associated

redundancy can be eliminated.
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Call counting

One major source of inefficiencies related to separate compilation is the need for a generic

function call protocol, which has to be used whenever the compiler is unable to consistently

identify all call sites of a given function or all functions callable at a given call site. In

particular, this is always the case when the function is defined in one compilation unit and

used in another.

Cross-module inlining, as proposed here, is an attempt to improve the situation by

moving function definitions into the modules where they are used and vice versa. But

unless one abandons the idea of separate compilation completely, there will always be some

functions that are not defined where they are called. Therefore, there is a danger that cross-

module inlining will make things worse than they were before! To illustrate this, consider

a compilation unit B that contains a call to a function f; f is defined in compilation unit A

and calls g as well as h, which are also defined in A.

(* compilation unit A *)
fun g () = . . .
fun h () = . . .
fun f () = (. . . g () . . . h () . . .)

(* compilation unit B *)
. . . f () . . .

If “for efficiency” only f’s definition is moved into B, then for every call to the original f

that had to use the generic, non-optimized protocol one now has to make two such calls to

g and h:

(* compilation unit A *)
fun g () = . . .
fun h () = . . .

(* compilation unit B *)
. . . (. . . g () . . . h () . . .) . . .
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To avoid this effect, one should keep track of the number of runtime function calls

that, for the reason that caller and callee are separated and put into different source files,

use the non-optimized protocol. This quantity cannot be calculated precisely, but one can

use a static estimator N (. . .), which is able to identify many of the bad cases. More-

over, inherent imprecisions do not have any bearing on correctness of the overall algorithm

(→ Section 5.5.)

B-decomposition algorithm

Some bindings need not appear in Ui because the variables they bind are not referenced.

For a binding to be useful in Ui it must be reachable in the directed use-definition graph

that contains an edge going from every use of a variable to its definition, and where the root

node corresponds to the expression that constructs the export record. The use-def graph for

extremeFun is
get

check
check0

lt
(get,check,lt) x0

There is no node for e because ref x0 is expansive. To avoid code blowup, the algorithm

will put into Ui only a subset of the reachable portion of the graph.

The algorithm for constructing Ui proceeds as follows:

1. Calculate the initial set A of bindings that are available for inlining: all non-expansive

bindings to non-functions, all bindings to small functions, and bindings derived from

recursively splitting large nonrecursive functions. “Small” is defined by a tunable pa-

rameter to the algorithm. Code size is estimated using the measure S(. . .) defined in

section 5.5; non-expansiveness is judged using the predicate P(. . .) from section 5.5.

This part of the algorithm is the Available function of figure 5.2.

2. Construct the use-definition graph for this set (as in UseDef of figure 5.3).
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B-decompose(w = λ(v1, . . . , vn). let bindings in ~r) =
(E,A)← Available(bindings)
I ← ToBeInlined(A,~r)
Iord ← the ordered sublist of E whose elements are ∈ I
(x1, . . . , xk)← F(let Iord in ~r)
return ( we = λ(v1, . . . , vn).let E in (x1, . . . , xk),

wi = λ(x1, . . . , xk).let Iord in ~r,
w=λ(v′1, . . . , v

′
n). wi(we(v′1, . . . , v

′
n)) )

S-decompose(w = λ(v1, . . . , vn). let bindings in ~r) =
(E,A)← Available(bindings)
I ← ToBeInlined(A,~r)
Iord ← the ordered sublist of E whose elements are ∈ I
(x1, . . . , xk)← F(let Iord in ~r) \ {v1, . . . , vn}
return ( we = λ(v1, . . . , vn).let E in (x1, . . . , xk),

wi = λ(v1, . . . , vn).λ(x1, . . . , xk).let Iord in ~r,
w = λ(v′1, . . . , v

′
n).wi(v′1, . . . , v

′
n)(we(v′1, . . . , v

′
n)) )

Available(b1, . . . , bm) =
E ← b1, . . . , bm
for each b ∈ E

if S(b) < K
A← A ∪ {b}

else (be, bi, b′)← S-decompose(b)
In the list E, replace b by be, bi, b′

A← A ∪ {bi, b′}
else if P(b)

A← A ∪ {b}
return (E,A)

Figure 5.2: λ-splitting algorithms. Part 1.
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UseDef(b) =
The set of bindings v = M such that v ∈ F(b)

ToBeInlined(A,~r) =
Q← {~r}
Q′ ← { }
while Q 6= { } ∧ ∑

b∈B S(b) < K ′

let b be the element of Q with smallest S(b)
A← A \ {b}
Q← Q \ {b}
B ← B ∪ {b}
Q′ ← Q′ ∪ (UseDef(b) ∪A)
if N (B) < N (I)
I ← B

if Q = { }
Q← Q′

Q′ ← { }
return I

Figure 5.3: λ-splitting algorithms. Part 2.

3. Perform a breadth-first search on the graph starting at the root (the export record ~r).

Within each level of the graph, search is biased to favor smaller expressions. It stops

when either the entire graph has been traversed or the total size of nodes searched

exceeds a pre-set threshold. This step automatically eliminates all dead definitions.

The greedy approach favors variables that are used by shorter use-def chains from the

root node; this is called a distance heuristic. It also provides a cap for the total size

of Ui, thereby preventing nonlinear increases in total code size. (See the ToBeInlined

function of figure 5.3.)

4. From the space traversed by the greedy breadth-first search the algorithm picks the

set of bindings for Ui that has the smallest call count N (. . .).

5. The bindings in the set picked for constructing the body of Ui are used in the same

107



~r is the expression that constructs the ex-
port record and serves as the starting
point for the breadth-first search in
function ToBeInlined.

E is the ordered list of bindings to be kept
in Ue; the intramodular optimizer
may later delete dead bindings, but
this is not part of the splitting algo-
rithm.

A is the set of bindings available for inlin-
ing.

B is the current candidate for the inlin-
able part Ui.

I is the best candidate seen so far.

Q, Q′ are the two parts of the breadth-first
search queue. The separation en-
ables us to implement a bias in fa-
vor of smaller bindings within each
level of the breadth-first search tree.

K is the maximum size of any function
body that can be inlined without be-
ing recursively split.

K ′ is the maximum size of the inlineable
code Ui.

F computes the free variables of an ex-
pression (see section sec:lang).

P tells whether an expression is nonex-
pansive (see section 5.5).

S tells the size of an expression (see sec-
tion 5.5).

N approximates how many out-of-
module calls a set of bindings
makes.

Figure 5.4: Legend to the algorithm in figures 5.2 and 5.3.
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order that they appeared in within U ’s code. This ensures correct scoping for bound

variables.

6. Any remaining free variables will not be inlined. They will be calculated by Ue

and passed at link-time (as function arguments) to the client (see B-decompose in

figure 5.2).

5.4 Functions

Abstractions are syntactic values, so large functions will be large even in A-normal form.

Inlining small functions is part of the overall goal, but big functions pose a problem. While

it is possible to move the entire code of any function into Ui without sacrificing correctness,

one cannot do this indiscriminately because it would severely inflate the code. On the other

hand, when it is not feasible to move the entire function, then one would like to make

some of its parts available for inlining (→ Figure 5.1). After all, functors are encoded

as functions, and highly functorized code could hardly benefit from cross-module inlining

if this problem is not solved. As I will explain, the λ-splitting algorithm can be applied

recursively to function bodies.

Recursive functions

The algorithm does not attempt to take recursion apart; it either moves entire clusters of

mutually recursive functions into Ui when the cluster as a whole is deemed small enough,

or it leaves them completely alone. To be able to do this at as fine a granularity as possible,

it calculates strongly connected components of the use-definition graph for every recursive

let. Each component is then considered separately.

In most cases, a strongly connected component of functions represents a genuine loop
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or similar repetitive computation. This should not be spread across multiple compilation

units because the overhead of cross-module function calls would be amplified considerably.

Functors and nonrecursive functions

B-decomposition works because compilation units are represented as functions. One could

think of these compiler-constructed functions as implicit functors. From this observation

one can derive the idea for dealing with actual functors and other large functions—they

will be split as well. The resulting expansive and inlinable parts are placed into the cor-

responding expansive and inlinable portions of the surrounding function or compilation

unit.

For correctness one must be careful that the splitting algorithm will never place expan-

sive code into the inlinable portion of a compilation unit. When splitting functions this

restriction does not exist, because side effects can only occur at the time the function is

called. Therefore, side effects will be duplicated only if the function in question is explic-

itly invoked multiple times, which then makes this the correct behavior as mandated by the

language definition.

Nevertheless, it is convenient to maintain the invariant that the inlinable portion of

any split is nonexpansive. It frees the algorithm from having to pay attention to the or-

dering of effects within a function. Also, it guarantees that invocations of any inlinable

portions themselves will be free of effects. Thus, it becomes possible to relax the notion of

non-expansiveness (normally, function invocation is always considered expansive). Such

invocations can also be moved into the inlinable portion of the enclosing function (→ Sec-

tion 5.5).

Recursive decomposition. As a first attempt, the same technique, B-decomposition, that

is used to split the functions representing entire compilation units can also be utilized when
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splitting functions too large to be placed into the inlinable portion. This idea recursively

extends to large functions encountered within large functions and so forth.

In the introductory example, if one assumes check0 and check to be too big, then

the “functor” extremeFun would be split like this:

fun extremeE (lt, x0) =
let val e = ref x0

fun get () = !e (* dead *)
fun check0 x =

if lt (!e, x) then e := x
else ()

fun check [] = ()
| check (h :: t) = (check0 h; check t)

in (e, check, lt) end

fun extremeI (e, check, lt) =
let fun get () = !e
in (get, check, lt) end

fun extremeFun args =
extremeI (extremeE args)

Notice that extremeFun is the B-composition of extremeI and extremeE. Defini-

tions for extremeI and the reconstructed extremeFun will be exported as part of Ui,

allowing the client to inline calls to get and rewrite them as accesses to reference cell e.

S-decomposition. Functor splitting should provide three benefits:

1. Parts of the functor’s body become part of Ui and can, therefore, be inlined into client

code.

2. Existing simple connections between argument and result remain visible in Ui. Since

the functor argument is supplied where the functor is instantiated, this will enable

client code to inline parts of a functor’s result if they correspond to inlinable parts of

the argument.
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3. Part or all of the functor’s argument are inlined into the functor’s body.

Unfortunately, only the first point is addressed by B-decomposition. At first this may seem

surprising because it works so nicely at the level of compilation units. What is it that

distinguishes explicit functors from the ones the compiler constructs implicitly? In SML, if

a compilation unit U 2 refers to U1, then for reasons of type checking U 1 must be compiled

before U2. This means that the code for constructing U 2’s input is already available when

U2 is compiled. In other words, the compiler really compiles U 2 ◦ U1
i and not U 2.

With functors the situation is different. Functors are compiled separately from the code

that constructs their arguments. But I want actual functor arguments to be propagated to

functor bodies, so they can be inline-expanded there, and functor arguments to be propa-

gated to functor results (for clients to use). B-decomposition propagates code only from

functor bodies to functor results.

A variation on B-decomposition, called S-decomposition, addresses points 1 and 2

above. The functor argument is known at the time when function extremeI is invoked, so

instead of first funneling it all the way through extremeE one can simply pass it directly

to extremeI. Therefore, the S-decomposition for F : I → E is:

(T, Fi : I → T → E, Fe : I → T )

such that F = SFiFe. S denotes the stronger version of composition, which distributes the

argument to both functions: Sfgx = fx(gx).

S-decomposition turns the example program into the following code, where Fi (here,

extremeI) establishes an explicit link between the functor’s argument and lt:
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fun extremeE (lt, x0) =
let val e = ref x0

fun get () = !e (* dead *)
fun check0 x =

if lt (!e, x) then e := x
else ()

fun check [] = ()
| check (h :: t) = (check0 h; check t)

in (e, check) end

fun extremeI ((lt, x0), (e, check)) =
let fun get () = !e
in (get, check, lt) end

fun extremeFun args =
extremeI (args, extremeE args)

Differences between the algorithms for B- and S-decomposition are minor. S-decom-

position can use exactly the same methodology and, in fact, share most of the implemen-

tation of B-decomposition as well. There is one small twist: At the point where the free

variables of Fi are collected, S-decomposition explicitly excludes the original formal ar-

gument of F because it will be passed to Fi directly (see the S-decompose function of

figure 5.2).

1-decomposition. Actual functor arguments can be inline-expanded in the functor body

only if they are used in the inlinable portion of the functor split. Only then will both defini-

tion and use of the argument be available to the compiler at the same time. In the example,

even S-decomposition does not promote the definition of check0 into extremeI. There-

fore, the comparison predicate will not be inlined there. The only mention of check0 is

in check, which itself is not in extremeI.

Still, check0 is bound to a syntactic value. λ-splitting could factor it out and move it

to extremeI. From there it will be passed as an argument to extremeE. The resulting

code was shown in section 5.1.
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When splitting a functor F one can generally leave it up to Fi how Fe is invoked. Even

though Fe is compiled somewhere else and will be treated as a black box, its interface can

still be chosen arbitrarily. This can be modeled by passing Fe itself, not its result, to Fi.

Thus, a 1-decomposition of F : I → E is a triplet

(T, Fi : T → I → E, Fe : T )

such that F = 1FiFe = FiFe.2 Normally T will itself be of the form T1 → T2 for some T1

and T2.

The equality F = FiFe is used to recover F from its pieces. Any occurrence of F in

the client can be replaced with FiFe. But the code of Fi will then be available, so one can

immediately β-reduce FiFe and work with the result instead of Fi itself. I already did this

when I presented the introductory example, which explains why extremeE is not being

passed to extremeI as an argument but instead gets invoked directly.

Both B- and S-decompositions can be viewed as special cases of the more general

approach of 1-decomposition. In particular, for any X-decomposition (T, Fi, Fe) of F :

I → E (where X is either B or S) the triplet (I → T, XFi, Fe) forms such a corresponding

1-decomposition.

I do not show an algorithm for 1-decomposition because I have not found a good

set of heuristics to separate the “core” of a function (or functor) from the non-inlinable

body (as illustrated in figure 5.1). Therefore, my implementation cannot quite transform

extremeFun as shown in section 5.1, but can transform it via B- and S-decomposition.

21 = λf.λx.(fx) is the Church-numeral 1.
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5.5 Heuristics

The algorithms for B- and S-decomposition rely on my definition of expansiveness, on

heuristics for measuring code size, and on cross-module call counts. I will now show the

corresponding formal definitions.

Expansiveness

Expressions can be moved into the inlinable portion of a split if the predicate P(. . .) (“per-

mitted”) holds for them:

P(val v) = T

P(fn (v, e)) = T

P(fix (l, e)) = P(e)
P(let (v, e, b)) = P(e) ∧ P(b)

P(app (pure p, x)) = T

P(app (impure p, x) = F

P(app (var v, x)) = purefun (v)
P(record l) = T

P(select (i, x)) = T

P(if (x, t, e)) = F

The use of the auxiliary function purefun deserves some explanation. Normally all func-

tion applications are deemed expansive and, thus, are not allowed to occur within the inlin-

able part. However, occasionally one can be sure that certain functions have no side effects,

in which case there is no harm in moving a corresponding application. In particular, this

happens when the cross-module inlining algorithm splits functions recursively, because it

always maintains the invariant that the inlinable portion of a split is effect-free.

