
ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 31

Impact of the Research Community On the Field of Software Configuration
Management

Summary of an Impact Project Report

Jacky Estublier (Univ. Grenoble), editor 1, David Leblang, co-editor,
Geoff Clemm (Rational), Reidar Conradi (NTNU, Norway),

Walter Tichy (Univ. Karlsruhe), Andr6 van der Hoek (Univ. California at Irvine),
Darcy Wiborg-Weber (Telelogic, Irvine)

Abstract

Software Configuration Management (SCM) is an important
discipline in professional software development and maintenance.
The importance of SCM has increased as programs have become
larger and more complex and mission/life-critical. This paper
discusses the evolution of SCM technology from the early days of
software development to present and the impact university and
industrial research has had along the way. It also includes a survey
of the industrial state-of-the-practice and research directions.

The paper published here is not intended to be a definitive
assessment. Rather, our intention is to solicit comments and
corrections from the community to help refine the work. If you
would like to provide further information, please contact the first
author. A longer version of this report can be found at http://www-
adele, imag.fr/SCMlmpact.pdf .

Keywords

Software configuration management, software engineering,
software quality, industrial impact.

1 PREFACE: WHAT IS IMPACT?

During the preparation of this report, there was a lively debate
among the authors about what defines impact and which research
to include. The impact is easy to discern: A successful, multi-
million dollar industry in software configuration management
tools has arisen. SCM tools have become so pervasive that
virtually all major projects use them. SCM provides tangible and
recognized benefits for software professionals and managers;
software development standards even prescribe their use. There
are now over a dozen textbooks dealing exclusively with SCM,
and most textbooks on software engineering include a chapter on
that topic. Software engineering conferences and workshops
regularly seek contributions in this area. Finally, there is a lively
international community of SCM researchers and an international
SCM workshop series.

Identifying the research that had caused this impact was more
difficult. We (the authors) came quickly to the conclusion that
citing only academic research would be far too narrow, because
corporate research had contributed a great deal of results and
ideas. In fact, the software configuration management community
owes much of its liveliness to a healthy and competitive mix of

researchers and developers from both academia and industry. Our
first ground rule was therefore to take an inclusive view of
research.

We discovered quickly that it was futile to determine who
contributed "more", academia or industry. Our opinions about
what was more important diverged widely, depending on our
personal points of view. We will therefore leave the evaluation of
the relative merits of research contributions to our readers and to
historians. Our goal is to provide an honest and accurate picture of
the major research ideas in SCM and show where they had an
impact.

Given the long lead time for research results to show up in
practice, some as yet unused results may have their impact still
ahead of them. Thus, we decided to discuss current research even
if it has not yet had any discernible impact on practice.

So far, these three ground rules, though important, do not help
identify relevant research. After some debate we decided to
concentrate on publications in the open literature. This criterion is
not perfect, since it leaves out unpublished work, in particular
results that go directly into products. However, fortunately for the
community, research results were vigorously published even by
industry, notably Bell Labs, Apollo, Atria, and others. We are
fairly certain that the major research ideas and results in the
domain of SCM have actually been published.

A major impact is caused by people, in particular university
graduates and researchers in SCM, moving to industry. Many of
the academics in the SCM field have enjoyed long and fruitful
relationships with the SCM industry. Industrial contacts are a
source for new problems to solve and act as a corrective of what is
important and what is not.

Last but not least, workshops and conferences have had a
significant impact on the SCM community. Given the competitive
nature of the software business, it has fallen to the academics to
organize vendor-independent meetings in which the latest results
in SCM are presented and new, unpublished ideas discussed. It is
unlikely that even the authors of this report would all have met
without the SCM workshops that brought together researchers and
developers in the SCM field for over a decade.

In sum, we hope that this paper gives a flavor of the software

1 Addresses of authors: Jacky.Estublier@imag.fr, Leblang@alum.mit.edu,
GClemm@rational.com, Reidar.Conradi@idi.ntnu.no, Tichy@ira.uka.de,
andre@ics.uci.edu, darcy@telelogic.com

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 32

configuration management story, a success story that is yet
unfolding. We hope that many more chapters will be added to it in
the future.

Section 2 describes SCM and how the discipline evolved since the
early times. Section 3 summarises the impact of research work.
Chapter 4 concludes the report.

2 STATE OF PRACTICE AND EVOLUTION

Configuration management (CM) is the discipline of controlling
changes in large and complex systems. Its goal is to prevent the
chaos caused by the numerous corrections, extensions, and
adaptations that are applied to any large system over its lifetime.
The objective of CM is to ensure a systematic and traceable
development process, so that at all times a system is in a well-
defined state with accurate specifications and verified quality
attributes.

CM was first developed in the aerospace industry in the 1950s,
when production of spacecraft experienced difficulties caused by
inadequately documented engineering changes. Software
Configuration Management (SCM) is CM tailored to systems, or
portions of systems, that consist predominantly of software
[Whi91].

At first, different colored punch cards were used to indicate
changes; fortunately, software became an "on-line entity" and
hence could easily be placed under automatic, programmed
control. Currently, SCM systems are sophisticated tools, which
emphasize process support, concurrent engineering control,
distributed and remote workspace control and other high-level
functions.

Thus, SCM has evolved significantly since its introduction, but a
number of characteristics remained constant. SCM is a technology
in charge of most of the issues that are raised by large software
product development and maintenance, and not addressed by
programming languages. SCM does not typically manage early
life-cycle phase objects (requirements, design, analysis, etc.) or
deal with final stage issues (deployment, dynamic evolution and
reconfiguration). However, some SCM systems maintain the
relationships between these "other phase" objects and source code.

2.1 Files
Originally, SCM's duty was to manage the many files involved in
a software product, their versions and the building of the system
out of these files. Fundamentally this has not changed.

