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SUMMARY

A challenging issue in the construction and maintenance of large application systems is how to
determine which components need to be rebuilt after change, when and in which order. Rebuilding
is typically recompilation and linking, but may also include update of derivable components such
as cross-reference databases and re-creation of library indexes. Type definitions or schema, and
data values in a file store, database or persistent store may also need to be rebuilt. The main
purpose of this paper is to describe how persistent language technology can be exploited to
enhance build management. In particular, the paper describes a method for transactional,
incremental linking and the implementation of its support. To help implement this method, and
to make it safer and more efficient to carry out rebuild activities in general, we have defined a
set of automatically checkable constraints on the software. The build management tool we have
implemented, the Builder, derives rebuild dependenciesautomatically and offers partitioning of
dependency graphs—a means to defer or avoid unnecessary rebuilding. The Builder is implemented
in a persistent programming language and provides build management for applications written
in the language. It exploits features such as strong typing, runtime linguistic reflection, and
referential integrity provided by the language processing technology. The Builder operates over
both programs and (complex) data, which is in contrast to conventional language-centred tools.
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INTRODUCTION

This paper is concerned with the construction and maintenance of large, complex
and long-lived software systems. Such systems are constructed from many components
that have to be combined in some systematic way to form the executable system.
Because such systems evolve over time, it is inevitable that changes will need to
be made to the software and other system components. A typical large system may
take several hours, or even days, to rebuild to a new operationally consistent state
by naive methods after changes have been made to its source components.Build
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managementtechniques and tools attempt to reduce the cost of evolution by finding
efficient mechanisms to rebuild a system.

The problem of keeping track of which versions of a component can be integrated
with which versions of other components in order to constitute a valid application
is referred to asconfiguration management.1 An important aspect of configuration
management isbuild management, which controls the building and rebuilding of a
system. Derived components that are used in the executable system are produced
from source components and other derived components. Rebuilding is typically
recompilation and linking of application components, but in more sophisticated
programming environments rebuilding may also include updating cross-reference
databases and other automatically derived documentation, re-creating indexes referring
to the components of a library, and executing programs to build long-lived data,
such as translation tables, on which the new operational programs depend.

This paper focuses on build management and its aims are to:

(a) describe a build management tool that provides:
(i) automatic construction ofsystem models, i.e. identification of the compo-

nents of an application and the construction of the dependency graph
among them;

(ii) the programmer with a number of rebuild options, each of which
operates on partitions of the overall dependency graph;

(b) describe a method and tool support for transactional, incremental linking of
application components;

(c) show that a set of automatically checkable software constraints can be defined
to support our method for application construction and build management;

(d) illustrate how the power of a persistent programming language that provides
strong typing, referential integrity and reflection can facilitate the implemen-
tation of build management tools.

In spite of significant growth in the performance of certain components (processors,
stores, networks, etc.) supporting computation, recompilations (as well as other
rebuilding actions) still represent a significant part of the maintenance costs of a
large software system and may thus inhibit system evolution. It has been reported
that in a large Ada application more than half of the compilations were redundant.2

Avoiding unnecessary recompilations is therefore an important issue.
The use of incremental linkingalso reduces the cost of rebuilding the system

because in conventional systems every object module must be relinked after a change
to any of the modules. Quong3 proposes an incremental linking technique that can
be used in a conventional system. Our work exploits the power of a persistent
programming language to implement a type safe, incremental linking method, which
in turn supports an incremental development strategy. The motivation for avoiding
the ‘big-bang’ approach is both to save processing time and to simplify the manage-
ment of changes in large application systems. We believe it is easier to control the
changes if they are carried out in small increments.

Build management addresses some of the technical problems of changing software
but does not handle the problem of the (human) management of the change process.
While we recognise its importance, we arenot concerned withchange control,4 i.e.
deciding which changes are to be made, evaluating cost/benefit of change, adminis-
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tering the change process, proposing guidelines for logging and access rights when
changes are to be propagated, etc. Versioning is also not an issue of this paper.

Context

The work described in this paper was carried out in the context of the strongly
typed, orthogonally persistent5 programming language Napier88.6,7 The concept of
persistence tackles the mismatch between database systems and programming
languages;8,9 a uniform model for representations and operations on persistent and
transient data is provided. The rights to persistence are orthogonal to the type of
the data; all types of data may outlive individual program executions. Application
development tools, programs and the data over which they operate may reside in
the same store. Many of the benefits of persistent language technology have been
described in the literature.5,10,11 We exploit other properties of Napier88, particularly
mutable and scannable sets of bindings. These are described later in the paper.

Experimental approach, assumptions and limitations

We report an experiment with one approach to aspects of build management in
this persistent context. Five assumptions are made:

(i) that integration of build management tools with the language or languages
is acceptable;

(ii) that it is possible to obtain detailed program analysis information from the
compiler or economical to reconstruct it by additional partial analysis of pro-
grams;

(iii) that programmers can be persuaded to adhere to a programming methodology;
(iv) that programmers cannot be trusted to supply accurate dependency information

on which build-avoidance depends (even if they were reliable, we do not
believe it would be a good use of their time);

(v) there is a store available to hold all the data involved, e.g. source fragments,
program executable fragments, cross-reference databases, system models, etc.

Our methodology is particular to systems utilising persistence, but we suspect
adaptations are easily discovered that allow the approach to be used in other contexts.
Assumptions (iv) and (v) above are supportable because we have an orthogonally
persistent store available to us. More work would be required if this were not the
case.12 Some aspects of build management have not been investigated:

(a) we have worked with only 100,000 lines of code and therefore have no
evidence that industrial scale applications could be supported, we believe this
is mainly an issue of object-store technology, which is the work of others;13–17

(b) we have not investigated the issue of several programmers working simul-
taneously on the application;

These issues have also been investigated contemporaneously in Forest12 and similar
techniques could, in principle, be applied in our experimental context.

Persistent programming languages and their environments are intended to support
the development of large, complex and long-lived application systems. Such systems
are difficult to manage intellectually; for example, it is hard for software maintainers,



450 d. i. k. sjøberg et al.

without assistance, to keep control over the build dependencies and ensure consistency
between the source programs and executables. Our supporting tool for build manage-
ment, the Builder, derives the dependencies automatically by analysing both the
source code and data in the persistent store.

The Builder and the components over which it operates all reside in the same
persistent store. In combination with referential integrity,11 this helps guarantee the
existence and access of the components the Builder requires during analysis and
rebuilding. That is, direct references may be established among components, e.g.
between source programs and executables, as opposed to relationships based on
naming conventions as in conventional file systems like Unix. In our context,
components include source code, executable code, sets of bindings, type represen-
tations and ‘constant’ data.

The assistance from the persistent context is of two forms:

(a) the identification of referents (components being referenced) is by a supported
mechanism, and not by one which we have to implement and validate our-
selves;

(b) the referents are guaranteed to be of the correct type, so that our processing
does not have to cope with type errors.

However, the latter form is not an absolute guarantee that all required data exists.
For example, temporary values of the right type are used as place holders for useful
values constructed later. If the construction process is not properly organised, a
temporary value will be encountered when a useful one is required. Our tools help
with the organisation of this process.

The remainder of this paper is structured as follows. The next section describes
a build management model that provides operations to rebuild various partitions of
the overall dependency graph. Then follows a section on related work. This section
is followed by a description of the major features of Napier88 that are relevant to
our work. We then discuss a method for building application systems in a persistent
programming language, exploiting separate compilation and referential integrity, and
defining an incremental linking method. A set of software constraints that facilitate
build management are also described. The subsequent section describes the Builder,
which is the supporting tool we have built in the Napier88 environment. We conclude
the paper with some observations on the wider applicability of what we have learned
and suggestions for future work.

