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ABSTRACT 
We apply mathematical concept analysis in order to 
modularize legacy code. By analysing the relation be- 
tween procedures and global variables, a so-called con- 
cept lattice is constructed. The paper explains how 
module structures show up in the lattice, and how the 
lattice can be used to assess cohesion and coupling be- 
tween module candidates. Certain algebraic decompo- 
sitions of the lattice can lead to automatic generation 
of modularization proposals. The method is applied 
to several examples written in Modula-2, Fortran, and 
Cobol; among them a >lOOkloc aerodynamics program. 
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INTRODUCTION 
Analysing old software has become an important topic 
in software technology, as there are millions of lines of 
legacy code which lack proper documentation; due to 
ongoing modifications, software entropy has increased 
steadily. If nothing is done, such software will die of old 
age - and the knowledge embodied in the software is 
inevitably lost. As a first step in “software geriatrics”, 
one must reconstruct abstract concepts from the source 
code (called “reverse engineering”). In a second step, 
one might try to transform the source code such that the 
structure of the system is improved and obeys modern 
software engineering principles. 

One particular problem is modularization of old code. 
Old systems have not been developed by today’s mod- 
ularization criteria. Therefore, static information like 
control and data flow, access to nonlocal objects, or in- 
terface information must be extracted in order to guide 
restructuring. Modularization can then be achieved by 
manual changes or automated program transformation 
or both (see e.g. [5]). In particular, the relation be- 
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tween procedures and (global) variables has long been 
recognized important for restructuring [13]. Indeed, an 
abstract data object is characterized by a set of proce- 
dures operating on a common set of (hidden) variables. 
Legacy systems written in FORTRAN or COBOL how- 
ever make abundant use of global variables, as there is 
no syntactic support for modules. In old FORTRAN 
code for example, there is often no correspondence be- 
tween COMMON blocks and modules. Thus one im- 
portant step in restructuring such old systems is to dis- 
cover candidates for modules or abstract data objects. 
Among other information sources, the relation between 
variables and procedures must be examined, and if pos- 
sible, module candidates must be identified. 

In earlier work, we have shown that mathematical con- 
cept analysis [15, 181 is a useful tool for analysing old 
software. As a particular problem, we have chosen the 
analysis of configurations in multi-platform source files. 
We have shown how dependencies and interferences be- 
tween configurations can be detected using a concept 
lattice [S]. More recent work described how source files 
can be simplified according to lattice-generated infor- 
mation [14]. 

In this paper, we investigate the relation between pro- 
cedures and global variables in legacy code. Based on 
this relation, we want to find module candidates and 
assess the module structure. We first formalize module 
structures, and give formal definitions for coupling, co- 
hesion, and interference. We then apply mathematical 
concept analysis to the problem of modularizmg legacy 
code. By analysing the relation between procedures 
and global variables, module candidates are identified 
and arranged in a so-called concept lattice. Hierarchi- 
cal clustering of local modules or procedures shows up 
as sub-/superconcept relation in the lattice. Specific 
i&ma (socalled interferences) correspond to violations 
of modular structure, and proposals for interference res- 
olution can be automatically generated. Furthermore, 
module candidates can sometimes be generated from 
certain algebraic decompositions of the lattice. 

, . . _-_ 



FORMALIZATION OF MODULE STRUC- 
TURES 
It is our goal to find modules in legacy code by analysing 
the relation between procedures and global variables. 
We begin with some basic definitions. 

Definition. Let a program consist of a set of proce- 
dures P and a set of variables V. The vcari’lable usage 
table is a relation C c ‘P x V. If (p,v) E C, procedure 
p uses variable v. 

The variable usage table is constructed by a frontend; 
it is based on actual usage of global variables in pro- 
cedures. Procedures and variables are assumed to be 
globally unique; if necessary, the contend must provide 
unique names. 

Definition. An abstract data object (ADO, or mod- 
ule) consists of a set of procedures P c P and a set of 
variablesVCVsuchthatVvEV,pEP:(p,v)EG+- 
v~VandVp0,v~V:(p,v)EC~pEP. 

Thus in an ADO (P,V) all procedures in P use only 
variables in V and all variables in V are only used by 
procedures in P. This captures the fact that in an ADO, 
a set of procedures operates on a set of state variables, 
while the state variables are invisible outside the ADO. 
The above definition can be expressed slightly more el- 
egant by introducing some functions. 

Definition. (common/used variables/procedures) 

1. For P G P, cv(P) = {v E V 1 Vp E P : (p,v) E C}. 
ForV~~,cp(V)=(p~P~VvEV:(p,v)EC). 

2. For P c P, let uv(P) = UpEP cv((p}). 
For V s v’, let up(V) = UvEV cp({v}). 

In particular, cv({p}) (or cv(p) for short) are the vari- 
ables used by procedure p, and cp({v}) (or cp(v) for 
short) are the procedures which use variable v. uv(P) 
are 4 variables used by procedures in 0, while cv(P) 
are the common!9 used variables - up and cp are to be 
interpreted analogeously.’ 