To illustrate this point, consider a compilation unit that defines a functor and then also

instantiates it:
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fun F x = . . .
val m = F a

S-decomposition on F transforms this into:

fun Fe x = . . .
fun Fi (fe, x) = . . .
fun F x = Fi (Fe x, x)
val m = F a

It is now possible to export the definitions for Fi and F, but one still cannot also export

m’s definition because its right-hand side is an application. This is unfortunate because m

is constructed by applying Fe as well as Fi, and Fi itself was constructed in such a way

that its applications should become inlinable. In other compilation units that instantiate F,

this will not pose as a problem because λ-contract will turn such applications into explicit

let-bindings. But within the same compilation unit λ-contract has already finished its work

before F was ever split into Fe and Fi. Therefore, the implementation keeps track of such

cases and β-reduces the call to F on the fly:

fun Fe x = . . .
fun Fi (fe, x) = . . .
fun F x = Fi (Fe x, x)
val tmp = Fe a
val m = Fi (tmp, a)

Fi refers to the inlinable portion of a split. Therefore, one can assert: purefun(Fi) = T .

With this, the definition for m can be exported and inlined into other compilation units.

Currently, purefun(. . .) returns false in all other cases. It would be possible to further

relax this by checking the bodies of other functions to see whether or not they are expansive.

I have not done this because in many cases such function applications are already β-reduced

during the λ-contract phase.
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Size estimates

I use a simple, syntax-driven size estimate S(. . .) to limit the amount of code that will be

exported to be inlined into other compilation units. Necessarily, this estimate is imprecise

because subsequent optimization can radically alter the code.

The values A, B, C, D, E, F, G, H, I, K, L as well as the function Sp(. . .) are adjustable

parameters to the algorithm and are chosen to approximately reflect the relative cost of im-

plementing the respective language feature.

Sv(var v) = A

Sv(const c) = B

Sv(pure p) = C

Sv(impure p) = C

S(val x) = Sv(x)
S(fn (v, e)) = S(e) + D|F(e) \ {v}| + E

S(fix (l, b)) = Sf(l) + D|Ff(l) ∪ Bf(l)| +
S(b) + F

S(let (v, e, b)) = S(e) + S(b) + G

S(app (pure p, x)) = Sp(p) + Sv(x)
S(app (impure p, x)) = Sp(p) + Sv(x)

S(app (x1, x2)) = Sv(x1) + Sv(x2) + H

S(record (x1, . . .)) = I +
∑

i=1,...
Sv(xi)

S(select (i, x)) = Sv(x) + K

S(if (x, t, e)) = Sv(x) + S(t) + S(e) + L

Sf((f1, v1, e1), . . .) =
∑

i=1,...
S(ei)
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For Standard ML of New Jersey, I use the following coefficients:

A B C D E F G H I K L

0 0 0 2 1 2 0 5 1 1 4

Sp(p) is between 1 and 4, for most p.

Call counting

I want to estimate the number of function calls that cross between module boundaries.

Of course, this number depends on the specifics of client code, which is not available at

the time of conducting the analysis. But client code can only call the functions that were

originally exported by the compilation unit. Therefore, one can “normalize” the estimate,

for example, by setting the counts for these functions to 1.

In the absence of cross-module inlining, the compilation unit that only exports one

function f would be assigned the estimate 1:

local
fun g () = . . .
fun h () = . . .

in
fun f () = (. . . g () . . . h () . . .)

end

But when λ-splitting moves f’s definition into the client, then the estimate increases to 2

because now there are calls to g and h that cross compilation unit boundaries. Function f

might also call other functions in a loop, it may pass them to higher-order functions, and

so on. In these cases it becomes difficult to know the actual number of calls that will occur

at run-time. I capture this by estimating such a number as ∞. Thus, the domain C of call

counts is the set of elements {0, 1, 2, . . . , ∞}.
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Adding call counts:

y ⊕ x = x ⊕ y

x ⊕ y = x + y; x, y 6= ∞
∞ ⊕ x = ∞

Multiplication with ∞:

0 � ∞ = 0
x � ∞ = ∞

Comparison:

x � y; x, y 6= ∞; x ≤ y

x � ∞
∞ 6� x; x 6= ∞

Least upper bound:

x u y = x; x 6� y

x u y = y; x � y

Call count estimation: NB(e) estimates the number of function invocations made via

globally free variables while evaluating e. Included in the result is the number of such

function invocations that will be suspended in e’s value. Thus, the result of NB(e) is in the

domain C × C. I use the notation ν ↓ 1 and ν ↓ 2 to extract first and second field from such

a pair ν.

An environment B maintains information about variables bound by the “context expres-

sion” that surrounds e. It maps variables to the estimate for the number of calls suspended

in the respective runtime values. If nothing else is known, then B binds a variable to �.
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N (e) = Nλx.�(e)

The estimate NB(e) is given by a recursive definition directed by the syntactic structure of

expression e:

Nv,B(var v) = (0, 1); B(v) = �
Nv,B(var v) = (0, w); B(v) = w

Nv,B(x) = (0, 0)

NB(val x) = Nv,B(x)
NB(fn (v, e)) = (0, NB[v→0](e) ↓ 2)
NB(fix (l, b)) = NB[f1→u,...,fn→u](b);

l = (f1, v1, e1), . . . , (fn, vn, en),
B′ = B[f1 → 0, . . . , fn → 0],

u = (
n⊕

i=1
NB′[vi→0](ei)) � ∞

NB(let (v, e, b)) = (n1 ↓ 1 ⊕ n2 ↓ 1, n2 ↓ 2);
n1 = NB(e), n2 = NB[v→n1↓2](b)

NB(app (var f, x)) = ((nx ↓ 2 � ∞) ⊕ 1, nx ↓ 2);
B(f) = �, nx = Nv,B(x)

NB(app (var f, x)) = (w, w ⊕ xs ↓ 2);
B(f) = w, nx = Nv,B(x)

NB(app (x, y)) = Nv,B(y)
NB(record (x)) = Nv,B(x)

NB(record (x, y, . . .)) = (nx ↓ 1 ⊕ nr ↓ 1, nx ↓ 2 u nr ↓ 2);
nx = Nv,B(x),
nr = NB(record (y, . . . ) )

NB(select (i, x)) = Nv,B(x)
NB(if (x, t, e)) = (nt ↓ 1 ⊕ ne ↓ 1, nt ↓ 2 u ne ↓ 2);

nt = NB(t), ne = NB(e)
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5.6 Implementation and results

I implemented λ-splitting (B-decomposition for compilation units and recursive S-decom-

position for functions) in SML/NJ. For the general framework only very small modifi-

cations to existing code in the compiler were necessary. In particular, I did not have to

modify either the front-end (including symbol table management), the optimizer, or the

various architecture-specific back-ends. λ-splitting fits neatly between existing compiler

phases.

I changed the format of object files to accommodate symbolic λ-code and adjusted

SML/NJ’s compilation manager [Blu95] accordingly. The cutoff-recompilation heuristic

must take into account that compilation units are connected via static environments (i.e.,

symbol tables) and inlinable code. This does not change the shape of the dependency graph,

but it has an impact on how modifications to one unit propagate to other dependent units.

Many widely used SML benchmarks cannot be used to measure cross-module inlining

because they contain only a single compilation unit. Therefore, I applied λ-splitting to

SML/NJ’s compiler itself and used several of its phases as my benchmarks. The compiler

is a 100,000 line SML program comprised of more than 600 individual compilation units

(source files). With a successful test of this magnitude, I am confident of the correctness

and viability of the implementation.

Problems with λ-contract

In my prototype, the introduction of λ-contract had a disturbing effect. In some cases

execution slows down (→ Figure 5.5). The numbers indicate that whether or not λ-contract

is advantageous on its own depends on architecture and benchmark. The overall result for

my benchmarks is dominated by elaborate, which improves on the Pentium [Cor93]

but slows down on the Alpha [Sit92, Dig92].
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Figure 5.5: λ-contract on Alpha and Pentium. Individual compiler passes of SML/NJ—light
bars in the graphs—serve as benchmarks for my study. With the exception of the dark bar on the
right, which shows overall performance of the whole compiler, width was chosen proportional to
the time spent in each phase. The heights of the bars indicate speedup or slowdown caused by
λ-contract (shorter is better). λ-contract is not the focus of this work; it is an auxiliary transforma-
tion that allows my splitting algorithm to find many more opportunities for cross-module inlining.
The numbers here show that, depending on architecture and benchmark, λ-contract has sometimes
positive, sometimes negative effects on running time. The lcontract and lsplit bars graphically illus-
trate that the algorithms presented in this paper do not make up a large portion of compilation time.
→ Tables C.3 and C.4
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To explain this, I note that β-contractions can increase the size of certain closures, and

if such closures are constructed repeatedly, for example in a loop, then execution time may

go up.

let val f =
fn x => g (a,b,c,d,e,x)

in let fun loop () =
(. . .
(fn y => f (z,y))

. . .loop())
in

loop ()
end

end

In this example, let us replace the variable f in (f (z, y)) with its definition:

let fun loop () =
(. . .

(fn y => g (a,b,c,d,e, (z, y)))
. . .loop())

in
loop ()

end

The anonymous function inside loop now has seven free variables (those are: g, a, b, c,

d, e, z) while before it had only two (f and z). This increases the size of the associated

closure object. If, as is the case in my example, the function occurs inside a loop and,

therefore, its closure must be constructed repeatedly, then the increase in closure size can

become costly at runtime. I hope to improve the situation with a better closure-conversion

algorithm, much later in the compiler after λ-contract, λ-splitting, and intramodular opti-

mization.

I conducted an experiment where the compiler invoked λ-contract but not also λ-

splitting. Compile-time switches were used to independently enable or disable β-con-

tractions and let-floating [JPS96], which are part of λ-contract. I found that either “op-
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timization” can sometimes lead to slightly diminished performance, while the remaining

components of λ-contract never led to a slowdown and often improved execution speed. It

is my belief that this supports the explanation given above. Unfortunately, the interactions

between the various phases of the compiler are very complex, and I was not able to find a

small code example that clearly isolates and demonstrates the effect.

Reordering let-bindings in itself does not change the size of any closure. It only

moves bound variables closer to the expressions they are bound to. However, this may en-

able later phases of the compiler’s CPS optimizer to recognize and reduce more β-redexes,

which, again, may cause some closures to become bigger.

The charts in figure 5.5 show significant differences between different machine archi-

tectures. While let-floating and β-reductions as part of λ-contract almost uniformly lead

to reduced performance an the Alpha, one often cannot find such behavior on the Pentium.

But SML/NJ’s code generators for these two architectures are also very different.

For example, since there are almost no general-purpose registers available on the Pen-

tium, SML/NJ uses a number of “pseudo”-registers. Pseudo-registers are registers that are

simulated in main memory. In this situation it may be that additional register spills are

not as detrimental because the associated memory traffic only replaces other memory traf-

fic (pseudo-register moves), while on machines with large register files it is expensive to

substitute memory operations for operations that only involve (genuine) registers.

To obtain a better idea of how much cross-module inlining itself affects overall perfor-

mance, I use SML/NJ with λ-contract enabled as the baseline for my comparisons. This

compiler already does aggressive intramodular inlining [App92]; I measure only the in-

creased performance from inlining across compilation unit boundaries and from pulling

inlinable code out of higher-order functions.
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Timing results from λ-splitting

Figure 5.6 shows timing results for running the benchmarks with λ-splitting enabled. The

numbers reported correspond to compiler passes that took at least one second of user time.

The net speedup of 8% for the Alpha is reduced to only 4% if one takes the effects of

λ-contract into account.

On the Pentium I find a somewhat different picture. λ-contract seems to have a positive

net impact here, although some phases of the compiler also suffer a significant slowdown.

Overall speedup due to cross-module inlining is at 6% with and 5% without counting effects

from λ-contract.

I believe my results are not due to “random” variations in cache-conflict performance.

It has been shown that functional programs with properly tuned garbage collectors [Rep93]

are not subject to many data-cache conflicts [Rei94, GA95], and an informal inspection of

the results did not reveal the kind of instruction-cache conflict variability [App92, p. 194]

to which SML/NJ was subject on previous-generation architectures.

SML/NJ without ad-hoc inlining

Cross-module inlining is so crucial for performance that the implementors of SML/NJ de-

cided to compromise abstraction and modularity in some places. For a selection of the most

important operations inline-expansion is absolutely necessary.

To achieve a limited form of cross-module inlining, the compiler treated certain variable

bindings specially. If the right-hand side was known to be in a pre-selected set of primitive

operators, then this fact was recorded as part of the static information available for the

variable bound on the left-hand side. In effect, inlining information was treated in a fashion

similar to types.

Unfortunately, the mechanism only applied to a fixed set of pre-selected values. Fur-
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Figure 5.6: Improvement due to cross-module inlining. λ-splitting yields improvement on al-
most all benchmarks, and improves total execution time by 8% on the Alpha, 5% on the Pentium.
The baseline (dotted line at 1.0) shows a compiler with λ-contract but without cross-module inlin-
ing; the grey bars show runtime (smaller is better) with both λ-contract and inlining. → Tables C.1
and C.2
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Figure 5.7: Inlining applied to a cleanly modularized program. I reinserted signature con-
straints and abstractions that had been removed by the efficiency-conscious software engineers.
The white bars show how much this would have cost without cross-module inlining. The dark
bars show that λ-splitting recovers essentially all of the performance cost of modular abstraction
(→ Table C.5).

thermore, it was not robust with respect to simple source code modifications. For example,

it could be disabled by simply adding a few semantics-preserving signature constraints.

The unsuspecting user might do this by accident. Even so, figure 5.6 shows that λ-splitting

plus ad-hoc inlining is better than ad-hoc inlining alone.

As an experiment, I changed the compiler sources to eliminate old-style ad-hoc inlining.

This elimination was done purely mechanically. I restored the signature constraints that

one would normally write but that had been removed by the efficiency-conscious software

engineers because they knew that such constraints would render ineffective the existing

ad-hoc inlining mechanism in the compiler.

The results (→ Figure 5.7) indicate that a fully automatic technique like λ-splitting can

provide benefits close to those of previous ad-hoc approaches, while at the same time being

more robust and less intrusive.

Comparing raw numbers shows that λ-splitting still fares a little worse than the special-
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case solution (about 5%). However, the contest is not entirely fair. The ad-hoc approach

implemented in SML/NJ not only propagates primitive operators from compilation unit to

compilation unit, it also forces the intramodular optimizer to inline-expand every single

use. In effect, it overrides decisions that the optimizer would have made on its own. λ-

splitting does not do that. Instead, it relies entirely on the existing optimizer’s heuristics.