BUILD MANAGEMENT

A typical application is composed of a large number of inter-dependent components,
typically collections of code that are edited, rebuilt and maintained as single units.
The build managementof such components is described by Leblang18 as follows:
‘Build management controls the building and rebuilding of software to produce
derived objectswhich are the final software products. Build management includes
minimal rebuilding—reusing as many derived objects as possible and only rebuilding
those objects that had a dependency change.’ Complementary to minimal rebuilding
are techniques for improving efficiency such as parallel distributed rebuilding where
multiple rebuild tasks are submitted at once to various machines in a network.19

A comment on terminology is now appropriate. For convenience we write that a
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component isbuilt or rebuilt. Being precise, however, what is meant is that an event
on a component may trigger a (re)build action. An edit may trigger a recompilation,
a changed (i.e. new) component may trigger a linking operation, etc.

We use the following definition ofdependencyin this paper. If there are two
componentsa and b, then a depends onb means thata needs to be rebuilt if there
is a significant change tob. The meaning ofsignificant in this definition depends
on the kind and context of the (re)build operation. An example of an insignificant
change could be a change to a comment in a source code component if the operation
is compilation—the derived executable does not need to be rebuilt. However, such
a change is significant if the operation is automatic extraction of comments by a
documentation generator. Of course, a build management system must be able to
detect the kind of change in order to judge whether it is significant or not. A
discussion of how to discriminate between significant and insignificant changes is
given by Borison.20

In the discussion in this paper we assume that the dependency graph and the
derivation graph coincide. In conventional language environments, the derivation
graph may be a subset of the dependency graph since components in the dependency
graph may have no corresponding derived component. For example, a header file
with definitions may depend on another header file, but nothing is rebuilt after a
change to the latter file, only a ‘touch’ of the former. However, our own and many
other modern compilation systems separately compile all kinds of components and
thus always aim to produce a derived component.

Two common kinds of dependency areprocedural dependencyand type depen-
dency. A procedural dependency exists if one component contains a call to a
procedure defined in another component. A type dependency exists if one component
references a type defined in another component. Type definitions are often contained
in separate components exclusively consisting of declarations (cf. the convention of
collecting declarations in header files).

Deciding whether a change is significant or not depends upon the sophistication
of the build management system. Suppose that a componentc contains a call to a
procedurex contained within a componentd, then there is a procedural dependency
between c and d. A change to the signature (interface) ofx is significant as
componentc will have to be edited and recompiled.* If the implementation of
procedurex is changed, but its signature is unchanged, then it is not necessary to
recompilec, although relinking will normally be necessary. An unsophisticated build
management system will simply record thatc depends ond and will always
completely rebuildc if any change ind occurs.

If the software components are structured in such a way that the signatures and
implementation of procedures are contained in separate components, then even a
simplistic build management system can avoid some unnecessary rebuilding.
Extending the above example, if the signature ofx is contained in a componente
and the implementation ofx is contained in the componentd, then even a straightfor-
ward build management system will be able to avoid rebuildingc if only the
implementation ofx is changed. Work on eliminating unnecessary recompilations
caused by procedural dependencies is reported by Burke and Torczon.23

* The editing is not necessary in the special cases of signature changes that can be overcome bycoercion in
conventional languages, for example, an integer value can be used where a real is expected, andvice versa.21,22
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For type dependencies, a simplistic build management system will assume that
any change in the type definition component is significant. Suppose that there is a
componentf that uses some of the types defined in a componentt. The simplistic
build management system will record the type dependency betweenf and t, and
always rebuildf if t is changed. A more sophisticated model will detect whether
any of the types actually used byf have been changed and will only rebuildf in
this case, cf. the problem of thebig inhale described in the next section.

We now describe a model for rebuilding applications after change that offers
programmers the choice of selecting well-defined partitions of the application ident-
ifying the components that are the focus of the rebuilding. This model is general in
that it is independent of the way dependencies are formed and is thus independent
of the programming language and environment used. The five basic operations of
the model are as follows:

(i) Total build, i.e. build all components, regardless of changes. This option
accomplishes a total rebuild of all the components of the whole application,
whether or not they have been changed. For example, this may be required
when a new release of the compiler is delivered as the dependency of
components on the compiler is not represented explicitly.

(ii) Build target. This option focuses on one particular component, allowing it to
be compiled and tested, for example, independently of the rest of the appli-
cation, without the overhead of rebuilding the whole application. This removes
‘noise’ caused by rebuilding other components and saves significant pro-
cessing time.

(iii) Build target and transitively propagate the build to dependent components.
This option also restricts the rebuilding to only that part of the application
that is currently of interest, but in addition it propagates the build operations
necessary to ensure consistency between the target and the components that
use it.

(iv) Build all components that have been changed since the last build. This
option rebuilds all changed components whatever position they occupy in the
dependency graph.

(v) Build all components that have been changed since the last build and transi-
tively propagate the build to dependent components. This option is a combi-
nation of (iii) and (iv).

The basis for build management is a dependency graph where rebuilding is defined
according to certain criteria. The nodes of the graph represent components of the
application, and the arcs show the dependencies among the components (seeFigure 1).
A general requirement of the graph is that it should be a DAG, that is, directed
and acyclic.* For example, there should be no cycles among a set of type definitions
that constitute a dependency graph. In a DAG there exists a partial order among
the components constituting the graph. Topological sorting can then embed a partial
order in a linear order,26 which determines an order (not necessarily unique) in
which the components can be processed for rebuilding. Determining the partial order
may be a non-trivial task; tool support is typically required.

* There are compilation systems that in certain cases support circular dependencies among components (modules), e.g.
the CHIPSY24 programming system for the language CHILL.25
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Figure 1. Dependency graph

We partition the dependency graph into affected and unaffected areas. Each of
the five basic operations enumerated above is carried out in two parts. The first
identifies the affected area; the second invokes the corresponding rebuild function.
Figure 1shows the dependencies among componentsa to j. The second of the five
operations means rebuilding all the components in the graph preceding a specified
target so that the target itself can then be rebuilt. For example, ife is the selected
target, theng, h, i and j must be rebuilt, if they have been changed, beforee can
be rebuilt. The dependency graph is partitioned to exclude all components that are
not e and its successors. For example, even iff had been changed, it would not be
rebuilt as it is not part of the affected area of the dependency graph.

The third operation (iii) means that in addition to rebuilding the target, rebuilding
is also propagated transitively to all the successors of the target. For example, if
the graph represents compilation dependencies ande is the target, thenb, c and a
are also recompiled, in addition to the changed components precedinge as described
for the second operation. Such propagation is also termed ‘cascading’ and ‘trickle-
down’* recompilation in the literature.27–29

The issue of access rights is beyond the scope of this paper, but in practice build
management systems must consider the problem occurring when rebuild propagation
is prevented due to access restrictions.

RELATED WORK

A plethora of experimental prototypes and commercially available products have
been developed to support build management.1,30,31 This section describes some of
them according to:

(a) component granularity;
(b) language dependency; and
(c) automation.

We distinguish between coarse and fine granularity. The components dealt with at
the coarse granularity are files or some notion of virtual files. They may be of

* The ‘trickle-down’ metaphor assumes the root is at the bottom.



454 d. i. k. sjøberg et al.

different kinds depending on their contents such as source text and various kinds of
binaries. Apart from this classification, no semantics are associated with the file
contents. This is in contrast to fine granularity components such as type definitions,
procedures, constants, variables, etc., which can be expressed in a programming
language. Hence, fine granularity systems are language dependent and coarse grained
systems are typically language independent. Furthermore, a language dependent
system will be able to automate more tasks than language independent systems, e.g.
derivation of dependency graphs.

