
Integrating Software Construction and Software
Deployment

Eelco Dolstra

Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

Abstract. Classically, software deployment is a process consisting of
building the software, packaging it for distribution, and installing it at
the target site. This approach has two problems. First, a package must
be annotated with dependency information and other meta-data. This
to some extent overlaps with component dependencies used in the build
process. Second, the same source system can often be built into an of-
ten very large number of variants. The distributor must decide which
element(s) of the variant space will be packaged, reducing the flexibil-
ity for the receiver of the package. In this paper we show how building
and deployment can be integrated into a single formalism. We describe a
build manager called Maak that can handle deployment through a suffi-
ciently general module system. Through the sharing of generated files, a
source distribution transparently turns into a binary distribution, remov-
ing the dichotomy between these two modes of deployment. In addition,
the creation and deployment of variants becomes easy through the use
of a simple functional language as the build formalism.

1 Introduction

Current SCM systems treat the building of software and the deployment of
software as separate, orthogonal steps in the software life-cycle. Controlling the
former is the domain of tools such as Make [1], while the latter is handled by,
e.g., the Red Hat Package Manager [2]. In fact, they are not orthogonal. In this
paper we show how building and deployment can be integrated in an elegant
way. There are a number of problems in the current approaches to building and
deployment.

Component dependencies Separating the building and deployment steps leads
to a discontinuity in the formalisms used to express component dependencies.
In a build manager it is necessary to express the dependencies between source
components; in a package manager we express the dependencies between binary
components.

Source vs. Binary Distribution Another issue is the dichotomy between source
and binary distributions. In an open-source environment software is provided as

source packages and sometimes as binary packages. The packaging and instal-
lation mechanisms for these are quite different. This is unfortunate; after all, a
binary distribution can be considered conceptually to be a source distribution
that has been partially evaluated with respect to a target platform using, e.g., a
compiler.

Variability Most software systems exhibit some amount of variability, that is,
several variants can be instantiated from the same source system. Typical vari-
ation points are choosing between exclusive alternatives, whether to include op-
tional features, and so on. Deployment in binary form makes it hard to change
build time variation points.

Contribution This paper demonstrates how build management and package man-
agement can be elegantly integrated in a single formalism. We show a build tool
called Maak that constructs systems from descriptions in a simple functional lan-
guage. By providing a sufficiently powerful module system and caching facility,
the desired deployment characteristics can be obtained. In addition, the Maak
language makes it easy to describe build variants.

Overview The remainder of this paper is structured as follows. We motivate our
research in section 2. We give a brief overview of the Maak system in section
3. We discuss the integration of deployment into build management in section
4. The state of the implementation is addressed in section 5, and related work
in section 6. We end with concluding remarks and directions for future work in
section 7.

2 Motivation

The task of a build manager is to generate derivates from sources by invoking
the right generators (such as compilers), according to some formal specification
of the system. The specification defines the actions by which derivates can be
produced from sources or other derivates; that is, actions can depend on the
outputs of other actions. The job of the build manager is to find a topological
sort on the graph of actions that performs the actions in the right order. There
are several important aspects to such a tool.

2.1 Correctness

A build manager should be correct: it should ensure consistency between the
sources and the derivates, i.e., that all derivates are derived from current sources,
or are equal to what they would be if they had been derived from current sources.

2.2 Efficiency

It is desirable to have a degree of efficiency: within the constraints of consistency
redundant recompilations should be avoided. It is debatable whether this is the
task of the build manager: it can be argued that this problem is properly solved
in the actual generators, since only they have complete dependency information.
Nevertheless, the efficiency aspect is the main purpose of classic build managers
such as Make.

2.3 Variability

The system specification formalism should enable us to easily specify variants.
That is, we want to parameterize a (partial) specification so that the various
members of a software product line [3] (a set of systems sharing a common set
of features) can be instantiated by providing different parameters.

In open-source systems in particular there tend to be many build-time vari-
ation points in order to make the system buildable in a wide variety of envi-
ronments that may or may not have the characteristics necessary to implement
certain features. In turn this is due to the use of fine-grained deployment strate-
gies: many small independent packages are used to compose the system. For
example, a program might have the ability to generate graphical output in JPG
and PNG format, but only if the respective libraries libjpg and libpng are
available.

