
January 2000 CSTR-00-001

University of Bristol

DEPARTMENT OF COMPUTER SCIENCE

An Automatic Make Facility

Ian Holyer Huseyin Pehlivan

An Automatic Make Facility

Ian Holyer, H�useyin Pehlivan

Department of Computer Science, University of Bristol

January 11, 2000

Abstract

A recompilation program, often called make, is a cru-
cial utility employed by many programmers during the
development of sophisticated programs. It provides an
elegant method for the compilation of programs which
are made up of many components, written in any pro-
gramming language. In this report, we present a new
implementation of make based on command tracing.
Our approach takes advantages of command transac-
tions monitored by a user shell named brush 1. All the
information that is required to check for the need to
re-compile a particular program component is acquired
via these transactions. There is no requirement for a
�le to specify dependencies and commands, as with the
Make�le used by make. All that is needed is that each
program component must be compiled at least once, by
hand or from a shell script, to establish the command
used.

1 Introduction

Programmers of any programming language normally
split up large programs into multiple source �les. In
Unix, this is often done so that a change to one source
�le only requires one �le to be recompiled and not all
the �les. In order to help programmers to use this kind
of programming facility, Unix provides a utility named
make that completes the compilation of all source pro-
grams in a favourable way. With the make program,
not having to recompile everything because one �le has
been changed greatly increases the speed at which pro-
grammers can work.

Before being able to use the make utility, a program-
mer must create a particular �le, generally calledMake-

�le. The �le contains the information that is neces-
sary to compile and link the �les needed for an exe-
cutable program. Using the Make�le, the make pro-
gram also determines which source �les need recompil-
ing. The programmer may have to modify the Make-

1
Brush is a contraction of `BRistol Undo SHell'.

�le during the development of a program as a result of
incorporating new source �les, or making the produc-
tion of an object �le dependent on new �les. For large
projects, the Make�le can become very complicated,
dealing with sub-projects, libraries etc., and maintain-
ing it and keeping it correct can become a burden.

In this report, we present a new implementation of
the make utility, which is called bmake throughout the
report. The bmake utility is implemented in an envi-
ronment controlled by brush [6]. Unlike an ordinary
shell, brush keeps track of transactions caused by the
interaction of user commands with the �le system. In
brush these transactions are basically used for recovery
purposes. However, they can also be used to meet the
requirements of bmake, since they monitor which �les
are involved in the execution of a command, and what
kind of operations (reading, writing, etc.) are made on
these �les.

In fact, bmake has an implementation which is based
on command tracing. Each source �le is compiled under
the monitoring of bmake to allow it to discover which
�les the corresponding object �le depends on. By ex-
amining the transactions since the last compilation of
a source �le, bmake can determine whether or not it is
necessary to recompile the �le.

Just as brush works in a command independent way,
bmakeworks in a compiler-independent way. The bmake
utility has the ability to monitor any compiler (or other
translator) supported by the system and keep track of
changes made to the �les that it includes in the compila-
tion. To make use of bmake, programmers do not have
to write or maintain a Make�le-like component. In-
stead, each command involved in the compilation must
be executed \by hand" or from a shell script at least
once, the �rst time. If the history list maintained by
brush includes multiple commands that create the same
object �le, bmake deals with the most recent one, and
the transactions belonging to it.

The bmake program strives to provide all the facili-
ties that come with the original make program. It also
partly supports some facilities that are not in common
use, such as associating a target with di�erent sets of

commands via a double-colon (\::"). Whichever set of
commands is more recent is executed. The implemen-
tation saves the programmer from the e�ort of main-
taining de�nitions, by providing the following features:

� there is no need to maintain a description �le,

� the functionalities achieved are command indepen-
dent,

� local variables, such as macros, are not needed,

� there are no restrictions on the generation of com-
mands,

� dependency checking is done automatically,

� synchronization is handled automatically.

The rest of the report is organized as follows. Sec-
tion 2 describes some improved versions of make with
new techniques, Section 3 gives a short description of
brush, showing how it deals with user commands. In
Section 4, the method that bmake uses to control compi-
lations is introduced. The behaviour of make and some
issues concerning our method are discussed in Section 5.
Section 6 presents bmake-related issues that the imple-
mentation must resolve. The implementation details
are given in Section 7. Finally we summarize the cur-
rent status of bmake, as well as some additional work
required, in Section 8.