Coarse granularity methods and tools

The classical tool to help rebuild applications after change isMake.32 Make
considers only file level build dependencies. It is language independent and can be
used for a wide range of rebuild operations. However, the programmers must derive
the build dependencies and describe them inMakefilesmanually. Ensuring that the
referenced files actually exist is also up to the programmers. It was early experienced
that creating and maintaining (possibly hundreds of) Makefiles may be a cumber-
some task.

Inter-source file dependencies are typically expressed in terms ofincludestatements
in languages such as C, Pascal and Fortran. Based on pattern matching, simple
methods have been developed for generating Make descriptions of such
dependencies.33 A class of tools have been developed that exploit such methods and
feature automatic generation of Makefiles or provide information necessary to main-
tain them. Most of these tools support Makefile descriptions for C and are based
on the C preprocessor macro language. For example, Imake34 derives inter-file
dependencies, but also supports portability in that it separately keeps architecture-
dependent information about compiler options, alternate command names, etc., which
also affect the specification of Makefiles. GNU Make35 provides similar Make
enhancements. Tools that generate Makefiles also exist for languages other than C.36

Many coarse grained, methodology and language independent systems give
enhanced support in build management. Examples are Odin,37,38 DSEE,39

ClearCase18,40 and Vesta.41 (Vesta also gives some support at the language compo-
nent level in the form ofbridges, denoting groups of related tools that support a
particular programming language.42) The build dependencies among the source
components, the derived components and the tools that produce the derived compo-
nents are described by the user in the system model. Sophisticated features of these
systems are management of derived components and automatic generation of ‘bill-
of-material’ documentation of the build processes and their results.

Using Make and classical source code control systems such as SCCS43 and RCS44

the users must themselves name and keep track of the derived files. Systems like
Odin, DSEE, ClearCase and Vesta provide an internal repository, typically
implemented on top of a conventional file system or database management system,
in which they can store binary files such as executable code, bitmap graphics, etc.
Since such systems understand how to automatically generate the derived files, they
can assume responsibility for all the derived file management. The users are only
concerned with creating and modifying source files.

Moreover, these systems record information about the current environment at the
time of building such as the time, user, system model or build script, kind and
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version of the applied tool and operating system, various parameters, etc. Ideally,
the system should thus be able to rebuild a component in an environment equal to
the one in which the component was previously built. The combination of having
intermediate or final derived components cached and a description of how they were
built, gives flexibility. When a derived component is requested, the system will
incrementally invoke the build tool as appropriate if the component’s source has
changed, or it will save processing time by reusing existing components if rebuilding
is unnecessary.

Fine granularity methods and tools

The systems described in the previous section are of great practical value in that
they support a wide range of tools and environments. The methods and tools
described in this section are semantically integrated with a given programming
language. They are thus less flexible, but offer more automation and support in
reducing costs. There are basically two approaches to reducing build and rebuild
costs: build avoidance and reduction of the work needed to carry out a single build.
As mentioned, tools that generate Makefiles typically infer dependencies on the basis
of include statements. Any change to any declaration in the included file initiates
recompilations of all the program components that include the file—whether or not
they use the changed declaration. Tichy45 has proposed a ‘smart recompilation’
method for reducing the number of recompilations after a change to such declarations
by extending the compiler’s symbol table to keep track of finer granularity depen-
dencies between type definitions, constants, variables, macros, etc. Various implemen-
tations of this method have been reported in the literature.24,46

Another approach to reducing rebuild costs isselective environment processing,
described by Adamset al.27 as follows:

Selective environment processing attempts to reduce the amount of environ-
ment data that must be processed in each compiler run. The environment
of a given unit simply consists of those units on which the given unit
depends. Reading the environment has been nicknamedbig inhale for the
usually large amount of information that must be scanned before actual
compilation commences.

More than a decade ago Conradi and Wanvik28 reported that the big inhale may
account for 30–50% of compilation time. With increased use of libraries and with
programs often being transitively dependent on them, a representative figure for
current systems is probably larger than 75%.47

The Forest approach12 to reducing the cost of rebuilding is based on the lazy
evaluation strategies developed in functional programming.48 Each step in the build
process is a function application, e.g. compilation, on a combination of build-control
parameters, source components and the results of other function applications. The
final function application delivers the built system. The results of function application
(from earlier builds and other parts of this build) are reused if none of the relevant
inputs have changed. Edits to source components generate new instances, so that
identity tests can be used to determine whether a function’s inputs have been
changed. Vesta, preceding Forest, uses a similar approach.49 The granularity of the
source elements has a significant effect on the extent to which savings are achieved.
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Vesta is essentially file-based, while Forest is object-based, i.e. it operates at a finer
granularity using an OODB as the object repository.

Several commercially available products provide extensive build management
support tailored to conventional languages such as COBOL, Ada, Pascal, C and
C++. Enabled by an integrated fine granularity environment, dependencies are
inferred, changes tracked and necessary recompilation and linking initiated automati-
cally. Examples are application build systems for PCs or Macintoshes from companies
such as Symantec,50,51 Borland52 and Metrowerks.53

Rational’s Apex Ada54 is a sophisticated development environment for Unix used
in large-scale production systems. (Apex C/C++55 is similar product tailored to C
and C++.) Apex Ada is based on a persistent intermediate representation of programs,
now an industry standard, called DIANA (Descriptive Intermediate Attributed
Notation for Ada).56 DIANA structures combine source code and executable code
of Ada objects into one unit and record additional semantic information. The
programmer can choose the extent of cascading recompilation and smart recompilation
by selecting the granularity of change, which can be compilation units, declarations
or statements. The system also avoids unnecessary recompilation by testing the
significance of a source change. For example, modification of comments and addition
of (not yet used) declarations do not initiate recompilation. The reader can find more
detailed information in an evaluation report on the Rational Environment technology,
now used in the Apex products, amongst others.57

Constraints and types

The issue of constraint checking, in particular verifying that interfaces match, is
closely related to work on type systems. Cardelli, in Quest58 proposed tuples of
types and values as interfaces, which can in principle be verified as equivalent by
structural comparisons when components have been developed independently. This
problem is challenging with modern type systems. The work of Lampson and
Burstall59 explores this issue and the most widely used system that implements such
checking is Standard ML.60 These are precursors of Quest.

The present state of play in module management with sophisticated types, such
as those encountered in Napier88, is reported in Connoret al.,61 and Jones has
identified a formal model for checking such systems that appears to advance the
state-of-the-art.62

NAPIER88

Our work has been carried out in the context of the persistent programming language
Napier88.6,7 The features of Napier88 that proved particularly helpful were:

(i) orthogonal persistence;
(ii) strong typing;

(iii) environments as manipulable, scannable and mutable sets of bindings;
(iv) store semantics;
(v) procedures as first-class values;
(vi) a transactional model;
(vii) reflection.
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A brief description of each of these is given to help readers unfamiliar with Napier88
understand the sequel.

Orthogonal persistence

A system is said to be orthogonally persistent if it provides equal rights to
longevity or transience for all the data it manipulates.5,63 In particular all values,
whatever their type and size, have the right to endure longer than the individual
program executions.

Napier88 provides a particularly convenient form of this property, as it complies
with the principle of persistence independence,5 whereby code is the same, i.e. has
the same syntactic form and semantic interpretation, when it applies to long-lived
and short-lived data. We make significant use of these properties. Orthogonal
persistence means that we design our data structures to suit our algorithms and need
to take no special action to map them to long-term storage. Persistence independence
means that we write our code as if it were operating exclusively on transient, RAM
resident, data structures and Napier88 arranges that it works correctly for long-lived
data structures.