Currently, there is a tendency to hide the concept of file, found to
be too low level, at the benefit of concepts closer to actual
programming practices, as found in programming environments
(project, folder, package, etc.). Nevertheless, the file system did
not disappear and software engineering tools still rely on this file
system view, which remains, for the foreseeable future, the
underlying structure.

The consequence is that the main structure of a system, as
perceived by SCM tools, is the file system structure, and a basic
SCM function is to be able to (re)generate a file system view of a
software system so that desktop tools and development
environments can work.

2.2 Version Control
To avoid the confusion resulting from the same identifier assigned

to two versions of the same item, a new and unique identifier is
issued whenever an item is changed. But the proliferation of items
requires a system to manage them, recording their relationships
and their common properties. This is what version control is about.

Originally, each file was individually managed as a tree of
versions (revisions and branches) following the SCCS [Roc75]
and RCS [Tic82] systems. These systems are still at the core of
almost all commercial SCM systems. Over time, SCM systems
have come to manage configurations, which are a "consistent"
and complete collection of file versions.

Change packet versioning came from industrial practices in the
70s (IBM and CDC update systems), extended by Hough
[Hou81]. The idea relies basically on conditional compilation
technique; 1 at check-in all "bundled" changes are tagged with the
same label, which allows one to later (re)build files, given an
arbitrary list of labels. Thus it becomes possible to build files that
never existed before, by combining changes performed
independently, maybe concurrently. This technique was introduced
to the market under the name change set [ADC88]

Change sets open possibilities that go far beyond classic
versioning, and thus were heavily studied by academia. In the
Norwegian EPOS project, under the name of change-oriented
versioning [Lie89] [Con97], version fragments (deltas) are tagged
by boolean attributes called options. In this system it becomes
possible to manage the evolution not only of files, but of any data
structure, any kind of attribute or relationship, and to make explicit
relationship between options (compatibilities, incompatibilities,
requirements). Boolean expressions containing options determine
the visibility of a logical change [Wes01]. The product structure
(called product space) becomes completely independent from the
versioning structure (called version space).

Recently, Zeller and Snelting [Ze197] have explored similar
approaches in their ICE prototype, using feature logic to express
the version rules. Many attempts have been made at offering fully
versioned databases including Damokles OODBMS [Dit87] and
ObjectStore [Lam91].

Pure change-set systems do not work well in practice for several
reasons. First, labels (options, deltas) sometimes overlap and
conflict. Although the system can physically construct any
combination, some combinations may not compile. For some
binary formats, there is no way to sensibly combine any deltas
except with the version on which they were based. Second, in a
software project with tens of thousands of components and
hundreds of thousands of changes, it is too difficult to reliably
make a system by naming change sets. In fact, only a tiny
percentage of change combinations are actually useful.

Commercial change-set systems like TrueChange [McC00] and
Bellcore's (in-house) Asgard [Mic96] system make heavy and
frequent use of reference product versions, called baselines, to
define a starting point for new changes. These baselines are
usually tested and stable. A developer need only specify a baseline
and a few additional changes. Although this reduces the number of

1Conditional compilation is well represented by cpp, the C
preprocessor. Cpp analyses special constructs #/f label and #endif,
and if label is defined, the text between #/fand the corresponding
#endifis left in the file, otherwise it is removed.

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 33

possible permutations of changes it vastly simplifies version
selection and increases confidence in the result.

It is expensive and error prone to build and maintain special
software for each customer, even with change sets. The trend has
been to build a single version whose special features can be
enabled dynamically (usually for a fee).

In the mean time, it was understood that a special use of the
merging technique could provide a subset of the facilities found in
the change-set approaches. Called change packages [Dar97], this
technique has the big advantage that is uses the standard
versioning technology, which is mature and efficient, and can
allow for occasional change selection in an hybrid approach. This
is why this technology has increasing acceptance in current SCM
tools.

Although change sets could be used to uniformly implement
conditional compilation as well as revisions, in practice, users
view conditional compilation as a programming language issue
distinct from ordinary revisions. In general, software development
organizations now try to reduce the number and variety of releases
to save costs and increase quality. In addition, organizations are
more concerned with change management and process control than
advanced versioning models.

Nevertheless, many commercial SCM systems have added the
ability to track logical changes rather than individual file changes.
But the name and features are not always similar. ADC/Pro uses
the term "change set", CCC/Harvest uses "package", CM Synergy
uses "task", ClearGuide uses "activity", PCMS uses "work
package", and StarTeam uses "subproject". Even lower-end SCM
tools such as Intersolv's PVCS and StarBase's StarTeam have the
ability to mark a source-code change with the corresponding
defect report or enhancement request. Within the next years, we
expect that tracking software by units of logical change will be the
state of the practice for most commercial software configuration
[Dar97] regardless of the underlying versioning technique.

The driving force behind the acceptance of logical change tracking
may be the desire to manage changes in a process-oriented way,
not as a version selection mechanism.

Only recently, with the advent of task-based approaches,
versioning evolved again, integrating change-set features, but on
an RCS-based internal representation.

2.3 Product Modeling
Most SCM systems maintain only the version trees, the
configuration (a lists of version identifiers) and a make file, for the
compile-time dependencies.

Recently, for their internal representation of a software product,
high-end SCM systems support features that add semantics to
items. They allow types, attributes, and relationships to be
associated with items according to a data model.

Consequently, an SCM system needs to translate (fast) between
the file system view and the internal representations of the same
software product. This is a limiting factor, which explains why
even high-end commercial tools use simple data models close to
the file system view.

2.4 System Model and Rebuild
As software systems have grown to include many thousands of

components, keeping track of the pieces and how they fit together
has become a difficult but critically important task. SCM systems
accomplish this task with system modeling facilities. System
modeling was originally used to help rebuild a system from source
files (Make [Fe179]), and even now, in most SCM systems, the
makefile is the only "system model".

A rich system model also provides a high-level view of the
product organisation (its architecture), which can be used to better
control product evolution, to compute "consistent" configurations
and so on.