In my experiment, all the operators handled by the old approach were also propagated by

λ-splitting. Therefore, a discrepancy in performance can be explained by shortcomings in

intramodular optimization technology.

Complex numbers and FFT

Figure 5.8 shows the timing results for another test case. I implemented a type for rep-

resenting complex numbers and their associated arithmetic operations. The resulting code

(→ Appendix B.1) was compiled separately. I then used a simple recursive implementation

of FFT, the Fast Fourier Transform [CLR90, chapter 32], as a client of this complex num-

ber package (→ Appendix B.2). To obtain timing measurements, I performed the following

four experiments, each with and without λ-splitting turned on:

1. FFT of a 50,000-element list

2. FFT of a 50,000-element list followed by the inverse FFT of the result

3. FFT of a 100,000-element list

4. FFT of a 100,000-element list followed by the inverse FFT of the result

The entire experiment was conducted on a DEC Alpha machine. λ-splitting consistently

improved running time by about 10%.

I also concatenated all sources related to my FFT benchmark and performed the same

experiment with code that was compiled all at once. The differences in running time com-
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Figure 5.8: Cross-module optimization for an implementation of FFT. I have separated the
code implementing complex numbers and their operations from a client implementation of FFT.
The individual bars show the time spent on calculating the FFT of 50,000- and 100,000-element
lists. In experiments labeled “N × 2” I combined the FFT with an inverse FFT of the result. Black
bars show the running time in seconds for the unoptimized version. Shorter grey bars indicate
shorter running times for the program when compiled with λ-splitting enabled. For comparison, I
also compiled the entire program as one single compilation unit. Its running times are shown in
white. In this example λ-splitting achieves as much improvement as one can possibly hope for. The
compiler was not able to do better, not even when it had access to the entire source code at once
(→ Table C.6).

pared with the cross-module optimized version are very small and well below the margin

of error. Therefore, at least for small programs like the one shown, one gets as much

improvement from λ-splitting as one could have hoped for.

Compile-time cost of inlining

In my preliminary implementation, the λ-contract phase takes 4.5% of total execution time,

and λ-split takes 1.5%. In figure 5.6 these phases are labeled lcontract and lsplit,

respectively. In addition, the intramodule CPS-optimization phase slows down because it
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has more (useful!) work to do. Compile time increases by 7% overall, code size goes up

by about 5%. The implementation of λ-contract could undoubtedly be improved; but even

so, the cost of the cross-module inliner seems entirely reasonable.
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Chapter 6

Macros

Chapter 5 presented a novel technique for performing cross-module optimizations automat-

ically. In particular, by moving code from one compilation unit to another it was possible

to rely on existing intra-modular optimization technology. But compilers that perform

aggressive automatic inlining are relatively new and are rarely found except in research

compilers because that is where such extensive optimizations are most needed. Modern

high-level languages often express more traditional programming idioms—for example,

loops—using recursion or higher-order functions.

Many programmers who work with mainstream languages still feel more comfortable

fine-tuning their code by hand because performance, albeit perhaps not always strictly bet-

ter, often seems to be more predictable. This can be seen as one explanation why:

# define SQUARE(x) ((x) * (x))

instead of:

double square (double x)
{ return x * x; }

is still so popular among C programmers.

Macro definitions can be seen as a way of “moving” code from one source (the C
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header file) to a client (the C program file), where its use will be inline-expanded. One

of the concerns in the discussion of λ-splitting was the treatment of free variables. If one

views macro expansion as a form of user-controlled inlining, then it is reasonable to expect

similar problems to arise.

For example, there are two occurrences of free variables in the definition:

# define ERROR(s) (print error (s), exit (1))

Here, the free variables are print error and exit. This C macro will not function

correctly when invoked in a context where these names have been redefined as, for example,

in:

{ char *print error = "The printer is broken.";
. . .
if (is broken (printer))

ERROR (print error);
}

Such code will not work, which demonstrates that the C macro system is not capable of

dealing with free variables correctly. Unfortunately, that is not the only flaw because it

even fails to handle bound variables well. The SWAP macro defined as:

# define SWAP(x,y) { double temp = x; x = y; y = temp; }

produces incorrect code when used with an argument that happens to be named temp:

double temp = get temperature reading ();
...
SWAP (temp, x);

There are a number of additional, well-known problems with C-style macros. Newer lan-

guage designs try to avoid them by providing direct support for inlining [ES90].

However, inlining is not the only reason why macros are used. For example, advo-

cates of the Scheme programming language [Ce91] often stress the point that macros allow

for meta-programming. The macro system provides ways of reshaping the programming
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language itself, to enrich it with new syntactic constructs that capture entire programming

paradigms, and make it more convenient to use. The Scheme shell SCSH [Shi94] provides

a good example of how to tap the power of meta-programming for the purpose of scripting.

Macro systems have a long tradition in computing. Brown [Bro74] discusses how they

can be used to enhance software portability by using “Descriptive Languages Implemented

by Macro Processors” (DLIMP). He also describes many of the known problems with such

approaches.

A notable example of a DLIMP is the implementation of SNOBOL4 in terms of a

machine-independent macro language called SIL [Gri72]. SIL macros provide a layer of

abstraction that allows for relatively low-cost portability. Only SIL has to be reimplemented

for each new machine architecture.

This contrasts with conditional compilation (#ifdef in C), which is often used to

achieve a form of limited portability. Conditional compilation takes advantage of host-

language constructs that are known to have different semantics under different installations,

while a DLIMP tries to guarantee that there are no such constructs by essentially providing

a new, machine-independent programming language.

Hygienic macros in the style now used in Scheme are the first fairly comprehensive

solution to the name capture problem in macro systems that also retains most of the meta-

programming power. But not everything is well. Macro systems still have significant

problems. The lack of a type system is perhaps the most severe. C++ templates can be

thought of as macros, but even in a strongly typed language such as C++, template type

errors are only discovered when the templates are instantiated.1 In some cases, when large,

vendor-supplied template libraries are involved, this can be much too late.

Macro systems for languages less sophisticated than ML or Scheme can be much sim-

1In fact, one of the major reasons to use C++’s templates is to get the kind of genericity that the type
system would otherwise not be capable of expressing.
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pler. For example, in assembly language one does not need to worry about references to

free variables because there is no block structure. To be “hygienic” in such a setting, it

suffices to have a separate namespace for macro-generated temporaries so they cannot be

confused with names provided by the programmer.

I will now investigate three of the areas that are still problematic for hygienic Scheme-

style macro systems. First, I will have a look at how macros interact with ML-style modules

and long identifiers. Then I will discuss the problem of separate compilation and linking.

Finally, I come back to the problem of compilation management and automatic dependency

analysis.

6.1 A review of hygienic macro expansion

Over the last few years some of the technical problems with macro systems have been

solved. Kohlbecker’s solution for hygienic macro expansion [Koh86], which has been

improved several times [BR88, Han91, CR91], provides the mechanism for implement-

ing referentially transparent syntactic extensions in block-structured languages. Today

most implementations of Scheme [IEE90] support hygienic macros in one or the other

form [Ce91, Dyb92].

The hygienic macro expander of Clinger and Rees [CR91] combines two techniques:

renaming and syntactic environments.

Renaming: Renaming solves the type of problem that we encountered in the case of the

SWAP macro:

# define SWAP(x,y) { double temp = x; x = y; y = temp; }

The macro introduces the name temp into its output. Its purpose is to play the role of

a temporary that is not to be confused with any other variable, in particular not with an
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argument that also happens to be named temp. The solution is to create a brand-new name,

a “gensym,” at macro-expansion time to take its place. The expression SWAP(temp,x)

would then correctly yield something like:

{ double g 0815 = temp; temp = x; x = g 0815; }

But in order to be able to do that, the macro expander must “know” that the identifier temp

is introduced as a bound identifier while other names, for example the type name double,

are not. But in general it is not possible to have this information at the time the macro is

expanded. Consider the following variation on SWAP that takes the name of the temporary

as an argument:

# define SWAP3(t,x,y) { double t = x; x = y; y = t; }

With this one can define SWAP2 as:

# define SWAP2(x,y) SWAP3(temp,x,y)

SWAP2, not SWAP3, introduces the name temp. The fact that it will be used as a bound

identifier will not be discovered until SWAP3 is expanded as well.

Syntactic environments: To be on the safe side, the expansion algorithm will rename

every identifier that is introduced by a macro. An invocation of SWAP(temp,x) then also

replaces double with a generated name and expands into:

{ g 0815 g 0816 = temp; temp = x; x = g 0816; }

The trick is to compile the resulting code in a syntactic environment where g 0815 is

bound to the original meaning of double.

What is the “original meaning”? To handle free occurrences of identifiers such as

double correctly, one wants them to refer to what they meant at the time when SWAP

was defined, not the time when it was used:
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char temp;
# define SWAP(x,y) { double temp = x; x = y; y = temp; }
double x, y;
typedef long double;
. . .
SWAP (x, y);

With hygienic macros, this code should work because SWAP refers to the original type

double before it was redefined. Therefore, the expansion of the SWAP macro will be

compiled in an environment where the gensym for double refers to the original double.

The same environment maps the gensym for temp to the original temp.

The latter effect is a result of the macro expander’s inability to distinguish between free

and bound occurrences. It does not know yet that it will not need the original meaning of

temp. But this is not a problem. The variable is subsequently bound locally, and nobody

ever refers to the old, global meaning.

Thus, renaming would prevent inadvertent name clashes, but without help from syn-

tactic environments one must be able to distinguish between free and bound occurrences

of identifiers. This is difficult. In order to determine the syntactic role (binding or applied

occurrence) of a name in the macro’s output, it can be necessary to expand other macro

instances. These instances themselves might be generated at the time the macro is instanti-

ated, so they did not exist and, therefore, could not have been analyzed at macro definition

time. As a result, the algorithm renames too many variables. Syntactic environments are

used to hide the effects of such renamings—thereby handling free variables correctly.

6.2 Macros and modules

A long identifier, in its simplest form, is a pair of two simple identifiers. One of them

names the module and the other names the member within the module. In Scheme one

might write: (module-id member).
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Long identifiers are not hygienic

I will now show that hygienic macro systems are not capable of implementing module sys-

tems that require the use of long identifiers. First, let me review the properties of hygienic

macro systems with respect to how they treat names.

1. Names can be supplied by the definition of the macro or by the macro’s list of actual

parameters.

2. Names can be introduced into the output as free occurrences, as binding occurrences,

or as bound occurrences.

3. Names supplied by the argument list can be compared to names supplied by the

macro’s definition for the purpose of pattern matching.

To simulate the long identifier (M x) using hygienic macros, one must define M as a

macro. Clearly, the member name x is supplied by the macro’s argument list. There are

four cases:

1. The name x will become a free occurrence in M’s expansion. According to the rules

of hygienic macro expansion, its meaning would be the same as that of the simple

name xwith respect to the current context. But that is not how long identifiers should

work.

2. The name x will become a bound occurrence and refer to a matching binding occur-

rence. There is no gain unless the binding occurrence manages to bind the name to

something that has the desired semantics.

3. The name x will become a binding occurrence. Again, this in itself does nothing to

solve the problem because it does not specify what the name will be bound to.

4. The name x is matched against another x in the macro’s definition. A popular ex-

ample for this is the cond macro in Scheme, which looks for the keyword else in
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its argument list. But such a match fails (and is supposed to fail) if the keyword has

been redefined. Likewise, the match of x in (M x) will succeed or fail depending

on definitions for the simple name x. But the simple name x should have nothing to

do with the one defined in module M.

Thus, there is no way of obtaining the intended semantics using the hygienic macro ex-

pander. Long identifiers must be added to the language explicitly.

To put it another way, the prefix M in (M x) establishes a tiny new scope—just for the

one occurrence of x. Thus, the module prefix binds the names of the module’s members,

even though these names are not lexically apparent. But bindings that are not lexically

apparent are considered non-hygienic. If one looks at it this way, it is no surprise that a

mechanism so carefully crafted to be hygienic cannot implement a language feature that is

not.

Long identifiers are not completely “hygienic” under the narrow interpretation used by

current macro expansion technology. However, this does not imply that one must aban-

don them as a useful language feature. But it is necessary to carefully state how the two

language features interact. Algorithms to implement them must be adapted accordingly.

Qualified names do not need renaming

Existing algorithms for hygienic macro expansion take advantage of the fact that identifiers

in block-structured languages must always be interpreted with respect to a “current” syn-

tactic environment. Therefore, they will cease to work properly when there are multiple

environments. But that happens when modules (in the style of SML’s structures) and long

identifiers are added to the language. Unfortunately, the mechanism for macro expansion

and the mechanism for the interpretation of modules both use syntactic environments. But

they do so in different ways and for different purposes. With modules, not every name will
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be looked up in the “current” environment; member names of modules are resolved in the

context of the environment that represents the module’s definition.

I have already described the use of syntactic environments for hiding the “mistakes” of

renaming. The current environment is carefully modified by the macro expander to map

back to their original meanings the renamed versions of identifiers that occur free. Unfor-

tunately, x in (M x) is not looked up in the current environment, and the one representing

M is not able to undo the effect of renaming.

But in this case x never needed to be renamed in the first place. One purpose of renam-

ing is to avoid name clashes for bound variables. If x is such a bound variable, then the

only code that can access it must have been inserted by the same macro invocation. It is

“private” to the macro; placing it inside module M gains nothing in terms of who can see

it under which name. The other purpose of renaming is to correlate free occurrences of

identifiers with the correct environment where they should be looked up. But with (M x),

one already knows where x should be looked up: in the environment representing module

M.

6.3 Combining macros and modules

I will now define a small language with modules and long identifiers and devise a hygienic

macro system for it. The key idea is that all renamings done to names that later appear as

part of a long identifier, prefixed by the name of a module, must be undone before lookup.

In implementations based on “tagging,” it is easy to undo renaming operations. Fortunately,

“tagging” is the renaming scheme already used by existing macro expansion algorithms.
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The language

The language offers λ-abstractions and block-structured definition of variables, macros,

and modules.

Syntactic entities:

I ∈ Ide identifiers

Q ∈ QIde qualified (long) identifiers

T ∈ Tf macro transformers

M ∈ Mod modules

E ∈ Exp expressions

Syntax of expressions:

Exp −→ Q | (E E*) | (lambda (I) E)
| (let ((I E)) E)
| (let-syntax ((I T)) E)
| (let-module ((I M)) E)

Syntax of modules:

Mod −→ ()
| (let ((I E)) M)
| (let-syntax ((I T)) M)
| (let-module ((I M)) M)

Domain equations:
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i,j ∈ Ide identifiers

q ∈ QIde = Ide + QIde × QIde

qualified identifiers

t ∈ Tag tags

e ∈ Env environments

d ∈ Den = Var + Spec + Mac + Mod + U

U = {unbound} error denotation

v ∈ Var = QIde variables

s ∈ Spec = {lambda, let, let-syntax, let-module }

keywords

Mac = R × Ide* × Env

macros

r ∈ R macro transform

Mod = Env modules

Long identifiers are treated as if they were lexical units. This is not strictly necessary,

but it makes it somewhat easier to present the algorithm. However, macro transformers can

assemble long identifiers from other (simple or long) identifiers. The notation m.x shall

denote a name x qualified by module name m.