In Napier88, persistence is defined byreachability,5 which means that data is
preserved for as long as it is reachable from the distinguished persistent root. That
is, for as long as there is some path of references from the persistent root that
would enable a Napier88 program to reach a data item, then Napier88 ensures that
that item is preserved. We depend on this property for the integrity of our data
structures. Indeed we are able to assume, without recourse to any special operations,
that if we traverse a data structure we will not encounter some point where we
cannot continue because no arrangements have been made for saving the rest of the
structure. Thus as we represent relationships by components of data structures
referring to other data structures, Napier88 provides us with a form of referential
integrity.

Strong typing

Napier88 ensures that every operation has consistent types before the operation is
applied. This is achieved mainly by static analysis during compilation, but flexibility
is achieved by a judicious leavening of dynamic checks.64 The principle of persistence
independence ensures that this type safety extends to all long-term data. There are
no loopholes in this safety regime.65

This type safety protects our data structures from our own errors and from errors
in code we are manipulating or examining. Therefore, it greatly accelerated our
implementation work. Type safety also establishes and maintains interface compati-
bility constraints that would otherwise have to be maintained by our Builder and
verified by our constraint checker.

Bindings and environments

Bindings are central to our techniques as we examine them to determine depen-
dencies and manipulate them during builds. Abinding is an association between a
name (value identifier) and a value.21,66 Aho67 states: ‘When an environment associates
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storage location s with a name x, we say that x isbound to s; the association itself
is referred to as abinding of x.’ Atkinson and Morrison68,69 extend the binding
concept in Napier88 to comprise an association between a name, a value, a type
and constancy (an indication as to whether the value is mutable or not). The same
definition is used by Dearle.70 Although Napier88 has additional means of identifying
values, our Builder only needs to consider these named bindings.

As stated in Aho’s quotation,environmentsare traditionally considered as the
context in which to interpret bindings. Napier88 extended the environment construct
by introducing sets of bindings as first-class mutable values.71 These were
implemented by Dearle70,72 as sets of L-value bindings, i.e. bindings to locations.
Code can dynamically bind to locations via these environments and facilities exist
for scanning the bindings in an environment, inserting bindings and removing them.
It is common programming practice in Napier88 to place environments in the
persistent store and to use them to identify and organise the components of an
application under construction.72 The Thesaurus tool scans all the environments it
can find in the store using these facilities to capture and report on the properties of
bindings in these environments. The Builder will remove a binding and insert one
with the same name to implement a type change.

Store semantics

Mutable values in Napier88 can be changed by assignment and other update
operations, and therefore behave as typed stores. If these values are themselves
persistent, then the new value assigned to the store will persist. This is used by the
Builder tool to store program parts, such as procedures. An environment behaves as
a store. A newly compiled procedure or a newly constructed value is placed into
this store as a binding the first time it is made and subsequently the new value can
be assigned to the location provided the type has not changed.

Procedures as first-class values

In Napier88 procedures are first-class values, that is, they have a set of standard
operations available that are applicable to all other values.73 This enables the Builder
tool to manipulate the values produced by the compiler, just like any other value.
In particular, it means that they can be assigned to a persistent environment, as
described above, and then recovered from the persistent store whenever they are
needed for some later build.

Transactional model
The traditional definition of transactional is compliant with ACID properties:

Atomic, Consistent, Isolated and Durable. We make no use of concurrency and
therefore issues of isolation do not arise. The type system, the constraints and the
referential integrity combine to provide significant guarantees of consistency. We
depend on Napier88’s atomic properties.13 That is, the tools directly update the
existing data structures relying on the atomicity provided by Napier88, which restores
the persistent store to the last completed stabilisation operation if there is a software
failure. This restoration gives some durability although many programmers reinforce
this by storing a compressed copy of an earlier state of their store.
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Reflection

The Napier88 compiler is a procedure in the persistent store that can be called
dynamically and facilitates a particular form ofreflection. Programs that operate on
the persistent store can be generated, compiled and executed at run-time, which
means that programs can change their own computational context. This form of
reflection in Napier88 is referred to as run-time linguistic reflection.74,75

During the execution of a program new source code can be generated, typically
on the basis of information becoming dynamically available (information currently
in the persistent store, user input, etc.). The newly generated source code can then
be analysed by the compiler, which is a procedure taking a string or another source
code representation as input. If the compilation is successful, the result can be
executed, everything still taking place within the execution of the ‘parent’ program.

BUILD MANAGEMENT IN A PERSISTENT PROGRAMMING
ENVIRONMENT

This section describes a method for constructing applications in the context of a
persistent programming language from various kinds of components (executable code
or data). Such applications are termedpersistent applications. If we focus on
executable components only, this method corresponds to what is traditionally called
linking but provides greater flexibility. However, we treat both data and code
consistently, partly because this is the natural approach in systems where procedures
and data have the same rights to persistence73 and partly because we encounter
many applications where it is useful to construct and ship systems with collections
of data used by the code. The latter case occurs more commonly when persistence
is being used. For example, in a health care system, versions of the code were
shipped with versions of the database containing icons to be used for displaying
things in wards and versions of files containing the templates of forms. These had
to match the code.

We now describe the construction method, which is called thelocation binding
method, and then how it is implemented in Napier88. The section concludes with a
discussion on software constraints that are formulated to support build management.

Location binding method

The location binding method is used by programmers to build persistent appli-
cations in order to reduce the costs of rebuilds after a component has been changed.
It was invented by Dearle70,72 and has been described further in several papers.76–78

Two terms used to describe our use of the location binding method are now intro-
duced:

(a) code—any fragment of program, for example a procedure.
(b) component—a coherent unit of data or any typed collection of code that is

edited, rebuilt (recompiled, linked, etc.) and maintained as a single unit.
Components would typically be modelled asmodulesin Pascal, Modula-279

and Standard ML,80,81 packagesin Ada82 and Java,83 etc.

A persistent application is made from a number of components. Each component is
separately maintained, and is typically represented in two forms: a source form
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suitable for human use and an internal representation suitable for computer use.
Some transformation operation is used to create the internal representation from the
source. For example, the source might be text representing a procedure and the
internal form might be the executable code and the data structures it accesses. In
this case, the transformation is achieved by supplying the source to a compiler. As
another example, the source might be a map in some standard Geographic Information
System format, the internal representation a set of data structures optimised for the
application representing a relevant selection of data from the standard format, and
the transformation the process that recreates these data structures after the map has
been edited. In the remainder of this section, we usevalue to denote the internal
representation of a component.

Components in a persistent application need to use other components via bindings.
A persistent bindingis an association between a name and a value or between a
name and location that is kept in the persistent store as long as it is needed. In the
location binding method, all persistent bindings are between names and locations.
The synthesis of an application from its components is achieved by constructing
persistent bindings in persistent environments. Each binding associates a name with
a persistent location. Components using another component find its location from a
persistent environment and statically bind to that location. It is a requirement of the
build process that a useful and correct value be placed in a location before any
other component attempts to use the value from that location. The type system
ensures that there are no type mismatches during this process.

To arrange this, programmers first set up the persistent bindings, by creating
persistent locations and giving them names. They may choose to initialise a location
with a dummy value or with a first attempt at the final value.

When a component’s source is revised (assuming no type change), it is only
necessary to re-apply its transformation and assign its result to the correct persistent
location identified via the persistent binding. From then on, the components that use
this component will use the new value.