Open-source distributors typically need to use binary packages for speed of
installation. Unfortunately, binary packages tend to force a “one-size-fits-all”
approach upon the distributors for those variation points that are bound at
build-time. In packaging the previous example system the distributor would
either have to deny the JPG/PNG feature to the users, or force it on users that
don’t need it, or deploy binary packages for each desired set of feature selections.

Let’s look at a real-life example. The ATerm library [4] is a library for the
manipulation and storage of tree-like data structures. The library is fairly small,
consisting of a dozen C source files. An interesting aspect of the package is that
the library has to be built in several variants: the regular library, the library
with debug information enabled, the library with maximal subterm sharing (a
domain feature) disabled, and various others.

Support for this in the package’s Makefile (actually, an Automakefile) is
rather ad hoc. To prevent the intermediate files used in building each variant
from overwriting each other, the use of special filename extensions has to be
arranged for:

SRCS = aterm.c list.c ...

libATerm_a_LIBADD = $(SRCS:.c=.o)
libATerm_dbg_a_LIBADD = $(SRCS:.c=-dbg.o)
libATerm_ns_a_LIBADD = $(SRCS:.c=-ns.o)

This fragment causes the extensions .o, -dbg.o, and -ns.o to be used for the
object files used in building the aforementioned variants. To make it actually
work, we have to provide pattern rules:

%.o: %.c
gcc -c $< -o $@

%-dbg.o: %.c
gcc -g -c $< -o $@

%-ns.o: %.c
gcc -DNO_SHARING -c $< -o $@

Also note that this technique does not cover all variants in the variant space;
for example, no library without maximal sharing but with debug information is
built.

2.4 Modularity and Composability

Fourth, and most relevant to this paper, we claim that a build manager should
provide support for the composition of source components. Software seldom ex-
ists in a vacuum; to build a component, it is generally necessary that certain
other components are built as well. Most build managers work well when com-
ponents are statically composed, that is, when they are part of the same source
tree. For components that need to be separately deployable, this often does not
hold.

Continuing the previous example, apart from the library itself, the ATerm
distribution also provides a set of utility programs for manipulating terms. These
utilities are linked against the ATerm library, of course. Such a dependency is
easy to express when the library and utilities are part of the same package. E.g.,
one of the utilities, termsize, can be constructed as follows using Make:

termsize: termsize.o ../aterm/libATerm.a
cc -o termsize termsize.o libATerm.a

termsize.o: termsize.c
cc -o termsize.o -c termsize.c -I../aterm

(The references to ../aterm are present because the library proper is built
in a subdirectory aterm of the package, while the utilities are located in the
utils directory.) The Makefile properly expresses the relationships between the
components; e.g., if any of the sources of the library changes, the program will
be rebuilt as well. That is, the build manager has access to the full dependency
graph.

Suppose, however, that we want to move the utilities into a separate pack-
age, so that, e.g., it can be deployed independently. The typical procedure for
installation from source in a Unix environment would be:

1. Fetch the source code for package aterm containing the library.
2. Configure and build it (e.g., using Make).
3. Install it. This entails copying the library and C header files to some “global”

location, such as /usr/lib and /usr/include.
4. Fetch the source code for package aterm-utils that contains the utilities.
5. Configure and build it. Configuration includes specifying or finding the loca-

tion of the aterm library; for example, Autoconf configuration scripts scan
a number of well-known directories for library and header files.

6. Install it. This means copying the programs to, e.g., /usr/bin.

What is wrong with this approach? Note that we end up with two Makefiles
for each package, each providing an insufficient amount of dependency informa-
tion. For example, for the program package we might have the following Makefile:

termsize: termsize.o
cc -o termsize termsize.o -lATerm

termsize.o: termsize.c
cc -o termsize.o -c termsize.c

The dependency of the program component on the library component is
no longer explicit at the Makefile level. The aterm-utils package depends on
the aterm package, but this is not a formal dependency (i.e., it’s not made
explicit); rather, aterm-utils uses some artifacts (say, libATerm.a) that have
hopefully been installed by aterm. This is unsafe. For instance, we link in a file
such as /usr/lib/libATerm.a (through -lATerm). This file is an “uncontrolled”
input: we have to hope that it is the right version, has been built with the right
parameters, and so on, and in any case we have no way to rebuild it if it isn’t.