Unfortunately, any information that has to be provided and
maintained by hand represents a (high) cost that may rapidly
outweigh its expected benefit. For this reason, in the current state
of practice, system models are not widely adopted by practitioners.
High-level system models will be used only if they can be
extracted automatically from source code, or if they are available,
for other reasons.

2.5 Rebuild and Selection
With so many components and versions, a configuration selection
mechanism is needed to select which versions to include in a new
configuration.

The number of possible configurations far exceeds the number of
useful configurations. The general problem of determining the
"consistent" combinations would require some semantic
knowledge of all artifacts. This is beyond the state of the art. In
fact, engineers often are unable to determine if a configuration is
correct without building and testing it.

Of course, SCM tools do not address this issue in its generality.
Instead, a new configuration is built starting from a consistent
reference configuration called a baseline. The baseline is used to
create a workspace in which a few changes are performed. Once
tested, the changes are "checked:in" and a new baseline
configuration is created. This simple schema is the basis of almost
all SCM systems, with extensions for concurrent engineering
support (see below).

2.6 Workspace and Concurrent Engineering
Workspaces are "naturally" independent areas where users can
perform their job isolated (or insulated) from the activities of other
colleagues. This is a desirable property, especially in large
projects.

Eventually, the work performed, simultaneously or not, in
different workspaces must be combined (merged). Thus, high-end
systems propose features, like rules, to flexibly combine the work
performed in different workspaces. Sometimes the work can be
combined through the careful selection of versions in a new
configuration. Other times the physical file changes must be
merged. Since the late 1980s, this is one of the important research
topics.

2.7 Change Control
From the beginning, auditing and tracking have been considered as
basic functions of SCM systems. They require that any change
performed on a large software system be related with a formal
change request. Originally, a per-file change log kept information
about changes, but over time change control has evolved into the
set of procedures governing how a change is decided,
implemented, tested and released. Most current SCM systems

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 34

support change control based on a set of states assigned to
software items or change request items. It is a "product based"
process control.

More recently, in high-end systems, workspaces were considered
as a unit of work with sub-workspaces corresponding to sub-
activities. Thus a workspace becomes the context for task or
activity concepts. Therefore, in these systems, change control can
be expressed in terms of tasks assigned to users in specific
workspaces; it is an "activity based" process control.

Process support is a generalisation of change control applied to
other activities. Activities are currently assimilated to workspaces
so process support in SCM is limited to activities performed in a
workspace.

2.8 High-End Versioning and Task Support
Because tasks and workspaces are strongly related, tasks and
version selection are also related.

Usually, a workspace is created to perform a task (often a change
request) on a baseline. The workspace is populated by "checking-
out" the baseline, and the resulting change performed is a change
set. Using change sets for version selection can be a way to unify
the SCM concepts of file management, version control, and
workspace management with the process of change control.

Interest in integrating SCM and change control has grown over
time and the field of study is still maturing.

2.9 Distributed and Remote Development
Distributed SCM coordinates the work of geographically
distributed teams. Distribution requires that the main SCM
functions introduced above are network enabled. In local-area
networks, client/server implementations of these functions will do,
but in wide-area networks the bandwidth between sites may not be
sufficient. In this case, each site, even mobile, needs to replicate
the relevant parts of the database and a periodic update process
must synchronize them [Al195]. Updates that travel over public
networks should be encrypted.

Distributed development places a strong emphasis on process
support. If team members rarely meet, telephone calls are difficult
because of time-zone differences, and email round-trips take a day,
informal arrangements on who works on what for how long break
down. In this situation, much more emphasis must be placed on
automated support for scheduling, tracking work, and preventing
information loss.

Web technology and the generalization of the virtual enterprise
increase the need for a good support for remote development.
Remote development is an important area of work for vendors.

Web site management, and web enabled cooperative work became
a new area where some SCM techniques are used. However, web-
content management is more concerned with maintaining
hyperlinks, page templates, and pooling graphic images than it is
with recreation of old releases, frequent baselines, and long audit
trails. This is why companies other than the SCM vendors are the
actual leaders in the "content management" market t.

Web technology also addressed issues related to cooperative work

lBroadVision, Vignette, ATG, Allake, InterWorld, Interwoven,
Blue Martini, Open Market, BSCW.

on common files. Not surprisingly, some SCM vendors had a
definitive influence in the definition of this norm.

2.10 Evolution in Response to the Market
Although current tools build on past inventions, changes in the
hardware, software, and business environment have made the
evolutionary path of SCM far from a straight line.

Throughout the 1980s debates raged on the best type of delta
storage and retrieval mechanisms. New tools were built extending
the groundwork laid by earlier tools as rapid progress was made.
However, in the 1990s non-textual objects became more common
and totally new algorithms were required. By 2000, disk storage
became so inexpensive, CPUs so fast, and non-text objects so
common that deltas became unimportant - many new tools use
simple (zip-like) compression.

Feature selection versus branching as a way to build customized
configurations of a product was a popular subject in the 1980s and
1990s. However, in recent years the business environment has
made building custom software releases much less popular. Even
the creation of "patches", a mainstay of the past, has largely been
replaced by annual "service updates".

Development environments like Visual Studio have taken over
Make responsibilities and also some system modeling features, so
new tools rarely include proprietary build features.

These changes do not mean that SCM research is dead, but rather
that it needs to solve new problems more than it needs to improve
on solutions to old problems. Some of those new problems include
dealing with teams collaborating over the internet, allowing
software developers to take their work home at night or on an
airplane by docking and undocking, dealing with web content,
integrating with other development tools, and providing a GUI that
is easy to use but still provides the needed power.

The success of SCM is also due to the fact that SCM systems have
been carefully designed to be independent from programming
languages and application semantics, and to take the best of simple
algorithms (like the version tree) and simple heuristics (like line
merging). This turns SCM systems into general and efficient tools,
while avoiding the intrinsic complexity of syntactic and semantic
issues. Instead, SCM systems seek to integrate the tools that need
syntactic or semantic knowledge (such as syntactic editors).