It is now apparent why a dummy is assigned in the first instance. There are
two reasons:

(a) Initially, many of the required values cannot be filled in because they need
to refer to bindings to locations holding other components. Using the dummy
value enables the programmer to avoid the effort of topologically sorting the
dependencies to write new values in the right order.

(b) When the code to insert the first useful value is written, it is not encumbered
with code to set up the persistent location and persistent binding, and to
specify their type.

This method avoids the need to discover all the components that use a particular
component and rebuild them after that component has been rebuilt. It exploits
persistent technology that accommodates persistent locations, persistent bindings and
the types of the components used to build the application.

It is preferable if the whole of the persistent store and all the operations on it
are strongly typed. This gives the equivalent safety of checking that interfaces match
when modules are combined in languages such as Ada (packages).73 In such languages
the interfaces are checked using various kinds of import/export lists, although more
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sophisticated interface control mechanisms may be provided by tailored tools, e.g.
the AdaPIC tool set84 in the context of Ada.

Persistence and strong typing, however, imply that if it is necessary to revise the
type of some component, more work is necessary. When a component’s type is
changed, the old persistent binding must be removed and replaced by a new persistent
binding with the same name bound to a new location with the new type. All
components that are to use the component with its new type then need to be altered
and re-transformed.

To illustrate the use of the location binding method, we will work through a
simple example outlining how a small application is constructed and how changes
can be made to the application. The dependency graph for a very simple application
is shown inFigure 2. We use the same notation as was introduced inFigure 1; thus
componenta is dependent onb and c; b is dependent ond ande; andc is dependent
on e. For each interface of a component there is a corresponding value produced
by a transformation operation (e.g. compilation).

To start building the application we create persistent bindings for each of the
components and assign a dummy value to each of them, as shown inFigure 3(a).
Each of these dummy values will be replaced by a useful value for the associated
component, but the order in which the dummy values are replaced is irrelevant.
(However, a testing strategy may indicate a particular order of construction.) In
Figure 3(b) the insertion of a value for componenta is shown; the valueaval is
created and assigned to the persistent location associated witha; aval contains
references to the persistent locations associated withb and c. We can now create a
value for b, for example, and add it to the application without modifyingaval.

We can continue adding the values for components until we have completed the
application, as shown inFigure 4. Each of the dependencies shown inFigure 2 is
represented by a reference to a persistent location.

Suppose that we want to make a change to the componentc. A new valuec9
val

is created, typically by modifying the source ofc and transforming it to create the
new value. If the type ofc9

val is unchanged, this new value is assigned to the
persistent location associated withc, replacing the existing valuecval. This is shown
in Figure 5. Note that no change is required toaval which referencesc via its
persistent location. Notice also thatcval can no longer be referenced from this
application; it will be garbage collected unless some other object outside the
application has a reference to it.

If the type of the new value is changed then the situation is a little more
complicated. Again, suppose that we want to make a change toc but in this case
the new valuec9

val has a different type fromcval. We now have to create a new
persistent binding forc so that the associated persistent location is of the correct

Figure 2. A simple dependency graph



462 d. i. k. sjøberg et al.

Figure 3. Starting to build a persistent application

type. To use this new value forc in the application, it will be necessary to modify
a and produce a new valuea9

val that is type compatible withc9
val; this new value for

a will then need to refer to the new persistent binding forc. The modified application
structure is shown inFigure 6. As the new values ofa and c need to have consistent
types, we should commit the changed components,a9

val andc9
val, in a single transaction.

Again, aval, cval and the old persistent location forc will be garbage collected if
they are unreachable.

Transactional incremental linking

A tool called the Builder, described in a subsequent section, implements a method
for transactional incremental linking. The need for such support was perceived by
studying the current practice of Napier88 programmers.85 This section discusses the
basic concepts of the linking method. The discussion is initially focused on building
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Figure 4. The complete application

Figure 5. Changing the value ofc

applications from procedures using source editing, compilation and updating persistent
locations. When a persistent location is updated with a new executable version of
the procedure, this is the equivalent of linking in a conventional system.

The Builder operations are applied directly to the existing application during a re-
build. We rely on the atomicity provided by Napier88 here. If atomicity were not
guaranteed then a failure part way through a re-build would leave the application
in an inconsistent state from which it might not be easy to recover. However,
Napier88 will restart from the last stabilise if a failure occurs. The Builder performs
stabilises when the application is in a consistent state, e.g. when a re-build is
complete, and thus can directly manipulate the application. We refer to this as
transactional linking.

The basic steps of the location binding method are now described in further detail:
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Figure 6. Changing the type ofc

(i) For each new component, create a persistent location and insert therein a
dummy value.

(ii) Create or modify the source corresponding to a useful value of the component,
compile the source and update the component’s location with the new execut-
able value; this new value will contain required references to the locations of
other components.

(iii) If the component’s type is changed: delete the existing location, create a new
location with the new type and insert a dummy value, as under (i), then
repeat step (ii).

To simplify the implementation of these steps, we have defined three categories of
transaction (Table I) that include different kinds of operation affecting the persistent
store. Insert-transactions execute code that creates locations with dummy values in
the persistent store (cf. step (i) ).

Implementing step (ii), an update-transaction executes code that finds and estab-
lishes references to locations of components required by the component under

Table I. Categories of transaction

Category Explanation

Insert-transaction inserts at least one binding into the persistent store, but neither updates
a persistent location nor deletes any binding

Update-transaction updates at least one persistent location and establishes references to
other persistent locations, but neither inserts nor deletes any binding

Delete-transaction deletes at least one binding, but neither updates a persistent location
nor inserts any binding
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construction, and updates the component’s location with the newly constructed
version. Incremental development is supported in that the source of a component
can be edited and compiled, and a new value, including references, inserted into the
location by executing the corresponding update-transaction. There is no need for
editing, recompilation or updating of the other components using the new value.
Hence, this approach significantly reduces the need for cascades of rebuild operations.

Implementing step (iii) involves all three categories of transaction. A delete-
transaction executes code that deletes the location of the component whose type is
to be changed. Then insert- and update-transactions are invoked to carry out the
work as described in steps (i) and (ii). In addition, all the components that use the
changed component must themselves be the subject of the tasks of step (ii), so that
the correct references to the new value of the changed component are established.

At present most of the components in Napier88 applications are procedures,85

representing executable code in the persistent store. As the usage of this method
increases, however, one might expect more widespread use of other kinds too. For
example, complex data structures such as symbol tables, tables with geographical
information, lists of images, etc. can also be initially created as locations with
dummy values and be the subject of the method.

The method has been followed by experienced Napier88 programmers and has
been taught to students. Hitherto, however, they have had to write and invoke all
the transactions and operations themselves. Specific transactional properties are
provided by the underlying store technology of Napier88. Following the method,
Napier88 provides a general mechanism for transactional incremental linking under
programmer control—programmers can replace a set of references in one transaction.

The method has been found to enhance maintainability of applications, but is
tedious to apply manually. This provides a justification for implementing a support
tool that automates as much as possible of the process (see description later in
the paper).

Software constraints supporting build management

As a means to achieve reliable and efficient build management in our environment
using the location binding method, we have defined a set of application independent,
automatically checkable constraints over the software of an application. We start by
describing some general constraints defined in the context of Napier88 and finish by
describing constraints that support the incremental linking method in particular. A
range of other software constraints, also intended to support application consistency
and maintenance but not build management in particular, are described elsewhere.86

It should be emphasised that a constraint violation is not necessarily an error but
may be an anomaly indicating a situation that is liable to errors or inefficient
build management.