We now have to express the dependency at the level of the package manager
(if we express it at all; these things are often left implicit for the user to figure
out from the documentation!). That is, splitting one package into several lifts
dependencies to the higher level of package management, making them invisible
to the lower level of build management.

In summary, splitting components in this manner leads to more work for both
the developer of the package and the users of the package and is unsafe. This is
very unfortunate, because the refactoring of large components into smaller ones
is desirable to promote small-grained reuse [5]. What we really want is to import
in a controlled manner the aterm package into aterm-utils package, so that
the former can be build if necessary during the construction of the latter. Since
these packages are not part of a single source tree and can come from separate
sources, this implies that there can be a deployment aspect to build management.
For example, we may want to fetch packages transparently from the network if
they are not available locally.

3 The Maak System

Maak (from the Dutch verb for “to make”) is a build manager. It allows system
models to be described in a simple functional language. Maak evaluates an ex-

pression that describes a build graph—a structure that describes what to build
and how to build it—and then realizes that graph by performing the actions
contained in it.

In this section we give a brief overview of Maak. It is not the intent to
provide a full overview of the syntax, semantics, and feature set of the system.
Rather, we focus on some examples that show how the problems of modularity
and variability can be solved in Maak.

A variability example The variants of the ATerm library (introduced in section
2) can be built using Maak as follows. First, we consider the simple case of
building just the regular variant:

srcs = [./aterm.c ./list.c ...];

atermLib = makeLibrary (srcs);

What happens here is that we define a list srcs of the C sources constituting
the library. The variable atermLib is bound to the library that results from
applying the function makeLibrary to the sources; makeLibrary knows that it
should compile the sources before putting them in the library.

It should be noted that atermLib is a variable name and not a filename,
unlike, e.g., ./aterm.c; the sole difference between the two syntactical classes is
that filenames have slashes in them. So what’s the filename of the library? The
answer is that we don’t need to know; we can unambiguously refer to it through
the variable atermLib. (The function makeLibrary generates a name for us).

Hence, we can now use the library in building an executable program:

test = link {in = ./test.c, libs = atermLib};

We see here that Maak has two calling mechanisms: positional parameters (e.g., f
(x, y, z)) and by passing an attribute set (f {a = x, b = y, c = z}). The
latter allows arguments to be permuted or left undefined.

Similarly, we can create the debug and no-maximal-sharing variants:

atermLibDbg = makeLibrary {in = srcs, cflags = "-g"};
atermLibNS = makeLibrary {in = srcs, cflags = "-DNO_SHARING"};

Much better, though, is to solve the variability issue comprehensively as
follows. We can abstract over the definitions above by making atermLib into a
function with arguments debug and sharing:

atermLib = {debug, sharing}:
makeLibrary
{ in = srcs
, cflags = if (sharing, "", "-DNO_SHARING")

+ if (debug, "-g", "")
};

after which we can select the desired variant:

test = link
{ in = ./test.c
, libs = atermLib {debug = true, sharing = false}
};

Lazy evaluation Maak’s input formalism is a lazy functional language, meaning
that variable bindings and function arguments are evaluated only when actually
needed. This has two advantages. First, it prevents unused parts of the build
graph from being evaluated. Second, it allows the definition of control structures
in the language itself. For example, an if-then-else construct can take the form
of a regular function if taking three arguments: the conditional and the values
returned on true and false, respectively; only one of the latter is evaluated.

Model Build graphs consist of two types of nodes: file nodes and action nodes.
Nodes are represented as attribute sets: mappings from names to values. A file
node consists of an attribute name that denotes the name of the file, and option-
ally (for derivates) an attribute partOf whose value is the action that builds the
derivate; that is, partOf denotes an edge in the graph.

Action nodes are also represented as attribute sets. There are several kinds of
attributes involved in an action. File attributes denote either the action’s sources
or its derivates (i.e., they denote graph edges). A file x is a derivate of an action
y if x.partOf == y, where == denotes pointer equality. The special attribute
build specifies the command to be executed to perform the action.