I have not specified a syntax for macro transformers, but I require that it must be possi-

ble to implement the macro compiler compile. The discussion applies equally well to both

high-level macro languages that are based on pattern matching and to low-level systems.

Examples are shown using syntax-rules [Ce91].

Macro calls, which take the the form (Q . . .), can be used wherever Exp or Mod is

required. But they must ultimately expand into another Exp- or Mod-form, respectively.
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The algorithm

The algorithm presented here follows ideas in Rees [Ree93] by using a domain Ide that

consists of symbols and tagged names. Only plain symbols can appear in the original

program text. Tagged names are introduced by the macro expander. Tagging is simply a

way of uniformly renaming all identifiers inserted by the same instance of a macro.

The environment constructors ident and bind are taken directly from Clinger and Rees’

paper [CR91]. That paper avoids any details of how identifiers are renamed. Consequently,

the authors do not mention any tags. Rees [Ree93] later described the tagging approach

separately. In my presentation, I make tagging explicit by introducing tag and fork. In

addition, qualify and empty were added for the module system.

Every macro expansion produces a new expression and the corresponding environment

for expansion, which is a combination of the macro’s environment of definition and the

current environment. Identifiers that are inserted by the macro (as opposed to being sup-

plied as a macro parameter) will be tagged; the tag matches the corresponding fork in the

environment. Thus, lookup—now with the tag stripped from the name—proceeds in the

macro’s environment of definition. If the identifier comes from the argument list, then it is

not tagged. Therefore, the fork node is skipped and the name will be resolved with respect

to the current environment.

If a macro is defined inside a module and refers to something in that module by an

unqualified name, then upon expansion of the macro outside the module that name must be

qualified. In the following example the program on the left should expand into that on the

right:
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(let-module
((mod (let ((x 1))

(let-syntax
((mac (syntax-rules ()

(( ) x))))
()))))

(mod.mac))

=⇒
(let-module
((mod (let ((x 1)) ())))
mod.x)

The transcription of (mod.mac) is an unqualified, but tagged, version of x. Tagging

correctly relates it to the environment where mac was defined, which was in module mod.

The algorithm uses qualify constructors to annotate such environments with the name of

the module they belong to. Everytime lookup encounters an environment constructed with

qualify, it must coerce the denotation obtained from the recursive invocation of lookup

accordingly. In the example it would prefix x with the module name mod.

Consider the following code:

(let-syntax
((mac (syntax-rules () (( m) m.x))))

(let-module
((mod (let ((x 1)) ())))

(mac mod)))

The expansion of (mac mod) will rename x into tag (t,x) for some tag t. The renamed

version of x will be looked up in the environment representing mod, where it will not

be found because that environment lacks the matching fork node. Following the earlier

discussion one must strip all tags from the renamed x, which will solve the problem.

Identifier and environment constructors:

tag ∈ Tag × Ide → Ide

empty, ident ∈ Env

bind ∈ Env × Ide × Den → Env

fork ∈ Tag × Env × Env → Env
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qualify ∈ Env × Var → Env

Function signatures:

compile ∈ Tf × Env → R × Ide*

coerce ∈ Den × Var → Den

lookup ∈ Env × Ide → Den

qlookup ∈ Env × QIde → Den

transcribeE ∈ Exp × R × Ide* × Env → Exp

transcribeM ∈ Mod × R × Ide* × Env → Mod

Equations for lookup:

lookup (ident, i) = i

lookup (empty, i) = unbound

lookup (bind (e, i′, d), i) = (i = i′) → d, lookup (e, i)

lookup (fork (r, ed, eu), i) = (i = tag (t, i′)) → lookup (ed, i′), lookup (eu, i)

lookup (qualify (e, v), i) = coerce (lookup (e, i), v)

Equations for coerce:

coerce (v, v′) = (v′, v)

coerce (s, v) = s

coerce ((r, i*, e), v) = (r, i*, qualify (e, v))

coerce (e, v) = qualify (e, v)
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coerce (unbound, v) = unbound

Equations for qlookup:

qlookup (e, i) = lookup (e, i)

qlookup (e, (q1, (q2, q3))) = qlookup (e, ((q1, q2), q3))

qlookup (e, (q, tag (t, i))) = qlookup (e, (q, i))

qlookup (e, (q, i)) = lookup (qlookup (e, q), i); i 6= tag (t, i′)

Rewrite rules for expressions: The complete algorithm for hygienic macro expansion is

given as a set of rewrite rules defining the “expands to” relation E→. If E expands to E′ in e,

then I write e ` E E→ E′. Function compile implements the macro language. It returns the

list of identifiers captured by the macro together with a transformer program r, which then

can be “executed” by either transcribeE or transcribeM . For simplicity, I have assumed

that macros take exactly one argument. The argument can be any symbolic expression.

qlookup (e,q) = v

e ` q E→ v
[varR]

e ` E0
E→ E′0

∀i ∈ {1, . . . , k}, k ≥ 0 : e ` Ei
E→ E′i

e ` (E0 E1 . . . Ek)
E→ (E′0 E′1 . . . E′k)

[appE ]

qlookup (e,k0) = lambda

bind (e, x, x′) ` E E→ E′

x′ is a fresh identifier

e ` (k0 (x) E) E→ (lambda (x′) E′)
[λE ]
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qlookup (e,k) = (r, 〈i, . . .〉, ed)
t is a fresh tag

transcribe E((k B), r, 〈tag (t, i), . . .〉, fork (t, ed, e)) = E

fork (t, ed, e) ` E E→ E′

e ` (k B) E→ E′
[macE ]

qlookup (e,k0) = let

e ` E1
E→ E′1

x′ is a fresh identifier
bind (e, x, x′) ` E2

E→ E′2

e ` (k0 ((x E1)) E2)
E→ (let ((x′ E′1)) E′2)

[letE ]

qlookup (e,k0) = let-syntax
compile (T, e) = (r, i*)

bind (e, x, (r, i*, e)) ` E E→ E′

e ` (k0 ((x T)) E) E→ E′
[synE ]

qlookup (e,k0) = let-module

e ` (M, empty) M→ (M′, em)
x′ is a fresh identifier

bind (e, x, qualify (em, x′)) ` E E→ E′

e ` (k0 ((x M)) E) E→ (let-module ((x′ M′)) E′)
[modE ]

Rewrite rules for modules: Rule [modE] refers to a second “expands to” relation. The

notation e ` (M, em) M→ (M′, e′m) not only describes what a module M expands into, it

also calculates an environment representing the definitions contained in the module. Not

surprisingly, the set of rules for relation M→ is similar to the one defining E→.

e ` ((), em) M→ ((), em) [nulM ]
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qlookup (e,k) = (r, 〈i, . . .〉, ed)
t is a fresh tag

transcribe M ((k B), r, 〈tag (t, i), . . .〉, fork (t, ed, e))) = M

fork (t, ed, e) ` (M, em) M→ (M′, e′m)

e ` ((k B), em) M→ (M′, e′m)
[macM ]

qlookup (e,k0) = let

e ` E E→ E′
x′ is a fresh identifier

bind (e, x, x′) ` (M, bind (em, x, x′))
M→ (M′, e′m)

e ` ((k0 ((x E)) M), em) M→ ((let ((x′ E′)) M′), e′m)
[letM ]

qlookup (e,k0) = let-syntax
compile (T, e) = (r, i*)

bind (e, x, (r, i*, e)) ` (M, bind (em, x, (r, i*, e)))
M→ (M′, e′m)

e ` ((k0 ((x T)) M), em) E→ (M′, e′m)
[synM ]

qlookup (e,k0) = let-module

e ` (M1, empty) M→ (M′1, em,1)
x′ is a fresh identifier

qualify (em,1, x′) = eqm,1

bind (e, x, eqm,1) ` (M2, bind (em, x, e
q
m,1)) M→ (M′2, e

′
m)

e ` ((k0 ((x M1)) M2), em) M→ ((let-module ((x′ M′1)) M′2), e
′
m)

[modM ]

Summary

Modules and qualified names cannot be “simulated” using hygienic macros because the

rules governing long identifiers are not hygienic. Renaming is necessary for ordinary sym-

bols to avoid name clashes and to correctly relate free occurrences to their original mean-

ings. But names that are qualified by module identifiers are neither free nor can they clash

with other names. Thus, it would normally not be necessary for them to undergo the same
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routine of systematic rewriting.

But I want to combine macros and modules because this way, in an untyped setting, one

can simulate generic modules. In the system described, macros are permitted to assemble

long identifiers from components during expansion. Therefore, by the time one finds a

long identifier (M x), the compiler may have renamed x in the course of earlier macro

expansions. In such cases it is necessary to undo such renamings before attempting to find

a definition for x in module M.

Tagging is a technique for efficiently renaming identifiers and at the same time duplicat-

ing their bindings in the associated environment. Fortunately, the same tagging mechanism

can be used to implement the lookup operation for long identifiers.

6.4 Separate compilation and linking

Another problem, orthogonal to modules and long identifiers, arises if one wishes to pro-

vide separate compilation. In order to preserve hygiene, the macro expander chooses fresh

names for bound variables throughout the program. Furthermore, upon macro invocation

it renames identifiers captured by that macro. This applies to both local and “external”

bindings. Actual names chosen by the macro expander are arbitrary and will depend on its

internal state. This is unfortunate because externally bound names are the basis for program

linking.

In the model used here, a program is nothing more than a big unnamed module. This

simply means that it consists of a number of nested definitions. Therefore, I will use Mod

as the syntax for programs. A program can be broken into an ordered sequence of smaller

programs—compilation units.

Let me first introduce the link operation on fully macro-expanded text. This operation

puts two programs back together into one. Since each program must have an innermost
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empty module (), one can say that link (P0, P1) substitutes P1 for this inner () in P0.

With the help of link one can then describe the process of linking in terms of extending

relation M→ to sequences of programs.

e ` 〈〉 L→ ((), e) [nil ]

e ` (P0, e) M→ (P′0, e
′)

e′ ` 〈P, . . .〉 L→ (P′, e′′)
link (P′0, P′) = P′′

e ` 〈P0, P, . . .〉 L→ (P′′, e′′)
[link ]

Of course, this does not give us separate compilation. A unit can only be expanded

and compiled once all other units on its left in the sequence have already been expanded as

well.

This is the same situation that we have in SML. Therefore, I follow the model described

by Appel and MacQueen [AM94], just as I have before in the context of compilation man-

agement (→ Chapter 3) and λ-splitting (→ Chapter 5).

Compiling a module produces two separate results: an environment describing the

module’s exports and executable code for the module. While relation M→ only describes

the elaboration of the environment, it typically is the code generation part of compilation

where most of time and resources are spent. Moreover, subsequent compilation of other

modules only depend on the environment but not on the code.

A modification that only results in different code but not in a different export environ-

ment does not require other modules to be recompiled as well. I discussed this idea when I

introduced the notion of cutoff recompilation.
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However, in the presence of hygienic macros it can happen that the export environment

refers to names that the macro expander introduced by way of renaming other identifiers.

Such names are annotated with tags, but tags are chosen fresh by the macro expander every

time; they are not persistent. Thus, recompilation can introduce spurious differences into

the export environments. Such differences would normally cause all depending modules to

be recompiled as well.

I will now develop a persistent naming scheme for export environments that is com-

patible with hygienic macro expansion. Persistent names will be independent of arbitrary

choices by the macro expander. Therefore, they avoid spurious incompatibilities in export

environments.

The objective of compilation is to produce some form of directly executable code. In

the model used here, one first translates each compilation unit into a closed λ-expression, as

does the SML/NJ compiler for each ML compilation unit. All free variables of the original

module appear as explicit arguments. The return value is a data structure containing the

values for the unit’s variable definitions. Since the expression has no free variables, it can

be compiled without depending on context information.

It is the linker’s responsibility to fetch correct values for the arguments of the expression

from the “global” environment and to later augment it with new bindings. To be able to do

so, it must be provided with information about imports and exports.

Augmenting the global environment

Every compilation unit must be compiled with respect to a current global environment.

Global environments belong to a domain that is different from Env because I wish to dis-

tinguish between ordinary denotations and “global” denotations. For example, variable

bindings in the global environment are no longer represented by qualified names. Instead,
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they directly associate identifiers with values.

Nevertheless, the overall structure of the global environment is very similar to Env.

Therefore, given a persistent encoding for names there is a relatively straightforward way

of producing export information from a compilation unit:

1. Expand unit U in the current global environment: eg ` (U, empty) M→ (U′, eu). Note

that eu does not contain fork nodes.

2. Traverse eu and assign numbers to bindings of variables. This has to be done recur-

sively so that variables in modules are numbered as well.

3. Construct an expression that at runtime will evaluate into a vector v of the so-

numbered values. Value i must be stored at v[i]. The expression itself replaces the

innermost () of the compilation unit, thus turning a module into an expression.

4. Convert eu to a ∆-environment e∆
u . ∆-environments encode incremental changes

to the global environment. They only use persistent data. Cycles and sharing are

encoded using explicitly marked edges. ∆-environments are suitable for storage on

stable media, for example files in the ambient file system.

5. When U’s code has successfully executed, one can instantiate e∆
u using the current

global environment and the vector of export values obtained from running the code.

The following problems must be addressed when creating e∆
u from eu:

• Back- and cross-edges, which represent cycles and sharing in eu, are detected and

marked by explicit labels. (In the case of the system that I have described, there

can never be cycles. Introducing recursive definitions would change this situation.)

Labels are small integers, consecutively chosen beginnig with 0, 1, . . .

• Variable bindings are represented by numbers referring to slots of the export vector.
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• There are names in the environment structure that have been imported from the global

environment while U was expanded. In order to be able to re-establish this situation

when instantiating e∆
u , these names are encoded using persistent paths. Persistent

paths are also used as part of the import mechanism. I will describe them below.

• All remaining names have been created by tagging other existing identifiers. Tags

are encoded by systematically mapping them to small integers.

The conversion can be implemented by a conventional recursive traversal of the data struc-

ture that implements eu. For the language described here, the data structure is a DAG. In

general, with recursion, it can be an arbitrary directed graph.

The inverse process of instantiating a ∆-environment with respect to some vector of

values and a current global environment is then straightforward.

• Cycles and sharing are re-created according to the labels found in e∆
u .

• Variables are bound to values. Those values are fetched from the result vector using

the slot numbers that are stored in the ∆-environment.

• For each integer in e∆
u that stands for some tag a fresh tag is created.

• Persistent paths are instantiated in the current global environment. This operation is

the same that is also used for the import mechanism.