Then (P,V) is a module iff uv(P) c V and up(V) 2 P 
holds. This fundamental closure property for modules 
reflects both information hiding and low coupling. 

Some programming languages permit procedures to be 
nested. Each local procedure introduces its own set of 
state variables, which cannot be used by the top-level 
procedures. Thus, procedure 4 is local to procedure p 
iff cv(p) c cv(a). Sometimes there are not only nested 
procedures, but also nested ADOS, where the state vari- 
ables in the inner ADO are not used outside (indeed, 

1 cu and cp were called u and T in [8, 141; in [18] they are both 
written as ’ (derivation). Note that both uu, up are monotone, 
but both cu, cp are antimonotone. 

C++ supports this kind of nesting). 

Definition. Let (P,V) be a module; let S C P. (S,V) 
is called a submodule of (P, V) iff uv(P \ S) # V. 

Hence a local module or submodule consists of a sub- 
set of the module’s procedures which have additional 
local variables. Note that uv(P \ S) C V always holds, 
but that (S, V) is not an ordinary module: up(V) E S 
does not hold, as the global variables in V are not only 
used by S, but also by P \ S. If S contains only one 
procedure, this procedure can be considered a local pro- 
cedure (rather than a local module which contains only 
one procedure). 

In software engineering, cohesion and coupling are im- 
portant modularization criteria. Cohesion means that 
the elements of a module are related strongly, while cou- 
pling measures interdependence between modules. This 
motivates the following definitions. 

Definition. An ADO (P,V) has maximel colresa’on, 
if Vp E P,v E V : (p,v) E C. An ADO has regular 
cohesion, if $j E PVv E V : @,v) E C and Z? E VVp E 
P: (p,q EC. 

Maximal cohesion means that all procedures use all 
variables, and all variables are used by all procedures: 

cm = V and cp(V) = P. Regular cohesion means 
that at least one variable is used by all procedures, and 
at least one procedure uses all variables: uv(P) C_ cv@) 
and up(V) c cp@). Maximal cohesion is almost never 
found in practice. Even regular cohesion cannot always 
be identified in existing, well-modularized programs, 
Both notions are introduced for theoretic reasons. 

Definition. 

1. Let PI, PZ C P be two sets of disjoint procedures, 
let v E V be a variable. We say that 9,~ are coupled 
via 21, iff v E ~(5) fl uv(P2). 

2. Let VI,& c Y be two sets of disjoint variables, let 
p E P be a procedure. We say that Vl,z interfere 
via p, if? p E up fl up(V2). 

This definition means that two sets of procedures (resp. 
their modules) are coupled if they use the same global 
variable(s). Similarly, two sets of variables (resp. their 
modules) interfere, if they are used by the same pro- 
cedure. Although coupling via global variables is un- 
desirable, in a reengineering setting coupling might be 
acceptable if there are nested local modules or proce- 
dures. Interferences however prevent a modularization, 
as there is a procedure which uses variables from two 
different modules - a violation of the information hid- 
ing principle. 
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suBRourINE Rl(...) 
COMNON /Cl/ Vl,V2 
. . . 
EN0 

suBRouTINE W.. .) 
COMNON /C2/ V3,V4 
COMMON /C3/ VS 
. . . 
EN0 

-- _- _ 

SUBROUTINE R3(. . .) 

. . . 

. 1 
COMMON /C2/ V3,V4 
COMMON /C4/ V6.V7,V8 

EN0 

v3,v4 

SUBROUTINE R4(. . .) 
COMMON /C2/ V3.V4 Vl ,v2 v5 vs,w,vs 

R3 
COMMON /C3/ V5 RI 

G 

I32 

COMMON /C4/ V6.V7,V8 
. . . R4 
EN0 

Figure 1: A small source text, its variable usage table and its concept lattice 

BASIC NOTIONS OF CONCEPT ANALYSIS 
Mathematical concept analysis start8 with a relation C 
between a set of objects P and a set of attributes V; the 
triple C = (P, V, C) is called a formal context. In our 
case, the objects are procedures, and the attributes are 
global variables. 