We can therefore describe the action of generating a parser from a Yacc
grammar as follows:

parser =
{ in = ./parser.y
, csrc => ./parser.c
, header => ./parser.h
, build = exec "yacc -b {in}"
};

The notation => is sugar: it ensures that the partOf attribute of the value points
back at the defining attribute set, i.e., it defines a derivate of the action. Inputs
are not marked in a particular way. Given the action parser, the C source can
be selected using the expression parser.csrc.

Defining Tools Rather than write each action in the graph explicitly, we can
abstract over them, that is, we can write a function (i.e., a λ-abstraction) that
takes a set of attributes and returns an action. The following example defines a
basic C compiler function that takes two arguments: the source file in, and the
compiler flags cflags.

compileC = {in, cflags}:
{ in = in
, cflags = cflags

, out => prefix (in) + ’.o’
, build = exec "cc -c {in} -o {out}"
}.out;

The syntax {args}: body denotes a function taking the given arguments and
returning the body. We select the out attribute of the action to make it easier
to pass the output of one action as input into another (e.g., link (compile
(./foo.c))).

Module System Maakfiles are modular: they can import other Maakfiles. For
example, the declaration import ./src/Maakfile makes the definitions in the
specified Maakfile visible in the current Maakfile. The argument to the import
keyword is an expression (rather than a filename) that evaluates to a filename.
Crucially, as we shall see in section 4, this allows arbitrary module management
policies to be defined by the user (rather than have them hard-coded in the
language). Local definitions in a module take precedence over imported defini-
tions. In addition, qualified imports are possible: import e into x binds the
definitions in a module to the qualifier x, so that a definition y in the imported
module can be referenced as x.y.

4 Deployment

As stated previously, software deployment generally proceeds as follows. First,
the software is built using, e.g., compilers, generally under the control of a build
manager such as Make. Then, the relevant artifacts are packaged, that is, put in
some deployable unit such as a zip-file or an RPM package; depending on the
mechanism meta-data can be added to describe package dependencies and so
on. Finally, the package is installed, typically by an installer shipped as part of
the package, or by a package manager present on the target system such as the
Red Hat Package Manager.

Let’s consider the example based on the ATerm library mentioned in section
2 where we wanted to split this distribution into two separate packages: aterm
(containing the library), and aterm-utils (containing the utility programs).
In this section we show a simpler approach to the deployment process. The
central idea is to deploy packages in source form, i.e., along with an appropriate
Maakfile. Packages can depend on each other by having the Maakfile import the
Maakfiles of other packages. Since the packages are not part of the same source
tree, an indirection is required.

Figure 1 shows the Maakfile for the aterm package. It exports a function
atermLib that builds a variant of the ATerm library, along with a pointer to the
header files. Note that no installation occurs; the source code is the installation.

Figure 2 shows the Maakfile for the aterm-utils package. It imports the
library package through the statement import pkg ("aterm-1.6.7-2"). The
function pkg maps abstract package names to Maakfiles, while ensuring that the
package is present on the system.

import stdlibs; # for makeLibrary etc.

atermLib = {debug, sharing}:

makeLibrary

{ in = srcs

, cflags = if (sharing, "", "-DNO_SHARING")

+ if (debug, "-g", "")

};

atermInclude = ./;

Fig. 1. Maakfile for package aterm

import stdlibs;

import pkg ("aterm-1.6.7-2");

default = progs;

progs = [termsize ...];

termsize = link’ (./termsize, ./termsize.c); # and so on...

link’ = {out, in}: put (out, link # put copies a file to ‘out’

{ in = in

, libs = [atermLib {debug = false, sharing = true}]

, includes = [atermIncl]

});

activate = map ({p}: activateExec (p), progs);

Fig. 2. Maakfile for package aterm-utils

An Example Deployment Strategy Now, how do we deploy this? It’s a mat-
ter of defining an appropriate implementation for the function pkg. It must be
emphasized that pkg is not a primitive: it is a regular function. The user can de-
fine other functions, or change the definition of pkg, to obtain arbitrary package
management policies. A possible implementation is outlined in figure 3. Here the
source code is obtained from the network; in particular, it is checked out from
a Subversion repository1. The source code for package X is downloaded into
/var/pkg/X on the local machine, and pkg will return /var/pkg/X/Maakfile
to the import statement.

