
The Build / Comprehend Pipelines

Richard C. Holt, Michael W. Godfrey, Andrew J. Malton
Software Architecture Group (SWAG), University of Waterloo

{holt, migod, ajmalton}@uwaterloo.ca

Abstract

 Large software systems often have complex subparts
and complex build processes, and engage in subtle
relationships with the underlying technologies from
which they are designed and constructed. Most reverse
engineering toolkits ignore the attributes and
relationships of system construction; instead, they
concentrate on static relationships among externally
visible source code elements. This paper takes the
position that the comprehension process for a large
software system should mimic the system’s build process.

1. Introduction
 This paper takes the position that the comprehension
process (and its supporting tools) for large software
systems should be based on the steps for building the
system. The main steps for building a system include (a)
preprocessing, (b) compiling, and (c) linking, as well as
various specialized steps, such as bootstrapping, source
code generation, probing the targeted build environment,
and code specialization [8]. To comprehend a large
system, and to structure an appropriate reverse
engineering process, one can take advantage of extant
knowledge of these build steps, effectively creating a
“comprehension pipeline” that shadows the build process.
. Briefly, the first part of this comprehension process
mimics preprocessing and compiling, and extracts a
complete semantic image of each object module of the
system. Each image consists of a graph, which includes
an embedded AST (Abstract Syntax Tree) as well as
edges and attributes recording types, declarations,
dependencies, etc. The next step links the images of the
object modules into an image (a large graph) of the
executable code. To this image is added the architectural
decomposition, dividing the system, recursively, into
subsystems. This image is “shrunk” to manageable
proportions by various abstractions, e.g., removing
function bodies, ignoring libraries, deleting built-in types,
etc. Additionally, customized comprehension steps may
be added to extract information about specialized build-
time activities, such as source code generation or
bootstrapping.

We now discuss the build and comprehension
pipelines in more detail.

2. The Build Pipeline
The typical steps for building software are illustrated

in Figure 1. It is tempting to view this process as a “black
box”; however, this is not accurate. It is true that the
transformation process is automatic once the source code
has been completed; however, developers often use their
knowledge of the build process to encode aspects of the
design. These aspects are indiscernible by general-
purpose source-based program understanding.

Two examples of this follow. First, early in the build
process, source file inclusion establishes relationships
between source entities (files) to indicate module
dependency. Modules are not usually explicitly a
language feature, but the questions “which source files
belong to which modules” and “which modules does this
module depend on” are essential to understanding at the
architectural level.

Second, later in the build process, a linker (or even a
dynamic loader!) has a search order for finding missing
symbols. A programmer may use this search order to
handle the configuration of software on different
platforms, or to select the correct routine from one a
collection of libraries with mutual name conflicts. In all
cases a correct understanding of the software structure
requires knowledge of the build process.

The steps of the build pipeline are well understood
by developers, and it is our position that this
understanding should be leveraged to help them
comprehend a large software system. Developers
understand that there are intermediate products emitted by
each step in the pipeline, for example, object modules
which are compiled versions of “compilation units”.

Figure 1. The build pipeline

Developers know that each of these products is a
precise representation the semantics of (part of) the target
system. Our goal is to capitalize on both this developer
knowledge and on the structure of the build pipeline to
provide a flexible and powerful approach to
understanding large systems.

Source
code

Object
module

Executable

Preprocess Compile Link

Preprocessed
source code

3. The Comprehend Pipeline: Front End
Figure 2 shows the front end of a reverse engineering

pipeline that mimics the build pipeline from Figure 1.
We will give a simplified description of this pipeline, and
then will briefly explain how the actual pipeline works.
The reverse engineering tools that the authors (and
others) have developed, called SwagKit (Software
Architecture Group Toolkit) [7], has this pipeline
structure. It handles C and C++ programs and is based on
the front end of the Gnu C/C++ compiler, but replaces the
compiler’s code generator with a program that emits the
graph that is a semantic image of the object module. This
modified compiler is called CPPX (C++ Extractor) [2].
These graphs are emitted in an intermediate ASCII
language called TA [4] (or, optionally, in GXL [5]). The
graphs for all of the target system’s object modules are
then linked into a complete semantic image of the
executable system. This graph linker is written in the
relational calculus language Grok [4,7]. We do not have
space to go into details of various substeps in the
comprehend pipeline, such as how repeated information
represented in multiple object modules is merged
following “raw link”.