• All other names are created by tagging existing ones according to the integer-to-tag

map mentioned above.

Imports

Hygienic macros complicate the problem of specifying how an import value is to be located

because identifiers can be names that were generated by the macro system. Furthermore,

since environments contain fork points, it may happen that a name must be looked up in
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some macro’s environment of definition and not in the current global environment. To deal

with this, one must be able to specify generated names without mentioning actual tags and

to redirect the lookup operation to other environments.

If a name is to be looked up somewhere else and not in the current global environment,

then it must have been inserted by a global macro. Therefore, it is necessary to find the

macro’s definition because that is where one will find the environment required for resolv-

ing the lookup. Of course, finding the macro’s definition is just another instance of the

import problem.

Fortunately, this recursive process is always guaranteed to terminate. Otherwise, there

would have been infinitely many expansion steps in the original source program. Therefore,

one can refer to any global environment using a sequence of macro names. The macro

names have to be looked up in order, starting with the global environment. This sequence

is called a path, and the global environment itself is represented by the empty path. Given

a persistent naming mechanism, one can specify imports using a path for the environment

and a persistent name for the identifier to be looked up. The path itself also consists of

persistent names.

A persistent naming mechanism is a method for specifying identifiers without mention-

ing actual tags. Three kinds of names must be considered:

1. Plain symbols that are not tagged at all.

2. Names tagged while expanding U.

3. Names that had been tagged before U was expanded.

Plain names are easy to deal with. They can represent themselves. The second kind of

name can never be subject to a global lookup operation. Tags created while expanding U

do not occur in the global environment. Every global lookup operation of such an identifier

would be certain to fail. Fortunately, this cannot happen. Names tagged in such a way will
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always be interpreted in an environment that contains the corresponding fork nodes, and

those cancel new tags before the lookup operation “reaches” the external environment.

Thus, only the third kind of name is of interest. How can those names find their way

into compilation unit U? Without non-hygienic extensions to the macro system this is only

possible by expanding a global macro. Fortunately, the names that a macro can insert are

known because function compile computes this information from a transformer. Therefore,

it is possible to “name” such an identifier by specifying the macro that inserted it and the

position number in the macro’s list of captured names. Naming the macro is yet another

instance of the import problem. I have already discussed it above.

The module system raises a few additional, albeit minor, issues. First of all, a global

lookup can take place with respect to a module’s environment. Also, the qlookup function

might eliminate tags from names before they are fed to the lookup procedure. Therefore,

the persistent naming scheme must offer a way of expressing this. Finally, if low-level,

non-hygienic macros are permitted, then one must also have a way of specifying identifiers

that have been created non-hygienically.

When put together, this results in mutually recursive definitions for imports, paths, and

persistent paths called recipes. A recipe can either be a symbol, an import specifying some

macro together with a position number addressing one of the names captured by that macro,

or a recipe plus an “untag” directive, which indicates that the last tag is to be removed.

Rec = Symbol + Mc + Untag recipes

Mc = Imp × Integer name capture

Untag = Rec untag

Path = Rec* paths

Imp = Path × Rec imports

Recipes and imports are prescriptions for re-enacting some of the same operations that

the macro expander would perform if one would let it expand the original source of U
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again. However, these operations are “distilled” to focus efforts on just the names that are

important for external linkage.

Compiling one unit

Global environments are similar, but not identical, to ordinary environments. Therefore,

global environments belong to a now domain GEnv. The rules for macro expansion that

I presented earlier cannot be used directly with elements of GEnv. Therefore, I introduce

extern as a constructor that takes elements of GEnv to elements of Env.

extern ∈ GEnv × Path → Env

Aside from the technical issue of dealing with two different domains, this also has a

practical advantage by providing a way of detecting free variables in the compilation unit.

It is convenient to annotate extern nodes with the path that is the persistent name for the

global environment in question. The coercion function gcoerce, which is analogous to

coerce in the case of module environments, takes global denotations (GDen) to elements

of Den.

gcoerce ∈ GDen × Path × Rec → Den

A name is a free name if lookup for that name reaches a extern node. Therefore, the

task to detect free variables can naturally be carried out by gcoerce. For each free variable it

calculates the import specification, invents a new identifier, and remembers the relationship

between the two. The fresh name is returned from lookup in the form of a Var denotation.

In the end one can close over the fully expanded program by wrapping it in λ-abstractions.

The list of imports specifies the values that the linker must fetch from the global environ-
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ment. These values will be passed as arguments to the executable code.

How does one calculate recipes? This can be done “on the fly,” during macro expansion.

Domain Ide is treated as an abstract datatype. Internally, identifiers consist of two parts.

One part is the actual name and the other one is the current recipe. Every time the macro

expander constructs a new identifier, it also remembers how this was done. To make that

work, one must adjust the definition of recipes, so they can express the fact that a name

carries a newly generated tag. Such new tags will ultimately go away before the name

becomes subject to global lookup. But in the meantime it is necessary to keep track of

them. All operations that create names must also compute the corresponding recipe. Thus,

one pays a constant penalty per such operation. Still, the asymptotic complexity of the

algorithm stays the same.

Experiments with a prototype implementation confirm that the algorithms presented

here perform well in practice. I expect to be able to combine my solution with existing

compilers for Scheme and Scheme-like languages.

6.5 Compilation management

In chapter 4 I have shown how features of a programming language that seem harmless

in comparison with the power of a macro system can have severe detrimental effects on

the feasibility of automatic analyses such as finding the dependencies between compilation

units.

The possibility of structures being “opened,” for example, turns an initially rather

straightforward task into a challenging problem. If unrestricted open is permitted at top

level, then it even becomes NP-complete. But all the difficulties stem from the fact that

opening a structure confuses the knowledge of which identifiers are bound, and what they

are bound to. One must already know the definition of the structure that was being opened
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to be able to understand the resulting scopes.

The same can be said about macros. The whole purpose of macros is to provide new

ways of binding variables. When confronted with the instance of an unknown macro,

one knows nothing about the resulting scope rules. It will be no surprise to find that this

confuses the dependency analyzer.

In fact, one frequently stated criticism is that macros make it all-too-easy to obfuscate

the language. A few well-designed macros, written by expert language designers, might

indeed simplify certain idioms and make programs easier to read. But such power should

be used sparingly, though the systems in existence seem to encourage abuse.

Complexity of dependency analysis

I demonstrated that dependency analysis is not tractable if different sources can provide

definitions for the same identifier. This effect is independent of macros or open. Therefore,

one should certainly adopt restriction 1 from page 68 here as well:

In each group there can be at most one source that provides a top-level defini-
tion for any given symbol. A source can define a name that was already defined
by the context, but uses of that name in any of the sources will then refer to the
new definition.

Let the context environment provide the definitions for flag, a, and a* that are shown

in figure 6.1. Two compilation units, S and S ′, invoke a and a*, respectively. S contains

(a flag flag c1), and the code in S ′ is (a* flag flag c2 c3). Either macro

is sensitive to how flag is currently bound. If the original definition is in place and has

not been redefined since, then the first pattern matches. Otherwise the first pattern will

not match, and the macro expands into an empty module with no definitions. Therefore,

compiling S before S ′ will result (among others) in a definition for c1, while c2 and c3
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(let ((flag 0))
(let-syntax ((a (syntax-rules (flag)

(( flag f c1)
(let ((f 1))
(let ((c1 0))

())))
(( ) ()))))

(let-syntax ((a* (syntax-rules (flag)
(( flag f c2 c3)
(let ((f 1))

(let ((c2 0))
(let ((c3 0))
()))))

(( ) ()))))
())))

Figure 6.1: Macros make dependency analysis difficult. Even hygienic macros are problematic
for dependecy analyzers, because like open in SML they can be used to modify the scope of other
variables.

will be defined if the order is reversed.

This construction can be extended into an NP-hardness proof by reduction from SAT in

a fashion analogous to the proof for claim 3 in chapter 3. Apparently, hygiene did not help

with dependency analysis.

For efficient and reliable dependency analysis, it would be necessary to significantly

reduce the expressiveness of the macro system. Restrictions similar to those used by CM for

SML will not suffice. The analyzer would still have to expand macros as it goes. Scheme’s

hygienic macro system is simply too powerful. The macro language is Turing-complete,

expansion is not even guaranteed to terminate, and termination is not decidable [Göd31,

Tur37].

158



6.6 Macros in large-scale programming

Macro systems are a popular feature of many programming languages. But they have a

number problems in the following areas:

1. Avoiding inadvertent capture by bound variables

2. Correct treatment of free variables

3. Relationship between long identifiers and renaming

4. Separate compilation, linking, and naming of imports

5. Efficient dependency analysis

6. Type systems

7. Termination

The first two were solved by existing hygienic macro systems, but these systems have

yet to find wide-spread use in languages other than Scheme. I have discussed possible so-

lutions to items 3 and 4. The last three problem areas, however, must certainly be regarded

as serious obstacles to reliable, large-scale programming.
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Chapter 7

Conclusions

I have investigated a variety of issues that arise with separate compilation. A major portion

of this work is concerned with compilation management and cross-module optimization,

both in the framework of the ML programming language.

The group model employed by SML/NJ’s compilation manager enables modular large-

scale programming. Traditionally, this has been difficult because modularity is often jeop-

ardized by restrictions on definability of names or availability of definitions when there

is only one global namespace for program linking. This contrasts with CM’s approach

where groups of sources are arranged into a hierarchical structure. Export environments

are combined only when necessary, thereby avoiding most name clashes. The few remain-

ing clashes can always be solved by local modifications because they never affect unrelated

components of a program.

CM can be seen as extending the language ML, augmenting it with hierarchical coarse-

grain modularity where separately compiled source files are the basic building blocks. But

this extension is rather modest. The group model is intuitive, CM’s configuration language

is surprisingly small and simple, and an automatic analysis frees the programmer from the

tedious task of having to keep track of intermodule (but intragroup) dependencies.
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The framework for an automatic cross-module optimization technique based on λ-

calculus is integrated with CM. λ-calculus is a powerful language for expressing pro-

grams and program transformation. Inlining is closely related to function application,

β-reduction, and substitution. But this is where λ-calculus is at its best. Therefore, it is

no surprise that cross-module inlining will benefit from being cast in this framework.

Compilation units can be viewed as functions. The process of linking applies them

to imports, thus obtaining exports. By splitting the functions into expansive and inlinable

parts, we are able to regroup the code in such a way that cross-module inlining turns into

the task of performing ordinary intramodular optimizations. The functions representing

compilation units are split in such a way that algebraic function composition (the B com-

binator) can be used to recombine the parts.

As an alternative to automatic cross-module optimizations, I also investigated macro

systems. Macros are a language feature that is still popular with many programmers. The

development of hygienic macro expansion algorithms for Scheme have solved many of the

traditional problems with macro systems. The work presented here identified and solved

two problems that arose when I tried to unify hygienic macros with an ML-style module

system, with the presence of long identifiers, and with separate compilation. But I also

showed that other serious problems are still open.

7.1 Other languages

How strongly did my work depend on Standard ML, and how viable are the approaches

if one tries to apply them elsewhere? This question should be asked in two parts. First,

is it possible to implement hierarchical modularity, automatic dependency analysis, and

cross-module optimizations for other programming languages? And second, if so, can the

solution be made as elegant as CM?
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Certainly, the answer to the first part must be “yes.” I have demonstrated in chapter 3

how hierarchical modularity—the group model—can be implemented in terms of simple

operations on environments: layering, filtering, and renaming. It is not a great challenge

to implement the same operations for other systems, for example for the symbol tables in

UNIX object files. Efficient calculation of dependencies for Standard ML proved to be un-

usually difficult. For many languages this will in fact be easier, as discussed in section 1.3.

Cross-module optimizations can be (and have been) implemented for languages other

than ML. With my work I was able to leverage the power of λ-calculus for this purpose.

With compilers that use different intermediate formats, one will not have this luxury. An

intermediate format that is not capable of expressing higher-order functions and nested

function definitions will make it difficult if not impossible to use my technique.

The answer to the second part of the question, the question of whether a solution would

be as elegant as CM, is much less clear. I do not have a measure for elegance, and even if

I did—I could only speculate. But I can say that ML, and SML/NJ in particular, made it

especially pleasant and rewarding to create a compilation manager for it.

In part this is due to the fact that ML is a good implementation language for compilers

and compilation management tools. Compilation management, like compilers, benefits

from most of the language’s strengths and suffers from few of the weaknesses [App97, ch.

1]. SML/NJ provides the “visible compiler” interface, which made it easy to implement

type-safe linking as well as cutoff recompilation.

Even more importantly, ML is a good target for a compilation management tool. It is

a very elegant language with a module system widely regarded as being one of the most

sophisticated and expressive in existence. CM did not have to add much to support hier-

archical modularity. That made it possible to keep the configuration language simple. ML

itself is based on λ-calculus, and compilers take advantage of that. The development of

λ-splitting was only possible because the SML/NJ compiler uses various λ-calculi as its
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intermediate representations for programs.

Aside from the many positive aspects of ML, there have been some that, as described

below, proved difficult to deal with. These cases have been rare, but, nevertheless, language

designers should take note. Some of the difficult problems addressed by my work would

not have come up had I chosen a different programming language.

The simplicity of CM’s model benefited from being built upon and integrated with

one—and only one—very expressive and elegant programming language. One should ex-

pect similar tools for similar languages to be comparably elegant. General-purpose compi-

lation managers cannot define themselves as extensions of only one language. They may

be more versatile, but they are also more complicated because for different languages many

language-specific details must be taken care of differently. Without a fixed base language,

they also need a significantly richer notation for expressing dependencies.

7.2 Lessons for language design

Chapter 4 was concerned with the design of an efficient dependency analysis algorithm for

ML. One language feature—the potential of having more than one top-level definition for

the same identifier—renders the general analysis problem NP-complete. But I was not in-

terested in completely eliminating this feature because a requirement for global uniqueness

of names causes problems with modularity.

CM’s approach avoids these difficulties by eliminating multiple definitions locally,

within individual groups, while globally there is no such restriction. To incorporate this

rule into ML’s definition it would be necessary to explain the notion of compilation units

and the idea of groups as part of the document. The original definition and commen-

tary [MTH90, MT91] only briefly discussed separate compilation of closed functors; the

revised definition [MTHM97] has dropped every mention of it.
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I like to view CM as an extension to ML; the result is a hybrid that is composed of a

powerful programming language and a minimal configuration language. Some decisions

in the design of one part can only be justified or even described in terms of the other part.

I have tried to keep CM’s impact on the ML language as small as possible, but I was not

able to make it zero.

The open construct of ML and equivalent features in other languages have been crit-

icized before, and I have done so again. It introduces bindings for names that are not

lexically apparent, which is its most troubling aspect. The unrestricted use of open would

also lead to an NP-complete dependency analysis problem in the particular model that I

have chosen. Therefore, it was banned from the top level. My model can accomodate

slightly less severe restrictions; different models may require different restrictions.