2 Related Work

The make utility was �rst developed at the Bell Labo-
ratories [4]. It is most naturally used to sort out depen-
dency relations among �les [8]. Over the years, many
extensions of make have been produced to increase its
utilization by using very attractive techniques. These
extensions equip make with more powerful features and
remove some arbitrary restrictions. Representative ex-
amples are nmake, optimistic make, pmake, mk.
The nmake [5] program embodies major semantic

and syntactic enhancements to the standard make pro-
gram. It also provides improved functionality and per-
formance. In nmake, an extremely modular directory
structure is used. Some directories should be devoted
to source �les (.c), some to header �les (.h), some to
libraries (.a), and so on. The update commands are
executed by sending the command blocks to the shell
sh, which runs as a co-process.
Optimistic make [2] begins execution of the update

commands before the user issues the make request.
Outputs of these optimistic computations (such as
�le or screen updates) are concealed until the request

is issued. If the inputs read by the optimistic compu-
tations have not been changed by the time of the make
request, the results of the optimistic computations are
used. Otherwise, the necessary computations are re-
executed. Thus optimistic make requires minor mod-
i�cations to the kernel and to some of the servers.

Parallel make (pmake) [1] speeds up the operation
of make by doing compilations in parallel. For each
command block to be executed, pmake creates a child
process called a virtual processor. pmake doesn't wait
for the virtual processor to �nish, but continues pro-
cessing the list of dependencies in which the target ap-
peared. The parallelism is hidden from the description
�le writer. It doesn't burden the programmer with all
the details of the parallelism.
Mk [7], which is an enhanced version of the origi-

nal make, supports program construction in a hetero-
geneous environment. To exploit the power of multi-
processors, it executes maintenance actions in parallel.
The number of jobs run in parallel is user-settable by
de�ning the macro $NPROC. Mk interacts seamlessly with
the Plan 9 command interpreter rc and accepts pattern-
based dependency speci�cations.

3 An Overview of Brush

Brush [6] is a Unix shell with undo support facilities.
It creates a secure environment for controlling �le ver-
sions. Brush is equipped with features similar to usual
shells, except that it provides undo and redo commands
which are capable of operating selectively on commands
and programs. An undo command reverses the e�ects of
a program, while a redo command reverses the e�ects
of an undo command. With these commands, users can
recover any desired version of a �le without needing the
help of the system administrator.

Conventionally, the provision of selective undo in-
volves discovering what changes a command makes to
the �le system state. In order to keep all command
executions under its control, brush takes advantage of
tracing facilities provided by the /proc �le system [3].
It attaches itself to each process created to run user
commands, and monitors it to trace system calls, par-
ticularly �le system calls. In this way, selected system
calls are stopped on entry to the kernel and necessary
items of recovery information (e.g. �le backups, com-
mand transactions, etc.) are stored. Then the stopped
system call is resumed. Brush also traces child pro-
cesses spawned dynamically by programs.

For purposes of recovery history and transaction lists
are maintained through the interaction. Brush records
in them commands, and �le transactions which are per-
formed by commands. File versions that are saved are

2

named by using the corresponding transaction num-
bers. Initially, for example, suppose the transaction list
for two �les, fileA and fileB, created from scratch is
as follows:

1> Create fileA-1

2> Create fileB-2

where each number that is tagged to the �lenames
shows on which version of the �le the transaction is
performed. At this stage of the interaction, suppose
the following standard Unix command is executed:

cp fileA fileB

Brush, monitoring the execution, intercepts a read sys-
tem call on fileA and a creat system call on fileB,
and thus stores new transactions:

3> Read fileA-1

4> Delete fileB-2

5> Create fileB-5

Brush represents the e�ects of commands on the �le
system by using three basic transactions: Read, Create,
and Delete. With these transactions, it is quite easy
to determine which �le(s) a particular command needs
and which �le(s) it produces. Brush only deals with �les
that are owned by the user and keeps the transactions
that operate on them. Files that are owned by other
users or shared across the system are ignored in terms
of recovery requirements.

4 Compiler Tracing

The Tracer mechanism that brush uses to keep com-
mand executions under control presents a new approach
to implementing the Unixmake program. From brush's
perspective, a compiler does nothing but read existing
�les (source �les) and create new �les (object �les or
executables). In our approach, transactions that rep-
resent all �le accesses made by the compiler, thus play
an important role in implementing bmake.

The approach to bmake is based on tracking the com-
pilation of source �les. As with ordinary commands,
compilers work under the monitoring of brush and �le
transactions that are performed are stored for the re-
quirements of bmake. In order to describe information
gathered with compiler tracing, we will use the C pro-
gramming language and the gcc compiler.

Consider the following transaction list for two source
�les, fileA.c and fileB.c and for a programmer-
de�ned header �le, fileA.h.