For any set of procedures P s P we can determine 
their common variables by w(P). Similarly, for a set of 
variable8 V s V, the common procedures are q(V). A 
pair (P,V) where V = m(P) and P = cp(V) is called 
a formal concept. Such formal concepts correspond to 
maximal rectangles in the context table, where of course 
permutations of rows or columns do not matter. For a 
concept c = (P, V), P = e&(c) is called the extent and 
V = i&(c) is called the intent of c.~ 

G. Birkhoff discovered in 1940 that the set of all for- 
mal concepts for a given formal context c is in fact 
a complete lattice, the concept lattice L(C) [I]. The 
partial order in this lattice is given by CI 5 cs _ 
&(cI) E &(cz) ( M int(cl) 2 int(c2)). The in& 
mum of two concepts is computed by intersecting their 
extents and joining their intents: q A q = (e&(q) n 

&(cs), cv(cp(int(cI) U int(cs)))) .3 The supremum is 
computed by intersecting the intents and joining the 
extents of two concepts: Cl v c2 = (ql(CV(&(Cl) u 
&(cs))), int(cI)flint(cs)). Hence the i&mum describes 
the common procedures for two sets of variables, while 
the supremum describes the common variables for two 
sets of procedures. 

Figure 1 gives a very small example of a formal context 
and its concept lattice. The context table is generated 
from a (fictious) FORTRAN source file and captures the 
use of global variables by subroutines. The labelling of 
elements allows for an easy interpretation of the lattice; 
it is achieved as follows. For p E P, the smallest concept 

21n fact, cu and cp form a Galois connection, and both CDO cp 
and cp o cu are closure operators. 

3cu and cp are needed because ezt(cl) n ezt(c2) can have more 
attributes than just i&(q) u int(c2). 
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c where p E b(c) is c = SC(~) = A(c ] p E d(c)), and 
for TJ E V, the largest concept c where v E int(c) is 
c = Zc(v) = V{c ] v E int(c)}. SC(~) is labelled with p, 
and k(v) is labelled with v. All concepts greater than 
SC(~) have p in its extent, and all concepts smaller than 
k(v) have v in its intent4 

In figure 1, all subroutines below Zc(V3) (namely R2, 
R3, R4) use V3 (and no other subroutines use V3). All 
variables above sc(R4) (namely V3, V4, V5, V6, V7, 
V8) are used by R4 (and no other variables are used 
by R4). Thus the concept labelled R4 is in fact CI = 
sc(R4) = ({R4}, {V3,V4,V5,V6,V7,V8}). The concept 
labelled V5/R2 is in fact cs = Zc(V5) = sc(R2) = 
({R2,R4}, {V3,V4,V5}). Hence CI 5 cs, as cI has fewer 
procedures and more variables. This can be read as 
an implication: “Any variable used by subroutine R2 is 
also used by R4”. Similarly, Zc(V5) 5 Zc(V3) = Zc(V4), 
which translates to “All subroutines which use V5 will 
also use V3 and V4”. The infimum of V5/R2 and 
V6,V7,V8/R3 is labelled R4, which means that R4 (and 
all subroutine8 below sc(R4),5 but no other) uses both 
V5 and V6,V7,V8. The supremum of the same concepts 
is labelled V3,V4, which means that V3 and V4 (and all 
variables above Zc(V2), but no other) are used by both 
R2 and R.3. Such knowledge is not easy to obtain man- 
ually from big source files! 

The original relation can always be reconstructed via 
(p,v) E C m SC(~) 5 Zc(v). Thus formal concept 
analysis is similar in spirit to Fourier Transformation. 

Computation of the lattice has typical time complexity 
O(n3) (n = max(]P],]V])), but can be exponential in 
the worst case [18]. In practice, computation of lattices 
with several hundred elements needs a few seconds on a 
SparcStation 2. 

41n [14, 8, 181 SC and Zc are written 7 resp. p. 
5there are none in the example 
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Vl V2 V3 V4 V5 V6 V7 V8 V9 . . . 
x x x 
x x x 
x x x 

x x x x 
x x x x 

x x 
x x 
x x 
x x 

Figure 2: Maximal cohesion corresponds to flat lattices 

THE CONNECTION BETWEEN MODULES 
AND CONCEPT LATTICES 
Our work is based on the key observation that a module 
or abstract data object corresponds to a formal concept 
or a small set of concepts. In this section, we will explain 
how typical module structures show up in a concept 
lattice., Later, our insight will be used for reengineering 
modules from unstructured source code. 

Modules with maximal cohesion 
We first assume that a program is a collection of mod- 
ules or ADOS with maximal cohesion. Furthermore we 
assume there are no nested modules, no global variables, 
no global procedures. These severe restrictions will be 
dropped later. 