Constraint (a) ofTable II aims to prevent unused declarations, which are confusing,
contribute to unnecessarily verbose code and are a potential problem concerning
change; a study of FORTRAN programs found a correlation between the proportion
of unused variables and fault rate.87 Unused declarations are a particular problem in
build management for two reasons. First, they may initiate unnecessary rebuild
operations since dependency graphs are produced on the assumption that an identifier
is used within a component if it is declared as used within that component. Second,
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Table II. General build management constraints

(a) All imported names should be used (type definitions and bindings declared in a use-clauses).
(b) There should be a partial order among components that define type definitions and those

that use the types.
(c) There should be a partial order among components that create bindings in the persistent

store and those that use the bindings.

the rebuild itself is usually unnecessarily expensive since the processing environment
is unnecessarily large—the big inhale problem.

Empirical data shows that unused declarations are a real problem. In a study we
conducted of Napier88 we found that 24% of all type definitions and 10% of the
identifiers declared in use-clauses were unused.85 Other studies of imported names
that are unused report similar figures (from 7% to 20%).28,88 Measurements of
violation of the other constraints can be found elsewhere.85,89

As mentioned before, dependency graphs defined according to certain criteria are
the basis for build management, and a requirement is that they are directed acyclic
graphs. We have encountered systems shipped to us that could not be built because
they contained cycles. Presumably, they got into this state because of a series of
incremental changes that could each individually be rebuilt in the context of the
partially constructed system at the original site. Constraint (b) ofTable II helps
ensure that there are no cycles among a set of type definitions; constraint (c) helps
ensure that a binding is inserted into the persistent store before it is used. For
example, a data structure must be created before it can be populated, a location
must be created before it can be assigned a value, etc.

Table III shows a set of constraints that are tailored to support the incremental
linking method and produce atomic increments to minimise the component grain
size. Adherence to these constraints indicates that this method is followed. The code
available in each component for analysis by the constraint checker comprises two
parts. It is predominantly the application code that is being processed and assembled
into the application system. The other part is a small amount of code that directly
specifies the assembly process. This code is also written in Napier88, which is
remarkable in being able to describe binding processes.70 In principle, this part could
be automatically generated by the Builder. The constraint checker is also able to

Table III. Constraints supporting the incremental linking method

(a) A program component should contain code for at most one of: inserting a binding, deleting
a binding or modifying the value of a persistent location, i.e. a program component should
correspond to at most one of the three categories of transaction defined inTable I

(b) For each insert-declaration of a location with a dummy value there should be exactly one
corresponding program component capable of performing an insert-transaction, one program
component capable of performing an update-transaction and at most one program component
capable of performing a delete-transaction

(c) The transactions under (b) should operate on only one persistent location
(d) A binding required by a component should be present in the persistent store
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scan persistent environments to verify that bindings exist and to inspect their
properties. The constraint checking establishes consistencies among these three,
potentially independently manipulated, parts: application code in components,
assembly specification in components and persistent bindings in the store where the
application is being built.

Besides directly supporting and simplifying the implementation of the linking
method, constraint III (a) attempts to improve the way applications are organised
around the persistent store in that it restricts each component to perform only one
kind of operation on the store and thus encourages the creation of small and well-
defined compilation units.

Constraint III (b) is defined to help ensure that all needed transactions exist for
any binding initially created as a location with a dummy value. For example, if no
update-transaction is present, the value will remain dummy except in the case of
constant data. There should be exactly one transaction of each kind; several trans-
actions of the same kind complicate the application structure unnecessarily, may
cause confusion and will increase the risk of linking errors. Executing more than
one insert-transaction may cause an attempt to re-declare a binding; executing several
delete-transactions may cause an attempt to delete a binding not present in the store.
These faults could be detected and prevented by dynamic checks, but the Builder
analysis can normally detect them statically and give more timely and informative
warnings.

Defining the transactions at a fine granularity, in compliance with constraint III
(c), may lead to improved build performance and programming precision. For
example, if a procedure in a persistent location is to be updated, the transaction to
be executed will only update that location with a new value. If the transaction had
operated on several locations, it would unnecessarily have updated other locations
and initiated rebinding to them as well. Even though this would not have lead to
inconsistency, since the new values in those locations would have been identical to
the existing values, unnecessary work would have been carried out and unnecessary
space allocated.

Constraint III (d), which states that a binding specified to be used by a component
should be present in the persistent store, aims to increase the likelihood of successful
linking. We can guarantee the existence of a location and value of the right type,
but we cannot guarantee that the value will be useful. In a conventional programming
environment a corresponding constraint would be that a file to be used by a program
should exist to avoid potential run-time errors. For example, if such a file is
unintentionally deleted or renamed, or if this is done intentionally but the programmer
forgets to change the program accordingly, then the inconsistency may not be
detected before a program attempts to access the file at run-time. Again, the values
in the file may not be useful.

It is generally difficult (in some cases hardly possible) and invariably time
consuming to check software constraints manually. Hence, their success depends
heavily on a supporting environment that automatically checks constraint adherence
and provides relevant information in the case of violation.

The constraints ofTables II and III are part of a larger collection of constraints
that can be checked by a tool called SPASMCheck.86 For each violation of a
constraint, SPASMCheck gives a warning and indicates the source of the violation.
(It is then the responsibility of the programmer to rectify the inconsistent state.)
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Only warnings are given since the constraints are not mandatory. For example,
during initial application construction, violation may be the general case. There may
also be other cases where the constraints could be relaxed. For example, regarding
constraint III (c), there are pragmatic reasons for allowing a ‘coherent group
of persistent locations’, instead of only one location, to become the subject of
one transaction.

Constraints III (b) and (c) are strictly enforced internally in the Builder implemen-
tation and are a means to ensure that the incremental linking is supported correctly.
The parts of these constraints that concern insert- and delete-transactions are not
irksome for programmers using the Builder since those transactions are created auto-
matically.

An update-transaction requires the programmers to provide a component with
source code corresponding to the value to be put into the persistent location. The
Builder cannot prevent a programmer from having several versions of such a
component, but it can give support for only one value at a time. The Builder applies
to a given version of an application; if a programmer wishes to have several
alternative update-transactions, then it is necessary that the version to be used by
the Builder be explicitly distinguished. The implementation of the Builder is discussed
further in the next section.

THE BUILDER

The Builder tool implements support for the model of selecting dependency subgraphs
to which rebuild should apply and the method for transactional incremental linking
described earlier in the paper. This section describes the Builder’s working context,
the input information it requires, its basic features and its user interface, which is
implemented using the WIN persistent window management system.90 Finally, some
particular implementation issues are discussed.

Builder context

The Builder is a tool in theGlasgow Workshop,91 which is the basis of an
experiment to demonstrate how a persistent working environment can be built using
the existing persistent technology. The Workshop consists of a number ofWork-
benches, each of which in turn provides some rudimentary tools for persistent
software engineering and also provides us with experience of building a substantial
persistent application system.

On a Workbench are a number ofWorkitems, which can be almost anything, such
as a collection of data, a string, a program, a suite of programs, a tool or a
Workbench. There are tools that create, copy and remove Workitems. All Workitems
have certain minimal properties, such as: a name, a history, creation date, modification
date, and creator.

Certain Workitems have additional properties. For example,sourceand executable
are two attributes specific to aProgram Workitem. The association between the
source and the executable is automatically maintained in a name-independent way,
which is in contrast to the name-based association in traditional file systems. The
Workbench also keeps timestamps recording when a Program Workitem was last
edited, compiled, linked, etc. Our design decision to include this as part of a
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Workbench’s information about Program Workitems, and not let the Builder maintain
it separately, has the advantage that timestamps may also be used and updated by
other tools. For example, a user can invoke the compiler independently of the Builder.