1> Create fileA.c-1

2> Create fileA.h-2

3> Create fileB.c-3

Suppose that fileA.c includes the header �le speci-
�ed with the #include preprocessor directive, and that
fileB.c does not. If the programmer attempts to pro-
duce the corresponding object �les by typing in

gcc -g -c fileA.c fileB.c

the compiler performs the following open system calls
of interest, consecutively.

open("fileA.c", O_RDONLY)

open("fileA.h", O_RDONLY)

open("fileA.o", O_RDWR|O_CREAT, 0666)

open("fileB.c", O_RDONLY)

open("fileB.o", O_RDWR|O_CREAT, 0666)

Then the transaction list is extended with additonal
transactions:

4> Read fileA.c-1

5> Read fileA.h-2

6> Create fileA.o-6

7> Read fileB.c-3

8> Create fileB.o-8

Note that shared library header �les such as stdio.h
are not of concern in brush, as they do not belong to
the current user.
Given the transaction list, it is possible to discover

all the �les (dependencies) which are used to produce
an object �le. However, for the cases where two or more
source �les are compiled together, there is no graceful
way to �nd out which dependency a source �le uses. In
the above example, one can't simply say that fileA.o
doesn't depend on fileB.c. The order in which depen-
dencies are read and the corresponding object �les are
created can't be used to work this out, since the cre-
ation of fileA.o may not have been completed before
fileB.c is opened for reading. As a result, each of the
�les read during the compilation tends to be a potential
dependency for every object �le created.
Now, consider what happens if the programmer re-

edits fileB.c. Such a situation creates the following
transactions.

9> Read fileB.c-3

10> Delete fileB.c-3

11> Create fileB.c-11

Of these transactions, Delete or Create explicitly
shows that fileB.c has been modi�ed after its �rst
compilation. In this case, both fileA.c and fileB.c

must be recompiled and the recompilation must be re-
peated after any of the �les they depend on are modi-
�ed.

3

5 Make Analysis

The way the Unixmake program normally works is sim-
ple. After changing some source �les, the programmer
starts make, which examines the times at which all the
source and object �les were last modi�ed. If a source �le
has an earlier modi�cation time than the corresponding
object �le, no compilation is needed. Otherwise, make

knows that the source �le has been changed since the
object �le was created, and thus the source �le must
be recompiled. In this way, make goes through all the
source �les to �nd out which ones need recompiling,
and calls the compiler to recompile them.

A particular �le, usually named as Makefile, tells
make which source �les to check for the recompilation.
In Makefile each source �le must be referred to with
the programmer-de�ned �les (e.g. header �les) it de-
pends on, because make also needs to compare their
modi�cation times to the time of the corresponding ob-
ject �le.

Sophisticated programs can force make to employ
quite a complicated checking procedure. In general the
production of an executable program includes multiple-
level checking of dependencies. Given the executable
program in Figure 1, there are many potential check-
ing points that make has to deal with, depending on
the programmer's speci�cation. If the programmer in-
cludes these points into the Make�le, specifying input
�les for each �le that is to be produced, the make util-
ity ensures that all the points are checked from program

downwards and, if necessary, recompiled in reverse or-
der.

program

..
fileA.o

...
..

..
fileA.c

...

fileA.h

...

Figure 1: A typical tree of checking dependencies

In our approach, it would also be possible to use mod-
i�cation times to discover changes made to dependen-
cies. However, sometimes there are some shortcomings
in using modi�cation times to decide when a target is
out of date. For example, consider two source �les,

fileA.c and fileB.c, where the modi�cation times
of fileB.c and its object �le fileB.o are more re-
cent than that of fileA.c. If fileA.c is renamed
as fileB.c, so replacing it, on many operating sys-
tems the new fileB.c has the old modi�cation time of
fileA.c. Then the target (fileB.o) would not appear
to be out of date with its source �le (fileB.c), and
make would wrongly fail to recompile it. To avoid situ-
ations like this, there is an alternative approach which
is adopted by bmake. By examining the transaction list,
the need for recompiling can be determined easily and
precisely.
Once an instance of the compilation command is sub-

mitted which contains the compiler name,
ags, source
�les, and so on, the compilation can be executed again
at any time by typing in bmake with the related object
�le. However, if one of the following situations occurs
the programmer cannot naturally use bmake, and the
relevant compilation commands need to be reissued:

1. Compiler options need to be changed,

2. A new source �le is added into the com-
pilation.

3. Files involved in the compilation are re-
named.

On the other hand, for example, with the use of the
#include directive, including new header �les, or remov-
ing existing ones, does not a�ect the use of bmake. In
this kind of situation, the changes are re
ected in the
transactions recorded for a subsequent compilation, and
so are detected by bmake, which then becomes aware of
the change in the dependencies and can take any nec-
essary remedial action.