Programs are not only read by analysis tools; humans read them as well. A language

construct like open that serves to confuse the analysis tool is also likely to confuse the

human reader. It would be much better if open had been replaced with the equivalent

of Modula-3’s IMPORT, where the names of the identifiers to be defined must be listed

explicitly.

In fact, ML already has the facilities for this style of programming. If one wishes to

refer to A.B.f simply by the name f, then instead of opening A.B one can write

val f = A.B.f

Unfortunately, this does not always work as intended because val declarations strip infor-

mation about the identifier’s status. In this example, A.B.f can be a constructor for some

datatype, but f will be just a variable. The new datatype replication facility that was intro-

duced with SML’97 is meant to solve this problem. Unfortunately, like open, it does this

by introducing definitions that are not lexically apparent.

At the very heart of hygienic macros lies the idea that the names bound by binding
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constructs must be lexically apparent. I have argued that this is a desirable property, but it

is not sufficient. Consider the following expression, where bnd is a macro:

(bnd a b (+ a b))

One of the many possible definitions for the macro would locally bind a to the value of b

and then evaluate the body expression (+ a b). Another possible definition binds b to

the value of a. In both cases the name of the variable being bound is lexically apparent,

and yet we must know the definition of bnd to understand which variable is being bound.

In general, I recommend against any language construct that can cause a change of a

definition in one part of the program to modify scopes in another part of the program. This

concerns ML-style opening of structures as well as most macro systems, including hygienic

macros.

7.3 Future work

The compilation manager has been used for more than two years by a growing user commu-

nity. The moment it was introduced it became the primary tool for maintaining SML/NJ’s

compiler. The model I have chosen works well in practice, and the implementation is effi-

cient enough for everyday use. Therefore, I expect that most of the maintenance work will

be concerned with cosmetic issues and minor bug fixes.

CM’s analysis tracks module-level definitions only. Furthermore, the restriction it im-

poses on open is the least permissive of those I discussed. In chapter 4 I have presented

an algorithm that works with a less restrictive rule. But before such an algorithm is imple-

mented, one should investigate whether the effort would be worthwhile.

So far I have provided only the framework but not the heuristics that are necessary to

implement 1-decomposition as part of λ-splitting. λ-splitting must also be integrated with
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more recent versions of the compiler. These versions use a typed language called FLINT

as their new intermediate representation [Sha97b].

The compiler’s closure-conversion algorithm [SA94], though already quite sophisti-

cated, must be improved to undo any harmful effects of λ-contract (β-reductions and let-

floating). It may turn out that λ-contract itself becomes unnecessary once we start using

FLINT.

7.4 Enabling technology

Cross-module inlining can open new opportunities. Now that the penalties for using ab-

stract data types across module boundaries have been eliminated, one can clean up all the

ad-hoc inlining of arithmetic primitives that pervade SML/NJ.

If we can consistently remove penalties for function calls, then it becomes practical to

use new implementation techniques that rely on such function calls. In chapter 1 I have al-

ready discussed the efficient representing of lists. But the list type is only one example.

Standard ML has always had the problem that efficient implementations of datatypes break

down at functor-parameter boundaries [App93]. By representing concrete data types as

abstract data types, where functions and function calls represent constructors and pattern-

matches, one can solve this problem. Without inlining this would have been totally imprac-

tical, but I expect that now one can eliminate penalties in almost all cases.

Of course, there are alternatives that do not rely on cross-module inlining. Shao’s work

on FLINT uses constructors that are parameterized by types. Most of them are specialized

at compile time, thereby removing the penalty for run-time type analysis. Intensional type

information is used to handle the remaining cases. λ-splitting can perform just as well if

we can ensure that inlining will take place in those cases where FLINT’s parameterized

constructors get specialized. I will have to investigate how our heuristics can be tuned to
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achieve this goal.

However, cross-module inlining should not only be seen as yet another way of imple-

menting certain ML peculiarities. It serves as an encouragement to use more abstraction

and to write modular code because it will consistently eliminate the associated overhead.
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Appendix A

CM reference manual

A.1 Group description syntax

description-file → group-description | library-description | alias
group-description → Group [ export-filter ] is member-list
library-description → Library export-filter is member-list
export-filter → export-symbol { export-symbol }
export-symbol → name-space Identifier
name-space → structure | signature | functor | funsig
member-list → { member }
member → Pathname [ : Class ]
alias → Alias Pathname

Identifier, Pathname, and Class are lexical classes consisting of non-empty

strings without white space, colons, parentheses, or semicolons. Comments in the style of

Standard ML (text between balanced pairs of (* and *)) or in the style of Scheme (text

extending from a semicolon to the end of the line) are permitted. They count as delimiters

like white space.
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Aliases

The maximum nesting depth for aliases is limited to 32.

A.2 Examples

A simple group description

Group is
main.sml
read.sml
write.sml
calculate.sml
../lib/smlnj-lib.cm

A group with export filter

Group
structure Table
signature TABLE
structure Main
functor A
funsig A

is
main.sml
a/fct.sml
a/fsig.sml
table/sources.cm
RCS/parser.grm,v

169



A.3 Preprocessor

Syntax

line → nonpreprocline
→ preproc

nonpreprocline → line not starting with #
preproc → if { line } elif-opt else-opt endif

→ error
if → beginning-of-line # if expression end-of-line
elif-opt → { elif { line } }
elif → beginning-of-line # elif expression end-of-line
else-opt → [ else { line } ]
else → beginning-of-line # else end-of-line
error → beginning-of-line # error text end-of-line

Expressions

Expressions denote integer quantities; 0 is used for for false and non-zero values for true.

There are four forms of atomic expressions:

1. Integer literals evaluate to the corresponding integer.

2. A symbol evaluates to the value bound to that symbol or to 0 if the symbol is not

defined.

3. The expression defined(symbol) evaluates to 1 if symbol is defined, or to 0 if it is

not defined.

4. The forms:

• defined (signature sigid),

• defined (structure strid),

• defined (functor fctid),
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• and defined (funsig fsigid)

test to see if the given ML module is defined in the base environment.

Expressions are formed using a variety of binary operators, all of which are left-associative.

Operators are listed with increasing precedence. Those that appear on the same line have

equal binding strength:

||
&&
== !=
< <= > >=
+ -
/ *

Logical disjunction || and conjunction && are short-circuiting operations. The unary op-

erators for logical and numerical negation are ! and -, respectively. Parentheses can be

used for grouping.

Predefined symbols

Depending on architecture, operating system, and configuration one symbol out of each of

the following groups will be predefined to 1:

OS Architecture Byte order ML word size

OPSYS UNIX
OPSYS WIN32
OPSYS MACOS
OPSYS OS2

ARCH SPARC
ARCH MIPS
ARCH ALPHA
ARCH X86
ARCH HPPA
ARCH RS6000
ARCH POWERPC

BIG ENDIAN
LITTLE ENDIAN

SIZE 32
SIZE 64

Additionally, in version xxx.yy of the compiler SMLNJ VERSION will be set to xxx,

and SMLNJ MINOR VERSION evaluates to yy.
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Example

Group is
a.sml
b.sml

# if (SMLNJ VERSION >= 109 || defined(structure SMLofNJ))
util.sml

# elif (SMLNJ VERSION < 108)
# error The version of SML/NJ is too old for this software.
# else

util-workaround.sml
# endif

A.4 Default classes

.sig .sml .fun Sml

.grm .y MLYacc [TA90]

.lex .l MLLex [AMT89]

.burg MLBurg [GG93]

,v RCS [Tic85]

.cm CMFile

.nw Noweb

A.5 Available tools

Items shown are predefined tools in CM’s extensible toolbox. The out-of-date condition

mentioned here refers to the situation where at least one of the targets is either missing or

older than the source.
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member class processor source targets conditions

MLYacc ml-yacc file file.sig out-of-date

file.sml

MLLex ml-lex file file.sml out-of-date

MLBurg ml-burg file.burg file.sml out-of-date

file file.sml

RCS co -q file,v file target missing

RCS/file,v file

Noweb notangle file.nw file.sig out-of-date

file.sml

file file.sig

file.sml

root@file.nw root

root@file root

A.6 Export rules

A group with export filter exports all symbols listed by its filter regardless of their origin.

A group without export filter exports all symbols defined by sources of the group and

all non-masked symbols exported by ordinary subgroups of the group. Note, that

libraries are required to have an export filter.
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A.7 Binfile names

Architecture binfile directory

DEC Alpha (32 bit) CM/alpha32-os

Sparc CM/sparc-os

MIPS (little endian) CM/mipsel-os

MIPS (big endian) CM/mipseb-os

HP-PA CM/hppa-os

IBM RS6000 CM/rs6000-os

Intel x86 CM/x86-os

bytecode CM/bytecode-os

A.8 Feature summary

Most of CM’s functionality must be accessed through members of a structure called CM.

For brevity I will often drop the prefix CM and write make instead of CM.make.

Root description file

Most actions of CM are driven by a DAG resulting from dependency analysis. In order

to perform such an analysis it is necessary to know the root group of the hierarchy to be

analyzed. The explicit argument used by many functions for naming the root description

file is a string.

All functions in the CM structure that take an explicit root description as one of their

arguments have a counterpart without such a parameter. The counterpart implicitly uses an

internal default of the form (!rootfile). This reference cell is not directly accessible.

Instead, its contents can be set via

val set root: string -> unit
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The initial value is "sources.cm", unless the operating system environment variable

CM ROOT is set, in which case its value will be used. Note, that the value of !rootfile

is always treated as the name of a CM-style description file—regardless of its name.

As a lexical convention, names of functions taking an explicit string argument for nam-

ing the root description file end with an apostrophe. The names of the other functions—

those that use the default—can be obtained by stripping away the apostrophe. Example:

CM.make ();

is roughly equivalent to

CM.make’ (!rootfile);

Compilation

val make’: string -> unit
val make: unit -> unit

val recompile’: string -> unit
val recompile: unit -> unit

CM.recompile() analyzes the system and performs all necessary recompilation steps.

A recompilation step is necessary if one of the following is true:

• the binfile is missing

• the binfile is older than its source file

• a predecessor in the dependency graph has been recompiled and CM has discovered

that its new version is not compatible with the existing binfile

The last point is important: Unlike make in UNIX, CM is often able to avoid recompil-

ing certain units even if their predecessors had been recompiled.
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If the result of the predecessor’s compilation is still compatible with the existing bin-

file, then no further action is necessary. In particular, just touching a file (changing its

modification time stamp) does not cause a recompilation of the entire system. Also, if a

change to a source file does not change the interface (the static environment) exported by

the compilation unit, then it will not trigger subsequent recompilations of dependent files.

CM.recompile() only compiles but does not execute any code. Therefore, no new

bindings will be added to the top-level environment. This function does not keep compiled

code in main memory to avoid wasting resources.

CM.make() and CM.recompile() perform the same analyses and recompilation

steps. But CM.make() also executes the code in all units (i.e., not only the ones that

needed to be recompiled). If there are no errors, then the top-level environment will be

augmented with bindings for the symbols exported by the root group.

Compilation errors

In the case of an error while compiling a source, CM cannot proceed processing other files

that depend on the one with the error. However, this does not affect unrelated branches of

the dependency graph. Therefore, CM can press on and “keep going.” The function:

val keep going: bool option -> bool

called with an argument of (SOME true) will enable this feature.

Since CM must run all tools and parse all source files before it can even start to build

the dependency graph it will not be able to continue when errors occur during any of those

operations.
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Topological sort

Sometimes it is useful to obtain a topologically sorted list of a program’s sources. The

following functions calculate such lists:

val names’: string -> string list
val names: unit -> string list

val binfiles’: string -> string list
val binfiles: unit -> string list

val strings’: string -> string list
val strings: unit -> string list

All lists produced by these commands are sorted according to the same principle: Let

S(s) be the SML source associated with string s. If s and t are distinct members of the list

and s appears to the left of t, then S(s) does not depend—either directly or indirectly—on

S(t).

CM.names produces lists of SML source file names, CM.binfiles returns lists of

binfile names, and calls to CM.strings yield lists of descriptions for SML sources. These

descriptions are often just the file name—except when the SML source is the result of

running some tool, in which case this fact will be mentioned by the description.

The function CM.mkusefile allows one to create a file with a topologically sorted

list of use commands. The second or sole string argument is the name of the file to be

written.

val mkusefile’: string * string -> unit
val mkusefile: string -> unit

This can be useful for maintaining stand-alone versions of a system.
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Stand-alone systems

The technique of sequentially reading and compiling a collection of SML source files is

inherently less expressive in its management of name spaces than what can be done with

CM’s groups, libraries, and export filters (→ Chapter 3).

Therefore, a much better alternative to CM.mkusefile is to use CM.sa (sa = Stand

Alone). Like mkusefile this function produces a small program expressed in SML

source language that can subsequently be read and compiled by SML/NJ:

val sa’: string * string -> unit
val sa: string -> unit

However, such a program—unlike the one generated by mkusefile—uses special sup-

port from SML/NJ to reproduce precisely the same treatment of namespaces that CM itself

would use internally when running CM.make. Furthermore, the program will check for

the presence of binfiles and load those whenever possible. This can be a useful aid when

building systems that no longer depend on the presence of CM. CM itself is bootstrapped

using this facility.

Visualization

Sometimes it is helpful to look at a picture of the DAG representing the dependencies

of a program. The function CM.dot can be used to produce input for the DOT pro-

gram [KN93], which is a tool for automatically drawing such graphs. Figure 2.1 on page 24

shows such a DOT drawing of the dependency graph for CML [Rep91].

val dot’: string * string -> unit
val dot: string -> unit

An invocation of this function writes a DOT-specification into the file that was named

by the second (or sole) argument. DOT-specifications contain ordinary text. Layout param-

eters are located near the top of the file. Any text editor can be used to adjust them when

178



necessary.

The pictures use ellipses for .sig-files, rectangular boxes for .sml-files, and diamond-

shaped boxes for all others. Lines between nodes show direct dependencies. Solid lines

indicate that the nodes belong to the same group; dashed lines are used for edges which

cross between different groups. A dotted line connects a node to the name of a symbol

imported from the base system. These symbols are displayed as plain text labels.

Stabilization

An invocation of CM.stabilize false stabilizes the root group of the system. In the

process of stabilization CM runs the equivalent of CM.recompile() in order to update

all of the binfiles. Once this has been successful it creates the stablefile.

If the group to be stabilized refers to other groups, then those subgroups should already

be stable. CM.stabilize true will also process and stabilize all subgroups, sub-

subgroups, and so forth:

val stabilize’: string * bool -> unit
val stabilize: bool -> unit

An invocation of CM.destabilize reverts a stable group to its original, non-stable state:

val destabilize’: string -> unit
val destabilize: unit -> unit

Preprocessor symbols

The top-level structure CM contains a substructure SymVal with the following functions:

val lookup: string -> int option
val define: string * int -> unit
val undef: string -> unit
val undefall: unit -> unit

Definitions for specific preprocessor symbols can be added using define and removed
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via undef. An invocation of undefall clears all definitions. The lookup function

provides a way of determining the current value associated with a given symbol.