Workitems that combine to form an application are collected together in a
Workbench as aPersistent Application System(PAS). A PAS maintains direct
references to all its components. Programmers introduce a new component to a PAS
by using the appropriate Workbench tool.

The Workshop logs information about any tool operation such as: user, time, tool
and operation, name of the components being the subject of the operation. It also
keeps a history of the results, e.g. compilation and execution errors.

Creating the dependency graph

To create the needed dependency graphs and to check the constraints ofTable II
and III, the Builder exploits the information stored in thethesaurus, which is a fine-
grained, cross-reference database containing timestamped information about all user-
introduced identifiers occurring in the source programs of a PAS and the names of
the bindings to code and other data in the associated persistent stores.92 We have
provided a user interface to allow selective viewing of all the thesaurus data.
However, for consistency checking purposes we deliberately includeall identifiers,
because inconsistency may occur at any level of granularity.

A thesaurus entry holds information such as: thename, type, constancyof an
identifier and theusageand context of identifier occurrences. The propertyusage
indicates how the identifier is being used, e.g. declaration or use of a type identifier,
or declaration, left context or right context of a value identifier. Context indicates
whether the identifier occurs in an environment operation or as a declaration of a
type parameter, procedure parameter, structure field, variant tag, etc. or as a derefer-
enced structure field, projected variant, etc. Various kinds of dependency among
components (type dependency, procedural dependency, etc.) are easily inferred from
the thesaurus.

All the contents of the thesaurus are automatically maintained. The whole PAS is
analysed, and the thesaurus updated, regularly at times specified by the user. A full
analysis and update can also be initiated at any time. The part of the thesaurus
analyser that processes Napier88 source programs is based on the Napier88-in-
Napier88 compiler.77 The lexical and syntax analysers have been adjusted to conform
to the special information needs of the thesaurus. Instead of generating executable
code, the thesaurus analyser extracts the needed information and inserts it into the
thesaurus. The part of the thesaurus analyser that extracts information from the
persistent store re-uses low-level procedures used in the implementation of a Napier88
browser.93 The principles of the thesaurus have been generalised in an industrial (C,
C++, X Window System and relational database) environment.94

The major motivation for automatic production of dependency information is
reliability and efficiency. The dependency information inferred from the thesaurus is
accurate, unless the thesaurus content is out of date, i.e. the application has changed
since the last thesaurus update. The timing of thesaurus update and the Builder’s
extraction of dependency information is therefore a crucial issue.

One approach is to perform a total PAS analysis and production of dependency
information before each build. Applying such a very expensive approach one may
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question how much of the gain of deferring or avoiding unnecessary rebuild is lost.
A smarter approach is to incrementally update the dependency information before
each build, although this approach also incurs an additional cost. We have defined
the algorithm for incrementally updating the dependency graph and it is currently
being implemented so that it can be included in the next release of the Builder, but
at present the dependency information is updated in quiescent periods.

Incremental update of a dependency graph

This section describes the incremental update algorithm (Figure 7). The assumptions
are as follows:

(i) An application consists of a set of componentsN.
(ii) There is a set of changed componentsC, where C # N.

(iii) An element is a binding or type declaration that is defined by (name,
component). We assume thatname (e) returns the name of the elemente. If
a component uses an element provided by another component, then the former
depends on the latter. The name of the source component providing the
elemente is returned bysource (e) .

(iv) Each componentn in N is characterised by the following:
Dn the set of elements (name, source component) upon whichn depends.
Pn the set of elements (name, using component) provided byn that are used
by other components.
An the set of names of elements ofn that are available to be used, where∀p
∈ Pn: name(p)P An.
Un the set of components that use elements ofn, which can either be stored
explicitly or generated fromPn.

The algorithm requires that we identifyC, the set of changed components, either
by incrementally recording changes or by scanningN. U is the set of all components
that currently use elements inC, which is going to be built up during step 1 of
the algorithm.

The first step is to analyse each changed component and update the set of elements
upon which it depends (D9

c); at the same time we can update the set of elements it
makes available (A9

c). We can then identify the new elements that are required by

Figure 7. Update algorithm
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this component (DDc); add all components that currently use the component toU
and ensure that the set of elements that are identified as provided (P9

c) is restricted
to those named as available inA9

c .
At the end of this pass throughC we know that the set of dependent elements

(Dc) for each changed component is correct and that the set of elements it makes
available (Ac) is also correct. However, we cannot guarantee that the newly required
dependent elements (DDc) are actually available in the source components; nor are
we sure that the provided set (Pc) and usage set (Uc) of the changed component
are accurate.

The second step is to scanU and check the consistency of each component in
this set. For each component inU we check whether the elements required by this
component are still available in the source components, if not an error is issued as
a build will fail. If the component inU is also in the changed setC then we need
to update the set of provided elements in each source component that provides a
new required element and the set of used components in each set that uses
such components.

Selecting subgraphs and performing builds

The Builder implements the general model for performing build management on
sub-graphs as described in the second section of the paper. The programmer can
constrain rebuild to a specific part even though other parts may also have been
changed. The performance gain of this approach may be significant. Another advan-
tage is that it eliminates the need for programmers to apply operations such as the
manual ‘touch’ of derived files in Unix. That is, to avoid rebuilding programs that
have been the subject of only cosmetic changes (in the programmers’ opinion),
programmers often mark derived files as being up-to-date by ‘touching’ them, but
this technique is veryad hoc and unsafe since it relies on the programmers to
accurately determine the effect of the changes.

The user interface is shown inFigure 8. In that example both compilation and
linking are requested. A specific target is selected (indicated by the Workitem name
appearing on the right hand side of the ‘Build Target’ button), and the rebuild
actions should be propagated (the ‘Propagate Changes’ check box is set). This
corresponds to the second operation of the model described earlier.

During the building process the Builder reports the name of the program component
being compiled or linked and any error messages. The Builder can also be invoked
in the ‘No Execution’ mode in which the rebuild is not actually carried out, but the
dependencies are calculated and a trace is displayed as if the rebuild were really
carried out, cf. the-n parameter of Make.32

If a given target has been requested to be built, the Builder reports the name of
the components that must be built before the target itself can be built. If the changes
should propagate to dependent components, their names are also reported before
they are rebuilt.

To process the components in a legal linear order, the Builder performs a
topological sort on the dependency graph and carries out the rebuild actions according
to a generated legal ordering if such an ordering exists. If a cycle is detected, the
Builder reports the names of the components constituting the cycle.
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Figure 8. The Builder’s user interface

Builder implementation

Managing recompilation includes first recompiling, in a correct linear order, all
changed components, within the selected subgraph, that contain commonly used
declarations, and then, in any order, all other components needing recompilation.
The Builder ensures that the programs are compiled against the needed set of
(precompiled) declarations.

Implementing the method described in the ‘Transactional incremental linking’
section is more complicated. The Builder carries out the four basic tasks as follows:

(a) Detect the source components that have changed since last rebuild.
(b) For each such component, identify the steps of the incremental linking method

that must be carried out.
(c) Create or locate the necessary transactions.
(d) Execute these transactions in a correct order.
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The timestamps recorded as a property of a Program Workitem, representing compo-
nents in this context, make the first task trivial.

A value is put into a location (i.e. the location updated) in the persistent store by
means of a Program Workitem that contains the name and path of the location and
an expression describing the type and value. Such Program Workitems are identified
by the Builder on the basis of the source code information in the thesaurus and are
the only ones involved in the linking. If the location already exists and the type is
unchanged, only an update-transaction needs to be executed.