Under the assumption of maximal cohesion, an ADO 
(P, V) corresponds to a (maximal) rectangle in the vari- 
able usage table: cw(P) = V and q(V) = P. Thus a 
module corresponds to a formal concept of formal con- 
text C = (P, V, C). Furthermore, absence of coupling or 
interferences leads to a particular simple concept lattice 
,C(C). As there are no procedures which use variables 
from different ADOS, the intersection of the extents of 
two ADO’s concepts must be empty. Hence the i&mum 
of two concepts must be the bottom element. As there 
are no variables which are used in different ADOS, the 
intersection of the intents of two ADO’s concepts must 
be empty. Hence the supremum of two concepts must 
be the top element. Such lattices are called flat. Figure 
2 shows a variable usage table and its flat lattice.6 

6Remember that row and column permutations do not influ- 
ence the lattice. 
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“1 va v3 v4 vs V6 v7 VB vo VlO Vll via 
x x x 

:: x x x 
RS X X X X X 
R4 X X X X 
RS X X X X 
RB X X X x x x 
R7 X X X x x x 
R8 X X X X X x 

x x x 
El x x x 

X X X 
X x M 

RI1 X X X X x x 

Figure 3: Nested procedures or modules correspond to 
tree-like lattices 

Nested procedures and modules 
For nested procedures or modules, we assume every pro- 
cedure uses all variables visible to it.7 Thus, if pro- 
cedure q is local to procedure p, q’s row in the vari- 
able usage table contains at least the entries in p’s row: 
CT@) G w(q) I i&(x(q)) > int(ac(p)). In the 
lattice, the corresponding concepts thus form a two- 
element chain: the “is-local-to”-relationship in the pro- 
gram corresponds exactly to the “is-subconcept-of” re- 
lationship in the lattice, as se(q) 1. SC(~). In particular, 
variables in the outermost scope show up as labels of the 
top element. Hence nested procedures produce tree-like 
concept lattices, which corresponds to traditional nest- 
ing hierarchies.8 

For nested submodules, we also obtain tree-like lattices, 
because - under the assumption that all procedures use 
all variables visible to them - the configuration table 
will contain the same entries for different submodule 
procedures. If a lattice element is labelled with only 
one procedure, it corresponds to a local procedure; oth- 
erwise, it corresponds to a submodule. 

As an example, consider figure 3. Here, we find an ADO 
Ml, with submodules M2, M3, M4, M5, M6, which cor- 
respond to the lattice elements # 1. Ml consists of 
procedures Rl, R2 and variables Vl, V2, V3. M2 adds 
procedure R3 and variables V4, V5. M3 adds proce- 
dures R4, R5 and variable V6 to Ml. M4, M5, M6 each 
introduce two local procedures and variables likewise. 
Thus M2 and M3 are local to Ml, and M4, M5, M6 
are local to M3. Note that M2 is a one-row submod- 
ule, hence its one and only procedure R3 can as well be 
considered a procedure local to Rl or R2. 

7Again, this restriction will be dropped later. 
8Tree-like lattices are trees with an additional bottom elomont, 



Figure 4: A horizontal decomposition and an interfer- 
ence 

Note that the analysis of legacy code may propose a 
procedure or module nesting which is in contrast to the 
actual program (for example, FORTRAN does not of- 
fer local procedures). It might even be that according 
to the lattice, a procedure pa is considered local and 
invisible to a procedure pr, but in the code, pr in fact 
calls p2. In this case, the lattice shows that the pro- 
cedure nesting or call graph should be revised, or that 
there is an implicit hierarchical structure which cannot 
be expressed syntactically. 

Modules with non-uniform variable use 
Until now, we have assumed maximal cohesion, which 
leads to particular simple lattices. In practice, this as- 
sumption is of course not true: the lattices obtained 
from legacy code are much more complicated. In this 
section, we investigate the effects of non-uniform vari- 
able usage in flat module structures. Figure 4 shows a 
variable usage table which is still segmented into rectan- 
gles, but where the rectangles are not completely filled. 
Instead some entries are missing: not all procedures in 
an ADO use all ADO’s state variables. Such tables pro- 
duce lattices which are horizontally decomposable. The 
example also contains a simple interference: procedure 
R uses variables a and b, which are from two different 
ADOS. 

A horizontal decomposition is the inverse to a hori- 
zontal sum. The horizontal sum of srmunand lattices 

Ll,L2, . . ..L.isCy!=,Li = {T, I}uIJ~=, L~\{T~, li}. 
That is, the local top and bottom elements are re- 
moved from each Li, and new global top and bottom 
elements are added. Conversely, a lattice L is hori- 
zontally decomposable, if it is a horizontal sum. The 
module corresponding to a horizontal summand Li is 
(Pi, I,$) = (&(Ti), int(li)). 

Of course, flat and tree-like lattices are horizontally 
decomposable. Note that for programming languages 
which enforce encapsulation syntactically, the resulting 
lattice will always be horizontally decomposable.g 

‘AS row and column permutations in the table do not matter, 
horizontal decomposition in the table has exponential complexity, 
while in the lattice it has only linear complexity. 

In legacy code however, modules are not enforced and 
hence not clearly separated. In particular, there might 
be interference between module candidates. Interfer- 
ences can easily be detected in the lattice: procedures 
that use variables from different module candidates 
show up as i&ma between horizontal summands. If 
the lattice is horizontally decomposable after some in- 
terferences have been removed, the system structure is 
still good. 