2.11 Summary
SCM is one of the most successful branches of software
engineenng. There is a lively international research community
working on SCM and a billion dollar commercial industry has
developed. Nearly all corporate and government software projects
use some SCM tool.

SCM is actually unanimously considered as an essential tool for
the success of any software development project. It is required to
get the second CMM maturity level. Practitioners consider SCM
tools as helpful, mature and stable. Consequently, the SCM market
is increasing pretty fast (see table 1).

The success of SCM can also be measured by the fact its basic
techniques became pervasive and found in many tools. All 4GL
tools, most programming environment tools, and even text editors
now include a basic version manager. New domains such as "web
content management" also apply SCM techniques, as does the new
web protocol WebDAV/DeltaV.

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 35

Annual
Company (product) Revenue

$M

Rational (Atria ClearCase) 293

MERANT (Intersolv PVCS & 115 Harvest CCC)

Computer Associates (Endevor) 113

SERENA (ChangeMan) 94

Telelogics (Continuus) 65

Microsoft (SourceSafe) 31

Total (with Others) 906

Annaul Share Growth %
%

32.4 50.3

12.6 14.9

12.5 5.2

10.4 38.2

7.1 23.1

3.4 2.3

100 22.7

Table 1: Worldwide SCM Tools ($M) [IDC 2000]

3 SCM IMPACT

In this section, we provide an overall view of the evolution and
impact of SCM research.

3.1 Some Successful Transitions
SCM is unanimously considered an essential tool for the success
of any software development project. Practitioners consider SCM
tools as helpful, mature, and stable. The SCM market has
increased in value year after year (see Table 1). Everyday tools
such as Microsoft Word now incorporate basic versioning
capabilities. All in all, this level of success is remarkable. It is
interesting to correlate this success to the key research
contributions that have made the transition into industrial SCM
products. In particular, industrial products all have as their
cornerstones the following four, well-researched issues:
versioning, and merges; selection; process support; and distributed
and remote development.

3.1.1 Versioning and selection
Change sets, for long a curiosity, are slowly becoming a standard
feature in high-end SCM systems, but in a simplified form, often
associated with the concept of task/activity. Indeed, focusing on
the concept of activity has two major consequences. First, the
grain for a version is the complete workspace, thus "naturally" a
change set. Second, a selection is based on a known release, and a
version is a change with respect to that release. This explains why
the simple change-set approach (in its change-package
implementation) is gaining acceptance, and why the advanced
change-set approach, which does not fit practice, is not used.

Similarly, advanced selection features made possible by advanced
versioning, are not fully used because they are not required by
actual practice, nor by actual product models, nor promoted by
actual tool interfaces. Nevertheless, current evolution goes toward
hiding low-level mechanisms (revisions and branches) and relying
on higher-level concepts (workspace, task) making implicit use of
change sets, and requiring more and more of the features
experimented by researchers.

The basic versioning schema (revisions and branches) initially
provided by SCCS [Roc75] and improved by RCS [Tic82][Tic85]
and still used today in most commercial SCM systems, have been
provided by researchers.

3.1.2 Differences, compression and merges
Initial SCM systems relied on traditional differencing and merging

technology that involved comparing sequences of lines of ASCII
text [Hunt76][Meyers86]. These algorithms were not invented
within the SCM domain, but SCM research has since improved the
simple line comparison algorithm. These improvements were
twofold: incorporating more semantics to provide more accurate
differencing and merging technology, and extending the
differencing and merging algorithms to also handle binary
artifacts.

Context- [Knuth84], operation-, syntactic- and semantic-based
comparisons [Reps88] have been proposed to make differencing
and merging algorithms more accurate [Buff95]. Syntactic and
semantic comparisons seek to find the "relevant" differences and
to ensure a merge will produce a consistent result (i.e., a source
file that will compile and exhibit the intended behavior). It is easy
to prove that a syntactic and semantic merge can avoid errors
produced by classic line-based mergers [Hor89]. Despite this clear
advantage, commercial SCM systems have not adopted these kinds
of algorithms: the need to remain neutral with respect to which
kinds of artifacts are versioned prevents the incorporation of
semantic differencing and merging techniques. Nonetheless, this
research has made a transition into industry in a different domain,
where it has been used for several years now: version-sensitive
editors ("multi-version editors") [Kruskal84] [Fraser87] [Sar88]
[Atkin98].

The classic "diff3" algorithm performs well for textual files, but
cannot handle binary files (a Word document is stored as a binary
file!). This has prevented use of diff3 for storage optimization in
SCM systems that must handle both source and binary files. SCM
research addressed this problem from two angles: new algorithms
to detect block moves [Tichy84], and new algorithms to operate on
binary files [Rei91]. Bdiff [Hunt96] and Vdelta [Korn95]
integrated these algorithms into a single algorithm that can detect
block moves and handle binary files. The result is a differencing
and merging algorithm that not only is extremely efficient, but also
serves to compress any kind of file stored in an SCM system.
These important benefits explain why commercial SCM products
are starting to incorporate these algorithms. Clearly, industrial and
academic research has had its impact in this area.

3.1.3 Process support
Over the years, SCM research focused on incorporating process
support in the tools. Early SCM tools only provided basic
mechanisms to version artifacts. Users would use attributes to
label the artifact with the name of the particular life-cycle phase in
which it resides (initial, test, release) or with a state. Clearly,
improvements were needed to incorporate process support into an
SCM system.

The first logical evolution was to incorporate state transition
diagrams to model, control and automate the succession of states
for artifacts, using a triggering mechanism as the process engine
[Be187][Be191]. Most SCM systems use this technology now. The
next step, currently under way, was to use "activity based"
approaches, borrowed from the software process community
research [Din98] [Fin94] [Pro98]. The goal was to provide
powerful modeling capabilities and associated engines so that
customers define and control their own SCM processes [Est97].