Autoloader

With autoloading enabled, the command:

CM.autoload’ "util.cm";

makes all definitions exported from the group described by util.cm available at the SML

top-level. However, it does that without actually compiling or loading anything. Instead,

CM monitors code entered at top level. If it finds that a symbol exported from util.cm

is being used and that the definition for that symbol has not already been supplied earlier,

then it will calculate and load the minimal set of sources required to provide the desired

definition.

Here is a summary of the functions used to control the autoloader:

val autoloading: bool option -> bool

val autoload: unit -> unit
val autoload’: string -> unit

val autoList: unit -> string list
val clearAutoList: unit -> unit

The autoloading mechanism can be turned on or off using the autoloading command.

Since it always returns the previous setting, one can invoke it with NONE to query the

current status without actually changing it.

The functions autoload and autoload’ are analogous to make and make’, ex-

cept they do not actually load any module but register it for autoloading instead. The func-

tion autoList returns a list of all groups that are currently registered for autoloading and

clearAutoList resets the corresponding internal registry.
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Miscellaneous

The global behavior of CM is controlled by a few state variables. Part of this state is

a set of boolean flags which can be manipulated by calling interface functions of type

bool option -> bool. All of them always return the previous setting. An argu-

ment of SOME x is used to set the value to x, NONE only queries the current state without

modifying it. I have already shown such a state variable in the case of autoloading:

val keep going: bool option -> bool (*CM KEEP GOING*)
val verbose: bool option -> bool (*CM VERBOSE*)
val show exports: bool option -> bool (*CM SHOW EXPORTS*)
val parse caching: int option -> int

The comments show names of (shell-)environment variables that can be set to true or

false in order to define an initial value for the corresponding state variable.

I have described keep going already; verbose, which is initially true, can be

used to silence CM’s chatting about its current activities by setting it to false. The

show exports flag—when set to true—will cause CM to report the symbols exported

by filter-less groups.

With parse caching one can limit the number of parse trees that are kept in main

memory. Keeping parse trees after dependency analysis and reusing them for compilation

can save time. However, with large programs this uses too much memory, so CM offers a

way of tuning its behavior.

The path—an internally kept string list—specifies a set of alternative directories, which

CM must consider in the case that a named subgroup cannot be found locally. An initial

path is taken from CM PATH (a shell-variable) or from a built-in default. CM PATH must

specify a colon-separated list of directories in the style of /bin/sh’s PATH. One can

change the path interactively by invoking CM.set path:

val set path: string list option -> string list
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This function also returns the old setting. Passing NONE as an argument can be used to

query the current setting.

CM.sweep and CM.clear are used to explicitly manipulate CM’s in-core caches:

val sweep: unit -> unit
val clear: unit -> unit

CM.sweep() removes all internally cached binfiles that are no longer consistent with the

external (file-system) cache or the respective sources. For correctness this will never be

necessary because CM always performs consistency checks before using a cached item.

However, it can help to reduce memory usage. CM.clear() empties all in-memory

caches.

A.9 All CM commands

Setting the default root file

val set root: string -> unit

Compilation

val make’: string -> unit
val make: unit -> unit

val recompile’: string -> unit
val recompile: unit -> unit

Dealing with compilation errors

val keep going: bool option -> bool
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Topological sort

val names’: string -> string list
val names: unit -> string list

val binfiles’: string -> string list
val binfiles: unit -> string list

val strings’: string -> string list
val strings: unit -> string list

Generating list of use commands

val mkusefile’: string * string -> unit
val mkusefile: string -> unit

Building stand-alone systems

val sa’: string * string -> string
val sa: string -> string

Graph drawing

val dot’: string * string -> unit
val dot: string -> unit

Stabilization

val stabilize’: string * bool -> unit
val stabilize: bool -> unit

val destabilize’: string -> unit
val destabilize: unit -> unit
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Preprocessor symbols

val lookup: string -> int option
val define: string * int -> unit
val undef: string -> unit
val undefall: unit -> unit

Autoloader

val autoloading: bool option -> bool

val autoload: unit -> unit
val autoload’: string -> unit

val autoList: unit -> string list
val clearAutoList: unit -> unit

Miscellaneous

val keep going: bool option -> bool (* CM KEEP GOING *)
val verbose: bool option -> bool (* CM VERBOSE *)
val show exports: bool option -> bool (* CM SHOW EXPORTS *)
val parse caching: int option -> int

val set path: string list option -> string list

val sweep: unit -> unit
val clear: unit -> unit

A.10 Adding new tools to CM

Structure CM.Tools: CMTOOLS is a repository of types and functions useful for adding

new tools to CM. It is not necessary to recompile CM when augmenting it this way.

The interface for customizing CM is not as convenient as writing scripts for make.

However, it was designed to be very general because the full power of SML can be used.
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For the most common situations there are useful pre-defined building blocks available in

CM.Tools.

Basics

Tools correspond to “tool classes.” Source files are classified according to what tool is

needed to process them.

The notion of a tool class includes:

1. A name for the class. This is a simple string consisting of lower-case letters.

2. A rule: The rule is a function from member names (strings) to a “target” lists, where

each target is another member name together with an optional tool class. Most of the

time member names refer to files, but this is not always the case, as can be seen in

the case of the root@file.nw notation used by the noweb tool.

3. A validator: The validator takes a source file name and the target list as produced by

the rule and determines whether or not the tool needs to be invoked at all.

4. A processor: The processor implements the actual tool, i.e., it takes source file name

and targets and runs the tool.

type fname = string
type class = string
type target = fname * class option

Member names passed to rules, validators, and processors are exactly the ones that

appear in the description file. Relative names are resolved relative to the directory the

description file appears in. I call this directory the “context.” When running a validator or a

processor CM temporarily changes its working directory to the context to allow for relative

filenames to be processed correctly.
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type validator =
{ source: fname, targets: target list } -> bool

type processor =
{ source: fname, targets: target list } -> unit

Ideally, rules should also run with the working directory set to the corresponding con-

text. However, changing the working directory can be relatively expensive and is often not

necessary for a rule to work correctly. To account for that, CM offers a somewhat involved

interface for its rules, so it is up to the programmer to decide whether or not the context

should be set or not.

type rulethunk = unit -> target list
type rulecontext = rulethunk -> target list
type rule = fname * rulecontext -> target list

Generic rules take the name of the source and also a rule context as an argument. The

context is a function that accepts a parameterless procedure (the “rule thunk”) as an argu-

ment. It then calls the thunk with the working directory set properly. The part of a rule’s

implementation that depends on the working directory must therefore be placed inside the

thunk.

The thunk is not needed for rules that do not care about the working directory. In

this case one can safely ignore (and never call) the context function, thereby avoiding the

underlying calls to the chdir system call. Most of the time this will be the case when

target file names can be derived from the source name directly. Only in more complicated

situations it may be that the rule needs to open the file and inspect its contents.

The most common rules (“simple rules”) will either always ignore the context or always

use it. This is captured by the type simplerule. Conversion routines dontcare and

withcontext convert simple rules to generic ones:

type simplerule = fname -> target list

val dontcare: simplerule -> rule
val withcontext: simplerule -> rule
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To register a new tool class with CM, one must use addToolClass:

val addToolClass:
{ class: class, rule: rule,

validator: validator,
processor: processor } -> unit

Tool classes and classification

The tool class for a given source can be determined in three different ways:

1. If the source name is a member in a CM description file, then it can be followed by

a colon and the name of the corresponding tool class. Internally, tool classes use

lower-case names; tool names in CM description files are case-insensitive.

2. If a source is the product of running a tool on another source, then the rule for that

tool may have specified the tool class for its target.

3. If the description file omits the class specification, or if a tool’s rule does not pro-

vide this information for one of its targets, then CM tries to infer the class name

automatically.

Automatic classification and classifiers

Automatic classification is done based on the name of the source. In the most common case

the decision is based on the filename extension (“suffix”). However, it is also possible to

take more or all of the file name into account. Classification is done by “classifiers,” which

come in two flavors:

datatype classifier =
SFX CLASSIFIER of string -> class option

| GEN CLASSIFIER of fname -> class option

Suffix classifier (SFX CLASSIFIER) A function from suffix strings to class option.
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General classifier (GEN CLASSIFIER) A function from source names to class option.

Classifiers can be added using addClassifier:

val addClassifier: classifier -> unit

The defaultClassOf function provides a way of invoking the built-in classification

mechanism explicitly:

val defaultClassOf: fname -> class option

Structure CM.Tools contains some functions for conveniently creating the most com-

mon classifiers, validators, and processors:

• Make a classifier which looks for a specific file name suffix:

val stdSfxClassifier:
{ sfx: string, class: class } -> classifier

• Two validators—one verifies time stamp consistency, the other one only probes the

existence of the targets:

val stdTStampValidator: validator
val stdExistenceValidator: validator

• Make a processor that runs a given shell command with the source name as its only

argument. The tool argument is used when raising the ToolError exception

upon failure (see below).

val stdShellProcessor:
{ command: string, tool: string } -> processor

Tools exception

A tool should raise exception ToolError to signal that it was unable to complete its

operation normally:

188



exception ToolError of { msg:string, tool:string }

The fields msg and tool can contain arbitrary strings. However, tool is intended to

describe the originator of the exception, while msg should give a more detailed indication

of what exactly went wrong.

Recommended strategy for adding tools

When adding new tools to CM, I recommend writing a functor that takes the CM.Tools

structure as its argument. This way the tool can easily be installed by instantiating the

functor.

Suppose one wants to extend CM with a tool for an improved version of ML-Yacc. The

old ML-Yacc should still be available, though. One creates a new class BetterYacc,

a processor that runs the command new-ml-yacc, and has CM recognize files whose

names end in .ngrm or .ny as input for this tool.

The rule maps input file x to output files x.sig and x.sml—both of them classified

as belonging to class Sml, and the validator compares time stamps in the file system.

The following sample code is highly stylized; experienced programmers could easily

“compress” it to only a few lines:
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functor YaccSourceFun (structure Tools: CMTOOLS) = struct
local
val command = "new-ml-yacc"

fun simplerule source = let
val smlfile = source ˆ ".sml"
val sigfile = source ˆ ".sig"
fun sml f = (f, SOME "sml")

in
[sml sigfile, sml smlfile]

end

val validator = Tools.stdTStampValidator

val processor = Tools.stdShellProcessor
{ command = command, tool = "Better-ML-Yacc" }

(* install BetterYacc class *)
open Tools
val class = "betteryacc"
fun sfx s = addClassifier

(stdSfxClassifier { sfx = s, class = class })
in
val = addToolClass

{ class = class, rule = dontcare simplerule,
validator = validator, processor = processor }

val = sfx "ngrm"
val = sfx "ny"

end
end

A.11 Using CM for compiling the compiler

Introduction

One important use of CM from the perspective of the compiler development team is the

maintenance of SML/NJ’s compiler. The compiler is “just another SML program,” but the

circumstances under which it is integrated into the rest of the system—especially the fact
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that it must compile itself—can require non-standard treatment [App94]. For that reason

CM offers a special interface, which facilitates controlling “batch” compilation, bootstrap-

ping, and the process of retargeting the compiler to a different machine architecture.

Batch compilation—the structure CMB

The batch compiler is implemented as a structure called CMB, which uses its own private

copy of a full-fledged structure CM whose behavior has been modified in minor ways

to account for the specifics of recompiling the compiler.

In order to use CMB it is necessary to run CM in the compiler’s source directory. Batch

compilation is started by invoking CMB.make():

val make: unit -> unit

Batch compilation—the internals

Phases

1. Construction of the core environment by compiling some dedicated source files lo-

cated in the boot directory. This step compiles three files, the names of which are

hardwired into CMB:

boot/assembly.sig defines a signature that describes the interface to the run-time

system. (The run-time system is not written in SML.)

boot/dummy.sml implements a structure that matches the run-time system’s signa-

ture. This structure is used as a placeholder in order to allow further compile-

steps to proceed. The code obtained from compiling this file is never used

because the boot procedure will replace it with the actual run-time system.
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boot/core.sml implements the core environment. This file is the only one that di-

rectly depends on the result of compiling boot/dummy.sml. The place of

the latter will be taken by the run-time system. It is necessary to compile

boot/core.sml in a special way to account for this.

2. Compilation of the remaining sources in the boot directory in some fixed order. This

order is specified in boot/all-files.cm. The format of this file is a group

description file, but CM does not perform dependency analysis. It uses the order in

which the members are listed.

3. CM reads the description file boot/pervasives.cm and compiles the members

listed there. Anything defined here will eventually make up the so-called pervasive

environment, which also serves as the initial basis for compiling the actual compiler

sources. Now the compilation of the boot directory has completed.

4. Analysis of dependencies among the compiler’s source files. The bulk of the com-

piler’s sources can be understood by CM’s dependency analyzer directly.

5. Recompilation of the compiler’s sources as far as necessary. This step also takes

advantage of CM’s basic functionality such as cutoff recompilation. However, there

are some differences:

• All binfiles are stored in one single directory. The name of that directory de-

pends on target architecture and operating system. For example, when com-

piling for a DEC Alpha machine that is running a flavor of Unix, binfiles are

placed into bin.alpha32-unix.

• The base environment for the compilation is the one constructed by compiling

the boot directory.

6. Generating list files.
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architecture stem binlist
DEC Alpha (32 bit) Alpha32 BINLIST.alpha32
Sparc Sparc BINLIST.sparc
MIPS (little endian) MipsLittle BINLIST.mipsel
MIPS (big endian) MipsBig BINLIST.mipseb
HP-PA Hppa BINLIST.hppa
IBM RS6000 RS6000 BINLIST.rs6000
Intel x86 X86 BINLIST.x86
bytecode ByteCode BINLIST.bytecode

Table A.1: Target architectures, associated name stems, and list-files

List-files

In order to finally build a new SML/NJ system it is necessary to combine the various bin-

files. However, this cannot be done by CM or other SML programs. The binfiles must be

loaded into an empty run-time system.

The boot mechanism of the run-time system reads certain list files. They are used to

record the names of binfiles that are needed to build a new compiler. The two most im-

portant list files—BOOTLIST and BINLIST—are written by the batch compiler in step 6.

Both of them (like all the other list-files as well) are located in the binfile directory.

BOOTLIST contains the names of binfiles for the various sources in the boot directory.

However, neither assembly.sig nor dummy.sml are mentioned.

BINLIST lists all remaining binfiles necessary to build SML/NJ on the target machine.