6 Implementation Issues

Our implementation aims to preserve the original be-
haviour of the make utility, but without requiring the
provision of a Makefile. Compared to make, there is
less burden put on programmers, reducing their involve-
ment in the compiling process.
In the case of make, programmers use Make�le to

specify how compilations are to be carried out. Our
method expects programmers to start the compilation
of each source �le by typing the corresponding com-
mand line at least once. The most recent command
line for a particular source �le determines the way that
bmake carries out later compilations.
Brush inherently associates a command line with the

transactions that it executes. Bmake uses the transac-
tions to determine dependencies. However, there are
circumstances in which care needs to be taken. For ex-
ample, suppose that a source �le was last compiled by

4

bmake itself, and that the execution of bmake involved
several compilations. If all the transactions associated
with the bmake execution are used to determine depen-
dencies, too many dependencies will be found. To get
around this problem, each compilation issued by bmake

is stored as a separate command line in the brush his-
tory, as if it had been typed in by the user, and the
appropriate transactions are associated with it.
The fact that compilation commands can be con-

structed in a wide variety of ways means that special at-
tention has to be given to recompilations. For instance,
a programmer can type in a command that produces
several object �les in one go. Care needs to be taken
by bmake to compute the dependencies properly, and
to ensure that the command is executed only once, no
matter how many of the object �les need to be recom-
piled.
Another issue concerns the order of recompilations.

This causes no problem if an object �le can always
be produced independently of other object �les. How-
ever, in many programming languages, modules must
be compiled in dependency order. Thus bmake must
carry out all required compilations in the right order, �-
nally running the command that creates the executable.
The dependence on other �les such as header �les

raises a new problem. If a source �le is made depen-
dent on a new header �le, say, the new dependency
is not among the ones computed by bmake from the
last compilation command issued, so there is a danger
of producing an object �le with inconsistent contents.
To discover this situation, the �le is �rstly compiled
using the old dependencies, and then a comparison is
made between the old and new dependencies. Then the
proper action must be taken according to the new de-
pendencies, perhaps involving compiling the �le again.
A programmer who deals with the development of

a program often encounters compilation errors. Most
compilations generally start after opening all the input
�les for reading. Even if such a compilation fails to
produce an object �le, the transaction list contains all
the dependencies that belong to the compilation and
there is no problem. However, the compiler may fail
before opening all the relevant input �les, so that the
dependencies computed from the compiling command
are incomplete. This has no e�ect on the operation of
bmake. The actions described in the previous paragraph
also sort this problem out.

7 Implementation

The fact that brush keeps past transactions makes the
implementation of bmake fairly easy. Without the pro-
grammer needing to specify which compiler tools to use,

it can deal with all compilers supported by the system.
In other words, since transactions contain only the �le
system interactions, the implementation is compiler in-
dependent.
A compilation process can implicitly make use of

many input �les (dependencies). At �rst sight, it ap-
pears that dependencies can be determined from com-
mand lines. However, a command line does not include
all the dependencies, for example it excludes �les im-
ported by source �les, and in any case it may not be
clear from a command line which arguments are actu-
ally �le names. Thus, in bmake, all the input �les re-
quired for an output �le are taken from the transactions
associated with running the compiler.
We assume that each object �le created by a com-

piler needs all the �les read by the compiler (regardless
of whether they are read before or after the object �le
is opened for writing in the transaction list). This re-
veals an important requirement for source �les which
can be individually compiled. For bmake to discover
dependencies that correspond only to a particular ob-
ject �le, programmers must type in a new command
line for each such �le.

compilingcompiling

User

commands
commands

bmake

system calls

transactions

storing

tracing

checking

system
calls

system
calls

Brush

Operating System Kernel

Figure 2: General structure of bmake

There is no di�erence between a single object �le and
the executable in terms of discovering dependencies.
Bmake always takes the transactions of the last compi-
lation associated with the object �le or the executable
into consideration so that it can check for modi�cations
to dependencies properly. The desired comparison is
made between these transactions and later ones, which
includes both �le names and version numbers.
As an example, assume that a programmer produces

an object �le named fileA.o by issuing

gcc -c -o fileA.o fileA.c

5

During the compilation, bmake ensures that all �le
transactions the compiler (gcc) makes which are as-
sociated with the programmer's own address space are
stored. After carrying out some editing tasks, if the ob-
ject �le needs checking for recompilation, it is adequate
to type in