The incorporation of powerful process engines in SCM systems
did not succeed, because users found it too cumbersome and
difficult to define their own processes properly. Instead, process

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 36

support now is based on predefined processes developed by SCM
vendors. Hiding many of the details of this process behind a
powerful user interface, it became acceptable for users to start
using and enforcing these processes. An example is ClearGuide,
which is a powerful generic process engine integrated with
ClearCase. Nevertheless most ClearCase users prefer the "simple"
UCM, which provides predefined processes said to embody best
practices. Even though users can customize processes, most users
choose one of the out-of-the-box processes to institute for their
organization. Progress both in customer maturity and in process
support concepts and interfaces will be required before generic
process support tools will be widely accepted.

Clearly, academic research had its impact in this domain: the issue
of process support was raised, example solutions were created, and
the fundamental basics were laid. However, it was not until
industrial research took the ideas and made them viable for real-
world use that software process grew into a mature part of
standard, repeatable SCM practice.

SCM is one of the very few fields were process support proved to
be critical; it became one of the major vendor selling arguments,
and one of the major client expectations [Con98].

3.1.4 Distributed and remote development
Distributed and remote development represents an area in which
industrial research clearly took the lead in solving the problem.
Initial academic approaches focused on rather complex distributed
and replicated repositories. There was also work on adding a
simple web interface to an SCM system to provide remote access
to a repository with artifacts. However, it was ClearCase that
researched and developed MultiSite, a solution that relies on peer-
to-peer repositories that are periodically synchronized with each
other. Similar solutions are now in place in almost every high-end
CM system and research on the topic has quieted down. An
adequate solution seems to be in place that resulted from well
thought out industrial research, as well as background in academic
research and timestamp techniques used in database field.

3.1.5 Web
It is interesting to note that the web provides a different kind of
success story. First, web-site management resembles software
development closely: rapidly changing resources that are authored
and managed by a variety of people and need releases that must be
closely controlled. Although it is curious that none of the SCM
vendors is among the current market leaders of content
management tools (such as BroadVision, Vignette, ATG, Allaire,
InterWorld, Interwoven, BSCW, and DreamWeaver), it is not
surprising that all of these tools incorporate basic SCM techniques
to manage the evolution of web sites. While using a different data
model, the basic principles and techniques that they use are still
the same and were adopted straight from existing SCM systems.

WebDAV and DeltaV provide another success story in the realm
of the web. WebDAV is a protocol that extends HTTP with
distributed authoring facilities and DeltaV is a proposed extension
that adds versioning capabilities [Whi99][Web99]. SCM research
has had a definite impact in this arena: early incarnations of the
interface functions in the protocol of WebDAV were partially
inspired by NUCM [Hoe96] and DeltaV is actively being
developed under the partial leadership of SCM vendors. Clearly,
the field is having its impact and the two standards incorporate
many of the good practices that have been researched and

developed over time.

3.2 Some Failed Transitions
SCM research also has produced a number of ideas that have not
been able to succeed in making the transition to industrial practice.
The root cause of these failures lie in the level of complexity
required to master the ideas, or the level of effort required by
customers to use the feature, or that the typical customer does not
feel an actual need for the feature, or because vendors think the
feature is outside the field of SCM.

Industry tends to ignore such ideas, until customer practices meet
the need for the feature, and until a complex idea can be
transformed in a way that hides most of the actual complexity.
None of these conditions are granted, nor can they be easily
forecast.

3.2.1 Smart recompilation
It was Tichy that coined the term "smart recompilation" in 1986
[Tic86]. His work was shortly thereafter followed by a number of
other approaches [Sch88, App93], a survey of which is presented
by Adams et al. [Ada94]. Unfortunately for the domain of SCM,
the syntactic analysis needed to perform smart recompilation often
takes more time than the time saved by avoiding unnecessary
recompilations. Especially with today's hardware, advanced
recompilation algorithms are simply not needed--in the general
case, compilation "as is" is fast enough.

Nonetheless, smart recompilation cannot be labeled a failure
altogether. The idea is appealing and has started to be incorporated
into language-dependent programming environments. In these
environments, syntactic information is available "for free". The
Ada and Chill programming environments, for example, were
among the first to adopt smart recompilation techniques [Bret93].
Now, most modern programming environments, including the
popular Visual Studio, rely on these techniques. Smart
recompilation, thus, is an area of research that has found its way
into industry in a domain other than SCM.

3.2.2 Version models, data models, system models
Extending and generalizing versioning capabilities clearly has
been a core topic of SCM research since its early beginnings.
Much work has been dedicated to advanced versioning models and
associated selection techniques, including interesting
formalizations of these approaches [Bie95, Nav96, Ze197]. From a
researchers point of view, these approaches improve over the
current state of the art by offering new or alternative modeling
capabilities. From a practitioner point of view, however, some of
these approaches are overkill: they provide more power than
actually needed, at a cost of extra complexity and reduced
efficiency.

Data and system models used by today's commercial SCM
systems only capture the files and directories that represent a
software product, the compile-time dependencies, and a small set
of attributes. Logically, researchers hypothesized that a more
powerful data and system model would allow the SCM system to
provide better support for precisely capturing the evolution of the
artifacts it manages. This simple idea fostered a number of
contributions of dedicated data and system models for SCM,
models in which everything is versioned, including files,
attributes, general relationships, configurations, and workspaces
[Est85, Dit87, Bou88, Tho89, Gul91, Est94].

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 37

Commercial SCM systems improved their data model, but are still
far from these research attempts for two reasons. First, no
commercial database exists that can support these kinds of
advanced models, and building such a database, either from
scratch or on top of a commercial relational database, is a daunting
undertaking. Second, the models are simply too complicated or
inefficient. We have experience of vendors who provided users
with versioned relationships, only to abandon these efforts:
managing such relationships was too cumbersome for the users.
Unless research invents automated techniques that support users in
updating and maintaining advanced data and system models, they
will never be put into practice.