In order to create this file CM selects one single compilation unit as the root of the depen-

dency graph and writes a topologically sorted list of binfiles belonging to nodes reachable

from this root. The rootfile selected must define a structure whose name depends on the

target architecture. It consists of Int concatenated with the stem that can be looked up in

table A.1. For example, for a target architecture of “MIPS big endian” the structure’s name

is IntMipsBig.
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In addition to BINLIST there will be another list-file—SRCLIST—naming the sources

for these binfiles. This file will be used to find the sources in the case that static environ-

ments must be re-created from sources at boot-time instead of simply extracting them from

binfiles. Similarly, BOOTSRC names the sources for binfiles listed in BOOTLIST. Note

that file names in BOOTLIST and BINLIST are relative to the binfile directory, while file

names in BOOTSRC and SRCLIST are relative to the compiler’s source directory.

Finally, there will be a set of list-files—one per supported target architecture (→ Ta-

ble A.1)—which specify names of binfiles for cross compilers. Again, each of these files

contains a topologically sorted list of binfiles. Their creation proceeds completely analo-

gous to creating BINLIST: There must be one compilation unit defining some structure

whose name depends on the cross compiler’s target architecture. This unit is selected as the

root of the dependency graph used to produce the topological ordering. To obtain the name

of the structure, CM concatenates the stem shown in table A.1 with VisComp. Example:

The structure pertaining to cross compilers for the HP-PA architecture is HppaVisComp.

Controlling the batch compiler

Files

There are three files that are used to control batch compilation. All of them have the format

of a group description without export filter.

boot/all-files.cm The files boot/all-files.cm lists the source files in directory boot

with the exception of:

• boot/assembly.sig,

• boot/dummy.sml, and

• boot/core.sml.
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Even though it has the format of a group description it will not be used as input for

dependency analysis. Instead, the order of members in this “group” matters—they

are compiled top-to-bottom.

boot/pervasives.cm After all members of boot/all-files.cm have been compiled

CM will then process the members of boot/pervasives.cm. Members of this

file are not subject to dependency analysis. The environment resulting from com-

piling boot/pervasives.cm is remembered as the pervasive environment (aka.

initial basis).

all-files.cm File all-files.cm is the root description for the remaining system. It will

serve as input to the dependency analyzer. Therefore, the order of its members does

not matter.

Flags

CM shares its internal state with CMB. This means that the interface functions described in

section A.8 can also be used to control the behavior of CMB. Example:

CMB.CM.verbose (SOME false);
CMB.CM.keep going (SOME true);

This is equivalent to:

CM.verbose (SOME false);
CM.keep going (SOME true);

Cross-compilation and retargeting

Retargeting the batch compiler corresponds to creating a new instance of CMB where the

compiler has been replaced with one that produces code for a different architecture. In

order to be able to retarget, one must already have a complete set of working binfiles for
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the compiler running on the host architecture.

Structure CMR contains the retarget function, which is responsible for building a

new CMB:

structure CMR: sig
val retarget:

{ bindir: string, cpu: string,
os: string } -> unit

end

For example, if the host machine is a DEC Alpha and one wants to cross-compile for a

Sparc running some flavor of UNIX, then one must invoke:

CMR.retarget
{ bindir = "bin.alpha32",
cpu = "sparc", os = "unix" };

This command reads bin.alpha32/BINLIST.sparcand loads the files listed therein.

The result is a compiler that produces code for a Sparc machine running UNIX, even though

it itself still runs on the Alpha. The new compiler is used to construct a new structure CMB

which then replaces the old one.

Known CPU names are alpha32, sparc, mipsel, mipseb, hppa, rs6000, x86,

and bytecode. Operating system specifiers are unix, macos, os2, and win32.

Once CMR.retarget has completed successfully it suffices to run

CMB.make ();

in order to produce Sparc binfiles for the compiler.
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Appendix B

Source code for FFT benchmark

B.1 An abstract datatype for complex numbers

I implemented the following structure Complex as a separate compilation unit. For timing

measurement it was later used as part of an implementation of the Fast Fourier Transform

(→ Chapter 5 and section B.2).

structure Complex = struct

type complex = { re: real, im: real }

fun re (r: real) = { re = r, im = 0.0 }
fun im (i: real) = { re = 0.0, im = i }

fun add (x1: complex, x2) = let
val { re = r1, im = i1 } = x1
val { re = r2, im = i2 } = x2

in
{ re = r1 + r2, im = i1 + i2 }

end

fun sub (x1: complex, x2) = let
val { re = r1, im = i1 } = x1
val { re = r2, im = i2 } = x2

in
{ re = r1 - r2, im = i1 - i2 }

end
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fun mul (x1: complex, x2) = let
val { re = r1, im = i1 } = x1
val { re = r2, im = i2 } = x2

in
{ re = r1 * r2 - i1 * i2, im = r1 * i2 + r2 * i1 }

end

fun quo (x1: complex, x2) = let
val { re = r1, im = i1 } = x1
val { re = r2, im = i2 } = x2
val ccdd = r2 * r2 + i2 * i2
val abcd = (r1 + i1) * (r2 - i2)
val ac = r1 * r2
val bd = i1 * i2

in
{ re = (r1 * r2 + i1 * i2) / ccdd,
im = (i1 * r2 - r1 * i2) / ccdd }

end

fun exp ({ re, im }: complex) = let
val f = Math.exp re

in
{ re = f * Math.cos im, im = f * Math.sin im }

end

fun inv ({ re, im }: complex) = let
val d = re * re + im * im

in
{ re = re / d, im = ˜ (im / d) }

end
end

B.2 Sample Implementation of FFT

Together with a suitable realization of structure Complex (→ Section B.1) the following

recursive implementation of FFT was used to obtain timing measurements for demonstrat-

ing the effectiveness of λ-splitting (→ Chapter 5).

structure RecFFT = struct

(* operations on complex numbers from structure Complex *)
val ++ = Complex.add
val -- = Complex.sub
val ** = Complex.mul
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val // = Complex.quo

(* make them infix operators like *, /, +, - *)
infix 7 ** //
infix 6 ++ --

(* some useful constants *)
val pi = Math.pi (* 3.14159265358979323846264338 *)
val c0 = Complex.re 0.0 (* complex 0 *)
val c1 = Complex.re 1.0 (* complex 1 *)
val pii2 = Complex.im (2.0 * pi) (* 2*pi*i *)

fun fft (a, forward) = let

(* split polynomial into two subpolynomials *)
fun split [] = ([], [])
| split (x1 :: x2 :: r) = let

val (r1, r2) = split r
in

(x1 :: r1, x2 :: r2)
end

| split _ = raise Fail "split: odd list"

(* the recursive FFT *)
(* n = length a, wn = eˆ(2*pi*i/n) *)
fun rfft (a as _ :: _ :: _, wn) =

let
val (a0, a1) = split a
val wn2 = wn ** wn
fun loop (_, [], _, yy0, yy1) = rev (yy1 @ yy0)
| loop (w, y0 as y0h :: y0t,

y1 as y1h :: y1t,
yy0, yy1) =

loop (w ** wn,
y0t, y1t,
(y0h ++ w ** y1h) :: yy0,
(y0h -- w ** y1h) :: yy1)

| loop _ = raise Fail "rfft:loop: odd list"
in

loop (c1, rfft (a0, wn2), rfft (a1, wn2), [], [])
end

| rfft (a, _) = a

val (a, n, _) = FFTUtil.expand a
val cn = Complex.re (Real.fromInt n)
val wn = Complex.exp (pii2 // cn)

in
if forward then rfft (a, wn)
else map (fn x => x // cn) (rfft (a, Complex.inv wn))

end
end
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Appendix C

Benchmark results in numbers

C.1 Compiler passes as benchmarks

λ-splitting. Tables C.1 and C.2 show the running times of various compiler passes of

the SML/NJ compiler for the case that the compiler itself was compiled with and without

λ-splitting. Individual compiler passes serve as my benchmarks. For either measurement

I had λ-contract enabled. Therefore, differences in timing are due to λ-splitting itself. All

times are shown in seconds.

λ-contract. I ran my benchmarks (phases of the SML/NJ compiler) unmodified and with

λ-contract enabled. The resulting times for the Alpha and the Pentium are shown in ta-

bles C.3 and C.4.

λ-splitting applied to a cleanly modularized program. I reinserted signature constraints

and abstractions that had been removed from the source of the SML/NJ compiler by the

efficiency-conscious software engineers. The resulting code represents a cleanly modu-

larized program, which is unable to benefit from SML/NJ’s ad-hoc inlining mechanism.

200



Benchmark λ-contract only λ-contract + λ-split

parse 6.75 6.81
elaborate 147.33 136.40
pickle 21.81 19.58
unpickle 4.22 4.17
translate 6.45 6.13
codeopt 1.62 1.60
convert 4.33 3.70
lcontract 14.86 14.53
lsplit 4.70 4.23
cpsopt 14.22 13.15
fmclose 1.82 1.55
closure 7.60 6.75
cpsgen 26.95 25.55
liveness 4.65 4.71
schedule 3.05 2.82
execute 56.77 49.82
ALL 330.45 304.67

Table C.1: Alpha. Timing measurements for λ-splitting on a DEC Alpha 21064. The numbers
indicate seconds of CPU time.

Benchmark λ-contract only λ-contract + λ-split

parse 14.45 13.82
elaborate 250.11 236.45
pickle 41.43 42.23
unpickle 10.13 9.85
translate 15.35 13.81
codeopt 3.76 3.74
convert 9.11 8.24
lcontract 35.09 33.96
lsplit 11.05 10.12
cpsopt 28.50 28.47
fmclose 4.28 3.62
closure 18.47 17.65
spill 3.46 3.39
cpsgen 29.69 31.31
execute 103.90 90.45
ALL 586.16 554.22

Table C.2: Pentium. Timing measurements for λ-splitting on an Intel Pentium. The numbers
indicate seconds of CPU time.
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Benchmark unmodified λ-contract

parse 6.75 6.75
elaborate 134.92 147.33
pickle 21.80 21.81
unpickle 4.31 4.22
translate 6.21 6.45
codeopt 1.62 1.62
convert 4.26 4.33
lcontract 14.72 14.86
lsplit 4.94 4.70
cpsopt 14.01 14.22
fmclose 1.81 1.82
closure 7.75 7.60
cpsgen 26.63 26.95
liveness 4.78 4.65
schedule 2.95 3.05
execute 56.52 56.77
all 316.98 330.45

Table C.3: Alpha. Timing measurements for λ-contract on a DEC Alpha 21064. The numbers
indicate seconds of CPU time.

Benchmark unmodified λ-contract

parse 14.45 13.82
elaborate 250.11 236.45
pickle 41.43 42.23
unpickle 10.13 9.85
translate 15.35 13.81
codeopt 3.76 3.74
convert 9.11 8.24
lcontract 35.09 33.96
lsplit 11.05 10.12
cpsopt 28.50 28.47
fmclose 4.28 3.62
closure 18.47 17.65
spill 3.46 3.39
cpsgen 29.69 31.31
execute 103.90 90.45
ALL 586.16 554.22

Table C.4: Pentium. Timing measurements for λ-contract on an Intel Pentium. The numbers
indicate seconds of CPU time.
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Benchmark original unoptimized λ-splitting

parse 6.75 10.93 7.53
elaborate 147.33 198.71 143.89
pickle 21.81 36.00 24.37
unpickle 4.22 9.88 4.25
translate 6.45 8.42 6.87
codeopt 1.62 2.89 2.29
convert 4.33 6.60 4.41
lcontract 14.86 36.89 14.26
lsplit 4.70 9.99 5.17
cpsopt 14.22 25.55 17.21
fmclose 1.82 3.33 1.94
closure 7.60 16.97 10.19
cpsgen 26.95 66.29 38.03
liveness 4.65 11.31 7.40
schedule 3.05 8.86 3.32
execute 56.77 70.05 52.64
ALL 330.45 528.68 347.51

Table C.5: λ-splitting for modularized code. Timing measurements for λ-splitting vs. ad-hoc
inlining on a DEC Alpha 21064. The numbers indicate seconds of CPU time.

Table C.5 shows the running times of my benchmarks for three cases:

original: The original benchmarks compiled using ad-hoc inlining.

unoptimized: Benchmarks where signature constraints had been re-inserted, and which,

thus, were compiled without any cross-module inlining.

λ-splitting: Benchmarks with signature constraints as in the unoptimized case but com-

piled using my λ-splitting optimization.

C.2 Fast Fourier Transform

Table C.6 shows the timing results that I obtained from running a simple implementation

of FFT (→ Appendix B). I conducted experiments with four different problem sizes (FFT
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problem size original λ-splitting one file

50, 000 × 1 10.2 9.0 8.8
50, 000 × 2 19.8 18.3 18.4

100, 000 × 1 25.1 22.6 22.6
100, 000 × 2 52.0 45.8 45.5

Table C.6: λ-splitting for an implementation of FFT. Timing measurements for FFT on a DEC
Alpha 21064. The numbers indicate seconds of CPU time.

of 50,000-element list, FFT + inverse FFT of 50,000-element list, FFT of 100,000-element

list, FFT + inverse FFT of 100,000-element list) and ran each with code compiled in three

different ways (using the original compiler, using a compiler with λ-splitting enabled, com-

piling the entire benchmark as one compilation unit using the original compiler).
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[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
and verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–
198, 1931.

[Gou94] Jean Goubault. Generalized boxing, congruences and partial inlining. In Static
Analysis Symposium ’94, number 864 in Lecture Notes in Computer Science,
pages 147–161. Springer, 1994.

[Gri72] Ralph E. Griswold. The Macro Implementation of SNOBOL4. W. H. Freeman
and Company, San Francisco, 1972.

[Gun96] Carl A. Gunter. Abstracting dependencies between software configuration
items. In Proceedings of the Fourth Annual ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 167–178. ACM Press, October
1996.

[Han91] Chris Hanson. A Syntactic Closures Macro Facility. LISP Pointers, IV(4):9–
16, December 1991.

208



[HL93] Christine B. Hanna and Roy Levin. The Vesta language for configuration man-
agement. Technical Report 107, Digital Equipment Corp. Systems Research
Center, June 1993.

[HLPR94a] Robert Harper, Peter Lee, Frank Pfenning, and Eugene Rollins. A Compi-
lation Manager for Standard ML of New Jersey. In 1994 ACM SIGPLAN
Workshop on ML and its Applications, pages 136–147, 1994.

[HLPR94b] Robert Harper, Peter Lee, Frank Pfenning, and Eugene Rollins. Incremen-
tal recompilation for Standard ML of New Jersey. Technical Report CMU-
CS-94-116, Department of Computer Science, Carnegie-Mellon University,
February 1994.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using inten-
sional type analysis. In Twenty-second Annual ACM Symp. on Principles of
Prog. Languages, pages 130–141, New York, Jan 1995. ACM Press.

[HS97] Robert Harper and Christopher Stone. An interpretation of Standard ML in
type theory. Technical Report CMU-CS-FOX-97-01, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, June 1997.

[IEE90] IEEE Standard 1178-1990: IEEE Standard for the Scheme Programming Lan-
guage, 1990.

[JPS96] Simon Peyton Jones, Will Partain, and André Santos. Let-floating: moving
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