bmake fileA.o

In this case, in order to complete the recompilation,
bmake basically uses the following algorithm. Firstly,
the transaction list is searched for the most recent
transaction that involves a Create on fileA.o. Then
bmake uses the history list to �nd out the command
which created the relevant transaction. Using this com-
mand, it discovers the other transactions that were re-
quired to produce fileA.o. Of these transactions, ones
involving �les on which a Read is made determine the
dependencies of fileA.o.
Now, bmake checks the transactions prior to the time

when fileA.o is created, and sees whether the depen-
dent �les depend on some other �les or not, using the
above algorithm for each one. If there are more depen-
dencies, the same algorithm must be used recursively
for each of them and so on.
After discovering all the dependent �les in this way,

bmake needs to check for any changes made to them.
For each dependent �le, the checking process covers the
transactions that reside between its last creation time
before the creation of fileA.o and the current time.
If a later transaction has a�ected at least one of the
dependent �les, speci�cally one transaction refers to a
Create or a Delete on a dependent �le, fileA.c should
be recompiled.
The editing tasks on fileA.c could cause the recom-

pilation to create transactions which are di�erent from
ones created by the previous compilation of the same
�le, and thus to use di�erent dependencies. Therefore,
the bmake compares these two compilations to be able
to discover new dependencies. Each new dependency
can require a new recompilation of fileA.c after it is
checked with the algorithm.
Compilation commands can make the steps involved

in this algorithm quite complicated. For example, if the
following linking command was initially submitted:

gcc -o program fileA.o fileB.o ...

the programmer can use bmake to update the exe-
cutable program.

bmake program

This starts the checking procedure for each object �le,
in the same way as with fileA.o, and ends with a new
linking command to create a new program �le.

8 Conclusion and Future Work

In this report, we have presented the implementation
of bmake which carries out compilations of source �les
to build executable programs. It has almost the same
behaviour as the Unix make program, except that it
does not need an auxiliary �le (often named Make�le).
The approach adopted in bmake is based on command
tracing that is provided by brush. All compilations are
made under bmake's control to �nd out the �le system
transactions, and thus to discover the dependencies of
each object �le. Not having to specify dependencies for
a particular compilation enables programmers to focus
entirely on the development of programs.

Our approach has made it necessary to be able to dif-
ferentiate a compiler from an editor. Bmake needs this
to relate a �le to the right dependencies. For exam-
ple, suppose that a programmer, currently working on
a source �le, calls up another �le in the editor. In this
case, bmake must not treat the second �le as a depen-
dency, otherwise changing that second �le would cause
bmake to re-run the editor. This can be dealt with ei-
ther by declaring certain programs to be editors, and
thus not to cause dependencies, or by declaring certain
types of �les to be source �les, and thus never to need
re-creating.

This information means that the bmake program can
work cooperatively with brush to help avoid saving old
versions of �les. The use of bmake allows the system to
determine which �les are object �les. Thus old versions
of them need not be kept by brush, because they can be
reconstructed whenever necessary. This works even in
the presence of undo, because old versions of object �les
can be reconstucted from old versions of source �les.

As far as a compiler independent implementation is
concerned, there is a problem in allowing bmake to be
called without any arguments. It can then be di�cult
to �nd the name of the �nal executable �le (or �les) to
start the checking process. All these problems are the
scope of future work.

References

[1] E.H. Baalbergen. Design and implementation of
parallel make. Computing Systems, 1(2):135{158,
Spring 1998.

[2] R. Bubenik and W. Zwaenepoel. Optimistic make.
IEEE Transactions on Computers, 41(2):207{217,
1992.

[3] R. Faulkner and R. Gomes. The process �le sys-
tem and process model in UNIX system V. In Pro-

6

ceedings of the 1991 Winter USENIX Conference.

USENIX Assoc., Berkeley, CA., 1991.

[4] S. Feldman. Make{A computer program for main-
taining computer programs. Software-Practice and

Experience, 9(4):255{265, Apr. 1979.

[5] G.S. Fowler. The fourth generation make. In Pro-

ceedings of the 1985 Summer USENIX Conference,
pages 159{174, June 1985.

[6] I. Holyer and H. Pehlivan. A recovery mechanism
for shells. To probably appear in Computer, 1999.

[7] A. Hume. Mk: A successor to make. Technical
Report 141, AT&T Bell Laboratories, Murray Hill,
NJ, Nov. 1987.

[8] A. Oram and S. Talbott. Managing Projects with

make. O'Reilly and Associates Inc., 1993.

7