Of course, pkg needs to know how to map package names to URLs. This map-
ping is maintained locally: through the function registerPkg (package-name,
url) we can associate a package name with a URL. These mappings can also be
1 Subversion is a version management system intended to be “a compelling replace-

ment for CVS in the open source community” [6]. It fixes CVS’s most obvious defi-
ciencies, such as unversioned directories and non-atomic commits.

Client

http://serverA/pkgSrcs.mk

downloads and
registers

http://serverB/aterm/tags/1.6.7-2/

checks out

http://serverC/aterm-utils/tags/1.6.7-1/

checks out

refers to

refers to

implicitly imports

Fig. 3. A deployment strategy

obtained over the network by fetching a Maakfile containing calls to registerPkg
from the network and executing it (clearly, security issues need to be addressed
in the future!). The package aterm-utils can now be built by issuing the com-
mand

maak -f ’pkg ("aterm-utils-1.6.7-1")’

which will recursively obtain the source for aterm-utils and aterm, build the
variant of atermLib required for the utilities, and finally build the utilities.
(The switch -f obtains a Maakfile from the given expression rather than from
the current directory).

Installation The above command will build the ATerm utilities, but it will not
“install” them. In the Make paradigm, it is customary to have a phony install
target that copies the appropriate files to the right system directories. This
is essentially a redundant step. Indeed, it’s just an additional complication (for
example, it is often quite troublesome to get executables using dynamically linked
libraries to work both in the source and installed location).

The main point of installing is to make software available to the user; for
example, copying a program to /usr/bin has the effect of having it appear
in every user’s search path. That is, the point of installing is to activate the
software. For example, the function activateExec will create a symbolic link in
/usr/bin to its argument. Hence, the command

maak -f ’pkg ("aterm-utils-1.6.7-1")’ activate

will build the utilities and make them available to the user. (The function map
used in figure 2 applies a function—here, activateExec—to all elements of a
list).

Binary distribution Of course, we cannot expect the clients to build from source,
so we need the ability to transparently export derivates to the client; if a client
runs Maak to build derivates that have already been built, i.e., were built with
the same attributes, then the pre-existing ones will be used. On the other hand,
if the client attempts to build a derivate with attributes or sources such that no
equivalent derivate exists in any cache, it must be built locally. This enables a
graceful fallback from binary distribution to source distribution.

Maak provides a primitive implementation of this idea. The command

maak ’exportDerivates (/tmp/shared, foo)’

will copy all derivates occurring in the build graph defined by the variable foo to
the directory /tmp/shared, where a mapping is maintained from build attributes
to files. (Generally, we would put such a cache on the network or on distribution
media). Subsequently, another user can build foo through the command maak
--import /tmp/shared foo; Maak will try to rebuild missing derivates first by
looking them up in the mapping, and by rebuilding them if they do not occur in
/tmp/shared. Therefore, if any changes have been made to the sources of foo,
or to the build attributes, the derivates will be rebuilt.

Barriers When we share derivates, we encounter a problem: any change to the
attributes or dependencies will invalidate a derivate. This is often too rigid.
For example, recompilation will be triggered if the recipient has a different C
compiler (since it’s a dependency of the build process). If this behavior is not
desired, we can use update barriers to prevent a change to the compiler from
causing a rebuild, while a change to any “real” source file still triggers a rebuild.

foo.c

compile foo.o

bar.c

compile bar.o

/usr/bin/gcc

link prog

/usr/bin/ld

Fig. 4. An update barrier

The idea is outlined in figure 4 where we have two source files, foo.c and
bar.c, to be compiled and linked into an executable. The C compiler gcc is also
a dependency, but changes to it should not trigger recompilation. We ensure this
by making an action node which has foo.c and bar.c as inputs, prog as output,
and as its action the building of the subgraph that builds prog. If neither foo.c
nor bar.c changes, the action (the big box in the figure) will not be executed. If
either of them changes, Maak will execute the action, which consists of updating
prog using the subgraph. Note that if either has changed, and the C compiler
has changed as well, then both files will be recompiled! This is exactly right: we
have to maintain consistency between the object files in the presence of potential
changes to the Application Binary Interface (ABI) of the compiler.