3.2.3 Generic Platform
SCM is meant to provide a language- and application-independent
platform that can handle any kind of artifact. The focus of SCM
research on managing source code, however, has lead to a platform
that tends to be more specific than desired. Limitations in the data
and system model, even though necessary from the perspective
described above, make it difficult to manage complex structures:
too much additional manual work is needed to capture the extra
information that is necessary in, for example, supporting product
data management (PDM) lEst98]. Similarly, existing SCM tools
cannot effectively support web site management or document
management. Even an integration with existing tools in those
domains that already include some of the basic SCM services (e.g.,
data and version management, process management, rebuilding)
has proven to be difficult.

There is hope, however. Since software is an increasing part of
almost any complex manufactured object, the need to consistently
and conjointly manage software and hardware may force SCM
researchers to reconsider the situation, and to start research into
advanced data modeling facilities. Some research has started to
look into this direction, but much additional research will be
required to reach a satisfactory result.

3.3 What is Next?
SCM research has addressed many different topics and it is fair to
say that by now the basic principles, concepts, and techniques are
set. Consensus also seems to be emerging for more advanced
functionality, evidenced by the fact that most high-end CM
systems are closing in on satisfying the spectrum of functionality
laid out by Dart [Dart91] [Est00]. Nonetheless, many research
issues remain to be addressed. In particular, the field as a whole is
now sorting out its relationship to, and place within, the overall
picture of software development.

This research is breaking two fundamental assumptions that
underlie current SCM systems: (a) the focus on managing the
implementation of software and (b) the basic philosophy of SCM
being language and application independent. Breaking the first
assumption requires careful management of artifacts produced
earlier in the life cycle (e.g., requirements, design) and later in the
life cycle (e.g., deployment, dynamic evolution and
reconfiguration). Breaking the second assumption involves the
integration of SCM functionality into particular environments (for
example, integrated development environments) and
representations (for example, product line architectures).

At the forefront seem to be the issues of unifying SCM and PDM,
a better management of component-based software development,
and a better understanding of the relationship between SCM

system models and software architecture [Hoe98, Hoe98b]. It is
clear why these issues are currently being addressed: SCM no
longer is a stand-alone discipline. To survive, it needs to stay
abreast of new developments, trends, and technologies. Of course,
in no way can we predict the future of SCM. It may be that sorting
out some of these issues turns out to be trivial, not relevant, or far
too difficult for practical application. However, this is the way of
research and providing an answer to the questions that are raised is
what is important, even if those answers close, rather than open,
doors.

Finally, although conferences, workshops, and personal
interactions undoubtedly play a tremendous role in research
transition, it is impossible to quantify their impact. Continual
attendance of the SCM workshop series by chief architects of
some of the most influential SCM systems, the transition of
academic researchers to industry and vice-versa, and anecdotal
evidence brought forth in our personal interviews, indicate that
these kinds of interactions are absolutely necessary for any kind of
research impact to occur. Conference and workshop venues create
a community of researchers and practitioners, raise new issues to
be addressed, set high-level expectations for new directions, and,
in the case of SCM-1, have set the standard terminology still in use
today [Win88].

4 CONCLUSION

A report like this can (and did) generate a lot of dissent. Indeed,
writing this report made obvious the difficulties in reaching
agreement between researchers and vendors. A caricature of our
starting point was, from researchers, to claim the ownership of
almost all ideas, dismissing tool realization as "engineering
common sense", and from vendors to claim they (re)invented
everything they needed, dismissing concepts, ideas, architectures
as "engineering common sense". From the intensive discussion in
our group emerged a much more balanced perspective.

We came to the conclusion that both camps require engineering
creativity, and that tracking down where ideas came from and
what was influential is virtually impossible. We also rapidly
agreed that research have been fundamental in the success of
SCM; and that industrial research, both from corporate research
labs and vendors have had a definitive influence. Thus, we have
tried to document the flow of ideas, based on evidence such as
publication and implementations, an attempt that we hope comes
as close as possible to reality.

SCM is arguably one of the most successful software engineering
disciplines, and it is difficult to imagine this kind of success would
have prevailed without research fueling continuous innovations.
This report demonstrates that the impact of this research, whether
industrial or academic, is undeniable--many of the fundamental
techniques underlying current SCM systems were first published
in one form or another.

Like any other field, SCM research has had its successes and
failures. Some ideas are universally adopted, others have had
limited impact, and yet others never saw fruition. Timing has been
critical: whereas most contributions were rooted in practical, day-
to-day problems, others were too early for their time and not
practically relevant for the problems at hand. Nonetheless, the
actual evolution of the field does let us think that some those ideas
will eventually be useful. As demonstrated by the remarkable time
delay in the adoption of change sets, it is often market readiness

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 38

that determines success: over time, however, most ideas have
trickled through.

SCM research is still alive. The basic concepts and technologies
have been settled, but much work remains to be done. In
particular, the field as a whole is now sorting out its relationship to
other domains, such as product data management, component-
based software engineering, and software architecture. We look
forward to the advances that will come from this research, and are
proud to be a part of a field with such a rich legacy as SCM.

The international research community has contributed many ideas
to the field of SCM but more importantly, it has provided a forum
for the publication and discussion of ideas. The ICSE and SCM
series of conferences enabled people from academia and industry
to interact and exchange ideas. The set of important ideas may be
changing but the need for an active research community remains
essential.

Acknowledgements: We would like to thank all in the field of
SCM, whether researcher, industrial vendor, or customer.
Knowingly or unknowingly, most if not all of you have advanced
our field to where it is now--a standard and accepted part of any
serious software development project.

This work was supported in part by the U.S. National Science
Foundation under grants CCR-00-10041 and CCR-01-37766, and
by IEE

REFERENCES

[ADC88] Aide-De-Camp: A software Management and
Maintenance System, National Software Quality Assurance
Conference, the National Institute for, Software Porductivity,
Washington DC, April 1988.