Horizontal decomposition is achieved by removing top 
and bottom elements from the lattice graph and deter- 
mining the connected components; interference detec- 
tion is based on higher-order graph connectivity. Ac- 
cording to the number and “badness” of interferences, 
the overall quality of the system structure can be mea- 
sured. [14] and [3] contain a more detailed discussion 
of horizontal sums and interferences between horizon- 
tal summands, and provides numerical measures for the 
‘[badness” of an interference. 

CASE STUDY 1 
Our first small case study is a Modula-2 program from a 
student project. It serves to illustrate the basic theory, 
in particular horizontal decompositions. The program is 
about 1500 lines long and divided into 8 modules; there 
are 33 procedures which use 16 module variables. The 
variable usage table was extracted (figure 5), and the 
corresponding lattice computed (figure 6). The lattice is 
of course horizontally decomposablelo. We observe sev- 
eral modules with maximal cohesion (lattice elements 
3,4,5,6,7,14,15), a local module containing two proce- 
dures (element 2), and a module with neither maximal 
nor regular cohesion (elements 8,9,10,11,12,13). Note 
that there are more horizontal summands than modules 
in the program! Thus the modularization proposal gen- 
erated from the variable usage does not agree with the 
actual module structure in the program. Manual in- 
spection confirms that some modules have low cohesion 
and should be split, and the lattice says which ones. 

MODULARIZATION BY INTERFERENCE 
RESOLUTION 
We have seen that horizontal summands are natural 
module candidates - if the lattice is horizontally de- 
composable. The i-th horizontal summand generates 
module (Pi, Vi) = (ed(Ti), int(li)). In practice, how- 
ever, legacy code contains interferences. If there are 
not too many interferences, they can be automatically 
removed; the source code is transformed accordingly. 

The trick for interference resolution is very simple. In 
functional progr amming, it is called lambda-lifting. The 
basic idea is to turn global variables into additional pa- 

‘ORemember that for modular languages, this is a consequence 
of the theory. Unfortunately, Modula-2 allows to export module 
variables, which can lead to coupling and interferences. 
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allocate 
Init 

.xIalyac 
hitap 

nusgabesp 
fucgcapcin 
chc.ngeadr 
renddato 
resdlinc 
lookup 
exists 

rlookup 
remove 
i”sclt 

c&bDavalue 
swchwhtab 
partacarch 

clcarhc.ahtnbs 
lnithaahtnbs 
printmeasnge 

actbaxkground 
*ettextco1or 
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gCJtOXY 
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x 

x 

x 

x 

x 

x 

x 

x 
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x 

x 

x 

x 
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Figure 5: Variable usage table of student Modula-2 pro- 
gram (excerpt) 
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rameters. By doing so, they disappear from the variable 
usage table and become part of the module interface. In 
the example from figure 1, we can make V5 an additional 
parameter of procedure R4. Doing so removes the de- 
pendency of R4 on V5 from the variable usage table and 
breaks the edge R2-R4 in the lattice. Afterwards, the 
lattice is tree-like. 

But why not make V6,V7,V8 additional parameters of 
R4 in figure 1, instead of V5? The reason is that the 
edge R2-R4 has “weaker coupling power” than R3-R4. 
This notion can be made precise as follows. Let c = aAb 
be an interference. If ]&t(c)] - lint(a)] > lint(c)] - 
lint(b)], c inherits more variables from b than from a. 
In this case the connection to a should be broken, as 
lambda-lifting will add fewer parameters than in the 
symmetric case. If lint(c)] - lint(a)] < lint(c)] - ]Cznt(b)], 
the edge to b should be broken. This leads to high co- 
hesion. The “weakest coupling” rule can be generalized 
to interferences of more than two elements. 

Formally, an edge a - c is broken as follows. Let 
h , . . . , bk be the elements directly above c (thus a = bj). 
In the configuration table, the set of entries to be re- 
moved is then given by {(p, w) ] p E d(c), v E 

int(a) \ U!=+l int(bi)}. For each removed entry (p, v), 

v is made a”additional parameter of p. 

In figure 1, R4 inherits more variables from R3 than 
from R2: I int( sc(R2)) ] = 3, lint(sc(R3))l = 5, while 
lint(sc(R2) A sc(R3))] = 6. Therefore, V5 is made an 
additional parameter to R4 (and not V6,V7,V8). Ac- 
cording to the above formula, only the entry (R2,V5) is 
removed from the configuration table, as V3 and V4 are 
also in the intent of sc(R3). 