For each Program Workitem that is supposed to insert a value into a persistent
location, the Builder checks whether there exists a location with the appropriate
name, path and type. Since we are in a strongly typed environment, the location
contains a description of its type. This information is accessible from the Builder.
The callable Napier88 compiler is called from within the Builder and it returns the
type of the value that should be inserted.

If there is no location that matches the name and path, the Builder generates a
corresponding insert-transaction with the appropriate name, path and type. If the
name and path match but not the type, then the Builder generates a delete-transaction
and then the insert-transaction. The location must be deleted and re-created to change
its type so that existing software still refers to the old location, and therefore remains
type correct, whereas new transformations of source code will only be able to refer
to the new location with its new type. An earlier description of the way in which
locations may be re-created manually is given elsewhere.78

The Builder’s approach to execute the transactions in a correct order is generally
applicable. (There might be other legal approaches in certain cases.) The Builder
executes all delete-transactions before all insert-transactions, which in turn are
executed before all update-transactions. In addition, if an insert-transaction is
executed, the corresponding update-transaction and all update-transactions dependent
on that insert-transaction, are subsequently also executed.

CONCLUSIONS
Build management is a challenging issue when creating and maintaining long-lived,
large application systems. Longevity means that programmers making changes are
unlikely to be familiar with much of the system that they change. Large means that
most builds reconstruct relatively small parts of the system but in a complex context.

Tool support is crucial to keep track consistently of which components must be
rebuilt before a target can be rebuilt and determine how changes should be propagated
in a dependency graph. Avoiding unnecessary rebuilding or deferring rebuilding is
particularly important in large application systems. A model presented in this paper
offers flexibility in that the programmer may confine the rebuilding operations to be
applied to sub-graphs of the overall dependency graph. The model is implemented
by a tool called the Builder.

More specifically, to identify build management requirements in our programming
context, which is centred around the persistent programming language Napier88, we
collected empirical data from 20 applications consisting of more than 108,000 lines
of source code. The study* provided information about how programmers develop
their applications and initiated work on improving the process.

* The full study is reported elsewhere.85
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In our environment, most of the classical build management has previously been
performed either in anad hoc way or by use of Make. Programmers have had to
infer dependencies and create and maintain Makefiles manually. The Napier88-
specific Builder tool provides derived component management, cascading and smart
rebuilding and semi-automatic support for reducing the big inhale.

A persistent programming language unifies database programming and conventional
application programming. Code and (complex) data can be stored in persistent
locations. The Builder actively supports a programming method that had become
popular and that exploits this extended, unified processing environment. The method
includes a form of incremental linking.

To further support build management, we defined a set of automatically checkable
constraints, some of which help reduce the amount of code that needs to be rebuilt.
We believe that the more programmers adhere to such a method and its associated
constraints, the more efficient and effective the build management tools can be.

By using an orthogonally persistent system we have gained the benefit of con-
venient management of the long-term data structures used in the re-building process.
As Napier88 bases data lifetimes on whether there is a path that can be followed
by a Napier88 program to that data, we have been able to work with the simple
assumption that data will still exist if we have a way to access it. This significantly
simplified coding and made it unnecessary to verify the existence for applications
that were under construction. One of the roles of the Builder is to ensure that data
is useful before it is used.

The atomicity of Napier88’s persistent store updates meant that we could safely,
directly update the application during a re-build. The absolute imposition of type
checking provided by Napier88 meant that it was not necessary to carry out equivalent
checks in the Builder and constraint checker. We believe that the strong type checking
also accelerated our implementation. The provision by Napier88 of accessible and
manipulable persistent sets of bindings to locations permits the scanning necessary
for constraint checking and the updates necessary for incremental binding. Other
data structures, e.g. tables or O2’s named persistent objects,95 could have performed
part of this role.

The Napier88 programming environment provides a callable compiler. Being able
to call the compiler from within the language and having control over the typed
information returned (enabled by run-time linguistic reflection) make it convenient
to implement a tool that provides extensive information to the programmers during
the building process.

FUTURE WORK

The current release of the Builder has revealed several possibilities for future work.
A long-term goal is to make the build management tool reported in this paper
interoperable with general configuration management and version control tools.
Although some ideas have been proposed in the literature,11 it is still an open question
whether a persistent programming environment will enable more sophisticated and
productive configuration management and version control tools to be built than those
found in other language environments. A model for configuration management and
version control based on immutable components supported in our persistent program-
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ming environment should be compared with the model of Vesta41 and Forest,12

which are also based on immutable components.
Current developments are user requested work on the visualisation of dependency

graphs and on integration with other tools that automatically derive information from
source modules, design data, etc. For example, the documentation tools and depen-
dency graph mechanisms both need to perform scans and present dependencies. It
may be possible to save resources and improve uniformity by combining them.
Rebuild operations are simulated by the existing Builder in its non-execution mode,
but more information could be given to the user if the dependency graphs were
displayed graphically. For a realistic application the dependency graph will be large
and have many connections; there may be hundreds or even thousands of components
in the graph. There are some interesting problems in presenting such large graphs
including: how to scale or partition the graph; providing different views of the graph
(for example, using ‘fish-eye’ views); using colour to highlight certain features of
the graph or to show the impact of changes. A typical application will use many
standard library components, and the visualisation of an application will be simplified
if we can ‘prune’ the graph to remove components that are regarded as immutable,
e.g. because they are provided and not modifiable by the programmer.

The current Builder exploits the features of a persistent programming language.
To exploit the existence of other rebuild related tools in our environment, work is
being carried out on enhancing the Builder to control rebuild activities other than
recompilation and linking. The design of the interface of the next Builder release
also includes the option of specifyingincrementalor total update of the information
generated by a fine-grained cross-reference tool,92 another tool that extracts and
displays documentation of program components96 and an information retrieval tool
for exploring library components.96

In the context of these tools, incremental update, like separate compilation and
incremental linking, is provided for performance reasons and will, if specified, be
applied to all newly linked components. Total update is typically useful if the
application has been installed in a new environment or if one believes, for some
reason, that not all the incremental updates have been successfully carried out.

In this paper we have described a build management system implemented in a
persistent programming environment. However, we believe that much of our work
is of relevance in a much wider context. We have defined and implemented a build
management model that chooses to use a fine granularity in two respects:

(a) the units of dependence are named bindings (named types, named values and
named locations) rather than larger units such as programs, modules or files;

(b) the steps in a software rebuild are subdivided into type changes, insert-
transactions, update-transactions and delete-transactions, which are each treated
differently by the build manager.

This finer granularity increases the size and complexity of the dependency graph,
making it infeasible to prepare or maintain it manually, but it allows increased
avoidance of redundant rebuilds and reduces the source data examined during
rebuilding.

The introduction of convenient ways of specifying different subsets of the graph
that are to be rebuilt also provides economies. By utilising these two effects and by
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reducing dependencies using the location binding mechanism it has proved possible
to arrange acceptably fast rebuild times.

The build method reported in this paper could also be implemented using an
OODBMS and some programming language. However, for most programming langu-
ages in industrial use, the following additional work would fall on the implementation
of the Builder:

(a) a transactional, orthogonally persistent store;
(b) updateable and nameable persistent locations that can store the components

being the subject of build management and enable direct references between
those components;

(c) a source code analyser that automatically extracts the information required to
infer build dependencies and provide consistency checking; and

(d) a callable compiler to simplify the implementation of the build management
tools.

Work is under way to develop a system to provide orthogonally persistence for
Java.97 One of the planned uses of this system is support for the development of
existing build management tools.12 This build manager will benefit from similar
persistence support to that we have obtained from Napier88, but in the context of
a commercially supported language. It will then be interesting to investigate whether
the constructs described in this paper will be beneficial in that context.
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