5 Implementation

A prototype of Maak has been implemented and is available under the terms
of the GNU Lesser General Public License at http://www.cs.uu.nl/~eelco/
maak/. The implementation comes with a (currently small) standard library pro-
viding tool definitions for a number of languages and tools, include C and Java.
The prototype is written in Haskell, a purely functional programming language.
This is a nice language for prototyping, but ultimately a re-implementation in
C or C++ would be useful to improve portability and efficiency.

Maak implements up-to-date checking by maintaining per directory a map
from the derivates to the set of attributes used to build them, along with exact
timestamps (or for improved safety, hashes of the contents) of input files.

A problem in building variants is that we have to prevent the derivates from
each variant from overwriting each other; hence, they should not occupy the
same names in the file system. We take the approach that the actions (i.e., the
tool definition functions) are responsible for choosing output filenames such that
variants do not overwrite each other. The usual approach is to form an output
name using a hash of the input attributes. For example, compileC (./foo.c)
might yield a filename .maak_foo_305c.o, while compileC {in = ./foo.c,
cflags = "-g"} would yield .maak_foo_54db.o; in actuality, we use longer
hashes to decrease the probability of a collision. If a collision does occur, a
derivate may overwrite an older derivate, but since Maak registers the attributes
used to build them, this will not lead to unsafe build; if the older derivate is
required again, it will be rebuilt.

A useful feature of the prototype is the ability to perform build audits on
Linux systems to verify the completeness of Maakfile dependencies. By using
the strace utility Maak can trace all open() system calls, determine all actual
inputs and outputs of an action, and complain if there is a mismatch between
the specified and actual sets of inputs and outputs.

Another useful feature are generic operations on the build graph: given a
build graph, we can, for example, collect all leaf nodes to automatically create a
source distribution, or collect all nodes that are not inputs to actions to create
a binary distribution.

http://www.cs.uu.nl/~eelco/maak/
http://www.cs.uu.nl/~eelco/maak/

6 Related Work

Build Managers The most widely used build manager is Make [1], along with
a large number of clones, not all of them source-compatible. Make’s model is
very simple: systems are described as a set of rules that specify a command
that builds a number of derivates from a number of sources. Make rebuilds a
derivate if any of the sources has a newer timestamp (a mechanism that is in
itself subject to race conditions). Unfortunately, Make often causes inconsistent
builds, since Makefiles tend to specify incomplete dependency information, and
the up-to-date detection is unreliable; e.g., changes to compiler flags will not
trigger recompilation. Make’s input language is also quite simplistic, making it
hard to specify variants.

The Makefile formalism is not sufficiently high-level; it does not provide scal-
able abstraction facilities. The abstraction mechanisms — variables and pattern
rules — are all global. Hence, if we need to specify different ways of building
targets, we cannot use them, unless we split the system into multiple Make-
files. This, however, creates the much greater problem of incomplete dependency
graphs [7].

Can’t we do the sort of deployment strategy described in section 4 using
Make? Through Make’s ability to invoke external tools, we can of course in
principle do anything with it. However, Make lacks a serious module system. It
does provide an include mechanism, but its flat namespace makes it unsuitable
for component composition.

There have been attempts to fix this defect by building layers on top of Make
rather than replace it, such as Automake [8], which generates Makefiles from a
list of macro invocations. For example, the definition foo_SOURCES = a.c b.y
will cause Automake to generate Make definitions that build the executable foo
from the given C and Yacc source, install it, create a source distribution, and
so on. The problem with such generation tools is that they do not shield the
user from the lower layers; it is the user’s job to map problems that occur in a
Makefile back to the Automakefile from which it was generated. Automake does
not provide a module system and so does not solve the problem of incomplete
dependency graphs. It provides some basic variability mechanisms, such as the
ability to build a library in several variants. However, Automake is not extensible,
so this feature is somewhat ad hoc.