Figure 6: Module structure of a student Modula-2 pro- 

gr= 

Note how the lattice guides restructuring: First, hor- 
izontal summands are detected. If the obtained mod- 
ules are too big, one can apply horizontal decomposi- 
tion recursively to the summands. If the lattice is not 
decomposable, interferences will be detected automati- 
cally. The algorithm from [14] guarantees that a mini- 
mal number of interferences must be removed to make 
the lattice decomposable, thus minimal changes to the 
code are required. For each interference, a lambda lift- 
ing is proposed in order to resolve it; the “minimum 
coupling rule” based on the size of the involved intents is 
used to select the global variables to be transformed into 
parameters. In figure 4, the analysis will immediately 
detect the interference and propose to make variable b 
an additional parameter of procedure R. 

It should be pointed out, however, that from a semantic 
viewpoint more complex transformations (as described 
e.g. in [5]) might be needed; transforming a global vari- 
able into a parameter might be too simple in some sit- 
uations. Nevertheless, modularization by interference 
resolution - if possible - is a valuable technique. 

MODULARIZATION VIA BLOCK RELA- 
TIONS 
In this final technical section, we want to propose a more 
general method for automatic modularization, for which 
there are no successful case studies at the moment, but 
which might turn out useful in the future. 

Usually procedures do not use all visible variables, while 
procedures or submodules are nested. For legacy code, 
this leads to a hierarchy of overlapping sublattices, 



which prevent horizontal decomposition. The number 
of interferences often makes their automatic resolution 
infeasible. In this chapter, we will demonstrate that in 
some cases, modularization proposals can be generated 
anyway. The method will only work if regularly cohesive 
modules can be extracted from the source code. 

The basic idea of the method is to determine the shape 
of rectangles in the table, as indicated in figure 4. While 
non-overlapping shapes lead to horizontally decompos- 
able lattices, overlapping shapes are more complicated 
to detect. But once a rectangle shape is computed, we 
can fill in 6he missing entries and compute a lattice from 
the “enriched” table. The resulting lattice can be con- 
sidered a skeleton of the original one, as it contains one 
concept for each original sublattice. 

The skeleton of a horizontally decomposable lattice is a 
flat lattice. Each concept in the skeleton (that is, each 
rectangle shape in the table) is a candidate for en ADO. 
Of course, only infima in the skeleton are considered in- 
terferences between modules - fine-grained interferences 
inside a rectangle shape come from non-maximal cohe- 
sion and are considered harmless. This is consistent 
with the modularization method from section 4. 

We will now formally define what a rectangle shape is. 
Due to space limitations, we cannot present the full the- 
ory (see [18] for details). 

Definition. Let a formal context C = (P,V, C) be 
given. A block relation is a formal context C’ = 
(P, Y, C’) where C s C’, and for p E P, cvc~(p) is 
an extent in C(C), and for 21 E V, cpcl(v) is an intent in 

w- 

The three conditions together make sure that a block re- 
lation is indeed the shape of a rectangle in the original 
table. The sides of such a rectangle are extents resp. in- 
tents, thus they must either occur as horizontal or ver- 
tical “lines” in the original table, or be suprema/infima 
in L(C) of such “elementary” rectangles. This explains 
why at least elementary rectangle shapes correspond to 
modules with regular cohesion, while these can be com- 
bined to bigger modules without regular cohesion. 

Block relations can also be characterized through con- 
cept lattices via the following isomorphism theorem: 

Theorem. [18] Let C’ be a block relation to C. Then 
.C(C’) -N f,(C)/@, where 0 is a reflexive and symmetric 
relation on the lattice elements which is compatible with 
supremum and infimum. Each block of C’ corresponds 
to a O-class. 

If 0 is also transitive, it is a lattice congruence. It is re- 
markable that the factor lattice .C(C)/O exists even for 
non-transitive “congruences”. It is even more remark- 
able that the O-classes correspond to rectangle shapes. 
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⌧ l ⌧ ⌧ 

⌧ l ⌧ l 

⌧ ⌧ ⌧ l 

⌧ l ⌧ 

l X 

Figure 7: A context table, its lattice, a block relation, 
and its corresponding O-classes 

Note that the set of block relations (resp. their “con- 
gruences”) form itself a lattice, and that there is an al- 
gorithm to effectively compute all block relations for a 
given table. For any block relation resp. its correspond- 
ing 0, its skeleton is just L(C)/@. 

As an example, consider figure 7. A table and its lattice 
are shown; the lattice does not reveal any modulariza- 
tion proposal at a first glance. The table contains also 
a block relation, which consists of the original x-entries 
and the additional o-entries. The bullets have been cho- 
sen such that the block relation consists of only three 
blocks (i.e. three rectangle shapes in the original table) 
and corresponds to a skeleton which is a threeelement- 
chain. This indicates there are three module candidates. 
Figure 7 (right part) displays an isomorphic copy of the 
lattice, but now the skeleton and the O-classes which 
correspond to the rectangle shapes are visible. 