[Ada94] R. Adams, W. Tichy, A. Weiner. The cost of selective
recompilation and environment processing.. ACM Trans. Soft.
Engineering Methodology. 3, 1, Jan 1994, P 3-28.

[A1195] L. Allen, G. Fernandez, K. Kane, D. Leblang, D. Minard,
and J. Posner. ClearCase MuhiSite: Supporting Geographically-
Distributed Software Development. ICSE SCM-4 and SCM-5,
Seattle USA, May 1995.

[App93] Twentieth ACM Symp. on Principles of Programming
Languages, Charleston, SC, ACM Press, page 439-450, January
1993.

[Atkin98] D. Atkin. Version Sensitive Editing : Change History as
a Programming Tool. SCM-8, 1998, Brussels, LNCS 1439.

[Be187] N. Belkhatir and J. Estublier. "Software management
constraints and action triggering in Adele program database." In
1st European Software Engineering Conf., pages 47-57,
Strasbourg, France, Sept. 1987.

[Bel91] N. Belkhatir, J. Estublier, and W. L. Melo. "Software
process modeling in Adele: The ISPW-7 example." In I. Thomas,
editor, Proc. of the 7th Int'l Software Process Workshop, San
Francisco, CA, October 16-18 1991. IEEE Computer Society
Press.

[Bie95] N. Bielikova, P. Navrat. Modelling software systems in
configuration management. In Applied Mathematics and
Computer Sciences. 5(4) :751-764, 1995.

[Bret93] B. Bret. Smart recompilation: what is it?, its benefits for
the user, and its implementation in the DEC Ada compilation

system. Conference proceedings on TR/-Ada '93 September 18 -
23, 1993, Seattle, WA USA

[Bou88] Gerard Boudier, Ferdinando Gallo, Regis Minot, and Ian
Thomas. An Overview of PCTE and PCTE+. In Proc.
ACM/SIGSOFT Software Engineering Symposium on Practical
Software Development Environments, Boston, 28-20 Nov. 1988,
pp. 248-257.

[Buff95] J. Buffenbarger. Syntactic Software Mergers. SCM-5,
Seattle USA, May 1995, LNCS 1005.

[Clem95] G. Clernm. The Odin System. SCM-5, Seattle June 1995,
pp241-263. Springer Verlag LNCS 1005.

[Con97] R. Conradi and B. Westfechtel. "Toward an Uniform
Model for Software Configuration Management". In SCM-7
Workshop.pages 1-17. Springer LNCS 1235. May 1997.

[Con98] R. Conradi, A. Fuggetta, M.L. Jaccheri. Six theses on
Software Process Research. EWSPT 98. Weybridge, UK,
September 1998.

[Dar91] Susan Dart. Spectrum of Functionality in Configuration
Management Systems. CMU/SEI-90-TR-11 ESD-90-TR-212.
http://www.sei.cmu.edu/legacy/scm/tech_rep/TR 11_90.

[Dar97] Darcy Wiborg Weber. Change Sets Versus Change
Packages: Comparing Implementations of Change-Based SCM.
Proc. 7th International Workshop on Software Configuration
Management (SCM-7), Boston, USA, Springer Verlag LNCS
1235, 18-19 May 1997.

[Dit87] Klaus R. Dittrich, W. Gotthard, and P. C. Lockemann.
DAMOKLES - The Database System for the UNIBASE Software
Engineering Environment.
Database Engineering, 10(1), March 1987.

[Din98] E. Di Nitto and A. Fuggetta (Eds). Process Technology.
Kluwer Academic Publishers, Boston.. January 1998.

[Est84] Jacky Estublier, S. Ghoul, and S. Krakowiak. Preliminary
Experience with a Configuration Control System for Modular
Programs. In Peter B. Henderson, editor. Proc. 1st ACM
SIGSOFFTSIGPLAN Software Engineering Symposium on
Practical Software Development Environments (Pittsburgh), 197
p., April 1984. ACM SIGPLAN Notices 19(5)149-156, May 1984.

lEst94] Jacky Estublier and Ruby Casallas. The Adele Software
Configuration Manager. In [Tic94], pp. 2-11. 1994. http://www-
adele.imag, fr/Les.Publications/BD/adele 1994est.html

[Est97] J. Estublier and S. Dami and M. Amiour. High Level
Process Modeling for SCM Systems. SCM 7, LNCS 1235. pages
81--98, May, Boston, USA, 1997

[Est98] J. Estublier and J.M. Favre and P. Morat. Toward PDM /
SCM: integration?. In proc SCM8, Bruxelles, Belgium, July 1998.
Springer Verlag, LNCS 1439, pp75-95.

[Est00] Jacky Estublier. Software Configuration Management: A
Road Map. In Anthony Finkelstein, editor, The Future of Software
Engineering (supplementary Proc. for 22th Int'l Conf. on Software
Engineering), Limerick, Ireland, June 2000, ACM Press, Order
No. 592000-1, pp. 279-289.

[Fe179] Stuart I. Feldman. Make -- a Program for Maintaining
Computer Programs. Software -- Practice and Experience,
9(3):255-265, March 1979.

[Fin94] A. Finkelstein, J. Krarner, B. Nuseibeh. Software Process
Modeling and Technology. John Wiley, Advanced Software

ACM SIGSOFT Software Engineering Notes vol 27 no 5 September 2002 Page 39

Development Serie. ISBN 0 471 95206 0. 1994.

[Fraser87] C. Fraser, E. Myer, An editor for revision control.
ACM Transactions on Programming Languages and Systems.
9(2) April 1987.

[Gul91] Bjcrn Gulla, Even-Andr6 Karlsson, and Dashing Yeh.
Change-Oriented Version Descriptions in EPOS. Software
Engineering Journal, 6(6):378-386, November 1991.

[Hoe96] A. Van der Hoek, D. Heimbigner, and A.L. Wolf. A
Generic, Peer-to-Peer Repository for Distributed Configuration
Management. Proceedings of the 18th International Conference
on Software Engineering, Berlin, Germany, March 1996.