Autoconf [9] is often used in conjunction with Make and/or Automake to
specialize an element of a product line automatically for the target platform. It is
typically used to generate Makefiles from templates with values discovered during
the configuration process substituted for variables. The heuristic approach to
source configuration promoted by Autoconf is very useful in practice, but also
unreliable. For example, we should not guess whether /usr/lib/libfoo.so is
really the library we’re looking for; rather, we should import the desired version
of the library so that the process can never go wrong.

Autobundle [10] is a tool to simplify composition of separately deployable
Autoconf-based packages. Based on descriptions of package dependencies, lo-
cations, etc., Autobundle generates a script that fetches the required source

packages from the network, along with a configuration script and a Makefile
for the composed package. This is similar to the package management strat-
egy described in section 4, but it is yet another layer in the construction and
deployment process.

A handful of systems go beyond Make’s too-simple description language.
Vesta [11] integrates version management and build management. It’s Software
Description Language is a functional language [12], similar to Maak’s. An in-
teresting aspect is the propagation of “global” settings (such as compiler flags),
which happens by passing down an environment as a hidden argument to every
function call; the environment is bound at top-level. In Maak propagation is ex-
plicit and left to the authors of tool definitions. Vesta also allows derivates to be
shared among users; if a user attempts to build something that has previously
been built by another user, the derivates can be obtained from a cache. This is
quite reminiscent of our stated goal of allowing transparent binary deployment.
However, the Vesta framework only allows building from immutable sources;
that is, all sources to the build process (such as compilers) must be under ver-
sion control. When deploying source systems, unfortunately, we cannot expect
the recipient to have a identical environment to our own.

Odin [13] also has a somewhat functional flavor. For example, the expression
hello.c denotes a source, while hello.c :exe denotes the executable obtained
by compiling and linking hello.c; variants build can be expressed easily, e.g.,
hello.c +debug :exe. However, tool definitions in Odin are special entities,
not functions.

Amake [14] is the build tool for the Amoeba distributed operating system.
Like Odin, it separates the specification of build tools and system specifications.
Given a set of sources Amake automatically completes the build graph, that is,
it finds instances of tool definitions that build the desired targets from the given
sources. This is contrary to the model of explicit tool application to values in
Vesta and Maak. The obvious advantage is that specifications become shorter;
the downside is that it becomes harder to specify alternative ways of building,
and to see what’s going on (generally, it is a good idea to be explicit in saying
what you want).

Package Managers There are many package management systems, ranging from
the basic— providing just simple installation and uninstallation facilities for in-
dividual packages—to the advanced—providing the features needed for ensuring
a consistent system. The popular Red Hat Package Manager (RPM) [2], used
in several Linux distributions, is a reasonably solid system. By maintaining a
database of all installed packages, it ensures that packages can be cleanly unin-
stalled and do not overwrite each other’s files, allows tracibility (e.g., to what
package does file X belong?), verifies that the prerequisites for installation of a
package (specified by the developer in an RPM specfile) are met, and so on.

But RPM also clearly demonstrates the dangers of separating build and pack-
age management: RPM packages often have incomplete dependency information
[15]. For example, a package may use some library libfoo.so without actually

declaring the foo package as a prerequisite. This cannot happen in Maak because
the way to access the library is by importing package foo.

Not a failing of RPM per se but of RPM package builders (and, indeed, most
Unix packaging systems) is the difficulty of having several variants of the same
product installed at the same time; e.g., RPMs of different versions or variants of
Apache typically all want to be installed in /usr/lib/apache/. This is mostly a
“cultural” problem: a better installation policy (such as described in section 4)
solves this problem. For example, a very useful feature for system administrators
is the ability to query to what package a file belongs. This query becomes trivial
if every package X is installed in /var/pkg/X.

There also exist several source-based package management systems, such as
the FreeBSD Ports Collection [16]. The main attraction is that the system can
be optimized towards the platform and requirements of the user, e.g., by select-
ing specific compiler optimization flags for the user’s processor, or by disabling
unnecessary optional package features. The obvious downsides are slowness of
installation, and that validation becomes hard: with so many possible variants,
how can we be sure that the system compiles correctly, let alone runs correctly?
For most ports pre-compiled packages exist (which do not offer build-time vari-
ability, of course). The two modes of installation are not abstracted over from the
user’s perspective; i.e., both present different user interfaces. With regard to the
slowness of source deployment, the holy grail would of course be the transparent
use of pre-built derivates described in section 4.