Thus the modularization proposal consists of three mod- 
ules. The first module corresponds to the top toler- 
ance class. It contains procedure R6 and variables V2, 
V4,V5,V6. Indeed, there is a corresponding rectangle 
shape in the table. The next module is local to the first 
one. It corresponds to the middle tolerance class and 
introduces local procedure R5 and local variable V3. 
The last submodule corresponds to the bottom toler- 
ance class and introduces procedures Rl, R2, R3, R4 as 
well as local variable Vl. In this fictious example, the 
resulting module structure is interference free. 

In case there is more than one block relation, the re- 
structurer must decide which one is best. Note that 
a generalization of the method to non-regular cohesive 
modules is not known today, and is unlikely to exist. 

-----c----- _- . I __ __ 



Figure 8: Variable usage structure of aero,dynamics sys- 
tem 

CASE STUDY 2 
Our next real-world example is a legacy code written in 
FORTRAN. The program is an aerodynamics system 
used for airplane development in a national research in- 
stitution. The system is about 20 years old, and has 
undergone countless modifications and extensions. The 
source code is 106000 lines long, consists of 317 sub- 
routines, and uses 492 global variables in 46 COMMON 
blocks. One of the goals of the analysis is to reshape 
COMMON blocks such that each ADO corresponds to 
one COMMON block. Several manual restructuring ef- 
forts had not been very successful, so it was decided to 
try concept analysis. 

After the variable usage table was built, the lattice was 
constructed”. It contains no less than 2249 elements! 
The number of elements in itself is not the problem (af- 
ter all, it is a large program), but unfortunately the 
lattice is so full of interferences that it is impossible to 
reveal any structure (figure 8). There is no way to make 
the lattice horizontally decomposable by removing just 
a small number of interferences. 

“this required 11 seconds on a SparcStation 

Figure 9: Variable usage structure for COMMON block 
“CNTL” 

Several experiments tried to analyse just part of the 
system. The program contains a particularly intricate 
COMMON block called “CNTL”, which contains 26 
variables. These variables are used in 192 subroutines, 
and the resulting lattice does not look very encouraging 
either: it has 194 elements (figure 9). Another experi- 
ment examined the “OUTPUT”-subsystem, which con- 
sists of 50 subroutines using 278 global variables from 
26 COMMON blocks; the resulting lattice still haa 259 
elements and is full of fine-grained interferences. 

We also tried to determine block relations. Unfortu- 
nately, neither the lattice for the whole system nor the 
lattice for the “CNTL” COMMON block had usable 
block relations, hence no automatic modularization was 
possible. We also tried to apply subdirect decompo- 
sition [16] and subtensorial decomposition [17] to the 
lattice, as described in [3]. These decomposition tech- 
niques are motivated by algebraic rather than software 
engineering issues, and failed also. Thus our technique 
was no more successful than previous efforts on the sys- 
tem. 
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Figure 10: Variable usage structure of a commercial 
COBOL program 

CASE STUDY 3 
Our final example is a system written in COBOL, 
namely an accounting system developed for a North- 
German car manufacturer. We have analyzed two pro- 
grams of this relatively new system. 

The first program contains about 500 executable state- 
ments. In COBOL, there are no procedures, but there 
are so-called sections, which are a kind of parameterless 
procedures. Hence the relation between sections and 
variables was analysed, there were 11 sections and 88 
variables @he variables being complex records). Figures 
10 and 11 show the result: a lattice with 32 elements. 
The lattice is not horizontally decomposable, and there 
are too many interferences to try automatic interference 
resolution. In fact, the interference detection algorithm 
found several simple interferences, but their removal 
did not produce horizontal summands. For example, 
removal of element 8 (interference between elements 1 
and 7) isolates element 7, but this does not lead to a us- 
able module. The lattice has no block relations either. 
Still, one could argue that this program is too small 
to be modularized, and that all the “interferences” just 
demonstrate high cohesion. 

We therefore tried a larger program of the same system, 
consisting of more than 5000 source lines. It contained 
165 variables and 44 sections. The resulting lattice has 
144 elements (figure 12). Again, countless interferences 
and missing block relations prevent automatic modular- 
ization. Another, even larger program produced a lat- 
tice with several hundred elements and was not decom- 
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EINGABE 
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A90- 
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AOl- 
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ABl- 
ABBRUCH 

AOO-BASIS 

Figure 11: Labels for lattice in figure 10 

posable either. As the system is only a couple of years 
old, we suspect it to be characteristic for contemporary 
COBOL programming style. Note the numbered vari- 
able names in figure 11, and note the number of global 
variables in both programs! 