[Hoe98] Andr6 van der Hock, Dennis Heimbigner, Alexander L.
Wolf. Software Architecture, Configuration Management, and
Configurable Distributed Systems: A Mdnage a Trois. Tech
Report CU-CS-849-98. U. Colorado.

[Hoe98b] Andr6 van der Hoek, Dennis Heimbigner, Alexander
L. Wolf. System Modeling Resurrected. System Configuration
Management (SCM-8), Brussels, Belgium 1998, Springer-
Verlag LNCS 1439.

[Hor89] S. Horwith, J. Prins, T. Reps. Integrating non-
interfering versions of programs. ACM Transaction on
Programming Languages and Systems. 11(3) July 1989.

[Hou81] H. Hough. Some Thoughts on Source Update as a
Software Maintenance Tool. IEEE Conference on Trends and
Applications, CH1631-1/81/0000/0163 May 1981.

[Hunt76] J. Hunt, M. Mclllroy. An efficient algorithm for
differential file comparison. Technical Report 41, Bell Labs,
June 1976.

[Hunt96] J. Hunt, K. Vo, W. Tichy. An Empirical Study of Delta
Mechanisms. SCM6, Berlin, March 1986. LNCS1167.

[Korn95] D. Korn, K. Vo. Vdelta: Efficient data differencing and
compression.

[Knuth84] D. Knuth, Literate Programming, Computer Journal,
pages 97-111, 19984.

[Kruska184] V. Kruskal. Managing Multi-Version programs with
an editor. IBM Journal of Research and Development. 28(1),
January 1984.

[Lam91] Charles Lamb, Gordon Landis, Jack Orenstein, and
Dan Weinreb. The ObjectStore Database System. Comm. of the
ACM, 34(10):50-63, October 1991.

[Lie89] Anund Lie, Tor M. Didriksen, Reidar Couradi, Even-
Andr6 Karlsson, Svein O. Hallsteinsen, and Per Holager. Change
Oriented Versioning.
In Carlo Ghezzi and John A. McDermid, editors. Proc. 2nd
European Software Engineering Conference (Coventry, UK),
Springer Verlag LNCS 387, 496p., September 1989, pp. 191-
202.

[McC00] McCabe/True Software. Documentation 2000.
http://www.mccabe.com/products.htm.

[Meyers86] E. Meyers. An O(ND) Difference algorithm and its
variations. Algofithmica, 1(2):251-266, 1986.

[Mic96] Josephine Micallef and Geoffrey M. Clemm: The
Asgard System: Activity-Based Configuration Management, In
Ian Sommerville, editor, Proc. Software Configuration

Management, ICSE'96 SCM-6 Workshop, Berlin, March 1996,
Springer Verlag LNCS 1167, pp. 175-186.

[Nav96] P. Navrat, N. Bielikova. Knowledge controlled version
selection in software configuration management. Software
Concepts and Tools. 17:40-48, 1996.

[Pro98] Promoter group. Software Process: Principles,
Methodology, Technology. Springer Verlag, LNCS 1500. 1998.

[Rei91] Chris Reichenberger. Delta storage for arbitrary non-
text files. In Proceedings of the 3rd International Workshop on
Software Configuration Management, Trondheim, Norway, 12-
14 June 1991 (June 1991), ACM, pp. 144--152.

[Reps88] T. Reps, S. Horwitz, J. Prins. Support for Integrating
program variants in an environment for programming in the
large. Proc. Int. Workshop on Softwae Version and
Configuration Control. Grassau, Germany 1988.

[Roc75] Mark J. Rochkind. The Source Code Control System.
IEEE Trans. on Software Engineering, SE-1(4):364-370, 1975.

[Sar88] N. Sarnak, B. Bernstein, and V. Kruskal. Creation and
Maintenance of Multiple Versions. In [Win88], pp. 264-275,
1988.

[Sch88] Robert W. Schwanke and Gail E. Kaiser. Smarter
Recompilation.. ACM Transactions on Programming
Languages and Systems (TOPLAS) Pages: 627 - 632 Periodical-
Issue-Article 1988 ISSN:0164-0925

[Tic82] Walter F. Tichy. Design Implementation and Evaluation
of a Revision Control System. In Proc. Sixth International
Conference on Software Engineering. 1982.

[Tic85] Walter F. Tichy. RCS -- A System for Version Control.
Software -- Practice and Experience, 15(7):637-654, 1985.

[Tic86] W. Tichy. Smart recompilation. ACM Transactions on
Programming Languages and Systems, 8(3):273--291, 1986

[Tho89] Ian Thomas. PCTE interfaces: Supporting tools in
software-engineering environments. IEEE Software, 6(6): 15-23,
November 1989.

[Wes01] Bernhard Westfechtel, Bjcrn P. Munch, and Reidar
Conradi. A Layered Architecture for Software Configuration
Management. IEEE Trans. Software Engineering, to appear in
2001, 24 p.

[Win88] Jtirgen F. H. Winkler, editor. Proc. ACM Workshop on
Software Version and Configuration Control, Grassau, FRG,
Benchte des German Chapter of the ACM, Band 30, 466 p.,
Stuttgart, January 1988. B. G. Teubner Verlag.

[Whi91] David Whitgift. Methods and Tools for Software
Configuration Management. John Wiley and Sons, England,
1991, 238 p.

[Whi99] Jim Whitehead. Goals for a Configuration Management
Networkprotocol.In SCM9, LNCS 1675, pages 186-204,
Toulouse September 1999.

[Web99] WebDav. HTTP extentions for distributed Authoring.
RFC 2518. http://andrew2.andrew.cmu.edu/rfc/rfc2518.htm.
February 1999.

[Ze197] Andreas Zeller and Gregor Snelting. Unified Versioning
through Feature Logic, ACM Transactions on Software
Engineering and Methodology, 6(4):397-440, Oct. 1997.