Figure 2. The comprehend pipeline: Front end

4. The Comprehend Pipeline: Back End

Figure 3 illustrates the back end of our reverse
engineering pipeline. It produces useful views of the
target system by means of two steps: the first step
imposes a hierarchical or modular structure to the system.
which is is a tree-based decomposition that breaks the
system up into subsystems, which in turn are collected
into subsystems, etc. with typically between 5 and 25
elements in each subsystem. This structure allows the
system to be viewed and navigated one subsystem at a
time.

These views, especially at the lower levels of the
system, e.g., within functions, would be overwhelmingly
complex if we did not simplify them. This simplification
is done in the “abstract” step of the back end. It uses a set
of substeps written in Grok to eliminate and aggregate
detail to the point at which each tree node with its
children can be viewed comprehensively.

We have simplified our presentation of the
comprehend pipeline by presenting it as if the steps were
strictly sequential and as if there was no feedback from
later steps to earlier steps. One of the essential re-

orderings of the simplified pipeline we use is to abstract
(or “shrink”) before linking. That is, we “shrink-and-
link”, rather than “link-and-shrink” when possible to
avoid dealing with massive graphs [1].

Figure 3. The comprehend pipeline: Back end

We have implicitly taken the position that the
architecture of a large software system is fundamentally a
view of its code. This position is reasonable because the
developers necessarily need to understand the large scale
structure of their code. This large scale structure is best
thought of as the concrete architecture (or “development”
view) rather than the conceptual (or “logical” view [6]).

5. The Comprehend Pipeline: Custom Steps
 Some systems exhibit interesting architectural
properties at build-time [8]. For example, the GNU
Compiler Collection (GCC) first probes its target
environment, then automatically generates some of its
core data structures and algorithms based on the results,
and finally compiles its resulting source tree three times.
Systems that have such build-time properties require
specialized techniques (such as build process
instrumentation) to fully comprehend their architecture.
Due to lack of space, we will not go into more detail..

6. Conclusions

Our position is that a reverse engineering approach
that mimics the build process can be effective in revealing
the target system’s concrete architecture, and hence in
helping us to comprehend the overall structure of the
system.

References
[1] Abstraction patterns for reverse engineering, R.I. Bull, MMath

thesis, University of Waterloo, 2002.
[2] The CPPX homepage, http://www.swag.uwaterloo.ca/cppx
[3] “Union Schemas as the Basis for a C++ Extractor”, T.R. Dean, A.J.

Malton, R.C. Holt, Proc. of WCRE-01, Stuttgart, Oct 2-5, 2001.
[4] “Structural Manipulations of Software Architecture using Tarski

Relational Algebra”, R. C. Holt, Proc. of WCRE-98, Oct 1998.
[5] “A Short Introduction to the GXL Software Exchange Format“,

R.C. Holt and A. Winter, Proc. of WCRE-00, Brisbane, Nov. 2000.
[6] “The 4+1 View Model of Architecture”, P. Kruchten, IEEE

Software, November 1995.
[7] The SwagKit homepage, http://www.swag.uwaterloo.ca/swagkit/
[8] "The Build-Time Software Architecture View", Q. Tu and M.W.

Godfrey. Proc. of ICSM-01, Florence, Italy, November 2001.

Preprocess Extract
Link of
graph

Source
code

Graph of
object module

Graph of
executable

Modularize Abstract

Graph of
executable

Architectural
view