Of course, most users are not interested in building from source; the goal is to
relieve the developer from the burden of having to deal explicitly with the build
and deployment processes. As stated in the introduction, we can view binary
deployment as an optimization of source deployment. Such optimization should
happen transparently.

7 Conclusion

Van der Hoek [17] has argued that deployment functionality should be added to
SCM tools (and vice versa). In this paper we have shown how we can integrate
deployment with the build system. Also, since Maak is policy-free with regard to
the deployment policy, we can integrate deployment with version management.
For example, the deployment policy suggested in section 4 obtains packages
from a networked version management system; this could, for instance, be used
to push component updates to clients.

In the remainder of this section some issues for future work will be sketched.
The most important one is that the sharing of derivates—essential for transpar-
ent binary/source distribution—is currently rather primitive. A related issue is
that we need to be able to do binary-only distributions. This could be done by
making Maak pretend that the source does exist (e.g., by supplying file content
hashes). Security issues related to derivate sharing need to be addressed as well.
For example, if the administrator has built a package, other users should use it;
but not the other way around.

We need to address scalability. For example, in the case of a Java package
that requires a Java compiler, the former should import the package that builds
the latter, just in case it hasn’t been built yet. But this would make the build
graph huge. Update barriers could be used to confine up-to-date analysis to the
package at hand.

Acknowledgments This work was supported in part by the Software Engineer-
ing Research Center (SERC). I am grateful to Eelco Visser, Andres Löh, Dave
Clarke, and the anonymous referees for commenting on drafts of this paper.

References

1. Feldman, S.I.: Make — a program for maintaining computer programs. Software
— Practice and Experience 9 (1979) 255–65

2. Bailey, E.C.: Maximum RPM. Sams (1997)
3. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach. Addison-Wesley (2000)
4. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.: Efficient annotated

terms. Software—Practice and Experience 30 (2000) 259–291
5. de Jonge, M.: To Reuse or To Be Reused. PhD thesis, University of Amsterdam

(2003)
6. CollabNet: Subversion home page. http://subversion.tigris.org (2002)
7. Miller, P.: Recursive make considered harmful (1997)
8. Free Software Foundation: Automake home page. http://www.gnu.org/software/

automake/ (2002)
9. Free Software Foundation: Autoconf home page. http://www.gnu.org/software/

autoconf/ (2002)
10. de Jonge, M.: Source tree composition. In: Seventh International Conference on

Software Reuse. Number 2319 in Lecture Notes in Computer Science, Springer-
Verlag (2002)

11. Heydon, A., Levin, R., Mann, T., Yu, Y.: The Vesta approach to software con-
figuration management. Technical Report Research Report 168, Compaq Systems
Research Center (2001)

12. Heydon, A., Levin, R., Yu, Y.: Caching function calls using precise dependen-
cies. In: ACM SIGPLAN ’00 Conference on Programming Language Design and
Implementation, ACM Press (2000) 311–320

13. Clemm, G.M.: The Odin System — An Object Manager for Extensible Software
Environments. PhD thesis, University of Colorado at Boulder (1986)

14. Baalbergen, E.H., Verstoep, K., Tanenbaum, A.S.: On the design of the Amoeba
configuration manager. In: Proc. 2nd Int. Works. on Software Configuration Man-
agement. Volume 17 of ACM SIGSOFT Software Engineering Notes. (1989) 15–22

15. Hart, J., D’Amelia, J.: An analysis of RPM validation drift. In: LISA ’02: Sixteenth
Systems Administration Conference, USENIX Association (2002) 155–166

16. The FreeBSD Project: FreeBSD Ports Collection. http://www.freebsd.org/

ports/ (2002)
17. van der Hoek, A.: Integrating configuration management and software deployment.

In: Proc. Working Conference on Complex and Dynamic Systems Architecture
(CDSA 2001). (2001)

http://subversion.tigris.org
http://www.gnu.org/software/automake/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://www.freebsd.org/ports/
http://www.freebsd.org/ports/

	Integrating Software Construction and Software Deployment
	Eelco Dolstra