RELATED WORK 
Methodologies and tools for reverse engineering and re- 
structuring diier with respect to the source information 
they use and the program transformations they apply. 
Cimitile and Visaggio [2] analyse the call graph of a 
system. The directed call graph induces a call domi- 
nance tree which is interpreted as a functional depen- 
dency graph which in turn is used to generate module 
candidates. Different edges in the tree are interpreted as 
part of and uses relationship, and modules containing 
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Figure 12: Another program of the same COBOL sys- 
tem 

functions are derived accordingly. This approach differs 
from ours in that it uses the caIb finction-relation while 
we rely entirely on the uses verieble-relation. 

The work of Schwa&e [13] uses a broader source of in- 
formation to cluster procedures into modules: all func- 
tions get so-called features attached, which are names 
of non-local procedures, types, variables, or type defi- 
nitions. He defines a similarity measure for procedures 
derived from these features and clusters procedures ac- 
cording to their similarity. Pate1 et al. [ll] generates 
a multi-dimensional vector based on a procedure’s non- 
local accesses to objects, and measures similarity by the 
angle (scalar product) between these vectors. 

Note that Schwanke’s similarity measure contains free 
parameters and therefore requires tuning, while Patel’s 
approach does not use any heuristics. Our approach is 
even more deterministic: the raw data can always be 
reconstructed from the analysis results. 

Miiller et al. [9] consider resources being required by 
procedures and provided by others. Similar to Schwanke 
they consider procedures, constants, and variables as re- 
sources that form a resource relation. Additionaly they 

take into account how the system is organized into files 
and directories. Both relations induce directed, layered 
graphs. In order to assess coupling and cohesion be- 
tween nodes of the resource relation, the exchange of 
resources between clients and providers is measured, as 
well as the set of common suppliers and clients. The 
editor part of the R&i system can be used to optimize 
coupling and cohesion manually, but it does not auto- 
matically generate module candidates. 

The tools built around star diagrams [6, 71 use addi- 
tional data flow analysis to track down the usage of 
(complex) variables. The idea is to collect all parts of 
a program that (indirectly) use a certain variable, and 
apply restructuring transformations in order to build a 
new abstract data type. This leads to graphs, called 
star diagrams which are similar to program slices. The 
user has to select the variable that should be investi- 
gated, and to choose a restructuring transformation [S] 
to be applied to this variable. Star diagrams, other 
approaches based on program slicing [4, lo], and our 
approach have in common that they entirely rely on the 
usage of variables. This is in contrast to the above ap 
proaches which also consider procedure calls. 

To discover modular structure, our method should be 
applied together with other methods. Empirical studies 
must show how concept analysis compares with these 
methods. We believe that complex reengineering tasks 
cannot be tackled with one method alone, but that in 
practice a method mix will be required - in particular 
if semiautomatic modularization is to be achieved. 

FUTURE WORK 
Basic mathematical concept analysis, as used in this ar- 
title, is not “continuous”: a single “wrong” entry in the 
variable usage table can destroy decomposition prop- 
erties of the lattice. This behaviour seems to prevent 
automatic modularization in many cases. A more realis- 
tic restructuring approach must probably include some 
heuristics. For example, we can measure how often a 
procedure p uses a variable v. The resulting table con- 
tams integer values instead of booleans, and allows to 
discover ‘Lmavericks” ([13]) by comparing usage num- 
bers to a treshold value. This simple technique will re- 
duce the lattice, which is bad for analysis purposes (loss 
of information), but good for lattice decomposition, 

But there are mathematically deeper ways to handle 
numerical tables. Recently, fuzzy concept analysis has 
been developed [12]. This approach merges fuzzy set 
theory and concept analysis. Table entries are no longer 
boolean values, but numbers between 0 and 1; T[o, a] = 
z means that object o has attribute a to a degree of z e 
100 percent. We will investigate whether fuzzy concept 
analysis has more continuous behaviour and allows for 
easier lattice decomposition and scaleable restructuring, 
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CONCLUSIONS 
“Die Grenzen meiner Sprache sind die Grenzen meiner 
Welt”r2 said Ludwig Wittgenstein, and our case stud- 
ies show that he was perhaps right. While Modula- 
2 programs lead to decomposable lattices, a variety of 
FORTRAN and COBOL programs revealed no modu- 
lar structure at all. Hence our modularization method 
could not be applied to the two legacy systems we have 
examined. Automatic modularization is possible only if 
there is still some hidden structure, but fails on software 
which is near entropy death. 

Indeed, we do not consider our method to be fully auto- 
matic: it should be considered and used as an intelligent 
assistant. In many cases, more substantial changes to 
source code will be necessary than just reshaping COM- 
MON blocks or turning global variables into interface 
parameters. 

Still, mathematical concept analysis is a valuable tool to 
assess modular structure. It not only determines fine- 
grained dependencies between procedures and variables, 
but also can be used to assess the overall quality of a 
software system with respect to coupling, cohesion and 
interferences. Future work must show whether auto- 
matic restructuring based on concept analysis can be 
achieved. 
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